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Abstract The purpose of this paper is to test the applicability of a fast boundary element method
in the context of geoid computations of the gravity. The fast multipole method is the method of
choice due to the its advantageous property of a fast evaluation in the post-processing. Several
sets of trianglar meshes for the approximation of the unit sphere and several modifications of the
prediscribed data have been tested. Also, adapted settings of the fast multipole method have been
applied. Finally, the potential of fast boundary element method for this kind of applcations is
shown.

1 The single layer potential ansatz and the fast multipole

method

First numerical tests have been executed to evaluate the potential use of fast approximation
techniques like the fast multipole method [3], adaptive cross approximation [1] and hierarchical
matrix arithmetics [4]. As test problem for geoid computations of the gravity, a single layer
potential ansatz

1

4π

∫

Γ

1

|xℓ − y|
t(y)dsy = f(xℓ)

was chosen to recover the predescribed data f(xℓ) for ℓ = 1, . . . , M by an unknown density function
t. The surface Γ of the unit sphere is approximated by several sets of plane triangles. The unknown
density function t(x) is approximated by a linear combination of piecewise constant trial functions,

th(y) =

N∑

k=1

tkϕk(y).

The resulting system of linear equations is given by

Vht = f with Vh[ℓ, k] =
1

4π

∫

τk

1

|xℓ − y|
dsy for k = 1, . . . , N ; ℓ = 1, . . . , M.

This overdetermined system of linear equations is solved in the shape of the normal equations

V ⊤
h Vhu = V ⊤

h f

by the conjugate gradient method.
The two main ideas of the fast multipole method [3] are the separation of variables by an

expansion of the kernel and the use of a cluster hierarchy to compute these expansions efficiently.
The splitting of the kernel is realized by the expansion
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of the kernel in spherical harmonics

Y ±m
n (x/|x|) =

√
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(−1)m dm

dxm
3
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|x|
± i

x2

|x|

)m

for m ≥ 0. This expansion converges only for d|x| < |y| with some nearfield parameter d > 1.
Therefore, the nearfield part has to be realized by the standard approach while the multipole
approximation is applied for the farfield. The matrix times vector multiplication is realized by
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k∈NF(ℓ)
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n
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.

Unfortunately, the coefficients Lm
n (ℓ) depend on the evaluation point xℓ. Therefore, an efficient

algorithm [3] has to be used for the computation of these coefficients. This algorithm is based on
cluster hierarchies built upon the set of triangles τk and the set of evaluation points xℓ. For a
detailed description of the algorithm see [6], for example. An analysis of the computational effort
is given in [5].

2 Numerical tests without the fast multipole method

All computations in this section have been executed on a personal computer with an Intel Pentium
M 1.3 GHz processor and 512 MB SDRAM.

2.1 Reference computation

As a model problem, the unit sphere is approximated by several sets of plane triangles. In the
reference configuration, the approximation of the sphere starts from a discretization by two square
pyramides fit together at their base with eight triangles. Each triangle is divided into four triangles
and the new nodes are projected onto the sphere to create a finer discretization. Figure 1 shows
the third refinement level of the sphere with 512 triangles.

Figure 1: Third refinement level of the sphere with 512 triangles
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The satellites positions are arranged along orbits on a sphere with radius 1.05 and the same
center as the unit sphere. Only one fictitious measurement datum is used at each pole. The
fundamental solution

1

|x − x0|
with x0 = (0, 0, 0)⊤ (1)

is chosen as measurement data. The relative accuracy is set to 10−8 in the conjugate gradient
method to solve the normal equations. For all calculations in this section, the fast multipole
method is not used. Further, no preconditioning is applied. In the subsequent tests of this
section, only the variations of these settings are mentioned. All other settings are chosen as
described here. The results of these subsequent computations are compared with the results of
the reference configuration in Table 1.

N M geo setup it solve error

8
18 2, 10, 0.2 < 1 1 < 1 1.97e-02
44 3, 16, 0.188 < 1 1 < 1 1.83e-02
82 4, 22, 0.182 < 1 1 < 1 2.17e-02

32
62 3, 22, 0.15 < 1 4 < 1 4.89e-03

162 5, 34, 0.156 1 4 1 4.74e-03
322 8, 42, 0.19 < 1 3 < 1 5.48e-03

128
268 7, 40, 0.175 < 1 35 < 1 1.01e-03
640 11, 60, 0.183 1 27 1 1.19e-03

1262 15, 86, 0.174 1 27 1 1.22e-03

512
1038 14, 76, 0.184 2 146 4 1.31e-04
2598 22, 120, 0.183 5 119 9 1.61e-04
5042 30, 170, 0.176 10 109 17 1.81e-04

2048
4202 28, 152, 0.184 31 348 99 1.11e-05

10236 43, 240, 0.179 75 370 251 1.16e-05

Table 1: Results for the reference configuration.

In all tables, N denotes the number of triangles of the discretization of the sphere and M is the
number of measurement points in the orbits of the satellite. In the column “geo”, the number of
orbits, the number of measurement points per orbit and the ratio of orbits to satellites are listed.
“setup” and “solve” are the computational times for setting up the system of linear equations and
for solving the normal equations. “it” is the number of iterations needed for solving the normal
equations by the conjugate gradient method with a relative accuracy of 10−8. The “error” of the
approximation is measured by the average absolute value of the difference of the chosen reference
solution and the computed approximation of all measurement points.

The time “setup” for setting up the system of linear equations depends linearly on the number
N of satellites and the number M of measurement points. The number of iterations is growing fast
with the increase of these numbers. The time “solve” for solving the normal equations increases
correspondingly. The average error of the approximation is reduced in each refinement step sig-
nificantly. This effect is related to the excellent convergence of the approximations computed by
boundary element methods inside the computational domain.

2.2 Variations of the radius of the satellite orbits

Now, the radius of the satellite orbits is reduced to 1.01. The corresponding results are given in
Table 2. The reduced distance of the surface and the measurement points causes an increase of
the average error. The number of iterations goes down or stays constant, except the setting of
2048 triangles and 4202 measurement positions.
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N M geo setup it solve error

8
18 2, 10, 0.2 < 1 1 < 1 2.497643e-02
44 3, 16, 0.188 < 1 1 < 1 2.338679e-02
82 4, 22, 0.182 < 1 1 < 1 2.665912e-02

32
62 3, 22, 0.15 < 1 4 < 1 4.89e-03

162 5, 34, 0.156 1 4 1 6.41e-03
322 8, 42, 0.19 < 1 3 < 1 7.70e-03

128
268 7, 40, 0.175 < 1 30 < 1 1.90e-03
640 11, 60, 0.183 < 1 27 < 1 2.12e-03

1262 15, 86, 0.174 < 1 25 1 2.18e-03

512
1038 14, 76, 0.184 2 123 4 4.16e-04
2598 22, 120, 0.183 5 69 7 5.05e-04
5042 30, 170, 0.176 10 69 14 5.64e-04

2048
4202 28, 152, 0.184 31 373 104 9.57e-05

10236 43, 240, 0.179 76 211 178 1.04e-04

Table 2: Results for the reduced radius of the orbits.

An enlargement of the radius of the orbits to 1.1 leads to a decrease of the error, see Table 3.
The number of iterations increases or is constant for all discretizations except for the one of 2048
elements. In this case the number of iterations decreases.

N M geo setup it solve error

8
18 2, 10, 0.2 < 1 1 < 1 1.53e-02
44 3, 16, 0.188 < 1 1 < 1 1.42e-02
82 4, 22, 0.182 < 1 1 < 1 1.72e-02

32
62 3, 22, 0.15 < 1 4 < 1 3.35e-03

162 5, 34, 0.156 < 1 4 < 1 3.32e-03
322 8, 42, 0.19 < 1 3 < 1 3.71e-03

128
268 7, 40, 0.175 < 1 35 < 1 5.03e-04
640 11, 60, 0.183 1 28 1 6.07e-04

1262 15, 86, 0.174 < 1 29 < 1 6.09e-04

512
1038 14, 76, 0.184 2 193 5 3.30e-05
2598 22, 120, 0.183 5 175 11 4.30e-05
5042 30, 170, 0.176 9 180 19 4.87e-05

2048
4202 28, 152, 0.184 31 277 83 3.71e-06

10236 43, 240, 0.179 73 314 217 3.86e-06

Table 3: Results for the increased radius of the orbits.

2.3 Shifted singularity of the fundamental solution

Table 4 shows the results when the measurement data is given by the fundamental solution (1)
with a shifted singularity, where x0 = (0.001, 0, 0)⊤. This shift shall simulate a slight distribution
of the measurement data. The errors are almost the same but the number of iterations increases.
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N M geo setup it solve error

8
18 2, 10, 0.2 < 1 2 < 1 1.97e-02
44 3, 16, 0.188 < 1 2 < 1 1.83e-02
82 4, 22, 0.182 < 1 2 < 1 2.17e-02

32
62 3, 22, 0.15 1 9 1 4.89e-03

162 5, 34, 0.156 < 1 10 1 4.74e-03
322 8, 42, 0.19 < 1 8 < 1 5.48e-03

128
268 7, 40, 0.175 < 1 44 < 1 1.01e-03
640 11, 60, 0.183 1 34 1 1.19e-03

1262 15, 86, 0.174 1 34 1 1.22e-03

512
1038 14, 76, 0.184 2 184 4 1.31e-04
2598 22, 120, 0.183 4 145 9 1.61e-04
5042 30, 170, 0.176 10 130 17 1.81e-04

2048
4202 28, 152, 0.184 30 332 94 1.12e-05

10236 43, 240, 0.179 73 434 274 1.15e-05

Table 4: Results for a shift of the singularity to x0 = (0.001, 0, 0)⊤.

Almost the same result are obtained for a shift of the singularity to x0 = (0.01, 0, 0)⊤, see
Table 5. The only noticeable difference appears in the number of iterations for the finest dis-
cretization.

N M geo setup it solve error

8
18 2, 10, 0.2 < 1 2 < 1 1.97e-02
44 3, 16, 0.188 < 1 2 < 1 1.83e-02
82 4, 22, 0.182 < 1 2 < 1 2.18e-02

32
62 3, 22, 0.15 < 1 9 < 1 4.88e-03

162 5, 34, 0.156 1 10 1 4.74e-03
322 8, 42, 0.19 < 1 10 < 1 5.48e-03

128
268 7, 40, 0.175 1 44 1 1.01e-03
640 11, 60, 0.183 1 34 1 1.19e-03

1262 15, 86, 0.174 1 34 1 1.22e-03

512
1038 14, 76, 0.184 2 196 5 1.31e-04
2598 22, 120, 0.183 5 140 9 1.61e-04
5042 30, 170, 0.176 10 135 18 1.82e-04

2048
4202 28, 152, 0.184 30 434 113 1.09e-05

10236 43, 240, 0.179 74 357 239 1.17e-05

Table 5: Results for a shift of the singularity to x0 = (0.001, 0, 0)⊤.

2.4 Other discretizations of the sphere

In this subsection, several discretizations of the sphere are tested. For the first discretization,
the sphere is split up by angles of longitude and latitude. Each of the corresponding segments is
subdivided into two triangles, see Figure 2a. The angles of longitude are arranged in a way that
each orbit of the satellites is in the middle of two neighboring angles of longitude. The results for
these meshes are given in Table 6. For comparable numbers of triangles and measurement points,
the number of iterations is reduced significantly compared to the reference values of Table 1. On
the other hand, the computed errors are larger.
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(a) equiangular (b) modified equiangular (c) uniform, rotational

Figure 2: Several discretizations of the sphere.

N M geo setup it solve error
504 1038 14, 76, 0.184 2 26 3 5.21e-04
528 2598 22, 120, 0.183 5 10 5 1.44e-03
480 5042 30, 170, 0.176 8 4 8 3.42e-03
600 5042 30, 170, 0.176 10 6 11 2.18e-03

2016 4202 28, 152, 0.184 29 133 54 5.78e-05
2064 10236 43, 240, 0.179 72 55 97 2.44e-04

Table 6: Results for adapted meshes.

The second alternative discretization is very similar to the first one. The only difference is
that at the poles the number of triangles is reduced, see Figure 2b. The corresponding results
are given in Table 7. Again, the number of iterations decreases and the errors increase compared
to the reference values of Table 1. In comparison to the results of Table 6, the more regular
elements at the poles help to decrease the average error. But the modified meshes fit worse to the
measurement points. So the number of iterations is larger again.

N M geo setup it solve error
532 1038 14, 76, 0.184 2 97 4 2.03e-04
484 2598 22, 120, 0.183 5 39 6 7.03e-04
572 2598 22, 120, 0.183 6 48 7 5.29e-04
540 5042 30, 170, 0.176 9 15 10 9.97e-04

2072 4202 28, 152, 0.184 3 225 74 3.49e-05
2100 10236 43, 240, 0.179 75 139 140 1.20e-04

Table 7: Results for adapted meshes with less triangles at the poles.

The setting of Figure 2a seems to be closest to some kind of interpolation scheme of the bound-
ary element method. But the bad regularity of the corresponding meshes reduces the accuracy of
the solution.

The third alternative set of meshes, see Figure 2c, is constructed by cutting the sphere in slices
and discretizing the part of the sphere surface of each each slice separately. The algorithm uses
triangles of almost the same size. This discretization has the opposite effect as the discretizations
before, see Table 8. The number of iterations increases and the error goes down slightly in
comparison to Table 1.
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N M geo setup it solve error

504
1038 14, 76, 0.184 2 489 8 1.18e-04
2598 22, 120, 0.183 5 428 18 1.50e-04
5042 30, 170, 0.176 9 202 21 1.67e-04

2016
4202 28, 152, 0.184 29 633 148 8.98e-06

10236 43, 240, 0.179 72 509 301 1.00e-05

Table 8: Results for a mesh constructed by rotation.

2.5 Several measurements per pole

Since in reality, the number of measurement points at the poles is rather large, the next test is
executed for multiple measurement points at the poles. This causes only a slight increase of the
error and of the number of iterations as shown in Table 9.

N M geo setup it solve error

8
20 2, 10, 0.2 < 1 1 < 1 2.21e-02
48 3, 16, 0.188 < 1 1 < 1 2.23e-02
88 4, 22, 0.182 < 1 1 < 1 2.56e-02

32
66 3, 22, 0.15 < 1 4 < 1 5.24e-03

170 5, 34, 0.156 < 1 4 < 1 5.01e-03
336 8, 42, 0.19 < 1 3 < 1 5.65e-03

128
280 7, 40, 0.175 < 1 34 < 1 1.13e-03
660 11, 60, 0.183 1 30 1 1.21e-03

1290 15, 86, 0.174 1 27 1 1.25e-03

512
1064 14, 76, 0.184 3 155 5 1.37e-04
2640 22, 120, 0.183 5 119 9 1.61e-04
5100 30, 170, 0.176 10 109 16 1.83e-04

2048
4256 28, 152, 0.184 31 351 100 1.12e-05

10320 43, 240, 0.179 75 391 257 1.16e-05

Table 9: Results for multiple measurement points at the poles.
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3 Multipole method

In this section, the fast multipole method is used to speed up the calculations. Since a computer
with more RAM had to be used for finer meshes, the reference calculations of Table 1 had to be
redone in order to be able to compare the figures of the standard method and of the fast multipole
method. The values of the redone computations are summarized in Table 10. All calculations
in this section have been executed on a personal computer with an 3.2 GHz INTEL Pentium 4
processor and 2 GB of RAM.

N M geo setup it solve error

8
18 2, 10, 0.2 1 1 1 1.97e-02
44 3, 16, 0.188 < 1 1 < 1 1.83e-02
82 4, 22, 0.182 < 1 1 < 1 2.17e-02

32
62 3, 22, 0.15 1 4 1 4.89e-03

162 5, 34, 0.156 < 1 4 < 1 4.74e-03
322 8, 42, 0.19 < 1 3 < 1 5.48e-03

128
268 7, 40, 0.175 < 1 35 < 1 1.01e-03
640 11, 60, 0.183 1 27 1 1.19e-03

1262 15, 86, 0.174 1 27 1 1.22e-03

512
1038 14, 76, 0.184 2 149 3 1.31e-04
2598 22, 120, 0.183 3 109 5 1.61e-04
5042 30, 170, 0.176 5 110 9 1.81e-04

2048
4202 28, 152, 0.184 18 322 60 1.11e-05

10236 43, 240, 0.179 43 395 161 1.16e-05
20282 60, 340, 0.176 88 364 310 1.20e-05

Table 10: Results for the reference configuration on a faster computer.

3.1 Fast multipole method without preconditioning

The same computations and further refinement steps have been executed by using the fast mul-
tipole method. The used settings for the parameters of the fast multipole method are given in
Table 11.

N MPLEVEL DEGREESL CMP
512 2 4 1.5

2048 3 4 2.0
8192 4 4 2.6

32768 5 5 2.8

Table 11: Settings of the fast multipole method.

“MPLEVEL” is the maximum level used in the cluster tree of the fast multipole method. “DE-
GRREESL” denotes the expansion degree used for the kernel approximation, while “CMP” is the
parameter which controls the size of the nearfield. The results of the fast multipole method are
given in Table 12.

The fast multipole method has not been applied to the coarse discretizations since the standard
method is faster for this small discretization sizes due to some overhead of the fast multipole
method. The numbers of iterations rise compared to the standard boundary element method.
This is a somehow surprising because in boundary element methods the accuracy of the fast
multipole method used here gives the same number of iterations as a standard method. But this
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N M geo setup it solve error

512
1038 14, 76, 0.184 < 1 230 7 1.30e-04
2598 22, 120, 0.183 1 162 6 1.60e-04
5042 30, 170, 0.176 1 143 7 1.79e-04

2048
4202 28, 152, 0.184 3 454 63 1.09e-05

10236 43, 240, 0.179 4 414 74 1.21e-05
20282 60, 340, 0.176 9 436 104 1.23e-05

8192
16310 54, 304, 0.177 12 560 346 3.06e-06
41110 86, 480, 0.179 27 503 411 3.90e-06
81362 120, 680, 0.177 52 501 561 3.95e-06

32768
65450 108, 608, 0.177 48 525 2755 2.94e-06

163820 171, 960, 0.178 116 557 3419 2.91e-06
328154 242, 1358, 0.178 231 523 4004 2.93e-06

Table 12: Results for the reference configuration using the fast multipole method.

may be due to the worse condition number of the system of normal equations. For the meshes
of 512 and 2048 triangles, the fast multipole method is faster than the standard method for the
larger numbers M of measurement points. This is due to the fact, that the number M mainly
effects the number of evaluations and not the number of translation and conversion operations of
the fast multipole method. For the further refined meshes, their is also a speedup to the expected
times for solving the normal equations. One would expect more than 930 seconds for solving the
system of 8194 triangles and 16310 measurement points by a standard boundary element method.
At this stage, the number M of measurement data effects the time for solving the system of linear
equations only moderately, since the computational time is dominated by the part of the algorithm
which is independent of the number of evaluation points. The numbers of iterations still increase
but seem to be bounded somehow. The numbers for the fast multipole method are by far not
optimal, since a rather simple implementation has been used. More involved implementations
may speedup the solving times by a factor of about four. In this case, the advantage of the fast
multipole method over the standard approach would be even larger.

Since the error reduction is not optimal anymore for the finer meshes, the accuracy of the
fast multipole method was increase, see Table 13. The following table shows that an increase of
DEGREESL and CMP leads to a reduction of the error.

N MPLEVEL DEGREESL CMP
8192 4 5 3

Table 13: Settings for more accurate computations.

This leads to a reduction of the error but also to an increase of the computational times, see
Table 14. Since the measured average errors are close to the relative error, the accuracy is very
high. The average error is reduced to an accuracy of about 3 ·10−6. This maximal accuracy is not
related to the discretization error and the error induced by the fast multipole approximation but
to the relative accuracy used in the conjugate gradient method. Therefore, a better fast multipole
approximation does not pay off and its accuracy can be reduced for finer discretizations to speed
up the computational times.

3.2 Fast multipole method with fixed nearfield parameter

Now, the nearfield parameter “CMP” is fixed to make it possible to calculate finer discretizations
of the sphere. The approximation error of the fast multipole method is controlled by the parameter
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N M geo setup it solve error

8192
16310 54, 304, 0.177 15 505 665 2.85e-06
41110 86, 480, 0.179 34 475 786 3.19e-06
81362 120, 680, 0.177 68 497 1016 3.01e-06

Table 14: results of the fast multipole multipole method with higher accuracy.

“DEGREESL” for the expansion, see Table 15.

N MPLEVEL DEGREESL CMP
512 2 2 2.0

2048 3 4 2.0
8192 4 6 2.0

32768 5 8 2.0
131072 6 10 2.0

Table 15: Settings of the fast multipole method with fixed CMP.

Table 16 gives the results of the fast multipole method for the fixed nearfield parameter. In
comparison with Table 12, the computational times for solving the normal equations are larger.
This shows that this choice of parameters is not optimal. The same effect is observed in boundary
element methods. On the other hand, this choice of parameters enables the computation of
problems of larger sizes. Surprisingly the numbers of iterations increase only slightly or are even
reduced for the largest problems sizes. Again, there is no error reduction on the finer meshes
anymore, as the relative accuracy of the conjugate gradient method limits the overall accuracy of
the approximation.

N M geo setup it solve error

512
1038 14, 76, 0.184 < 1 348 3 1.36e-04
2598 22, 120, 0.183 1 246 5 1.64e-04
5042 30, 170, 0.176 3 157 7 1.89e-04

2048
4202 28, 152, 0.184 2 454 61 1.09e-05

10236 43, 240, 0.179 4 414 71 1.21e-05
20282 60, 340, 0.176 8 436 99 1.23e-05

8192
16310 54, 304, 0.177 9 519 758 2.70e-06
41110 86, 480, 0.179 19 499 852 3.17e-06
81362 120, 680, 0.177 40 499 991 3.00e-06

32768
65450 108, 608, 0.177 30 509 7860 2.87e-06

163820 171, 960, 0.178 71 503 8200 3.12e-06
328154 242, 1358, 0.178 141 429 7721 3.55e-06

131072 262226 216, 1216, 0.178 99 472 57966 2.96e-06

Table 16: Results for a fixed nearfield parameter.

The parameter “DEGREESL” of the expansion length of the fast multipole approximation is
now fixed at eight to do computation for even finer meshes and more measurement points. These
parameters of the fast multipole method are given in Table 17.

The results for the reduced accuracy of the approximation and finer meshes are given in
Table 18. Even though the accuracy of the fast multipole method has been reduced, the error for
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N MPLEVEL DEGREESL CMP
131072 6 8 2.0
524288 7 8 2.0

Table 17: Settings for larger problem sizes.

131072 triangles and 262226 measurement points is not increased but even slightly reduced. This
is a further indication that the remaining errors are not due to the fast multipole approximation
but caused by other approximation errors. The increase of the computational times for the last
refinement step is lower as expected from theory since the accuracy has not been adopted to the
problem size.

N M geo setup it solve error

131072
262226 216, 1216, 0.178 96 498 30301 2.82e-06
655958 342, 1920, 0.178 222 477 31789 2.95e-06

524288 1048898 432, 2430, 0.178 162 458 74266 3.10e-06

Table 18: Results with reduced accuracy of the approximation.

A smaller nearfield in the fast multipole method than usual does not pay off due to larger com-
putational times for small problem sizes. But together with a finer clustering technique resulting
in a deeper cluster tree, the smaller nearfield gives the possibility to compute larger problems and
to reduce the computational times for large problems. Corresponding results are given in Table 19.

N M settings setup it solve error

131072 262226
2.0, 8, 6, 10 96 498 30301 2.82e-06
2.0, 8, 7, 1 22 516 77634 2.72e-06

524288 1048898
2.0, 8, 7, 10 (162) 458 (74266) 3.10e-06
2.0, 4, 7, 1 35 556 17532 4.33e-06

524288 2622722
2.0, 7, 7, 10 212 510 71120 2.91e-06
2.0, 4, 7, 10 199 523 17615 4.47e-06
2.0, 4, 7, 1 55 523 18030 4.55e-06

524288 5247312
2.0, 4, 7, 7 250 485 18475 4.53e-06
2.0, 4, 7, 1 89 493 18759 4.49e-06

Table 19: Results of the fast multipole boundary element method with finer clustering.

The parameters of the fast multipole method have been adopted to create a finer cluster
structure. These parameters are given in the column “settings”. The first value is the nearfield
parameter CMP and has been chosen as 2.0. The second parameter is “DEGREESL”. A reduced
expansion degree has only a small influence on the accuracy of the approximation but speeds up
the computation. The third parameter is the maximal cluster depth “MPLEVEL”. The forth and
last parameter is the maximal number of elements in a single cluster. In the used adaptive scheme,
each cluster is refined into smaller clusters until the number of elements in the cluster is smaller
than the given maximal number or the maximal cluster depth is reached. Due to these settings
the error is increased slightly. But on the other hand, the computational times are reduced by a
factor of two even though the problem size is increased. This effect is due to the fact that the size
of the 524288 triangles and the size of the clusters on the finest cluster level of the fast multipole
method are small enough to resolve the distance between the sphere and the measurement points.
Therefore the size of the nearfield matrix is reduced and the computation is speeded up. For
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example, only about 14 million nearfield entries have to be saved of about 2751 billion matrix
entries. This corresponds to about 0.0005 percent. This effect is not obtained for 131072 triangles
as the triangles and so the corresponding clusters are not small enough to cause this effect.

4 Conclusions and Final Remarks

The numerical tests have shown that the boundary element method gives a good and fast con-
verging approximation of the predescribed data. The use of the fast multipole method enables the
computation of large problem sizes. These first test have shown the potential of fast boundary
element methods to approximate the gravity field of the earth.

The effect of the vanishing nearfield can be enhanced by adopted clustering techniques which
take better care of the fact that the source and target points are separated. This will further
speed up the computational times and will further reduce the memory requirement such that even
larger problems can be considered. A trickier implementation of the fast multipole method will
give some extra speedup of the computation. First tests for the preconditioning of the system
show promising results and give strong hints that the numbers of iterations can be reduced by
preconditioning techniques based on hierarchical matrix arithmetics [2]. Even a direct hierarchical
matrix solver may be attainable. An analysis of the properties of the involved operator should give
helpful hints for the development of these fast solution techniques. Even though the method has
been tested only for uniform distributions so far, it can be applied to locally adapted distributions
and locally refined discretizations for a better local resolution.
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