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Abstract

Due to simplicity in implementation, data structure and meshing, elements with first-order
interpolation of velocity and pressure are by far the most common choice in finite-element-
based flow simulations. Although such equal-order pairs are known to be unstable in the
Ladyzhenskaya-Babuška-Brezzi (LBB) sense, a variety of stabilisation techniques exist to
circumvent that and yield accurate solutions. One of the most popular methods is the
pressure stabilisation Petrov-Galerkin (PSPG) formulation, which consists of relaxing the
incompressibility constraint with a weighted residual of the momentum equation. Yet, the
PSPG method can perform poorly for low-order elements due to loss of consistency. This
happens because first-order polynomial spaces are unable to approximate the second-order
derivatives required to completely evaluate the stabilisation term. Alternative techniques
exist, but they normally either require expensive projections and/or unconventional data
structures, or lead to suboptimal convergence. In this context, we present a new technique
that rewrites the second-order viscous term in the residual as a first-order boundary term,
thereby preserving full consistency even for linear-linear elements. Our method has a
similar structure to standard residual-based formulations, but the stabilisation term is
computed globally instead of only in element interiors. This results in a scheme that
does not require relaxing incompressibility, thereby leading to improved results. The new
method is simple to implement and more robust than PSPG. Various numerical examples
are provided to showcase the performance of this novel approach in comparison to existing
ones.

1. Introduction

In the early years of Computational Mechanics, there was considerable scepticism
about whether the Finite Element Method was a suitable technique for flow simulations.
However, what was regarded as poor performance was rather the consequence of a numer-
ical phenomenon commonly known as instability [1]. A classical example of an unstable
formulation results from the use of linear interpolation for velocity and pressure in incom-
pressible flows. The reason is that equal-order pairs violate the Ladyzhenskaya-Babuška-
Brezzi (LBB) condition, which dictates a compatibility requirement between mixed finite
element spaces [2].
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A major breakthrough came from Hood and Taylor [3], who discovered that going
one order higher in velocity allows stable, optimally convergent approximations. There
is, however, great practical appeal in the use of first-order interpolation for both flow
quantities. The first so-called stabilised formulations allowing equal-order pairs were
developed by Brezzi and Pitkäranta [4] and Hughes et al. [5] Both consist of perturbing
the continuity equation in order to introduce a non-zero pressure-pressure block in the
system, thereby breaking its saddle-point structure. The latter formulation[5] – often
called pressure stabilisation Petrov-Galerkin (PSPG) [6] – has over the former[4] the
advantage of being residual-based, i.e., the added perturbation is proportional to the
residual of the momentum equation. This means that the stabilisation term is smaller in
regions where the solution is accurate enough, quickly vanishing as the numerical solution
converges to the exact one. The formulation is thus said to be fully consistent, as it
is satisfied by the solution of the continuous problem. Other residual-based methods
similar to PSPG are also available [7, 8, 9]. Those are all e�cient methods o↵ering simple
implementation, good accuracy and low computational cost, but they have something
else in common: for linear elements, the velocity Laplacian in the residual cannot be
approximated, which spoils consistency (in fact, nearly all of these techniques reduce to
the same penalty method in that case). This can have serious impact on the quality of
the approximations and spoil robustness [10, 11].

The consistent reformulation for PSPG proposed by Droux and Hughes [10] require
quasi-uniform meshes, which is of course too restrictive. Other fully consistent stabili-
sation methods have been proposed by Codina and Blasco [12], Jansen et al. [11] and
Bochev and Gunzburger [13]; yet, they demand vector projections that largely increase
the size of the problem to be solved. The pressure Poisson formulation of Johnston and
Liu [14] is also consistent, but su↵ers from suboptimal convergence. In this context, we
seek a robust stabilisation method which preserves full consistency for first-order elements
but still has low computational cost and high accuracy, while also keeping a simple im-
plementation (i.e., without the need for internal face loops, macroelements or additional
projections).

The basic idea is to rewrite the Laplacian form present in the weighted residual as a
first-order term. We achieve this by replacing the Navier-Stokes system by an equivalent
boundary value problem (BVP), extending the idea presented by Liu [15]. In our novel
approach, the stabilisation term is computed globally (instead of element-wise), whereas
the continuity equation is handled in an element-weighted manner. With this, it is possible
to construct a stabilised formulation that has a similar structure to other residual-based
ones, but without relaxing incompressibility. We further show that our method is closely
related to the pressure Poisson formulation[14], with the strong residual of the divergence-
free constraint as an added penalty term. Numerical examples are provided in two and
three dimensions, using three types of low-order elements. The results show a clear gain
in robustness and accuracy with respect to the standard PSPG method.

It is important to note that the type of stabilisation to which we refer herein is not to be
confused with other residual-based techniques such as SUPG [16], grad–div [17] or artificial
di↵usion [18]. Those methods aim to remedy other sources of instability/inaccuracy, and
can be appropriately combined with the present one for specific flow problems and regimes.

The rest of the paper is organised as follows. In Section 2 we state the problem
and briefly comment on usual issues. We start Section 3 by presenting the classical
PSPG method and illustrating the matter of inconsistency for linear finite element spaces.
Following that, our new stabilised formulation is presented in strong and weak forms.
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Section 4 deals with discretisation and solution aspects, and Section 5 presents several
numerical examples systematically comparing the performances of our new method and
existing ones. We finally summarise our findings and draw important remarks.

2. Problem statement

As a model problem, we consider the homogeneous Dirichlet setting for the stationary
incompressible Navier-Stokes system, in a bounded Lipschitz domain ⌦ ⇢ Rd, d = 2 or 3:

(⇢ru)u� µ�u+rp = ⇢g in ⌦,

r · u = 0 in ⌦, (1)

u = 0 on � := @⌦,

where g is a given volumetric force, u is the flow velocity, p is the pressure, and ⇢ and µ

are the fluid’s density and dynamic viscosity, respectively. In the pure Dirichlet case we
apply the usual pressure scaling

R
⌦ p d⌦ = 0. The standard variational formulation for

this problem is: Given g 2 X
0, find (u, p) 2 X ⇥ Y such that for all (w, q) 2 X ⇥ Y

(w, (⇢ru)u) + (rw, µru)� (r ·w, p) = (w, ⇢g) , (2)

(q,r · u) = 0, (3)

withX = [H1
0 (⌦)]

d,X 0 is the dual space ofX, and Y = L
2
0(⌦) :=

�
q 2 L

2(⌦) :
R
⌦ q d⌦ = 0

 
.

Let Xh ⇢ X and Yh ⇢ Y be discrete velocity and pressure spaces. The Bubnov-Galerkin
finite element formulation reads: Given g 2 X

0, find (uh, ph) 2 Xh ⇥ Yh such that for all
(wh, qh) 2 Xh ⇥ Yh

(wh, (⇢ruh)uh) + (rwh, µruh)� (r ·wh, ph) = (wh, ⇢g) , (4)

(qh,r · uh) = 0. (5)

The unique solvability in the infinite-dimensional case is not su�cient to guarantee
that the discrete problem is also uniquely solvable, as Xh and Yh must also be chosen
carefully. In fact, for the simplest case where first-order elements are used for velocity
and pressure (or equal-order interpolation in general), the resulting system is generally
not uniquely solvable (in other words, not invertible) [1]. One way out is to use quadratic
interpolation for velocity while keeping the pressure linear, which is the case of the well-
known Taylor-Hood elements. Alternatively, it is possible to use equal-order pairs if the
variational formulation is appropriately modified so as to break its saddle-point structure.
Those are the so-called stabilised formulations, which are the focus here. We remark
that, although the original problem requires only p 2 L

2(⌦), the use of continuous basis
functions for pressure in the discrete case assumes p 2 H

1(⌦). This is so, regardless
of whether stable or stabilised methods are employed, and in particular in the case of
the new stabilisation method that will be presented herein using piecewise linear basis
functions.

3. Stabilised finite element formulations

3.1. The pressure stabilisation Petrov-Galerkin method (PSPG)

The pressure stabilisation Petrov-Galerkin (PSPG) method devised by Hughes et al. [5]
is probably the most popular stabilisation approach for incompressible flow simulations. It
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consists of keeping the momentum equation (4) as it is, while relaxing the incompressibility
constraint (5) with an element-weighted residual of the momentum equation:

(qh,r · uh) +
NeX

e=1

(�erqh,rph � µ�uh + (⇢ruh)uh � ⇢g)⌦e
= 0, (6)

where Ne is the number of elements ⌦e and �e is a positive parameter dependent on the
element size he; let us also define h := max {he}. For �e = ↵h

2
e/µ and su�ciently large ↵,

the system formed by Eqs. (4) and (6) is stable for equal-order pairs [1, 6].
The PSPG method is an e�cient tool for incompressible flow simulations, o↵ering

computational simplicity and low cost. Nevertheless, it presents a major drawback when
low-order interpolation is used. For first-order triangular and rectangular elements (and
their three-dimensional equivalents), the velocity Laplacian in the residual vanishes and
Eq. (6) reduces to

(qh,r · uh) +
NeX

e=1

(�erqh,rph + (⇢ruh)uh � ⇢g)⌦e
= 0. (7)

Since the computation of the residual is incomplete, this stabilisation is often said to be
inconsistent [10] or weakly consistent [11]. The global method itself is still consistent,
since (uh, ph) ! (u, p) as h ! 0 (of course, provided that ↵ is large enough for stability).
What is thus meant here by “inconsistency” is the fact that the added residual does not
converge to zero, or, in other words, the solution (u, p) of ((2),(3)) in general does not
satisfy ((2),(7)). Although this loss of consistency does not damage the stability of the
method or its asymptotic convergence, it induces unphysical pressure boundary conditions
[6] and can lead to considerable loss of accuracy, often resulting in poor approximations
[10, 11]. In this context, devising a fully consistent reformulation of the PSPG method is
a relevant task.

3.2. A new pressure-Poisson-based stabilisation

The first idea is to try relaxing the divergence-free constraint with a di↵erent form of
the momentum equation, namely,

(⇢ru)u+ µr⇥ (r⇥ u) +rp = ⇢g, (8)

which is equivalent to the standard Laplacian form [19, 20]. This comes from a simple
manipulation of the second-order term:

�u ⌘ r (r · u)�r⇥ (r⇥ u) = �r⇥ (r⇥ u) .

Furthermore,

rq · [�r⇥ (r⇥ u)] ⌘ r · [rq ⇥ (r⇥ u)]� (r⇥rq) · (r⇥ u) = r · [rq ⇥ (r⇥ u)] ,

since r⇥rq ⌘ 0. This allows us to write

(rq, µr⇥r⇥ u)⌦e
= �

Z

⌦e

r · [rq ⇥ (µr⇥ u)] d⌦ = �
Z

�e

n · [rq ⇥ (µr⇥ u)] d�

= hrq ⇥ n, µr⇥ ui�e
,
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where �e := @⌦e and n is the outward unit normal vector on �e. The corresponding
stabilised formulation would then be: Given g 2 X

0, find (uh, ph) 2 Xh ⇥ Yh such that
for all (wh, qh) 2 Xh ⇥ Yh

(wh, (⇢ruh)uh) + (rwh, µruh)� (r ·wh, ph)� (wh, ⇢g) = 0,

(qh,r · uh) +
NeX

e=1

�e

⇥
(rqh,rph + (⇢ruh)uh � ⇢g)⌦e

+ hrqh ⇥ n, µr⇥ uhi�e

⇤
= 0.

(9)

We thus seem to have managed to rewrite the incomputable (for linear elements)
second-order term as a computable first-order boundary term. Yet, as we will show next,
this reformulation, as it is, does not o↵er an improvement with respect to PSPG. Let us
assume simplicial elements with linear shape functions. If that is the case, all derivatives
appearing in the formulation are piecewise constant, so that

hrqh ⇥ n, µr⇥ uhi�e
= [rqh ⇥ (µr⇥ uh))] ·

Z

�e

n d� = 0,

since
R
S n dS = 0 for any closed region S. Hence, the modified viscous term vanishes

again for linear elements, recovering the (inconsistent) PSPG formulation. Nonetheless,
we will show how a similar rewriting of the viscous term can be used globally (rather than
element-wise) in order to render the method consistent.

As in most stabilisation techniques [4, 8, 15], a modified system of equations will be
our starting point. We propose the following BVP to replace the Navier-Stokes system
(2):

(⇢ru)u� µ�u+rp = ⇢g in ⌦, (10)

�p = r · [⇢g � (⇢ru)u] + �µr · u in ⌦, (11)

u = 0 on �, (12)

@p

@n
= n · [⇢g � (⇢ru)u� µr⇥ (r⇥ u)] on �, (13)

where � is some given positive function in L
2(⌦) and @p

@n := n ·rp. We wish to prove that,
for su�ciently regular p, u and g, this system is equivalent to the original Navier-Stokes
problem (2). Since the momentum equation is kept unchanged, all we need to prove is
that this new system implies the incompressibility constraint r ·u = 0 (and also the way
back, which is easier to prove). The first step is to apply the divergence operator to both
sides of Eq. (10), yielding

�p = r · [⇢g � (⇢ru)u+ µ�u] = r · [⇢g � (⇢ru)u] + µ� (r · u) , (14)

which is the so-called pressure Poisson equation (PPE). Subtracting Eq. (14) from Eq.
(11) leads to a di↵usion-reaction equation in the variable � := r · u:

��� �� = 0 in ⌦. (15)

The boundary condition (BC) for this equation can be obtained by dotting both sides of
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Eq. (10) with n and subtracting the result from Eq. (13), which gives

0 = n · [�u+ (r⇥r⇥ u)] = n · [r (r · u)] = @�

@n
. (16)

We have thus a homogeneous di↵usion-reaction equation with zero Neumann boundary
conditions. The result is the trivial solution � ⌘ 0, that is, r · u = 0 in ⌦, as wanted.
We omit the proof of the opposite direction, as it is similar and simpler.

Now, we can derive a variational formulation for the equivalent system. We begin by
multiplying Eq. (11) by a test function q 2 H

1(⌦) and integrating over ⌦:

(µ�q,r · u)� (q,�p�r · [⇢g � (⇢ru)u]) = 0. (17)

Applying integration by parts to the second term leads to

(µ�q,r · u) + (rq,rp+ (⇢ru)u� ⇢g)�
⌧
q,
@p

@n
+ n · [(⇢ru)u� ⇢g]

�

�

= 0. (18)

Now, we substitute the Neumann boundary condition (13) to get

(µ�q,r · u) + (rq,rp+ (⇢ru)u� ⇢g) + µ hq,n · [r⇥ (r⇥ u)]i� = 0. (19)

The divergence theorem can be used to write

hq,n · [r⇥ (r⇥ u)]i� =

Z

⌦

r · [qr⇥ (r⇥ u)] d⌦,

but

r · [qr⇥ (r⇥ u)] = rq · [r⇥ (r⇥ u)] + qr · [r⇥ (r⇥ u)] = rq · [r⇥ (r⇥ u)] .

Moreover,
Z

⌦

rq · [r⇥ (r⇥ u)] d⌦ =

Z

⌦

r · [(r⇥ u)⇥rq] + (r⇥rq) · (r⇥ u) d⌦

=

Z

⌦

r · [(r⇥ u)⇥rq] d⌦ = hrq ⇥ n,r⇥ ui� .
(20)

In deriving Eq. (20), we require r⇥rq 2 [L2(⌦)]d, that is, rq 2 H(curl,⌦). Fortunately,
this condition is fulfilled by q 2 H

1(⌦) [15], which can be shown through a Helmholtz de-
composition of H(curl,⌦) (c.f. Ref.[21], Theorem 29). Hence, our variational formulation
finally reads: Given g 2 X

0, find (u, p) 2 X̃ ⇥ Y such that for all (w, q) 2 X ⇥ Ỹ

(w, (⇢ru)u) + (rw, µru)� (r ·w, p) = (w, ⇢g) , (21)

(µ�q,r · u) + (rq,rp) + (rq, (⇢ru)u) + hrq ⇥ n, µr⇥ ui� = (rq, ⇢g) , (22)

with X = [H1
0 (⌦)]

d, Y = H
1(⌦) \ L

2
0(⌦) and

X̃ =
�
w 2 X : (r⇥w) |� 2 L

2(�)
 
, (23)

Ỹ =
�
q 2 Y : n⇥rq|� 2 L

2(�)
 
. (24)
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Although these spaces may seem somewhat unusual in the continuous level, their regu-
larity requirements are fulfilled by standard C

0 finite element spaces [14].
This formulation is quite similar to PSPG, and even more similar to the boundary

integral modification proposed by Brezzi and Douglas Jr. [8]. Apart from the treatment
of the viscous term, the only di↵erence is that here the stabilisation term is computed
globally, instead of only in element interiors. The price to pay is the H

1–regularity
requirement for the pressure spaces (trial and test). This prohibits the use of discontinuous
pressure spaces, but that is in general not a problem since continuous elements are used
in most practical applications.

A last question to answer is how to define the function � that acts as a weight for the
divergence bilinear form. Notice that � appears in the reaction term of Eq. (15), so it must
be positive in order to guarantee r · u ⌘ 0. For conformity, we need simply � 2 L

2(⌦).
However, � must be chosen appropriately if we desire optimal velocity convergence. For
that, we compare our formulation to the modified PSPG form of Brezzi and Douglas
Jr. [8], which is defined for quasi-uniform meshes. In that case, their relaxed continuity
equation is written as

(q,r · u) + ↵h
2

µ
[(rq,rp) + (rq, (⇢ru)u) + hqn, µ�ui� � (rq, ⇢g)] = 0, (25)

where ↵ is the standard PSPG stabilisation parameter. As in our method, they treat
the viscous contribution as a boundary term – but with a second-order operator, which
again reduces the method to standard PSPG for linear elements. Comparing our form
(22) to theirs (25) (or any classical stabilised formulation fitting the present framework
[4, 5, 7, 8, 9, 12]) leads to a natural choice for �, namely, � = (↵h2)�1, or �e = (↵h2

e)
�1

for non-uniform meshes. This specific power on the mesh size parameter is chosen for
optimal convergence [6].

We are finally in position to state our finite element formulation. Considering a more
general BVP with Dirichlet BC u|�D = uD and natural BC [�pn+ (µru)n] |�N = tN ,
the discrete problem reads: Given g 2 X

0, find (uh, ph) 2 Xh ⇥ Yh, with uh|�D = uD,
such that for all (wh, qh) 2 Xh ⇥ Yh, with wh|�D = 0,

(wh, (⇢ruh)uh) + (rwh, µruh)� (r ·wh, ph) = (wh, ⇢g) +

Z

�N

w · tN d�,

(rqh,rph + (⇢ruh)uh) + hrqh ⇥ n, µr⇥ uhi� +
NeX

e=1

µ

↵h2
e

(qh,r · uh)⌦e
= (rqh, ⇢g) ,

(26)

with Xh and Yh taken as C0 finite element spaces for conformity.
It is worth remarking that, if � ! 0, that is, ↵ ! 1, the pressure Poisson formulation

by Johnston and Liu [14] is recovered. Their method replaces the continuity equation by
the PPE completely, which leads to a stable but suboptimally convergent scheme when
equal-order pairs are used [15, 22]. Hence, our formulation can be given two quite distinct
interpretations. On the one hand, it can be viewed as a consistent modification of PSPG
dealing with mesh size e↵ects in the divergence term rather than in the stabilisation
term; on the other hand, one can also see our method as a PPE-based formulation[15, 23]
with an added term penalising violations of the divergence-free constraint. An important
consequence is that, di↵erently from the existing residual-based methods, ours does not
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relax incompressibility. In the standard formulations, ↵ ! 1 leads to the stabilising
term replacing completely the continuity equation, i.e., the system no longer conserves
mass (not even approximately). In our formulation, ↵ ! 1 means completely replacing
the continuity equation by the PPE, which also enforces incompressibility, but in a lower-
order way (c.f. Refs. [15, 24, 23] for excellent discussions on how di↵erent forms of the
PPE can be used to enforce conservation of mass). We also remark that, di↵erently from
other residual-based formulations, our method does not require second deratives of shape
functions, which represents an advantage from the standpoint of implementation and data
structure.

4. Discretisation and solution

Standard continuous finite element spaces of equal order for velocity and pressure are
considered herein. The corresponding shape functions will be denoted by  i, i = 1, ..., N ,
with N being the number of nodes in the mesh. Moreover, only first-order elements are
considered in the numerical examples, both simplicial and non-simplicial.

4.1. The Stokes system

The Stokes solution is obtained by dropping the convective term (⇢ru)u. After
discretisation, this leads to the linear algebraic system


K �B>

1
↵B̃+ L A

�⇢
u
p

�
=

⇢
b
f

�
, (27)

where K, B and b are the usual sti↵ness matrix, divergence matrix and forcing vector
coming from the standard Galerkin formulation of the Stokes system[6]. Matrix A is a
standard Laplacian sti↵ness matrix (without boundary conditions) and matrices L and
B̃ have a block structure:

L =
⇥
L1

... Ld
⇤
, B̃ =

⇥
B̃1

... B̃d
⇤
, (28)

with

L
k
ij = µ

dX

m=1

Z

�

(�mk � 1)

✓
nm

@ i

@xk
� nk

@ i

@xm

◆
@ j

@xm
d�, (29)

B̃
k
ij = µ

NeX

e=1

1

h2
e

Z

⌦e

 i
@ j

@xk
d⌦, (30)

where nk is the k-th spatial component of the normal vector n, and � is the Kronecker
delta. The entries of the forcing term f are given by

fi =

Z

⌦

⇢r i · g d⌦. (31)

4.2. The Navier-Stokes system

When the convection term is kept, an iterative scheme is necessary to solve the re-
sulting non-linear problem. To obtain such a scheme, standard methods can be readily
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applied, since the term we add in comparison to classical PSPG is linear. We use the
following Picard method: after an initial guess

�
u0

, p
0
�
, the iterations follow as


K+C (un) �B>

1
↵B̃+ L+H (un) A

�⇢
un+1

p
n+1

�
=

⇢
b
f

�
, (32)

where C is a block-diagonal matrix with d identical blocks c given by

cij =

Z

⌦

 ir j · uh d⌦, (33)

and H =
⇥
H1

... Hd
⇤
, with

H
k
ij =

Z

⌦

@ i

@xk
r j · uh d⌦. (34)

After each iteration, Aitken relaxation is applied in order to provide the iterative solver
with quadratic convergence [25] (c.f. Ref.[26] for details).

4.3. Solving the linear system

The linear systems (27) and (32) can be easily solved using direct methods when
considering two-dimensional problems, but in three dimensions the resulting memory
requirements and computational complexity can quickly become prohibitive. Thus, we
present here an iterative technique suitable to handle the problem at hand. It is based on
a flexible GMRES method with right preconditioner P�1 for the Navier-Stokes system[27]:

P�1 :=


(K+C)�1 0

0 I

� 
I B>

0 I

� 
I 0
0 S�1

�
, (35)

using the Schur complement defined as S := A + ( 1↵B̃ + L +H) (K+C)�1 B>. For the
Stokes system, the convective terms in P�1 and S are simply zero. Explicitly computing
the Schur complement S is considered too costly, so the key factor for achieving robust
and fast convergence lies in its e�cient approximation. We choose S�1 ⇡ µM�1

p , where
Mp is the mass matrix in the pressure space[27, 28]. This choice is suitable for the
di↵usion-dominated case, which is the focus of this contribution. The actions of the
inverses in (35) applied to some iterate can be approximated by single V-cycles of an
algebraic multigrid method (e.g., utilizing the BoomerAMG package [29] via deal.II [30]).
The rows corresponding to the pressure test functions are multiplied by element-averaged
factors ⌧i defined per node as

⌧i :=

 
NiX

e=1

|⌦e|
!�1 NiX

e=1

↵h
2
e

µ
|⌦e|, (36)

where |⌦e| :=
R
⌦e

d⌦ and Ni is the number of elements sharing vertex i.

5. Numerical examples

In this section, we use di↵erent benchmark examples to assess the performance of
our new method in comparison to classical ones. Three types of first-order elements are
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considered: triangular, quadrilateral and hexahedral. In order to measure approximation
erros, we define a normalised L

2 norm

kp� phk0 :=
kp� phkL2(⌦)

kpkL2(⌦)
,

and analogously for uh. The spatial coordinates (x1, x2, x3) will be denoted by (x, y, z).

5.1. Stokes flow in L-shaped domain

We first consider the Stokes problem in the L-shaped illustrated in Figure 1, with
µ = ⇢ = 1, homogeneous Dirichlet boundary conditions, zero mean pressure and body
force g given by

g =

⇢
8⇡2 sin 4⇡y

8⇡2 (4 cos 4⇡y � 1) sin 4⇡x

�
.

The analytical solution to this problem is

u =

⇢
sin 4⇡y sin2 2⇡x
� sin 4⇡x sin2 2⇡y

�
, p = 4⇡ sin 4⇡x sin 4⇡y.

The first goal is to compare our new approach and PSPG, regarding robustness with
respect to the stabilisation parameter ↵. For that, we consider a uniform mesh consisting
of 6912 square elements, as depicted in Figure 1. The pressure error for a wide range of
stabilisation parameters is shown in Figure 2, and important considerations can be drawn.
The expected behaviour is observed: the error is large for small values of ↵, decreases as ↵
is increased, reaches a minimum, then starts growing again and eventually settles at a finite
value. Both formulations yield virtually identical results for small ↵, since the divergence-
free constraint dominates over the stabilisation term. However, the reasons why each
method reaches a limiting performance for ↵ ! 1 are distinct. In the PSPG formulation,
the error becomes very high because a large ↵ leads to over-relaxation of incompressibility;
in our formulation, ↵ ! 1 leads to the pressure Poisson equation completely replacing
the divergence-free constraint, which does not violate (discrete) incompressibility but
results in suboptimal convergence [22]. Therefore, the error for large ↵ is much higher
for PSPG than for the present formulation. Moreover, the former’s lack of consistency
has an important impact on robustness. The numerical solution is very sensitive to the
stabilisation parameter, with the error growing very fast when ↵ moves away from its
optimal value in either direction. Conversely, in our formulation the error varies very
little for ↵ 2 [10�1

, 102], i.e., there is much more freedom in parameter selection. This
is a crucial feature for a stabilisation technique, since the optimal parameters are often
problem-dependent. The velocity errors are shown in Figure 3. Here, too, the numerical
approximation proves considerably less sensitive to the stabilisation parameter in our
formulation than in the classical one.

5.2. Kovasznay flow problem

We now consider a non-linear problem: the Kovasznay flow benchmark [31]. It is one
of the only known analytical solutions to the Navier-Stokes problem with g = 0, and
models the behaviour of laminar flow past cylinders. The solution in ⌦ =

�
�1

2 ,
1
2

�2
is

u =

⇢
1� e

kx cos 2⇡y
k
2⇡e

kx sin 2⇡y

�
, p =

e
k � e

2kx

2
, (37)
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Figure 1: Stokes problem: uniform quadrilateral mesh.
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Figure 2: Stokes problem: pressure error with respect to stabilisation parameter.

where Re is the Reynolds number and k = Re
2 �

q�
Re
2

�2
+ (2⇡)2. We solve the corre-

sponding Dirichlet problem, this time using triangular elements. An h–refinement study
is performed; the coarsest mesh is shown in Figure 4, and then five levels of uniform refine-
ment are considered. The pressure and velocity errors for Re = 100 and ↵ = 1 are shown
in Figure 5. It can be seen that, although both PSPG and our formulation converge with
similar rates, the former takes longer to reach the asymptotic behaviour, which leads to
larger errors. The reason for this “delayed” convergence is the fact that the inconsistent
pressure boundary conditions induced by the PSPG formulation only become negligible
as the mesh size goes to zero [6]. Another important conclusion from the convergence
plots is the remarkable performance improvement of our approach with respect to the
pure PPE formulation[14], attained with the addition of a simple term to penalise large
velocity divergences. It is also relevant to assess how well the conservation of mass is
fulfilled. In order to quantify that, we plot in Figure 6 the norm of r · uh, which should
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Figure 3: Stokes problem: velocity error with respect to stabilisation parameter.

be zero for an exactly incompressible flow. Here, too, our method performs better than
the others.
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Figure 4: Kovasznay benchmark: coarsest mesh used in the refinement study.
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Figure 5: Kovasznay benchmark: uniform refinement study.
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Figure 6: Kovasznay benchmark: conservation of mass for uniform refinement.

The influence of the stabilisation parameter has also been investigated for this example,
and the results are shown in Figure 7 (using the second finest mesh). Once again, our
consistent method proves considerably more robust than standard PSPG. While the latter
requires a stabilisation parameter between 10�3 and 10�2 to yield smalls errors, the former
maintains practically the minimum errors for any ↵ 2 [10�3

, 1]. It is also important
to remark that here the optimal ↵ for the PSPG formulation di↵ers by two orders of
magnitude with respect to the previous example. At ↵ = 10�1, which is close to the value
often recommended for PSPG [1], the pressure and velocity errors are already 40% and
30% larger, respectively, than those attained by our method.
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Figure 7: Kovasznay benchmark: error with respect to stabilisation parameter.

To further illustrate how the lack of consistency can impact the quality of the ap-
proximation, we show in Figure 8 the pressure isolines for the Kovasznay problem with
Re = 40, ↵ = 100 and the finest mesh considered in the convergence study. This is
a particularly good example for illustrating such e↵ects because the exact solution has
prefectly vertical isolines. Note that the stabilisation parameter is deliberately chosen
outside of the optimal interval for both formulations, so as to critically test their robust-
ness. We see that PSPG yields completely distorted lines all over the domain, whereas in
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our consistent approach there is only a mild distortion close to the edges.

Figure 8: Kovasznay benchmark: pressure isolines for PSPG (left) and present formulation (right).

5.3. Poiseuille flow in three dimensions

We now consider a three-dimensional example on graded hexahedral meshes. The
domain is a cylinder defined as

⌦ =
�
(x, y, z) 2 R3 : x

2 + y
2
< R

2
, 0 < z < L

 
.

The corresponding Poiseuille flow solution is

u =

⇢
0, 0,

2Q

⇡R2

✓
1� x

2 + y
2

R2

◆�>

, p =
8µQL

⇡R4

⇣
1� z

L

⌘
,

in which Q is a given volumetric flow rate and R and L are the pipe’s radius and length,
respectively. There are no body forces. As boundary conditions for the numerical solution,
we use the analytical velocity profile at the inlet z = 0, zero velocity on the wall (x2+y

2 =
R

2), and zero natural BC (t = 0) at the outlet z = L. We begin once again by comparing
the methods regarding the e↵ect of the stabilisation parameter ↵. For this, we consider a
test case with L

R = 3, Re = 150 and a graded mesh with 92160 elements and 96657 nodes
(see Figure 9). For this example, too, our method clearly outperforms PSPG in accuracy
and robustness, as revealed by the error plot in Figure 10.

Next, a convergence study is performed for the present method. The four graded
meshes considered are depicted in Figure 11 (frontal view). The refinement in the z

direction is uniform, starting with an element length of L/3. We consider a normalised
problem with 2R

L = ⇢Q
µR = 1. As for the two-dimensional examples, we use a direct solver

here. Table 1 shows the errors for the four meshes. Once again, the estimated orders
of convergence (eoc) are quadratic. It is important to draw some remarks regarding the
convergence rates. From the approximation standpoint, the polynomial degree for ph

should be one less than for uh if optimal pressure convergence is desired, since we are
looking for p 2 L

2(⌦) but u 2 [H1(⌦)]d. When using equal orders, all that can be
guaranteed for the pressure is linear convergence in L

2(⌦) [5, 8]. In fact, the order is
known in practice to range between 1 and 2, depending on the flow regime [6]. Therefore,
the quaratic convergence experienced here for the pressure should be seen as an “initial”
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Figure 9: Poiseuille flow: graded mesh used for the first test case.
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Figure 10: Poiseuille flow: error with respect to stabilisation parameter.

higher-order convergence[32] and cannot be expected to hold indefinitely. This applies of
course not only to our method, but also to all popular equal-order stabilised methods[4,
5, 13, 12, 8, 33].

Figure 11: Frontal view of the graded meshes used for the Poiseuille flow problem.

6. Concluding remarks

This work has presented a consistent pressure-stabilised formulation for incompressible
flows allowing first-order velocity-pressure pairs. The method has been derived by replac-
ing the standard Navier-Stokes equations by an equivalent system containing a weighted
average of the continuity equation and the pressure Poisson equation. Using this equiv-
alent boundary value problem and appropriate vector calculus identities, we are able to
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Table 1: Poiseuille flow: convergence study for graded meshes.

Mesh ku� uhk0 eoc kp� phk0 eoc
1 7.2⇥10�2 – 3.5⇥10�2 –
2 1.3⇥10�2 2.4 6.0⇥10�3 2.5
3 3.3⇥10�3 2.0 1.5⇥10�3 2.0
4 8.3⇥10�4 2.0 3.6⇥10�4 2.0

rewrite the second-order viscous term as a first-order boundary term, thereby preserving
consistency even for linear elements. To the best of our knowledge, this is the first stabil-
isation technique which is fully consistent for first-order elements, without requiring the
definition of auxiliary variables and projections, or unconventional data structures such
as macroelements, patches and internal face loops. Various numerical examples have been
provided to allow a comparison between our formulation and existing ones, revealing a
clear improvement in accuracy and robustness. We hope that this new technique can
o↵er the CFD community a practical, e�cient alternative to some existing methods such
as PSPG. Future and ongoing developments include a generalisation to fluids with vari-
able viscosity, as well as a systematic numerical analysis to provide theoretical stability
estimates, which could provide useful bounds for the stabilisation parameter.
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