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Abstract

In this paper we perform the rigorous derivation of the topological derivative for opti-
mization problems constrained by a class of quasi-linear elliptic transmission problems. In
the case of quasi-linear constraints, techniques using fundamental solutions of the differen-
tial operators cannot be applied to show convergence of the variation of the states. Some
authors succeeded showing this convergence with the help of technical computations under
additional requirements on the problem. Our main objective is to simplify and extend these
previous results by using a Lagrangian framework and a projection trick. Besides these gen-
eralisations the purpose of this manuscript is to present a systematic derivation approach
for topological derivatives.

2010 Mathematics Subject Classification: Primary 49Q10; Secondary 49Qxx,90C46.
Keywords: topological derivative; quasi-linear problems; topology optimisation; asymptotic
analysis; adjoint approach.

1 Introduction

The topological derivative of a shape functional J = J(Ω), where Ω ⊂ Rd , measures the sensitiv-
ity of the functional with respect to a topological perturbation of the shape Ω. The concept was
first used in [9] in the context of linearized elasticity as a means to find optimal locations for in-
troducing holes into an elastic structure. Later, the concept was introduced in a mathematically
rigorous way in [16]. In the literature many research articles deal with the derivation of topo-
logical sensitivities of optimization problems which are constrained by linear partial differential
equations (PDEs). We refer the reader to [2] as well as the monograph [13, pp. 3] and references
therein. The topological derivative for a class of semilinear PDEs with the Laplace operator as
the principal part was studied in [3, 10], and more recently in [17] using an averaged adjoint
framework.

As it is mentioned in the recent book [14, Sec. 6.4, p.107],
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“Extension to nonlinear problems in general can be considered the main challenge
in the theoretical development of the topological derivative method. The difficulty
arises when the nonlinearity comes from the main part of the operator, which at the
same time suffers a topological perturbation.”

This statement applies in particular to quasi-linear PDEs when the main part of the differential
operator gets topologically perturbed. In this case, techniques based on fundamental solutions,
as they are heavily used in the linear and semi-linear case, cannot be applied any more and
other strategies have to be followed.

The first rigorous results of topological sensitivity analysis for shape functions constrained
by quasi-linear PDEs were obtained in [4] where the authors consider a regularized version of
the p-Poisson equation. Based on these results, the topological derivative for the quasi-linear
equation of 2D magnetostatics was derived in [5] where also the numerical treatment of the
obtained formula was addressed.

In [4] and [5], a number of technical assumptions on the nonlinearity of the involved opera-
tors had to be made. Moreover, in both of these publications the inclusion had to be assumed to
be the unit ball. We extend these previous results to inclusions of arbitrary shapes under milder
assumptions on the operator.

In this paper, we establish the topological derivative for a class of quasi-linear problems
under general assumptions. More precisely, given a fixed, open and bounded hold-all domain D
and an open and measurable subset Ω ⊂ D, we study the topological sensitivity analysis of the
tracking-type cost function

J(Ω) =
ˆ
D
|∇(u− ud)|2 d x (1.1)

subject to the constraint that u ∈ H1
0(D) solves

ˆ
D
AΩ(x ,∇u) · ∇ϕ d x =

ˆ
D

f ϕ d x for all ϕ ∈ H1
0(D). (1.2)

Here, f ∈ L2(D), ud ∈ H1
0(D) and AΩ : D×Rd → Rd is a piecewise nonlinear function defined

by

AΩ(x , y) :=
§

a1(y) for x ∈ Ω
a2(y) for x ∈ D \Ω, (1.3)

with a1, a2 : Rd → Rd being functions satisfying monotonicity and continuity assumptions.
The crucial ingredient for our result is the strong convergence (Theorem 4.3) of the variation

of the direct states,

∇
�

(uε − u0) ◦ Tε
ε

�

→∇K strongly in L2(R
d)d , (1.4)

where uε and u0 correspond to the solutions to the perturbed and unperturbed state equa-
tion, respectively. As shown in [17], for semilinear problems only weak convergence in (1.4) is
necessary to establish the topological derivative. For quasi-linear problems we need the strong
convergence (1.4). In [4,5] the property (1.4) was shown for the quasi-linear case using several
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technical lemmas which relied on assumptions on the second and third derivatives of the oper-
ators ai. In contrast, here we will use a projection trick (see Definition 4.4) to establish (1.4),
which simplifies and generalises the analysis under milder conditions on the operator. The main
contributions of this work are as follows:

• simplified analysis for derivation of topological derivative for quasi-linear equations

• generalisation of previous results

• relaxation of smoothness assumption on inclusion ω

The rest of this paper is organized as follows: In Section 2 we state the main assumptions and
the main result. The remaining sections are devoted to the proof of this result. In Section 3, we
recall and extend results from an abstract Lagrangian framework that will be used to derive the
topological derivative. In Section 4 we show that the hypotheses of the abstract theorem are
satisfied and obtain the final formula.

2 Assumptions and main results

2.1 Preliminaries: notation and definitions

Function spaces Standard Lp spaces and Sobolev spaces on an open set D ⊂ Rd are denoted
Lp(D) and W k

p (D), respectively, where p ≥ 1 and k ≥ 1. In case p = 2 and k ≥ 1 we set as
usual Hk(D) :=W k

2 (D). Vector valued spaces are denoted Lp(D)d := Lp(D,Rd) and W k
p (D)

d :=
W k

p (D,Rd). We denote by H1
0(D) the subspace of functions in H1(D) with vanishing trace on

∂D. Given a normed vector space V we denote by L (V,R) the space of linear and continuous
functions on V . We denote by Bδ(x) the ball centred at x with radius δ > 0 and set B̄δ(x) :=
Bδ(x). For the ball centered at x = 0 we write Bδ := Bδ(0).

For d ≥ 1 we set BL(Rd) := {u ∈ H1
loc(R

d) : ∇u ∈ L2(Rd)d} and define the Beppo-Levi space
as the quotient space ḂL(Rd) := BL(Rd)/R, where /R means that we quotient out the constant
functions. We denote by [u] the equivalence classes of ḂL(Rd). Equipped with the norm

‖[u]‖Ḣ1(Rd ) := ‖∇u‖L2(Rd )d , u ∈ [u], (2.1)

the Beppo-Levi space is a Hilbert space (see [8, 15]) and C∞c (R
d)/R is dense in ḂL(Rd). More-

over, we write
ffl

A f d x := 1
|A|

´
A f d x to indicate the average of f over a measurable set A with

measure |A|<∞. We equip Rd with the Euclidean norm ‖ · ‖ and use the same notation for the
corresponding matrix (operator) norm.

Definition of topological derivative Before we state our main result we recall the definition
of the topological derivative. We restrict ourselves to the special case as it was introduced in [16]
and refer the reader to [13, pp. 4] for the more general definition.
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Definition 2.1 (Topological derivative). Let D ⊂ R3 be an open set and Ω ⊂ D an open subset.
Let ω ⊂ R3 be open with 0 ∈ ω. Define for z ∈ R3, ωε(z) := z + εω. Then the topological
derivative of J at Ω at the point z ∈ D \ ∂Ω is defined by

dJ(Ω)(z) =

¨

limε↘0
J(Ω\ωε(z))−J(Ω)

|ωε(z)|
if z ∈ Ω,

limε↘0
J(Ω∪ωε(z))−J(Ω)

|ωε(z)|
if z ∈ D \Ω.

(2.2)

Without loss of generality, we will restrict ourselves to the second case and will always assume
z ∈ D \Ω. The derivation for the case z ∈ Ω is analogous, cf. Remark 2.3.

2.2 Main results

We need the following assumptions:

Assumption A. There are constants c1, c2, c3 such that the functions ai : Rd → Rd , i = 1, 2 are
differentiable and satisfy:

(i) (ai(x)− ai(y)) · (x − y)≥ c1‖x − y‖2, for all x , y ∈ Rd .

(ii) ‖ai(x)− ai(y)‖ ≤ c2‖x − y‖ for all x , y ∈ Rd .

(iii) ‖∂ ai(x)− ∂ ai(y)‖ ≤ c3‖x − y‖ for all x , y ∈ Rd .

Remark 2.2. By using the inverse triangle inequality and choosing y = 0, we get from Assump-
tion A(ii) and (iii) that

‖ai(x)‖ ≤ ‖ai(0)‖+ c2‖x‖, (2.3)
‖∂ ai(x)‖ ≤ ‖∂ ai(0)‖+ c3‖x‖, (2.4)

for i = 1, 2 and for all x ∈ Rd . Notice also that using (ii), we get

‖∂ ai(x)v‖= lim
t↘0
‖ai(x + t v)− ai(x)‖/t ≤ c2‖v‖, (2.5)

for i = 1, 2 and all x , v ∈ Rd .

Properties (i) and (ii) of Assumption A imply that the operator AΩ : H1
0(D)→ (H

1
0(D))

∗ de-
fined by 〈AΩϕ,ψ〉 :=

´
DAΩ(x ,∇ϕ) ·∇ψ d x is Lipschitz continuous and strongly monotone for

all measurable Ω ⊂ D. Hence the state equation (1.2) admits a unique solution by the theorem
of Zarantonello; see [18, p.504, Thm. 25.B].

Before we state our main result we introduce the adjoint p ∈ H1
0(D) as the solution to

ˆ
D
∂uAΩ(x ,∇u)(∇ϕ) · ∇p d x = −

ˆ
D

2∇(u− ud) · ∇ϕ d x for all ϕ ∈ H1
0(D). (2.6)

In view of the monotonicity ofAΩ the previous equation has according to Lax-Milgram a unique
solution in H1

0(D).
We fix the following setting for the topological perturbation (cf. Figure 1):

• an open and bounded set ω ⊂ Rd with 0 ∈ω,
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ωε

z

a1

a1

Ω

D\Ω

a2

Figure 1: Setting for topological derivative: Inclusion ωε of radius ε > 0 containing material a1

around point z ∈ D \Ω (where material a2 is present).

• an open set Ω â D and the inclusion point z := 0 ∈ D \Ω,

• the perturbation ωε(z) := εω and ε ∈ [0,τ], where τ > 0 is such that ωε(z) â D \Ω for
all ε ∈ [0,τ].

• the perturbed shape Ωε(z) := Ω∪ωε(z)

• Tε(x) := εx , x ∈ R3, ε ≥ 0

To simplify notation we will often write ωε instead of ωε(z), Ωε instead of Ωε(z) and xε instead
of Tε(x). For ε > 0 we introduce the notation ε−1D := T−1

ε
(D).

Let `(ε) := |ωε|, and introduce the Lagrangian G : [0,τ]× H1
0(D)× H1

0(D)→ R associated
with the perturbation ωε by

G(ε, u, p) :=
ˆ
D
|∇(u− ud)|2 d x +

ˆ
D
AΩε(x ,∇u) · ∇p d x −

ˆ
D

f p d x . (2.7)

Here, the operatorAΩε is defined according to (1.3) with Ωε = Ω∪ωε.
Now we can state our main result of this paper:

Main Theorem. Let Assumption A be a satisfied. Let Ω ⊂ D open and u0 the solution to (1.2)
and p0 the solution to (2.6). Let z ∈ D \Ω and assume that u0, p0 ∈ C1,α(Bδ(z)) for some δ > 0
and 0< α < 1. Assume further that ∇p0 ∈ L∞(D)d .

(a) Then the assumptions of Theorem 3.4 are satisfied for the Lagrangian G given by (2.7)
and hence the topological derivative at z ∈ D \Ω is given by

dJ(Ω)(z) = ∂`G(0, u0, p0) + R1(u0, p0) + R2(u0, p0) (2.8)

(b) We have
∂`G(0, u0, p0) = ((a1(U0)− a2(U0)) · P0 (2.9)
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and

R1(u0, p0) =
1
|ω|

�
ˆ

Rd

�

Aω(x ,∇K + U0)−Aω(x , U0)− ∂uAω(x , U0)(∇K)
�

· P0 d x

+
ˆ

Rd
|∇K |2 d x

�

(2.10)

and

R2(u0, p0) =
1
|ω|

ˆ
ω

[∂ua1(U0)− ∂ua2(U0)] (∇K) · P0 d x (2.11)

where U0 := ∇u0(z), P0 := ∇p0(z) and Aω(x , y) := a1(y)χω(x) + a2(y)χRd\ω(x). Here
K ∈ ḂL(Rd) is the unique solution to

ˆ
Rd
(Aω(x ,∇K + U0)−Aω(x , U0)) · ∇ϕ d x

= −
ˆ
ω

(a1(U0)− a2(U0)) · ∇ϕ d x for all ϕ ∈ BL(Rd).
(2.12)

Remark 2.3. We restrict ourselves to the case where z ∈ D \Ω without loss of generality. How-
ever, the exact same proof can be conducted in the case where z ∈ Ω. In that case, the formula
for the topological derivative is obtained by just switching the roles of a1 and a2 in the theorem
above (in particular also in the definition ofAω).

The assumption z = 0 is without loss of generality, too. In the general case, this situation can
be obtained by a simple change of the coordinate system.

Remark 2.4. Although we assume f ∈ L2(D), also more general right hand sides, such as
fΩ := χΩ f1 +χD\Ω f2 with f1, f2 ∈ L2(D) could be considered with minor changes.

3 Lagrangian framework

In this section we recall results on a Lagrangian framework, which is a suitable refinement of [6].
These abstract results will be used to derive the topological derivative for our quasi-linear model
problem. We begin with the definition of a Lagrangian function; see also [7].

Definition 3.1 (parametrised Lagrangian). Let X and Y be vector spaces andτ > 0. A parametrised
Lagrangian (or short Lagrangian) is a function

(ε, u, p) 7→ G(ε, u, p) : [0,τ]× X × Y → R,

satisfying,
p 7→ G(ε, u, p) is affine on Y. (3.1)

Definition 3.2 (state and adjoint state). Let ε ∈ [0,τ]. We define the state equation by: find
uε ∈ X , such that

∂pG(ε, uε, 0)(ϕ) = 0 for all ϕ ∈ Y. (3.2)



Topological derivative quasi-linear 7

The set of states is denoted E(ε). We define the adjoint state by: find pε ∈ Y , such that

∂uG(ε, uε, pε)(ϕ) = 0 for all ϕ ∈ X . (3.3)

The set of adjoint states associated with (ε, uε) is denoted Y (ε, uε).

Definition 3.3 (`-differentiable Lagrangian). Let X and Y be vector spaces and τ > 0. Let
` : [0,τ] → R be a given function satisfying `(0) = 0 and `(ε) > 0 for ε ∈ (0,τ]. An `-
differentiable parametrised Lagrangian is a parametrised Lagrangian G : [0,τ] × X × Y → R,
satisfying,

(a) for all v, w ∈ X and p ∈ Y ,

s 7→ G(ε, v + sw, p) is continuously differentiable on [0,1]. (3.4)

(b) for all u0 ∈ E(0) and p0 ∈ Y (0, u0) the limit

∂`G(0, u0, p0) := lim
ε↘0

G(ε, u0, p0)− G(0, u0, p0)
`(ε)

exists. (3.5)

Assumption (H0). (i) We assume that for all ε ∈ [0,τ], the set E(ε) = {uε} is a singleton.

(ii) We assume that the adjoint equation for ε = 0, ∂uG(0, u0, p0)(ϕ) = 0 for all ϕ ∈ E, admits
a unique solution.

We now give sufficient conditions when the function

[0,τ]→ R
ε 7→ g(ε) := G(ε, uε, 0),

(3.6)

is one sided `-differentiable, that means, when the limit

d`g(0) := lim
ε↘0

g(ε)− g(0)
`(ε)

(3.7)

exists, where ` : [0,τ]→ R is a given function satisfying `(0) = 0 and `(ε)> 0 for ε ∈ (0,τ].
The following theorem is a refinement of [6, Thm. 3.3]. Instead of having one R-term we

obtain two terms, which simplifies the later analysis.

Theorem 3.4. Let G : [0,τ]× X × Y → R be an `-differentiable parametrised Lagrangian satis-
fying Hypothesis (H0). Define for ε > 0,

Rε1(u0, p0) :=
1
`(ε)

ˆ 1

0
(∂uG(ε, suε + (1− s)u0, p0)− ∂uG(ε, u0, p0)) (uε − u0) ds (3.8)

and

Rε2(u, p) :=
1
`(ε)
(∂uG(ε, u0, p0)− ∂uG(0, u0, p0))(uε − u0). (3.9)

If R1(u0, p0) := limε↘0 Rε1(u0, p0) and R2(u0, p0) := limε↘0 Rε2(u0, p0) exist, then

d`g(0) = ∂`G(0, u0, p0) + R1(u0, p0) + R2(u0, p0).
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Proof. Using ∂uG(0, u0, p0)(ϕ) = 0 for all ϕ ∈ E and the fundamental theorem of calculus, we
obtain

g(ε)− g(0) = G(ε, uε, p0)− G(0, u0, p0) = G(ε, uε, p0)− G(ε, u0, p0) + G(ε, u0, p0)− G(0, u0, p0)

=
ˆ 1

0
∂uG(ε, suε + (1− s)u0, p0)(uε − u0) ds+ G(ε, u0, p0)− G(0, u0, p0)

=
ˆ 1

0
(∂uG(ε, suε + (1− s)u0, p0)− ∂uG(ε, u0, p0))(uε − u0) ds

+ (∂uG(ε, u0, p0)− ∂uG(0, u0, p0))(uε − u0)
+ G(ε, u0, p0)− G(0, u0, p0).

Notice that the fundamental theorem of calculus is applicable in view of assumption (3.4). Now
dividing by `(ε), using Hypothesis (H0) and that R1(u0, p0) and R2(u0, p0) exist, we can pass to
the limit ε↘ 0. This finishes the proof.

Remark 3.5. In the next section, we will apply the abstract result of Theorem 3.4 to the La-
grangian introduced in (2.7). There, it holds that g(ε) = J(Ωε) and, when using `(ε) = |ωε|,
the derivative (3.7) corresponds to the topological derivative defined in (2.2).

4 The topological derivative

Let X = Y = H1
0(D) and let the Lagrangian G be defined as in (2.7). We are now going to verify

that the hypotheses of Theorem 3.4 are satisfied for this G with `(ε) = |ωε|.

4.1 Analysis of the perturbed state equation

We introduce the abbreviation Aε(x , y) :=AΩε(x , y) for x , y ∈ Rd . The perturbed state equa-
tion reads: find uε ∈ H1

0(D) such that

∂pG(ε, uε, 0)(ϕ) = 0 for all ϕ ∈ H1
0(D), (4.1)

or equivalently uε ∈ H1
0(D) satisfies

ˆ
D
Aε(x ,∇uε) · ∇ϕ d x =

ˆ
D

f ϕ d x for all ϕ ∈ H1
0(D). (4.2)

Since (4.2) admits a unique solution we have that E(ε) = {uε} is a singleton. Together with
the previous observation that (2.6) admits a unique solution, we have that Hypothesis (H0) is
satisfied.

Lemma 4.1. Let Assumption A(i),(ii) be satisfied. There is a constant C > 0, such that for all
small ε > 0,

‖uε − u0‖H1(D) ≤ Cεd/2. (4.3)
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Proof. Subtracting (4.2) for ε > 0 and ε = 0 yields
ˆ
D
(Aε(x ,∇uε)−Aε(x ,∇u0)) · ∇ϕ d x

= −
ˆ
ωε

(a1(∇u0)− a2(∇u0)) · ∇ϕ d x for all ϕ ∈ H1
0(D).

(4.4)

Therefore testing (4.4) with ϕ := uε − u0, then applying Hölder’s inequality and using the
monotonicity ofAε leads to

‖∇(uε − u0)‖2
L2(D)d

≤ C
Æ

|ωε|(‖∇u0‖C(Bδ(z))d + 1)‖∇(uε − u0)‖L2(D)d , (4.5)

where 0 < ε < δ and C is a generic constant. Here, we also used (2.3). Now the result follows
from |ωε|= |ω|εd and the Poincaré inequality.

Definition 4.2. We define the variation of the state by

Kε :=
(uε − u0) ◦ Tε

ε
∈ H1

0(ε
−1D), ε > 0. (4.6)

By extending uε and u0 by zero outside of ε−1D, we can view Kε as an element of BL(Rd) (and
its equivalence class [Kε] as element of ḂL(Rd)).

Our main result of this section is the following theorem:

Theorem 4.3. Let Assumption A(i),(ii) be satisfied.

(i) There exists a unique solution K ∈ ḂL(Rd) to
ˆ

Rd
(Aω(x ,∇K + U0)−Aω(x , U0)) · ∇ϕ d x

= −
ˆ
ω

(a1(U0)− a2(U0)) · ∇ϕ d x for all ϕ ∈ BL(Rd),
(4.7)

where U0 :=∇u0(z) andAω(x , y) := a1(y)χω(x) + a2(y)χRd\ω(x).

(ii) We have ∇Kε→∇K strongly in L2(Rd)d as ε↘ 0.

Proof of (i): Thanks to Assumption A the operator Bω : ḂL(Rd) → ḂL(Rd)∗ defined by
〈Bωϕ,ψ〉 :=

´
Rd (Aω(x ,∇ϕ+U0)−Aω(x , U0))·∇ψ d x is a strongly monotone and Lipschitz con-

tinuous and hence the unique solvability follows by the theorem of Zarantonello; see [18, p.504,
Thm. 25.B].

Proof of (ii): We split the proof into two lemmas. The idea is as follows:

(a) introduce the intermediate quantity Hε and split K − Kε = K −Hε +Hε − Kε,

(b) show K −Hε→ 0,

(c) show Hε − Kε→ 0.
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This splitting is not necessary, but simplifies the presentation. Note that changing variables in
(4.3) gives

‖∇Kε‖L2(Rd ) ≤ C for all ε > 0. (4.8)

We start by changing variables in (4.4) to obtain an equation for Kε:ˆ
Rd
(Aω(x ,∇Kε +∇u0(xε))−Aω(x ,∇u0(xε))) · ∇ϕ d x

= −
ˆ
ω

(a1(∇u0(xε))− a2(∇u0(xε))) · ∇ϕ d x
(4.9)

for all ϕ ∈ H1
0(ε

−1D). Similarly as in [4,5] we approximate Kε by Hε ∈ H1
0(ε

−1D) solution to
ˆ

Rd
(Aω(x ,∇Hε + U0)−Aω(x , U0)) · ∇ϕ d x

= −
ˆ
ω

(a1(U0)− a2(U0)) · ∇ϕ d x for all ϕ ∈ H1
0(ε

−1D).
(4.10)

This equation is simply (4.9) with ∇u(xε) replaced by U0. We now introduce the projection of
K into the space H1

0(ε
−1D):

Definition 4.4. We define K̂ε ∈ H1
0(ε

−1D) as the minimiser of

min
ϕ∈H1

0 (ε
−1D)
‖∇(ϕ − K)‖L2(ε−1D)d . (4.11)

As for Kε, we can also view Hε and K̂ε as elements of BL(Rd) by extending them by 0 outside
ε−1D.

Remark 4.5. In [4, 5] the proof of ∇Kε →∇K strongly in L2(Rd)d as ε↘ 0 was given using a
cut-off argument of K . The reason is that one cannot directly work with K since K 6∈ H1

0(ε
−1D)

for every ε > 0. This cut-off technique lead to technical arguments which required additional
smoothness of the operators, some restrictions on the non-linearity and also to restrict to ω =
B1(0). As we will see by introducing the projection K̂ε this step is simplified substantially.

Lemma 4.6. It holds that

∇K̂ε→∇K strongly in L2(R
d)d as ε↘ 0. (4.12)

Proof. It is readily checked that the minimiser to (4.11) satisfies
ˆ
ε−1D
∇K̂ε · ∇ϕ d x =

ˆ
ε−1D
∇K · ∇ϕ d x for all ϕ ∈ H1

0(ε
−1D). (4.13)

By testing the previous equation withϕ = K̂ε and using Hölder’s inequality, we obtain ‖∇K̂ε‖L2(ε−1D)d ≤
‖∇K‖L2(ε−1D)d for all ε > 0. Now fix ε̃ > 0 and let ε ∈ (0, ε̃). Then we obtain from (4.13) (by
extending K and K̂ε by zero outside of ε−1D),

ˆ
Rd
∇K̂ε · ∇ϕ d x =

ˆ
Rd
∇K · ∇ϕ d x for all ϕ ∈ H1

0(ε̃
−1D). (4.14)
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Let (εn) be a null-sequence. In view of the boundedness of (K̂εn
) in ḂL(Rd), we can extract a

subsequence (denoted the same) and find K̃ ∈ ḂL(Rd), such that∇K̂εn
*∇K̃ weakly in L2(Rd)d .

Therefore, selecting ε = εn in (4.14) we can pass to the limit n→∞ to obtainˆ
Rd
∇K̃ · ∇ϕ d x =

ˆ
Rd
∇K · ∇ϕ d x for all ϕ ∈ H1

0(ε̃
−1D). (4.15)

Since ε̃ was arbitrary and since C∞c (R
d)/R is dense in ḂL(Rd) it follows that (4.15) holds for test

functions in BL(Rd) from which we conclude that K̃ = K . Therefore K̂ε * K weakly in ḂL(Rd).
The strong convergence follows by testing (4.13) with ϕ = K̂ε and passing to the limit ε ↘ 0.
This shows that ‖∇K̂ε‖L2(Rd )d → ‖∇K‖L2(Rd )d as ε↘ 0. Since in a Hilbert space norm convergence
together with weak convergence implies strong convergence we finish the proof.

Lemma 4.7. We have

∇Hε→∇K strongly in L2(R
d)d as ε↘ 0. (4.16)

Proof. Subtracting (4.10) from (4.7) yields after rearranging:ˆ
Rd
(Aω(x ,∇K̂ε+U0)−Aω(x ,∇Hε+U0))·∇ϕ d x =

ˆ
Rd
(Aω(x ,∇K̂ε+U0)−Aω(x ,∇K+U0))·∇ϕ d x

(4.17)
for all ϕ ∈ H1

0(ε
−1D). Now we test this equation with ϕ = K̂ε − Hε ∈ H1

0(ε
−1D), use the mono-

tonicity ofAω and Hölder’s inequality:

‖∇(K̂ε −Hε)‖2
L2(Rd )d ≤

ˆ
Rd
(Aω(x ,∇K̂ε + U0)−Aω(x ,∇Hε + U0)) · ∇(K̂ε −Hε) d x

(4.17)
=
ˆ

Rd
(Aω(x ,∇K̂ε + U0)−Aω(x ,∇K + U0)) · ∇(K̂ε −Hε) d x

≤
ˆ

Rd
|∇(K̂ε − K)||∇(K̂ε −Hε)| d x

≤ ‖∇(K̂ε − K)‖L2(Rd )d‖∇(K̂ε −Hε)‖L2(Rd )d .

(4.18)

Since in view of Lemma 4.6, we have∇K̂ε→∇K strongly in L2(Rd)d it follows from (4.18) that
∇(K̂ε−Hε)→ 0 strongly in L2(Rd)d and therefore also ‖∇(Hε−K)‖L2(Rd )d ≤ ‖∇(Hε−K̂ε)‖L2(Rd )d+
‖∇(K̂ε − K)‖L2(Rd )d → 0 as ε↘ 0.

We now prove that ∇(Hε − Kε)→ 0 strongly in L2(Rd)d .

Lemma 4.8. We have

∇(Hε − Kε)→ 0 strongly in L2(R
d)d as ε↘ 0. (4.19)

Proof. Subtracting (4.9) and (4.10) we obtainˆ
Rd
(Aω(x ,∇Kε +∇u0(xε))−Aω(x ,∇Hε + U0)) · ∇ϕ d x

+
ˆ

Rd
(Aω(x , U0)−Aω(x ,∇u0(xε))) · ∇ϕ d x

= −
ˆ
ω

(a1(∇u0(xε))− a2(∇u0(xε))) · ∇ϕ d x + (a1(U0)− a2(U0)) · ∇ϕ d x

(4.20)
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for all ϕ ∈ H1
0(ε

−1D). In order to be able to use the monotonicity of Aω we rewrite this as
followsˆ

Rd
(Aω(x ,∇Kε +∇u0(xε))−Aω(x ,∇Hε +∇u0(xε)))) · ∇ϕ d x

=−
ˆ

Rd
((Aω(x ,∇Hε +∇u0(xε))− (Aω(x ,∇Hε + U0) · ∇ϕ d x

︸ ︷︷ ︸

=:I1(ε,ϕ)

−
ˆ

Rd
(Aω(x , U0)−Aω(x ,∇u0(xε))) · ∇ϕ d x

︸ ︷︷ ︸

=:I2(ε,ϕ)

−
ˆ
ω

(a1(∇u0(xε))− a2(∇u0(xε))) · ∇ϕ d x + (a1(U0)− a2(U0)) · ∇ϕ d x
︸ ︷︷ ︸

=:I3(ε,ϕ)

(4.21)

Since ai are Lipschitz continuous and u ∈ C1,α(Bδ(z)) with α,δ > 0, we immediately obtain that
|I3(ε,ϕ)| ≤ Cεα‖∇ϕ‖L2(Rd )d for a suitable constant C > 0. We now show that also |I1(ε,ϕ) +
I2(ε,ϕ)| ≤ C(ε)‖∇ϕ‖L2(Rd )d and C(ε)→ 0 as ε↘ 0. We write for arbitrary r ∈ (0,1),

I1(ε,ϕ) + I2(ε,ϕ) =−
ˆ

Bε−r

((Aω(x ,∇Hε +∇u0(xε))− (Aω(x ,∇Hε + U0) · ∇ϕ d x

−
ˆ

Bε−r

(Aω(x , U0)−Aω(x ,∇u0(xε))) · ∇ϕ d x

−
ˆ

Rd\Bε−r

((Aω(x ,∇Hε +∇u0(xε))− (Aω(x ,∇u0(xε)) · ∇ϕ d x

+
ˆ

Rd\Bε−r

((Aω(x ,∇Hε + U0)−Aω(x , U0)) · ∇ϕ d x .

(4.22)

As in [4, Prop. 6.7] the idea of choosing a power ε−r is to let the ball Bε−r (0) expand slower than
Bε−1(0) by choosing r ∈ (0, 1) appropriately. Now we can estimate the right hand side of (4.22)
using the Lipschitz continuity of ai (see Assumption A(ii)) as follows

|I1(ε,ϕ) + I2(ε,ϕ)| ≤ 2C
ˆ

Bε−r

|U0 −∇u0(xε)||∇ϕ| d x + 2C
ˆ

Rd\Bε−r

|∇Hε||∇ϕ| d x

≤ C
ˆ

Bε−r

|xε|α|∇ϕ|dx + 2C
ˆ

Rd\Bε−r

|∇Hε||∇ϕ| d x

≤ ε−rαεαε−rd/2C‖∇ϕ‖L2(Rd )d + 2C‖∇Hε‖L2(Rd\Bε−r )d‖∇ϕ‖L2(Rd\Bεr )d

(4.23)

For r sufficiently close to 0, we have ε−rαεαε−rd/2 = εα−r( d
2+α) → 0. Moreover, by the triangle

inequality we have

‖∇Hε‖L2(Rd\Bε−r ) ≤ ‖∇(Hε − K)‖L2(Rd\Bε−r ) + ‖∇K‖L2(Rd\Bε−r ). (4.24)

The first term on the right hand side goes to zero in view of Lemma 4.7. The second term
goes to zero since ∇K ∈ L2(Rd)d thus ‖∇K‖L2(Rd\Bε−r )d → 0 as ε ↘ 0. Using Kε − Hε as test
function in (4.21), using the monotonicity ofA and employing |I1(ε,ϕ)+ I2(ε,ϕ)+ I3(ε,ϕ)| ≤
C(ε)‖∇ϕ‖L2(Rd )d with C(ε)→ 0 as ε↘ 0, shows the result.
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Combining Lemma 4.7 and Lemma 4.8 proves Theorem 4.3(ii). �
We get the following properties of the sequence (εKε):

Corollary 4.9. We have

εKε→ 0







strongly in Lp(Rd) for d = 2, p ∈ (2,4],
strongly in Lp(Rd) for d ≥ 3, p ∈ (2,2∗],
weakly in L2(Rd) for d ≥ 2,

(4.25)

where 2∗ := 2d/(d − 2) denotes the Sobolev exponent of 2 for d ≥ 3.

Proof. Let d = 2. From the Ladyzhenskaya inequality (see [11]) we obtain the estimate ‖εKε‖L4(R2) ≤
Cε1/2‖εKε‖

1/2
L2(R2)‖∇Kε‖

1/2
L2(R2)2 . Hence for d = 2, we conclude εKε → 0 in L4(R2) as ε ↘ 0. Let

now p ∈ (2, 4). Then in view of the interpolation inequality ‖εKε‖Lp(R2) ≤ ‖εKε‖θL2(R2)‖εKε‖
1−θ
L4(R2)

for all θ ∈ (0, 1) and 1
p =

θ
2 +

(1−θ )
4 it follows εKε→ 0 in Lp(R2) as ε↘ 0.

Let now d ≥ 3. By the Gagliardo-Nirenberg inequality (see [12]) we obtain ‖εKε‖L2∗(Rd ) ≤
Cε‖∇Kε‖L2(Rd )d and hence εKε → 0 strongly in L2∗(Rd) as ε ↘ 0. The convergence εKε → 0
strongly in Lp(Rd) as ε ↘ 0 for all p ∈ (2,2∗) follows by the interpolation argument as in the
previous step.

The convergence εKε* 0 weakly in L2(Rd) as ε↘ 0 can be proved using the same arguments
as in [17, Thm. 4.14].

4.2 Computation of R1(u0, p0) and R2(u0, p0)

It remains to check that the limits of R1(u0, p0) and R2(u0, p0) exist. For this we use Assump-
tion A(i)-(iii). Using the change of variables Tε, we have

Rε1(u0, p0) =
1
`(ε)

ˆ 1

0

ˆ
D
(∂uAε(x ,∇(suε + (1− s)u0))− ∂uAε(x ,∇u0)) (∇(uε − u0)) · ∇p0 d x ds

+
1
`(ε)

ˆ
D
|∇(uε − u0)|2 d x

=
1
|ω|

ˆ 1

0

ˆ
Rd
(∂uAω(x , s∇Kε +∇u0(xε))− ∂uAω(x ,∇u0(xε))) (∇Kε) · ∇p0(xε) d x ds

+
1
|ω|

ˆ
Rd
|∇Kε|2 d x

→
1
|ω|

ˆ 1

0

ˆ
Rd
(∂uAω(x , s∇K + U0)− ∂uAω(x , U0)) (∇K) · P0 d x ds+

1
|ω|

ˆ
Rd
|∇K |2 d x .

(4.26)
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Here, we used that ∇Kε→∇K strongly in L2(Rd)d as ε↘ 0 for the limit of the second term. To
see the convergence of the first term, we may write

ˆ 1

0

ˆ
Rd
(∂uAω(x , s∇Kε +∇u0(xε))− ∂uAω(x ,∇u0(xε)))(∇Kε) · ∇p0(xε) d xds =

+
ˆ 1

0

ˆ
Rd
(∂uAω(x , s∇Kε +∇u0(xε))− ∂uAω(x , s∇K +∇u0(xε)))(∇Kε) · ∇p0(xε) d xds

+
ˆ 1

0

ˆ
Rd
(∂uAω(x , s∇K +∇u0(xε))− ∂uAω(x ,∇u0(xε)))(∇(Kε − K)) · ∇p0(xε) d xds

+
ˆ 1

0

ˆ
Rd
(∂uAω(x , s∇K +∇u0(xε))− ∂uAω(x ,∇u0(xε)))(∇K) · ∇p0(xε) d xds.

Using Assumption A(iii) and ∇p0 ∈ L∞(D)d , we see that the absolute value of the first and
second term on the right hand side can be bounded by C‖∇(Kε − K)‖L2(Rd )d‖∇K‖L2(Rd )d and
hence using∇Kε→∇K in L2(Rd)d as ε↘ 0 they disappear in the limit. The last term converges
to the desired limit by using Lebesgue’s dominated convergence theorem. Using the fundamental
theorem, we obtain the expression in (2.10). Similarly, using (2.4), the continuity of ∇u0 and
∇p0 at z, the continuity of ∂ua1,∂ua2, and again ∇Kε →∇K strongly in L2(Rd)d , we obtain by
Lebesgue’s dominated convergence theorem

Rε2(u, p) =
1
`(ε)

ˆ
ωε

(∂ua1(∇u0)− ∂ua1(∇u0))(∇(uε − u0)) · ∇p0 d x

=
1
|ω|

ˆ
ω

(∂ua1(∇u0(xε))− ∂ua2(∇u0(xε)))(∇Kε) · ∇p0(xε) d x

→
1
|ω|

ˆ
ω

(∂ua1(U0)− ∂ua2(U0))(∇K) · P0 d x .

(4.27)

This finishes the proof of the Main Theorem.

Remark 4.10. The obtained formula for the topological derivative coincides with the formulas
obtained in [4, Thm. 4.4] and [5, Thm. 2 and Thm. 3] for the respective special cases, which
can be seen as follows: Introducing the problem defining the variation of the adjoint state Q ∈
ḂL(Rd),

ˆ
Rd
∂uAω(x , U0)(∇ϕ) · ∇Q d x = −

ˆ
ω

(∂ua1(U0)− ∂ua2(U0))(∇ϕ) · P0 d x (4.28)

for all ϕ ∈ BL(Rd), and adding the left and right hand side of (4.7) tested with the solution Q
of (4.28), the term R2(u0, p0) can be rewritten as

R2(u0, p0) =−
1
|ω|

ˆ
Rd
∂uAω(x , U0)(∇K) · ∇Q d x

=
1
|ω|

ˆ
Rd
(Aω(x ,∇K + U0)−Aω(x , U0)− ∂uAω(x , U0)(∇K)) · ∇Q d x

+
1
|ω|

ˆ
ω

(a1(U0)− a2(U0)) · ∇Q d x .

(4.29)



Topological derivative quasi-linear 15

Together with the terms ∂`G(0, u0, p0) and R1(u0, p0), the topological derivative reads

dJ(Ω)(z) =
1
|ω|

�

(a1(U0)− a2(U0)) ·
ˆ
ω

P0 +∇Q d x

+
ˆ

Rd
(Aω(x ,∇K + U0)−Aω(x , U0)− ∂uAω(x , U0)(∇K)) · (P0 +∇Q) d x

+
ˆ

Rd
|∇K |2 d x

�

(4.30)

which is, up to a scaling by 1/|ω| the same formula as obtained in [4] and [5]. The different
scaling is due to a different definition of the topological derivative in these publications.

Remark 4.11. It can be seen from (4.28) that∇Q depends linearly on P0. Thus, it can be shown
that there exists a matrix M = M (ω,∂ua1(U0),∂ua2(U0)), which is related to the concept of
polarization matrices [1], such that

´
ω∇Q d x =M P0, see also [5, Sec. 6] for the special setting

of two-dimensional magnetostatics.
For a discussion on the efficient numerical evaluation of the second integral in (4.30) involv-

ing K , see [5, Sec. 7].

Conclusion

In this paper we derived topological sensitivities for a class of quasi-linear problems under more
general assumptions than previous results. Moreover, we simplified many of the previous cal-
culations, which can be helpful when dealing with other types of nonlinear problems. In fact
our analysis of Kε→ K is not restricted to elliptic problems and is probably easily extendable to
other types of equations, such as Maxwell’s equation.
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