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U. Langer, R. Löscher, O. Steinbach, H. Yang

Berichte aus dem

Institut für Angewandte Mathematik

Bericht 2024/4





Technische Universität Graz

Robust finite element solvers for distributed

hyperbolic optimal control problems
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Robust finite element solvers for distributed

hyperbolic optimal control problems

Ulrich Langer∗, Richard Löscher†, Olaf Steinbach‡, Huidong Yang§

Dedicated to Gundolf Haase on the occasion of his 60-th birthday

Abstract

We propose, analyze, and test new robust iterative solvers for systems
of linear algebraic equations arising from the space-time finite element dis-
cretization of reduced optimality systems defining the approximate solution
of hyperbolic distributed, tracking-type optimal control problems with both
the standard L2 and the more general energy regularizations. In contrast
to the usual time-stepping approach, we discretize the optimality system by
space-time continuous piecewise-linear finite element basis functions which are
defined on fully unstructured simplicial meshes. If we aim at the asymptoti-
cally best approximation of the given desired state yd by the computed finite
element state y%h, then the optimal choice of the regularization parameter %
is linked to the space-time finite element mesh-size h by the relations % = h4

and % = h2 for the L2 and the energy regularization, respectively. For this
setting, we can construct robust (parallel) iterative solvers for the reduced fi-
nite element optimality systems. These results can be generalized to variable
regularization parameters adapted to the local behavior of the mesh-size that
can heavily change in the case of adaptive mesh refinements. The numerical
results illustrate the theoretical findings firmly.

Keywords: Hyperbolic optimal control problems, L2 regularization, energy reg-
ularization, space-time finite element methods, error estimates, adaptivity, solvers
2010 MSC: 49J20, 49M05, 35L05, 65M60, 65M15, 65N22

1 Introduction

Let us first consider abstract optimal control problems (OCPs) of the form: Find
the state y% ∈ Y and the control u% ∈ U minimizing the cost functional

J (y%, u%) := J%(y%, u%) :=
1

2
‖y% − yd‖2H +

%

2
‖u%‖2U , (1)

subject to the state equation

By% = u% in U ⊂ P ∗, (2)
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where the desired state (target) yd ∈ H and the regularization parameter % > 0 are
given. We mention that, in optimal control, % also allows to influence the costs of
the control in terms of ‖u‖2U . The state space Y , the adjoint state space P , the
observation space H, and the control space U are Hilbert spaces equipped with
the corresponding norms and scalar products. We assume that Y ⊂ H ⊂ Y ∗ and
P ⊂ H ⊂ P ∗ are Gelfand triples, where Y ∗ and P ∗ denote the dual spaces of Y and
P , respectively. The duality products 〈·, ·〉 : Y ∗ × Y → R and 〈·, ·〉 : P ∗ × P → R
are assumed to be extensions of the scalar product 〈·, ·〉H in H. The state operator
B is usually an isomorphism as mapping from Y to P ∗. So, we are interested to
control the state equation (2) not only in U = H, where H = L2 in the standard
setting (L2-regularization), but also in U = P ∗ that is sometimes called energy
regularization. Such kind of optimal control problems were already studied in the
classical monograph [25] by Lions who also admitted additional control constraints.
Since then many books and papers on the analysis and numerics of such kind of
optimal control problems often with additional inequality constraints imposed on
the control u or/and the state y have been published. We here refer the reader only
to the books [10, 17, 42], and the recent omnibus volume [15] on optimization and
control for partial differential equations (PDEs).

We will here only consider tracking-type, distributed hyperbolic OCPs that are
represented by the model state operator B = � = ∂tt −∆x (wave operator). The
reduced optimality system that characterizes the unique solution of the optimal
control problem under consideration is discretized by an unstructured simplicial
finite element (FE) method that is a real space-time finite element method; see
[23, 24] and [26] for the parabolic and hyperbolic cases, respectively. This all-at-once
space-time discretization of the reduced optimality system leads to a symmetric, but
indefinite (SID) system of FE equations of the form[

A%h Bh
B>h −Mh

] [
ph
yh

]
=

[
0h
−ydh

]
. (3)

as in the elliptic case, where the matrix Bh is the FE representation of the state
operator B, Mh is nothing but the mass matrix, A%h represents the regularization
term, and the subscript h is a suitable discretization parameter. In the standard case
of L2 regularization with a constant regularization (cost) parameter %, the matrix
A%h equals %−1Mh, where Mh is the mass matrix from the finite element space for
the approximation of the adjoint state p. The matrices Mh and A%h are symmetric
and positive definite (SPD). In contrast to this approach to time-dependent optimal
control problems, the standard time-stepping discretization combined with a FE
space discretization produces smaller systems of the form (3) at each time step; see,
e.g., [19, 31], and the references therein.

There is a huge amount of publications on preconditioners and iterative solvers
for general systems of algebraic equations with symmetric and indefinite system
matrices such as (3). We refer the reader to the survey papers [6, 43], the books
[5, 12, 32], the review paper [27], and the references therein for a comprehensive
overview on saddle point solvers in general. In particular, there are many papers
devoted to the efficient solution of SID systems arising from PDE-constrained OCPs
with the standard L2 regularization and fixed regularization parameter %. More
recently, preconditioners leading to %-robust iterative solvers have been developed
for PDE-constrained OCPs subject to different state equations without and with
control and/or state constraints; see, e.g., [1, 2, 4, 11, 29, 30, 34, 35, 36, 41] and the
references provided in these papers.

In this paper, we first investigate the deviation of the exact state y% from the
desired state yd with respect to (wrt) the H = L2(Q) norm in dependence on the
regularization parameter % and the regularity of the desired state yd. It turns out
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that the quantitative behavior is practically the same as was first proved for elliptic
optimal control problems with both L2 and energy regularization in [28]. After
the simplicial space-time finite element (FE) discretization, we choose % in such
a way that the finite element state y%h, corresponding to the nodal vector yh as
part of the solution of (3), provides an asymptotically optimal approximation to
the desired state yd in the L2 norm. It was already shown in [26] that % = h2 is
always the optimal choice in the case of the energy regularization independent of the
regularity of the desired state yd. In this paper, we also investigate the standard L2

regularization for which we get % = h4 as optimal choice. These choices of % provide
not only an optimal balance between the regularization and discretization errors,
but also a well-conditioned primal Schur Complement (SC) S%h = B>h A

−1
%hBh +Mh

of the system matrix in the SID system (3). More precisely, we show that the Schur
complement S%h is spectrally equivalent to the mass matrix Mh and, therefore,
to the diagonal lumped mass matrix Dh = lump(Mh) with computable spectral
equivalence constants. This result is crucial for the construction of fast iterative
solvers for the reduced algebraic optimality system (3). It turns out that the Schur-
Complement Preconditioned Conjugate Gradient (SC-PCG) method for solving the
SPD SC problem

S%hyh = ydh, (4)

which arises from (3) by eliminating the adjoint FE state ph from (3), is an efficient
alternative to the solution of the SID system (3) by means of the closely related
Bramble-Pasciak PCG (BP-PCG) [8], especially, in the case of the L2 regularization
when A−1

%h can be replaced by (lump(M%h))−1 ensuring a fast matrix-by-vector mul-
tiplication. We note that these results remain valid for the corresponding variable
choice of the regularization parameter % adapted to the local behavior of the size
of the simplicial space-time mesh that can heavily vary in the case of adaptive FE
discretisations as used in some of our numerical experiments.

The remainder of the paper is organized as follows: In Section 2, we introduce
some preliminary material, and specify the hyperbolic OCPs that we are going to
investigate. More precisely, we consider the standard L2 regularization and the
more general energy regularization. The space-time finite element discretization of
these hyperbolic OCPs on unstructured simplicial meshes is presented and analyzed
in Section 3. Section 4 is devoted to efficient iterative methods for solving the
algebraic systems arising from the space-time finite element discretization of the
reduced optimality systems. In Section 5, we present and discuss our numerical
results. Finally, we draw some conclusions and give an outlook in Section 6.

2 Preliminaries and specifications

As a model problem, we consider a distributed optimal control problem subject
to the wave equation with homogeneous Dirichlet boundary and initial conditions.
Therefore, let Ω ⊂ Rd, d = 1, 2, 3, be a bounded spatial domain with, for d = 2, 3,
Lipschitz boundary Γ = ∂Ω, and let 0 < T < ∞ be a given finite time horizon.
Further we introduce the space-time cylinder Q := Ω× (0, T ), its lateral boundary
Σ := Γ × (0, T ), its bottom Σ0 := Ω × {0}, and its top ΣT := Ω × {T}. For
a given target yd ∈ L2(Q) and a regularization parameter % > 0, we consider the
minimization of the cost functional (1) withH = L2(Q), subject to the homogeneous
initial-boundary value problem for the wave equation

�y% := ∂tty% −∆xy% = u% inQ, y% = 0 on Σ, y% = ∂ty% = 0 on Σ0. (5)
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In order to derive a variational formulation of the wave equation (5), we introduce

H1,1
0;0,(Q) := {y ∈ L2(Q) : ∇xy ∈ [L2(Q)]d, ∂ty ∈ L2(Q), y = 0 on Σ, y = 0 on Σ0},

H1,1
0;,0(Q) := {q ∈ L2(Q) : ∇xq ∈ [L2(Q)]d, ∂tq ∈ L2(Q), q = 0 on Σ, q = 0 on ΣT },

both equipped with the norm |v|H1(Q) = (‖∂tv‖2L2(Q) + ‖∇xv‖2L2(Q))
1/2. Note that

y ∈ H1,1
0;0,(Q) covers zero initial conditions y(x, 0) = 0, while, for q ∈ H1,1

0;,0(Q), we
have q(x, T ) = 0, x ∈ Ω. We now consider the variational formulation of (5) to find
y% ∈ H1,1

0;0,(Q) such that

b(y%, q) := −〈∂ty%, ∂tq〉L2(Q) + 〈∇xy%,∇xq〉L2(Q) = 〈u%, q〉L2(Q) (6)

is satisfied for all q ∈ H1,1
0;,0(Q). Unique solvability of (6) follows when assuming

u% ∈ L2(Q), see, e.g., [20, 38]. This motivates to consider the optimal control
problem with L2 regularization first.

2.1 The L2 regularization U = L2(Q)

Let us first consider the more common L2 regularization with U = L2(Q). Then,
for any u% ∈ L2(Q), the variational formulation (6) admits a unique solution y% ∈
H1,1

0;0,(Q) satisfying the stability estimate

‖y%‖H1,1
0;0,(Q) ≤

T√
2
‖u%‖L2(Q),

see, e.g., [20, Theorem 5.1, p. 169], or [38, Theorem 5.1]. Thus, we can define the
solution operator y% = Su% with S : L2(Q) → H1,1

0;0,(Q), and we can consider the
reduced cost functional

Ĵ (u%) =
1

2
‖Su% − yd‖2L2(Q) +

1

2
% ‖u%‖2L2(Q),

for which the minimizer satisfies the gradient equation

S∗(Su% − yd) + % u% = 0 in L2(Q). (7)

When introducing the adjoint state p% := S∗(Su% − yd) ∈ P = H1,1
0;,0(Q) as the

unique weak solution of the adjoint problem

∂ttp% −∆xp% = y% − yd inQ, p% = 0 on Σ, p% = ∂tp% = 0 on ΣT , (8)

we end up with the optimality system, including the forward problem (5), the
adjoint problem (8), and the gradient equation (7).

Remark 1. We note that, by the gradient equation (7), we have

u% = −%−1 p% ∈ H1,1
0;,0(Q). (9)

Thus, actually the control u% ∈ H1,1
0;,0(Q) is more regular, but also inherits, probably

unpleasant, boundary and terminal conditions from the adjoint state.

When eliminating the control u% = �y%, from (5), we get by the gradient equation
that p% + %�y% = 0, and the reduced optimality system in variational form is to

find (p%, y%) ∈ H1,1
0;,0(Q)×H1,1

0;0,(Q) such that

%−1 〈p%, q〉L2(Q) + b(y%, q) = 0 ∀ q ∈ H1,1
0;,0(Q),

−b(z, p%) + 〈y%, z〉L2(Q) = 〈yd, z〉L2(Q) ∀ z ∈ H1,1
0;0,(Q).

(10)

Unique solvability of (10) follows from the way we derived the system.
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Remark 2. In addition, we can eliminate the adjoint variable p% = −% u% = −%�y%
in the adjoint equation (8) to conclude

%�2y% = −�p% = yd − y%,

and, therefore, we get

%�2y% + y% = yd in Q,

y% = � y% = 0 on Σ,

y% = ∂ty% = 0 on Σ0,

� y% = ∂t� y% = 0 on ΣT ,

(11)

which is nothing but a kind of bi-wave equation with boundary and terminal condi-
tions inherited from the adjoint state p%.

As a last step, we present some estimates for the distance ‖y% − yd‖L2(Q) of the
regularized state y% from the target yd, which only depends on the regularization
parameter %, and on the regularity of the target.

Lemma 1. Let yd ∈ L2(Q). For the unique solution (p%, y%) ∈ H1,1
0;,0(Q)×H1,1

0;0,(Q)
of (10) there holds

‖y% − yd‖L2(Q) ≤ ‖yd‖L2(Q). (12)

If in addition yd ∈ H1,1
0;0,(Q) such that �yd ∈ L2(Q), then

‖y% − yd‖L2(Q) ≤
√
% ‖�yd‖L2(Q). (13)

Moreover, we also have
‖�y%‖L2(Q) ≤ ‖�yd‖L2(Q). (14)

Proof. Firstly, let yd ∈ L2(Q). Testing (10) with q = p% and z = y%, we obtain

〈y% − yd, y%〉L2(Q) = b(y%, p%) = −%−1 ‖p%‖2L2(Q),

from which we further deduce, using a Cauchy–Schwarz inequality, that

‖y% − yd‖2L2(Q) + %−1 ‖p%‖2L2(Q) = 〈yd − y%, yd〉L2(Q) ≤ ‖y% − yd‖L2(Q)‖yd‖L2(Q),

which gives (12). If now yd ∈ H1,1
0;0,(Q) such that �yd ∈ L2(Q), we can test (10)

with z = yd − y%, and using the relations (5) and (7), i.e., p% = −%�y%, we get

‖yd − y%‖2L2(Q) = 〈yd − y%, yd − y%〉L2(Q) = b(y% − yd, p%) = b(y%, p%)− b(yd, p%)
= −% 〈�y%,�y%〉L2(Q) + % 〈�yd,�y%〉L2(Q).

Reordering and applying a Cauchy–Schwarz inequality, this gives

‖yd − y%‖2L2(Q) + % ‖�y%‖2L2(Q) = % 〈�yd,�y%〉L2(Q) ≤ % ‖�yd‖L2(Q)‖�y%‖L2(Q),

from which (14) and (13) follow.

Corollary 1. From the gradient equation (9), the primal wave equation in (5), and
(14), we conclude

‖p%‖L2(Q) = % ‖u%‖L2(Q) = % ‖�y%‖L2(Q) ≤ % ‖�yd‖L2(Q), (15)

while from the wave equation in (8) and using (13), this gives

‖�p%‖L2(Q) = ‖y% − yd‖L2(Q) ≤
√
% ‖�yd‖L2(Q). (16)
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Proposition 1. The error estimates (13) and (14) as well as (15) and (16) may
motivate the use of a space interpolation argument in order to derive related error
estimates in H1(Q). Unfortunately, this does not hold true in general. At this point,
we therefore assume that the given data are such that the following regularization
error estimates hold true, i.e.,

|y% − yd|H1(Q) ≤ c %1/4 ‖�yd‖L2(Q), (17)

and
|p%|H1(Q) ≤ c %3/4 ‖�yd‖L2(Q). (18)

All our numerical experiments performed for smooth targets confirm the estimates
(17) and (18); see Appendix.

Remark 3. The regularization error estimates (17) and (18) are a simple conse-
quence of the space interpolation type estimate

‖v‖2H1(Q) ≤ c ‖�v‖L2(Q)‖v‖L2(Q) (19)

for all v ∈ H1(Q) with �v ∈ L2(Q) and v = ∂tv = 0 on Σ0. In order to prove (19)
we can use the normalized eigenfunctions φk ∈ H1

0 (Ω) with eigenvalues µk of the
spatial Dirichlet eigenvalue problem for the Laplacian to write

v(x, t) =

∞∑
k=1

Vk(t)φk(x) , Vk(0) = V ′k(0) = 0,

and it turns out that (19) is a consequence of the estimate

‖V ′k‖2L2(0,T ) + µk ‖Vk‖2L2(0,T ) ≤ c ‖V
′′
k + µk Vk‖L2(0,T )‖Vk‖L2(0,T ), k ∈ N. (20)

In particular, for, see [44, Theorem 4.2.6],

Vk(t) :=
1√
T 3

∫ t

0

s sin(
√
µks) ds for t ∈ [0, T ]

we conclude c−1 = O(
√

1/µk), and thus c → ∞ as k → ∞. Hence, this analysis
indicates that the regularization error estimates (17) and (18) are only violated when
high-oscillating contributions appear.

2.2 The energy regularization in U = P ∗ = [H1,1
0;,0(Q)]∗

We note that so far we needed u% ∈ L2(Q) to admit a unique solution of the

variational formulation (6). As we test (6) with functions q ∈ P = H1,1
0;,0(Q), a

natural question to appear is, whether we can also choose the control in the dual
space u% ∈ P ∗ = [H1,1

0;,0(Q)]∗. But, as it turns out, the operator B : H1,1
0;0,(Q)→ P ∗

as implied by the bilinear form b(y, q) = 〈By, q〉Q for all y ∈ H1,1
0;0,(Q) and for all

q ∈ H1,1
0;,0(Q) does not define an isomorphism, see [39, Theorem 1.1]. Recapitulating

the work of [39], see also [26], we will define suitable spaces, such that the wave
operator is an isomorphism. The first issue to overcome is the establishment of
an inf-sup condition, guaranteeing the injectivity of the operator. It fails to hold
in the above setting, since the initial condition ∂ty%(x, t)

∣∣
t=0

enters the variational
formulation naturally, which is not appropriate in this case. In order to incorporate
it in a meaningful sense, we will modify the state space. Let Q− := Ω × (−T, T )
denote the enlarged space-time domain, and define the zero extension of a function
y ∈ L2(Q) by

ỹ(x, t) :=

{
y(x, t) for (x, t) ∈ Q,
0, else.
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Then, we consider the application of the wave operator in a distributional sense,
i.e., for all ϕ ∈ C∞0 (Q−) we define

〈�ỹ, ϕ〉Q− :=

∫
Q−

ỹ(x, t)�ϕ(x, t) dx dt =

∫
Q

y(x, t)�ϕ(x, t) dx dt.

Using this definition, we can introduce the space

H(Q) :=
{
y = ỹ|Q : ỹ ∈ L2(Q−), ỹ|Ω×(−T,0) = 0, �ỹ ∈ [H1

0 (Q−)]∗
}
,

with the graph norm ‖y‖H(Q) := (‖y‖2L2(Q) +‖�ỹ‖2
[H1

0 (Q−)]∗
)1/2. The normed vector

space (H(Q), ‖ · ‖H(Q)) is a Banach space, with H1,1
0;0,(Q) ⊂ H(Q); see [39, Lemma

3.5]. Therefore, we can introduce the space

Y := H0;0,(Q) := H1,1
0;0,(Q)

‖·‖H(Q)

⊂ H(Q),

which will serve as state space. For y ∈ Y , an equivalent norm is given by

‖y‖Y = ‖�ỹ‖[H1
0 (Q−)]∗ ,

see [39, Lemma 3.6]. It turns out that B : H0;0,(Q) → [H1,1
0;,0(Q)]∗ defined by

〈By, q〉Q = 〈�ỹ, Eq〉Q− for all (y, q) ∈ H0;0,(Q)×H1,1
0;,0(Q), and using some bounded

extension E : H1,1
0;,0(Q) → H1

0 (Q−), e.g., reflection in time, is an isomorphism; see
[39, Lemma 3.5, Theorem 3.9]. Moreover, we have

〈�ỹ, Eq〉Q− = −〈∂ty, ∂tq〉L2(Q) + 〈∇xy,∇xq〉L2(Q) (21)

for y ∈ H1,1
0;0,(Q) and q ∈ H1,1

0;,0(Q), which in particular applies when considering

conforming space-time finite element spaces Yh ⊂ H1,1
0;0,(Q) ⊂ Y , and Ph ⊂ H1,1

0;,0(Q).

For any given u% ∈ P ∗ = [H1,1
0;,0(Q)]∗, we now find a unique y% ∈ Y = H0;0,(Q)

satisfying

〈By%, q〉Q = 〈�ỹ%, Eq〉Q− = 〈u%, q〉Q for all q ∈ H1,1
0;,0(Q). (22)

Thus, we might consider the reduced cost functional

J̃ (y%) =
1

2
‖y% − yd‖2L2(Q) +

%

2
‖By%‖2P∗ . (23)

To realize the norm of the dual space P ∗, we make use of the following auxiliary
Riesz operator A : P → P ∗ defined by

〈Ap, q〉Q := 〈∂tp, ∂tq〉L2(Q) + 〈∇xp,∇xq〉L2(Q) for all p, q ∈ P ; (24)

see also [26]. With this, the reduced cost functional becomes

J̃ (y%) =
1

2
〈y% − yd, y% − yd〉L2(Q) +

%

2
〈A−1By%, By%〉Q,

for which the minimizer is characterized as the solution y% ∈ Y of the gradient
equation

%B∗A−1By% + y% = yd in Y ∗. (25)

Note that the operator S := B∗A−1B : Y → Y ∗ is an isomorphism, since A :
P → P ∗, and B : Y → P ∗ are isomorphic and therefore, (25) admits a unique
solution. In particular, see [26, Lemma 3.1], S : Y → Y ∗ is bounded, self-adjoint,
and Y -elliptic, and thus defines an equivalent norm

‖y‖Y ≤ ‖y‖S :=
√
〈Sy, y〉Q ≤ 2 ‖y‖Y for all y ∈ Y. (26)

Depending on the regularity of the target yd and on the regularization parameter
% > 0, we can show the following regularization error estimates.
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Lemma 2 ([26, Theorem 3.2]). Let yd ∈ L2(Q) be given. For the unique solution
y% ∈ Y of (25) there holds

‖y% − yd‖L2(Q) ≤ ‖yd‖L2(Q). (27)

Further, if yd ∈ Y , then

‖y% − yd‖L2(Q) ≤
√
% ‖yd‖S , and ‖y% − yd‖S ≤ ‖yd‖S . (28)

Moreover, it holds
‖y%‖S ≤ ‖yd‖S . (29)

At last, if yd ∈ Y such that Syd ∈ L2(Q), then it holds

‖y% − yd‖L2(Q) ≤ % ‖Syd‖L2(Q), and ‖y% − yd‖S ≤
√
% ‖Syd‖L2(Q), (30)

as well as
‖Sy%‖L2(Q) ≤ ‖Syd‖L2(Q). (31)

From the above results, and using a space interpolation argument, we conclude the
following estimate, see [26, Corollary 3.3]: Let yd ∈ Hs,s

0;0,(Q) := [H1,1
0;0,(Q), L2(Q)]s,

for s ∈ [0, 1], or yd ∈ Hs(Q) ∩ H1,1
0;0,(Q) such that Syd ∈ Hs−2(Q) for s ∈ [1, 2].

Then,
‖yd − y%‖L2(Q) ≤ c %s/2 ‖yd‖Hs(Q), s ∈ [0, 2]. (32)

Remark 4. The operator A = −∆(x,t) : P = H1,1
0;,0(Q) → P ∗ corresponds to

the space-time Laplacian with mixed Dirichlet and Neumann boundary conditions.
Therefore, the solution p ∈ P of Ap = u in Q admits the regularity p ∈ Hr+1(Q)∩P
for given u ∈ Hr−1(Q), and some 0 ≤ r ≤ 1, depending on the geometry of the
space-time domain, see, e.g., [9, 14]. In particular, for yd ∈ H2(Q) ∩ H1,1

0;0,(Q) it

holds that Byd ∈ L2(Q). But, we can in general not guarantee that A−1Byd ∈
H2(Q), and subsequently, Syd = B∗A−1Byd ∈ L2(Q) does not need to hold true.
This loss of regularity might lead to lower convergence rates in the numerical exam-
ples.

Remark 5. Instead of Y = H0;0,(Q) and P ∗ = [H1,1
0;,0(Q)]∗ we might as well con-

sider the strong formulation of the wave equation with P ∗ = L2(Q), and a suitable
ansatz space Y ⊂ H1,1

0;,0(Q) such that the wave operator B : Y → L2(Q) is an isomor-

phism, see [44, Section 4.3]. Then, choosing A := id : L2(Q)→ L2(Q), we can redo
the above steps, deriving the optimality equation (25) with a bounded, self-adjoint,
and elliptic operator S := B∗B : Y → Y∗, and related regularization error estimates
depending on the regularity of the target, and on the parameter % > 0. In particular,
the L2 regularization corresponds to the concept of the energy regularization, if we
consider the wave operator in a strong form.

3 Space-time finite element discretization

From now on, let us assume that Ω ⊂ Rd is either polygonally (d = 2) or polyhe-
drally (d = 3) bounded. Let Th = {τ`}N`=1 be an admissible, globally quasi-uniform
decomposition of Q into shape regular simplicial finite elements τ` ⊂ Rd+1 of mesh
size h` = |τ`|1/(d+1), ` = 1, . . . , N . Further, let h = max`=1,...,N h` denote the
maximal mesh size. For the Galerkin discretization of the above derived optimality
equations, we introduce conforming finite element spaces of, e.g., piecewise linear
and continuous basis functions,

Yh = span{ϕk}nh

k=1 = S1
h(Th) ∩H1.1

0;0,(Q) ⊂ Y = H0;0,(Q),
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and
Ph = span{ψi}mh

i=1 = S1
h(Th) ∩H1.1

0;,0(Q) ⊂ P = H1,1
0;,0(Q).

In the following, we will formulate discrete variational formulations for the opti-
mality systems, and derive related error estimates, which will enable us to link the
regularization parameter % to the mesh size h, revealing an asymptotically optimal
choice % = h4, and % = h2, in the case of the L2 regularization and the energy
regularization in P ∗, respectively.

3.1 The L2 regularization U = L2(Q)

In order to derive error estimates, it will be useful to first apply the transformation
p% =

√
% p̃%. Then, (10) becomes: find (p̃%, y%) ∈ P ×H1,1

0;0,(Q) such that

1
√
%
〈p̃%, q〉L2(Q) + b(y%, q) = 0, ∀q ∈ P,

−b(z, p̃%) +
1
√
%
〈y%, z〉L2(Q) =

1
√
%
〈yd, z〉L2(Q), ∀z ∈ H1,1

0;0,(Q).
(33)

The Galerkin variational formulation is then to find (p̃%h, y%h) ∈ Ph × Yh such that

1
√
%
〈p̃%h, qh〉L2(Q) + b(y%h, qh) = 0, ∀qh ∈ Ph,

−b(zh, p̃%h) +
1
√
%
〈y%h, zh〉L2(Q) =

1
√
%
〈yd, zh〉L2(Q), ∀zh ∈ Yh.

(34)

Lemma 3. For any yd ∈ L2(Q), the Galerkin formulation (34) admits a unique
solution (p̃%h, y%h) ∈ Ph × Yh.

Proof. Testing (34) with qh = p̃%h, and with zh = y%h, and summing up both
equations, we get

‖p̃%h‖2L2(Q) + ‖y%h‖2L2(Q) = 〈yd, y%h〉L2(Q).

Thus, for the homogeneous case yd = 0, we see that p̃%h = y%h = 0, which yields
uniqueness for the solution of the linear problem. Moreover, in the finite dimensional
case, uniqueness implies existence.

Lemma 4. Assume the global inverse inequality

|vh|H1(Q) ≤ cinv h−1 ‖vh‖L2(Q) for all vh ∈ S1
h(Th). (35)

If we choose % = h4, then

h−2‖p̃% − p̃%h‖2L2(Q) + |p̃% − p̃%h|2H1(Q) + h−2‖y% − y%h‖2L2(Q) + |y% − y%h|2H1(Q) (36)

≤ c
[
h−2‖p̃% − qh‖2L2(Q) + |p̃% − qh|2H1(Q) + h−2‖y% − zh‖2L2(Q) + |y% − zh|2H1(Q)

]
holds for all (qh, zh) ∈ Ph × Yh.

Proof. For given (p, y) ∈ P × H1,1
0;0,(Q), let (ph, yh) ∈ Ph × Yh denote the unique

solution of

1
√
%
〈ph, qh〉L2(Q) + b(yh, qh) =

1
√
%
〈p, qh〉L2(Q) + b(y, qh), ∀qh ∈ Ph,

−b(zh, ph) +
1
√
%
〈yh, zh〉L2(Q) = −b(zh, p) +

1
√
%
〈y, zh〉L2(Q), ∀zh ∈ Yh,

(37)
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which induces the Galerkin projection (p, y) → (ph, yh). If we can show that the
Galerkin projection is bounded, this immediately implies Cea’s lemma, i.e., the
estimate (36). Using the global inverse inequality (35) and (37), we compute

%−1/2 ‖ph‖2L2(Q) + |ph|2H1(Q) + %−1/2 ‖yh‖2L2(Q) + |yh|2H1(Q)

≤
(
%−1/2 + cinvh

−2
)
‖ph‖2L2(Q) +

(
%−1/2 + cinvh

−2
)
‖yh‖2L2(Q)

=
(

1 + cinvh
−2%1/2

) [
%−1/2 ‖ph‖2L2(Q) + %−1/2 ‖yh‖2L2(Q)

]
=
(

1 + cinvh
−2%1/2

)[ 1
√
%
〈ph, ph〉L2(Q) + b(yh, ph)− b(yh, ph) +

1
√
%
〈yh, yh〉L2(Q)

]
=
(

1 + cinvh
−2%1/2

)[ 1
√
%
〈p, ph〉L2(Q) + b(y, ph)− b(yh, p) +

1
√
%
〈y, yh〉L2(Q)

]
≤
(

1 + cinvh
−2%1/2

)[ 1
√
%
‖p‖L2(Q)‖ph‖L2(Q) + |y|H1(Q)|ph|H1(Q)

+|yh|H1(Q)|p|H1(Q) +
1
√
%
‖y‖L2(Q)‖yh‖L2(Q)

]
≤
(

1 + cinvh
−2%1/2

)[ 1
√
%
‖p‖2L2(Q) + |p|2H1(Q) +

1
√
%
‖y‖2L2(Q) + |y|2H1(Q)

]1/2
·
[ 1
√
%
‖ph‖2L2(Q) + |ph|2H1(Q) +

1
√
%
‖yh‖2L2(Q) + |yh|2H1(Q)

]1/2
.

Thus, choosing % = h4, we obtain

h−2 ‖ph‖2L2(Q) + |ph|2H1(Q) + h−2 ‖yh‖2L2(Q) + |yh|2H1(Q)

≤
(

1 + cinv

)[
h−2 ‖p‖2L2(Q) + |p|2H1(Q) + h−2 ‖y‖2L2(Q) + |y|2H1(Q)

]
,

implying the desired bound.

Combining the regularization error estimates with the above best approximation,
we can now characterize the error ‖yd − y%h‖L2(Q) depending on the regularity of
the target yd.

Theorem 1. For yd ∈ L2(Q), let (p̃%h, y%h) ∈ Ph × Yh be the unique solution of
(34). Then,

‖y%h − yd‖L2(Q) ≤ ‖yd‖L2(Q). (38)

Moreover, let the assumptions of Lemma 4 hold, i.e., a global inverse inequality,
and % = h4. Let yd ∈ H1,1

0;0,(Q) ∩H2(Q). Then,

‖y%h − yd‖L2(Q) ≤ c h2 |yd|H2(Q). (39)

Proof. The estimate (38) follows the lines of the continuous case in Lemma 1, equa-
tion (12). To show (39), first note, that by a triangle inequality, we have that

‖y%h − yd‖L2(Q) ≤ ‖y%h − y%‖L2(Q) + ‖y% − yd‖L2(Q).

The second term can further be estimated, using (13) for % = h4, by

‖y% − yd‖L2(Q) ≤
√
% ‖�yd‖L2(Q) ≤ h2 ‖yd‖H2(Q).

For the first term, we consider the estimate (36), i.e.,

h−2 ‖y% − y%h‖2L2(Q) ≤ c
[
h−2 ‖p̃% − qh‖2L2(Q) + |p̃% − qh|2H1(Q)

+h−2 ‖y% − zh‖2L2(Q) + |y% − zh|2H1(Q)

]
,
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and it remains to bound all terms of the right hand side. Let qh = Πhp̃% be the
Scott–Zhang quasi interpolation [37], satisfying the best approximation and stability
estimates

‖p̃% −Πhp̃%‖2L2(Q) ≤ c h2 |p̃%|2H1(Q), |p̃% −Πhp̃%|2H1(Q) ≤ c |p̃%|2H1(Q).

With this, using p̃% = %−1/2 p% and (18), we have, recall % = h4

h−2 ‖p̃% − qh‖2L2(Q) + |p̃% − qh|2H1(Q) ≤ c |p̃%|2H1(Q) = c %−1 |p%|2H1(Q)

≤ c %1/2 ‖�yd‖2L2(Q) = c h2 ‖�yd‖2L2(Q) ≤ c h2 |yd|2H2(Q).

Next, we consider, using a triangle inequality, (13), and choosing zh = Πhyd to
conclude, recall % = h4,

‖y% − zh‖L2(Q) ≤ ‖y% − yd‖L2(Q) + ‖yd −Πhyd‖L2(Q)

≤ √
% ‖�yd‖L2(Q) + c h2 |yd|H2(Q) ≤ c h2 |yd|H2(Q).

Moreover, now using (17), we also have

|y% −Πhyd|H1(Q) ≤ |y% − yd|H1(Q) + |yd −Πhyd|H1(Q)

≤ %1/4 ‖�yd‖L2(Q) + c h |yd|H2(Q) ≤ c h |yd|H2(Q).

Finally, collecting all terms together, the assertion follows.

3.2 The energy regularization in U = P ∗ = [H1,1
0;,0(Q)]∗

This section follows the results presented in [26]. Recall, that the state y% ∈ Y =
H0;0,(Q), minimizing the reduced cost functional (23), was characterized as the
unique solution of the operator equation (25). This is equivalent to the variational
formulation to find y% ∈ Y such that

% 〈Sy%, z〉Q + 〈y%, z〉L2(Q) = 〈yd, z〉L2(Q) for all z ∈ Y, (40)

with the linear operator S := B∗A−1B : Y → Y ∗, which is bounded, self-adjoint
and Y -elliptic. The Galerkin variational formulation of the problem is then to find
y%h ∈ Yh such that

% 〈Sy%h, zh〉Q + 〈y%h, zh〉L2(Q) = 〈yd, zh〉L2(Q) for all zh ∈ Yh. (41)

Due to the choice of a conforming subspace Yh ⊂ Y we obtain, using standard
arguments, unique solvability of (41) and the Cea type a priori estimate

% ‖y% − y%h‖2S + ‖y% − y%h‖2L2(Q) ≤ inf
zh∈Yh

[
% ‖y% − zh‖2S + ‖y% − zh‖2L2(Q)

]
. (42)

Combining this best approximation result with the regularization error estimates
in Lemma 2, we can derive an asymptotically optimal choice for the regularization
parameter % depending solely on the regularity of target.

Lemma 5 ([26, Theorem 4.1]). Let yd ∈ Hs,s
0;0,(Q) := [H1,1

0;0,(Q), L2(Q)]s for some

s ∈ [0, 1], or yd ∈ H1,1
0;0,(Q)∩Hs(Q) for s ∈ [1, 2]. If we choose % = h2, then for the

unique solution y%h ∈ Yh of (41) there holds

‖y%h − yd‖L2(Q) ≤ c hs ‖yd‖Hs(Q). (43)
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For the numerical treatment, the variational formulation (41) is not suitable, as the
realization of the operator S is not computable. Thus, in the last step of our analysis
we will consider a computable realization of S, leading to a perturbed variational
formulation. Therefore, let y ∈ Y be arbitrary but fixed and let us consider the
auxiliary problem to find py ∈ P such that

〈Apy, q〉Q = 〈By, q〉Q for all q ∈ P.

Then, Sy = B∗py. To define an approximation, we introduce pyh ∈ Ph as unique
solution of

〈Apyh, qh〉Q = 〈By, qh〉Q for all qh ∈ Ph, (44)

and define S̃y := B∗pyh. Then we consider the perturbed variational formulation
to find ỹ%h ∈ Yh such that

% 〈S̃ỹ%h, zh〉Q + 〈ỹ%h, zh〉L2(Q) = 〈yd, zh〉L2(Q) for all zh ∈ Yh. (45)

Note, that due to the properties of A : P → P ∗ and B : Y → P ∗, the operator
S̃ : Y → Y ∗ is bounded, symmetric and positive semi-definite. Thus, (45) admits a
unique solution. Moreover, we see that the perturbation error solely depends on the
best approximation properties of Ph ⊂ P . Thus, using a Strang lemma argument,
which requires an inverse inequality, we can prove analogous estimates as in Lemma
5 for the solution of the perturbed variational formulation.

Theorem 2 ([26, Corollary 4.7]). Let the global inverse inequality (35) hold and
choose % = h2. Then the unique solution ỹ%h ∈ Yh of (41) satisfies

‖ỹ%h − yd‖L2(Q) ≤ c hs ‖yd‖Hs(Q), s ∈ [0, 2], (46)

if yd ∈ Hs,s
0;0,(Q) for s ∈ [0, 1], or yd ∈ H1,1

0;0,(Q) ∩Hs(Q) for s ∈ [1, 2].

When introducing p̃%h = −%pỹ%h , where pỹ%h solves (44) for y = ỹ%h, we see that
the perturbed variational formulation (45) is equivalent to the coupled system to
find (p̃%h, ỹ%h) ∈ Ph × Yh such that

%−1 〈Ap̃%h, qh〉Q + 〈Bỹ%h, qh〉Q = 0 for all qh ∈ Ph,
−〈Bzh, p̃%h〉Q + 〈ỹ%h, zh〉L2(Q) = 〈yd, zh〉L2(Q), for all zh ∈ Yh.

(47)

This will be the starting point for the numerical treatment of the problem. We
stress again that, by (21), we have for yh ∈ Yh ⊂ H1,1

0;0,(Q) and qh ∈ Ph ⊂ H1,1
0;,0(Q)

that

〈Byh, qh〉Q = −〈∂tyh, ∂tqh〉L2(Q) + 〈∇xyh,∇xqh〉L2(Q) for all yh ∈ Yh, qh ∈ Ph.

Remark 6. In the proof of Lemma 4 and Theorem 2 we have used a global inverse
inequality, which in general assumes a globally quasi-uniform mesh. However, in
the numerical treatment we will also consider a variable regularization parameter
%(x, t) = hrτ , ∀ (x, t) ∈ τ, ∀τ ∈ Th with r = 4 for L2-regularization, and r = 2
for energy regularization, where it seems to be sufficient to consider a local inverse
inequality

‖∇vh‖L2(τ) ≤ cinv h−1
τ ‖vh‖L2(τ) ∀vh ∈ S1

h(Th),∀τ ∈ Th; (48)

see [22] for a related approach for a distributed optimal control problem subject to
the Poisson equation.
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4 Solvers

Let us first specify the submatrices Bh and Mh appearing in the SID system (3) for
hyperbolic OCPs. The coefficients Bh[j, k] of the mh×nh rectangular wave matrix
Bh are defined by

Bh[j, k] = −〈∂tϕk, ∂tψj〉L2(Q) + 〈∇xϕk,∇xψj〉L2(Q), (49)

for all j = 1, . . . ,mh and k = 1, . . . , nh, whereas the coefficients Mh[l, k] of the SPD
nh × nh mass matrix Mh are given by

Mh[l, k] = 〈ϕk, ϕl〉L2(Q) ∀ l, k = 1, . . . , nh. (50)

Later we will heavily use that the mass matrix Mh is spectrally equivalent to the
lumped mass matrix Dh = lump(Mh) satisfying the spectral equivalent inequalities

(d+ 2)−1Dh ≤Mh ≤ Dh; (51)

see, e.g., [21]. The mh ×mh matrix A%h is also SPD as we will see later when we
consider the L2 and the energy regularization in Subsections 4.1 and 4.2, respec-
tively.

There are many methods for solving the SID system (3); see Section 1 for some
references. Here we focus on Bramble–Pasciak’s PCG (PB-PCG) [8]. The basic
idea consists in transforming the SID system (3) to the equivalent SPD system

Kh
[
ph
yh

]
=

[
0
ydh

]
:=

[
A%hÂ

−1
%h − Ih 0

B>h Â
−1
%h −Ih

] [
0
−ydh

]
, (52)

where the new system matrix

Kh =

[
A%hÂ

−1
%h − Ih 0

B>%hÂ
−1
%h −Ih

] [
A%h Bh
B>h −Mh

]

=

[
(A%h − Â%h)Â−1

%hA%h (A%h − Â%h)Â−1
%hBh

B>h Â
−1
%h (A%h − Â%h) B>h Â

−1
%hBh +Mh

]

is SPD provided that Â%h is a properly scaled preconditioner for A%h such that the
spectral equivalence inequalities

Â%h < A%h ≤ cA Â%h (53)

hold for some h-independent, positive constant cA. Now we can solve the SPD
system (52) by means of the PCG preconditioned by the SPD Bramble–Pasciak
preconditioner

K̂h =

[
A%h − Â%h 0

0 Ŝ%h

]
, (54)

where Ŝh is some SPD preconditioner for the exact Schur complement S%h =
B>h A

−1
%hBh +Mh such that the spectral equivalence inequalities

cS Ŝ%h < S%h ≤ cS Ŝ%h (55)

hold for some h-independent, positive constants cS and cS . The spectral equivalence
inequalities (53) and (55) yield the spectral equivalence inequalities

cK K̂h < Kh ≤ cK K̂h, (56)
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where the positive constants cK and cK can explicitly be computed from cA, cS , and
cS ; see the original paper [8], and [45] for an improvement of the lower bound cK.
Now the standard PCG convergence rate estimates in the Kh energy norm directly
follow from (56).

Alternatively, we can solve the primal SPD Schur complement system

S%hyh := (B>h A
−1
%hBh +Mh)yh = ydh (57)

by means of the standard PCG preconditioned by Ŝ%h. This Schur Complement
PCG (SC-PCG) has one drawback. The matrix-by-vector multiplication S%h ∗ ynh
requires the application of A−1

%h that cannot easily be replaced by a preconditioner

without perturbing the discretization error. We will discuss this issue for the L2

and energy regularizations in the following subsections separately.

4.1 L2 Regularization and Mass Lumping

For the standard L2 regularization, the regularization matrix A%h is nothing but
the SPD mh ×mh mass matrix M%h, the coefficients of which are defined by

M%h[j, i] = 〈%−1ψi, ψj〉L2(Q) ∀ j, i = 1, . . . ,mh. (58)

Here we permit variable regularization of the form

%(x, t) = h4
τ , ∀ (x, t) ∈ τ, ∀τ ∈ Th, (59)

which we implemented in all numerical experiments when adaptive mesh refinement
is used. It is clear that (59) turns to % = h4 in the case of uniform mesh refinement
for which we have made the error analysis in Subsection 3.1.

It is also clear that M%h is spectrally equivalent to D%h = lump(M%h) with the
same spectral equivalence constants as given in (51) for Mh and Dh, i.e.

(d+ 2)−1D%h ≤M%h ≤ D%h. (60)

Now the following spectral equivalence inequalities are valid for the Schur comple-
ment B>h A

−1
%hBh +Mh.

Theorem 3. Let us consider the optimally balanced, mesh-dependent, variable reg-
ularization (59), and let Mh as defined in (50) with Dh = lump(Mh). Then the
spectral equivalence inequalities

(d+ 2)−1Dh ≤ Mh ≤ B>h A
−1
%hBh +Mh ≤ (c4inv + 1)Mh ≤ (c4inv + 1)Dh (61)

hold for both A%h = M%h and A%h = D%h := lump(M%h) corresponding to the
standard L2 regularization and the mass-lumped L2 regularization, respectively. The
constant cinv originates from the inverse inequalities (48).

Proof. Using the spectral equivalence inequalities (60), Cauchy’s inequalities, and
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the inverse inequalities (48), we get the estimates

(B>h D
−1

%hBhyh,yh) ≤ (B>hM
−1

%hBhyh,yh) = sup
qh∈Rmh

(Bhyh,qh)2

(M%hqh,qh)

= sup
qh∈Ph

[
− 〈∂tyh, ∂tqh〉L2(Q) + 〈∇xyh,∇xqh〉L2(Q)

]2
〈%−1qh, qh〉L2(Q)

= sup
qh∈Ph

[
〈% 1

4 ∇̂yh, %−
1
4∇qh〉L2(Q)

]2
〈%−1qh, qh〉L2(Q)

≤ sup
qh∈Ph

‖% 1
4 ∇̂yh‖2L2(Q)‖%

− 1
4∇qh‖2L2(Q)

‖%− 1
2 qh‖2L2(Q)

= sup
qh∈Ph

‖% 1
4 ∇̂yh‖2L2(Q)

∑
τ∈Th

h−2
τ ‖∇qh‖2L2(τ)

‖%− 1
2 qh‖2L2(Q)

≤ sup
qh∈Ph

‖% 1
4 ∇̂yh‖2L2(Q)c

2
inv

∑
τ∈Th

h−4
τ ‖qh‖2L2(τ)

‖%− 1
2 qh‖2L2(Q)

= c2inv‖%
1
4∇yh‖2L2(Q) = c2inv

∑
τ∈Th

h2
τ ‖∇yh‖2L2(τ) ≤ c

4
inv ‖yh‖2L2(Q) = c4inv(Mhyh,yh)

for all yh ∈ Rnh , yh ↔ yh ∈ Yh = S1
h(Th) ∩H1.1

0;0,(Q), where ∇̂ = (∇x,−∂t)>, and

∇ = (∇x, ∂t)> is the space-time gradient. Combining theses estimates with the
spectral equivalence inequalities (51) completes the proof of the theorem.

We note that the constant choice % = h4 leads to the same spectral equivalence
inequalities (61) as in the case of variable regularization since the constant regu-
larization is a special case of variable regularization when we set hτ = h for all
τ ∈ Th.

Thanks to (60) and (61), we can choose

Â%h = δ(d+ 2)−1D%h := δ(d+ 2)−1lump(M%h) and Ŝ%h = Dh := lump(Mh) (62)

yielding the spectral equivalence constants cA = (d + 2)/δ, cS = 1/(d + 2) and
cS = (c4inv + 1), where δ < 1 is a properly chosen, positive scaling parameter.
Therefore, the PB-PCG is an asymptotically optimal solver for the SID system (3)
in the case of the L2 regularization.

Moreover, we can replace the mass matrix A%h = M%h by the lumped mass
matrix D%h := lump(M%h) in the discrete optimality system (3) without affecting
the discretization error as was shown in [21] in the case of elliptic OCPs for % = h4.

Then the matrix-by-vector multiplication (B>h D
−1

%hBh +Mh) ∗ ynh is fast. Now the

SC-PCG with the Schur complement preconditioner Ŝ%h = Dh := lump(Mh) is an
asymptotically optimal solver for the SC system (57). This mass-lumped SC-PCG

converges in the B>h D
−1

%hBh+Mh energy norm that is equivalent to the L2(Q) norm
on the FE space due to Theorem 3. This is exactly the norm in which we want to
approximate the target yd.

4.2 Energy Regularization

For the energy regularization, the regularization matrix A%h is nothing but the SPD
mh ×mh diffusion stiffness matrix K%h, the coefficients of which are defined by

K%h[j, i] = 〈%−1∇ψi,∇ψj〉L2(Q) ∀ j, i = 1, . . . ,mh. (63)
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Here we again permit variable regularization of the form

%(x, t) = h2
τ , ∀ (x, t) ∈ τ, ∀τ ∈ Th, (64)

which we implemented in all numerical experiments when an adaptive mesh refine-
ment is used. It is clear that (64) turns to % = h2 in the case of uniform mesh
refinement for which we have made the error analysis in Subsection 3.2.

Now the Schur complement B>h K
−1

%hBh + Mh is again spectrally equivalent to
Dh as the following spectral equivalence theorem shows.

Theorem 4. Let us consider the optimally balanced, mesh-dependent, variable reg-
ularization (64), and let Mh as defined in (50) with Dh = lump(Mh). Then the
spectral equivalence inequalities

(d+ 2)−1Dh ≤ Mh ≤ B>h A
−1
%hBh +Mh ≤ (c2inv + 1)Mh ≤ (c2inv + 1)Dh (65)

hold for A%h = K%h. The constant cinv originates from the inverse inequalities (48).

Proof. Using the spectral equivalence inequalities (60), Cauchy’s inequalities, and
the inverse inequalities (48), we get the estimates

(B>h K
−1

%hBhyh,yh) = sup
qh∈Rmh

(Bhyh,qh)2

(K%hqh,qh)

= sup
qh∈Ph

[
− 〈∂tyh, ∂tqh〉L2(Q) + 〈∇xyh,∇xqh〉L2(Q)

]2
〈%−1∇qh,∇qh〉L2(Q)

= sup
qh∈Ph

[
〈% 1

2 ∇̂yh, %−
1
2∇qh〉L2(Q)

]2
〈%−1∇qh,∇qh〉L2(Q)

≤ sup
qh∈Ph

‖% 1
2 ∇̂yh‖2L2(Q)‖%

− 1
2∇qh‖2L2(Q)

‖%− 1
2∇qh‖2L2(Q)

= ‖% 1
2∇yh‖2L2(Q) =

∑
τ∈Th

h2
τ ‖∇yh‖2L2(τ) ≤ c

2
inv ‖yh‖2L2(Q) = c2inv (Mhyh,yh),

for all yh ∈ Rnh , yh ↔ yh ∈ Yh = S1
h(Th) ∩H1.1

0;0,(Q), where ∇̂ = (∇x,−∂t)T , and

∇ = (∇x, ∂t)T is the space-time gradient. Combining theses estimates with the
spectral equivalence inequalities (51) completes the proof of the theorem.

We again note that the constant choice % = h2 leads to the same spectral equiv-
alence inequalities (65) as in the case of variable regularization since the constant
regularization is a special case of variable regularisation when we set hτ = h for all
τ ∈ Th.

Let us again solve the SID system (3) by means of the PB-PCG. Thanks to The-

orem 4, we can use Ŝ%h = Dh := lump(Mh) as very efficient SC preconditioner with
the spectral equivalence constants cS = 1/(d+2) and cS = (c2inv +1). The construc-

tion of a properly scaled preconditioner Â%h for A%h = K%h is more involved. In our
numerical experiments, we will choose a properly scaled SPD algebraic multigrid
(AMG) preconditioners that can be represented in the form

Â%h = K̂%h := δ(1− ηi)K%h(Ih − Ei%h)−1 (66)

with a positive scaling parameter δ < 1, where E%h denotes the corresponding AMG
error propagation (iteration) matrix, and η ∈ [0, 1) is a bound for the convergence
rate with respect to the K%h energy norm, i.e. ‖E%h‖K%h

≤ η < 1. We can choose
the components of the multigrid preconditioner K%h(Ih−Ei%h)−1 in such a way that
it is SPD, E%h is self-adjoint and not negative in the K%h energy inner product, and

(1− ηi)K%h(Ih − Ei%h)−1 ≤ K%h ≤ K%h(Ih − Ei%h)−1; (67)
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see [18] for details. The spectral equivalence inequalities (67) immediately yield (53)
with cA = 1/(δ(1−ηi)). Therefore, due to this result and the results of Theorem 4,

the PB-PCG with (66) and again Ŝ%h = Dh := lump(Mh) is an asymptotically
optimal solver for the SID system (3) in the case of the energy regularization too,
where i = 1 is a good choice. We note that, in the case of constant % = h2, we have
K̂%h = %−1Kh(Ih − Eih)−1, where Kh = K1h and Eh = E1h.

In order to solve the corresponding Schur complement system (57) efficiently by
means of PCG, we replace A−1

%h by an iterative approximation, e.g. produced by
AMG as in our numerical experiments, i.e., instead of the exact Schur complement
system, we solve the inexact Schur complement system

(B>h (Ih − Ei%h)K−1
%h Bh +Mh)ỹh = ydh (68)

where we want to choose i such that ‖ỹh − yd‖L2(Q) = O(‖yh − yd‖L2(Q)) = O(hs).
It is obviously sufficient to show that ‖ỹh − yh‖L2(Q) = O(hs).

Lemma 6. Let us choose the optimally balanced regularization % as given by (64),
and let ‖E%h‖K%h

≤ η with some h-independent rate η ∈ (0, 1). Then the estimates

‖ỹh − yh‖Mh
= ‖ỹh − yh‖L2(Q) ≤ c2invηi ‖ỹh‖Mh

≤ c2invηi ‖yd‖L2(Q) (69)

hold.

Proof. Substracting the exact SC system (57) from the inexact SC system (68),
multiplying this difference by the error ỹh − yh, and using (65), we arrive at the
estimates

‖ỹh − yh‖2Mh
≤ ((B>h K

−1
%h Bh +Mh)(ỹh − yh), ỹh − yh)

= (K%hE
i
%hK

−1
%h Bhỹh,K

−1
%h Bh(ỹh − yh))

= (Ei%hxh, zh)K%h
≤ ‖Ei%hxh‖K%h

‖zh‖K%h

≤ ‖E%h‖iK%h
‖xh‖K%h

‖zh‖K%h

≤ ηi(B>h K
−1
%h Bhỹh, ỹh)1/2(B>h K

−1
%h Bh(ỹh − yh), ỹh − yh)1/2

≤ ηic2inv ‖ỹh‖Mh
‖ỹh − yh‖Mh

where we used the setting xh = K−1
%h Bhỹh and zh = K−1

%h Bh(ỹh − yh) to sim-
plify long notations. From the inexact SC system (68), we can derive the estimate
‖ỹh‖Mh

≤ ‖yd‖L2(Q) that completes the proof of the lemma.

Lemma 7. Let ‖E%h‖K%h
≤ η with some h-independent rate η ∈ (0, 1). Then the

following spectral equivalence inequalities are valid:

0 ≤ (1− ηi)B>h K−1
%h Bh ≤ B

>
h (Ih − Ei%h)K−1

%h Bh ≤ B
>
h K

−1
%h Bh. (70)

Proof. The spectral equivalence inequalities (70) now follow from the spectral equiv-
alence inequalities (67).

Lemma 7 immediately yields that the inexact SC B>h (Ih − Ei%h)K−1
%h Bh + Mh

satisfies the same spectral equivalence inequalities (65) like the exact SC B>h −
Ei%h)K−1

%h Bh+Mh. Thus, the inexact SC system (68) can be solved by means of the

Dh := lump(Mh) preconditioned PCG requiring O(ln(ε−1)) to reduce the initial
error by some given factor ε ∈ (0, 1) in the Mh energy norm that is equivalent to
the energy norm defined by the inexact SC. Lemma 7 states that the discretiza-
tion error is asymptotically not affected by the inner iterations provided that the
number i of inner iterations is fixed to i = ln(h−1). If the inner iteration has an
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h-independent rate η ∈ (0, 1) and asymptotically optimal arithmetical complexity
like AMG, and if we choose ε = O(hs) then the PCG need k = O(ln(h−1)) itera-
tions and O((ln(h−1))2h−d) arithmetical operations to produce an approximation
ỹkh ↔ ỹkh which differs from yd in the order O(hs) of the discretization error with
respect to the L2(Q) norm. It is clear that the arithmetical complexity can be re-
duced to O((ln(h−1))h−d) by using a nested iteration setting on a sequence of finer
and finer meshes that can be generated adaptively; see Tables 15 for numerical re-
sults using nested iterations on uniformly and adaptively refined meshes in 2 space
dimension.

5 Numerical Results

We perform numerical experiments for three different benchmark examples with
targets yd possessing different regularity:

• Example 1: Smooth Target, where the target function is defined by

yd(x, t) = t2
d∏
i=1

sin(πxi) ∈ C∞(Q) ∩H1,1
0;0,(Q) ⊂ Y. (71)

• Example 2: Continuous Target that is given by the continuous piecewise
multi-linear (tri-linear for d = 2) target function

yd(x, t) = φ(t)

d∏
i=1

φ(xi) ∈ H3/2−ε
0 (Q), ε > 0, (72)

where

φ(s) =


1, if s = 0.5,

0, if s /∈ [0.25, 0.75],

linear, else.

We note that this target function belongs to the state space Y too.

• Example 3: Discontinuous Target that is defined by the discontinuous func-
tion

yd(x, t) =

{
1, if (x, t) ∈ (0.25, 0.75)d+1 ⊂ Q,
0, else,

∈ H1/2−ε(Q), ε > 0, (73)

which does not belong to the the state space Y .

For d = 2, the space-time domain is given by Q = Ω× (0, T ) ⊂ R3 with Ω = (0, 1)2

and T = 1. The domain Q is uniformly decomposed into 384 tetrahedrons with 5
equidistant vertices in each direction. This yields an initial coarse mesh with 125
vertices in total and the mesh size h = 2−(l+1) = 0.25 at the level l = 1. The
uniform refinement of the tetrahedrons is based on Bey’s algorithm as described in
[7]. This uniform refinement results in (2l+1 + 1)d+1=3 vertices, and the mesh size
h = 2−(l+1) that yields % = h4 = 2−4(l+1) (L2-regularization) and % = h2 = 2−2(l+1)

(energy regularization), where l is running from 1 (coarsest mesh) to L = 6 (finest
mesh).

In the case of three space dimensions d = 3, we consider the space-time domain
Q = Ω × (0, T ) ⊂ R4 with Ω = (0, 1)3 and T = 1. The initial decomposition of Q
contains 178 vertices and 960 pentatops. The refinement of the pentatops uses the
bisection method proposed in [40]. The mesh size is h ≈ (#Vertices)−1/4 = 2.74e−1
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with #Vertices = 178 on the starting level l = 1, and, on the finest level L = 17,
the mesh size is h ≈ (#Vertices)−1/4 = 2.22e−2 with #Vertices = 4, 144, 513.

Besides the uniform mesh refinement described above for d = 2 and d = 3, we
also provide numerical experiments for an adaptive mesh refinement based on the
computable error representation

‖y%h − yd‖2L2(Q) =
∑
τ∈Th

‖y%h − yd‖2L2(τ), (74)

and the maximum marking strategy, i.e., an element τ ∈ Th will be refined if
‖y%h − yd‖L2(τ) ≥ θ maxτ∈Th ‖y%h − yd‖L2(τ), where we have chosen θ = 0.5; cf. [3].

In our numerical experiments, we compare the performance of the SC-PCG and
the BP-PCG, presented in the preceding section, with the standard preconditioned
GMRES (PGMRES) for solving the equivalent non-symmetric and positive definite
system [

A%h Bh
−B>h Mh

] [
ph
yh

]
=

[
0h
ydh

]
,

with the block-diagonal matrix[
Â%h 0

0 lump (Mh)

]
,

as preconditioner, where Â%h = lump(M%h) for the L2 regularization, and, in the

case of the energy regularization, Â%h = A%h(Ih−Ej%h)−1 is defined by the classical
Ruge–Stüben algebraic multigrid (AMG) preconditioner [33] with j = 2 AMG V-
cycles and 2 Gauss–Seidel pre-smoothing and post-smoothing steps at each level.
The SC-PCG is always preconditioned by Dh = lump(Mh) as discussed in Section 4.
SC-CG means that we run the CG without any preconditioning. We always solve
the SC with Â%h = lump(Mh).

We stop the iterations as soon as the initial error is reduced by a factor of
1011 in the norm that is defined by the square root of scalar product between the
preconditioned residual and the residual. For instance, in the case of the BP-PCG
iteration, this norm is nothing but the KhK̂−1

h Kh energy norm, i.e. ‖ · ‖KhK̂−1
h Kh

=

(K̂−1
h Kh · ,Kh · )1/2. The initial guess is always the zero vector with exception of the

nested iteration where we interpolate the initial guess from the coarser mesh.
In the following two subsection, ‖ · ‖ always denotes the L2 norm ‖ · ‖L2(Q).

5.1 L2-Regularization and Mass Lumping

In the BP-PCG, we use (62) for Â%h and Ŝ%h, where we have set δ = 0.98. Further,
for the inverse operation ofM−1

%h applied to a given vector v inside each SC-PCG/CG
iteration, we apply the Ruge–Stüben AMG [33] method to solve M%hw = v until
the relative preconditioned residual error is reduced by a factor of 1012.

We first consider the case of the uniform refinement of the space-time cylinder
Q ⊂ R3(d = 2) across 6 levels of refinement. Tables 1, 2, and 3 provide the numerical
results for Examples 1, 2, and 3, respectively. In the second column of the tables,
we observe that the discretization error ‖y%h − yd‖ behaves like expected from the
theoretical results presented in Subsection 3.1. More precisely, the experimental
order of convergence (EOC) corresponds to the regularity of the target. The third
column of the tables displays the iteration numbers needed to reduce the initial error
by the factor 10−11 for the PGMRES, the SC-PCG/CG and the PB-PCG solvers.
Here we see that the robustness of the proposed preconditioners is confirmed by
almost mesh-independent iteration numbers for all solvers.
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Convergence Solvers (Number of Iterations)

Level #Vertices ‖y%h − yd‖ EOC PGMRES SC-PCG/CG PB-PCG

1 125 1.166e−1 − 67 60/65 97
2 729 2.688e−2 2.12 325 239/317 290
3 4, 913 5.564e−3 2.27 403 256/377 301
4 35, 937 1.105e−3 2.33 400 250/389 293
5 274, 625 2.138e−4 2.37 393 241/395 284
6 2, 146, 689 4.172e−5 2.36 381 235/398 276

Table 1: Example 1 (Smooth Target 71, d = 2, L2 regularization): Convergence in
the L2(Q)-norm, and number of iterations for attaining the relative accuracy 10−11.

Convergence Solvers (Number of Iterations)

Level #Vertices ‖y%h − yd‖ EOC PGMRES SC-PCG/CG PB-PCG

1 125 5.668e−2 − 66 59/61 98
2 729 4.069e−2 0.48 350 248/324 305
3 4, 913 1.454e−2 1.49 436 267/361 313
4 35, 937 4.808e−3 1.60 429 257/345 302
5 274, 625 1.727e−3 1.48 415 244/321 287
6 2, 146, 689 6.121e−4 1.50 399 236/291 277

Table 2: Example 2 (Continuous Target (72), d = 2, L2 regularization): Con-
vergence in the L2(Q)-norm, and number of iterations for attaining the relative
accuracy 10−11.

For the L2 regularization, we also consider the mass-lumped Schur complement

system (B>h D
−1

%hBh +Mh)yh = ydh, which is solved by means of the PCG method
preconditioned by the lumped mass matrix Dh. The numerical behavior of the L2

error between the space-time finite element state approximations y%h and the three
targets yd as well as the number of mass-lumped SC-PCG iterations are shown in
Tables 4 and 5 for two and three space dimensions, respectively. We observe that
the convergence rates depend on the regularity of the targets as expected; see also
the convergence history illustrated in the two plots of Figure 1 corresponding to
d = 2 and d = 3. Moreover, if we compare the errors ‖y%h − yd‖ of Table 4 with
the corresponding errors in Tables 1, 2, and 3, then we see that the mass-lumping
in the Schur complement does not affect the accuracy of the approximations at
all. Furthermore, the mass-lumped SC-PCG solver is robust as the almost constant
iteration numbers show.
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Figure 1: Convergence history for all targets when solving the mass-lumped SC
system: d = 2 (left) and d = 3 (right).
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Convergence Solvers (Number of Iterations)

Level #Vertices ‖y%h − yd‖ EOC PGMRES SC-PCG/CG PB-PCG

1 125 2.668e−1 − 68 57/65 105
2 729 2.085e−1 0.36 347 246/316 299
3 4, 913 1.562e−1 0.42 432 270/367 315
4 35, 937 1.128e−1 0.47 442 268/364 312
5 274, 625 8.064e−2 0.48 445 263/344 308
6 2, 146, 689 5.734e−2 0.49 442 259/316 302

Table 3: Example 3 (Discontinuous Target (73), d = 2, L2 regularization): Con-
vergence in the L2(Q)-norm, and number of iterations for attaining the relative
accuracy 10−11.

Target (71) Target (72) Target (73)

Level #Vertices ‖y%h − yd‖ PCG ‖y%h − yd‖ PCG ‖y%h − yd‖ PCG

1 125 1.022e−1 47 5.457e−2 48 2.599e−1 46
2 729 2.540e−2 135 3.780e−2 141 2.034e−1 138
3 4, 913 5.374e−3 142 1.343e−2 149 1.520e−1 150
4 35, 937 1.071e−3 140 4.498e−3 144 1.098e−1 150
5 274, 625 2.066e−4 137 1.622e−3 139 7.857e−2 149
6 2, 146, 689 3.998e−5 134 5.760e−4 136 5.588e−2 150

Table 4: PCG for the mass-lumped SC system (d = 2): L2 error and number of
mass-lumped SC-PCG iterations for attaining the relative accuracy 10−11.

In order to reduce the computational complexity even further, we may use the
nested SC-PCG iteration with the preconditioner Dh for solving the mass-lumped
Schur complement system on a sequence of uniformly or adaptively refined meshes.
We here only consider Example 3 with the discontinuous target (73). At the
coarsest level, we solve the mass-lumped SC system until the initial error is reduced

by a factor of 106. We use the adaptive threshold α [Nl/Nl−1]
β/3

to control the
error at the refined levels l = 2, 3, . . ., where Nl is the number of degrees of freedom
at the level l. In the numerical experiments, we set α = 0.4 for d = 2 and α = 0.1
for d = 3, and use β = 0.5 and β = 0.75 for the uniform and adaptive refinement,
respectively. The performance of this nested mass-lumped SC-PCG iteration is
documented in Tables 6 and 8 for d = 2 and d = 3, respectively. The adaptive
refinement shows a much better convergence than the uniform one.

In fact, it is straightforward to parallelize the mass-lumped SC-PCG solver for
this mass-lumped SC system; see the measured performance using 256 cores for
Example 3 (d = 2) in Table 7. The parallel solver is implemented using the open
source MFEM (https://mfem.org/), and tested on the high performance cluster
RADON1 (https://www.oeaw.ac.at/ricam/hpc). We observe a very good parallel
efficiency.

5.2 Energy Regularization

In the BP-PCG, we use (66) as Â%h with δ = 0.25, and Dh = lump(Mh) as Ŝ%h.
Furthermore, for the application of A−1

%h to a given vector v inside each SC-PCG/CG
iteration, the Ruge–Stüben AMG method [33] has been used to solve A%hw = v
until the relative preconditioned residual error is reduced by a factor of 1012.

In Tables 9-14, we provide the convergence studies of the space-time finite el-
ement approximations to the targets (71), (72), and (73), which correspond to
Examples 1, 2 and 3, in the L2-norm, and the corresponding number of itera-
tions for the preconditioned GMRES, SC-PCG/CG and PB-PCG solvers for two
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Target (71) Target (72) Target (73)

Level #Vertices ‖y%h − yd‖ PCG ‖y%h − yd‖ PCG ‖y%h − yd‖ PCG

1 178 1.034e−1 34 5.957e−2 37 2.501e−1 34
2 235 1.028e−1 35 2.880e−2 35 2.593e−1 35
3 315 9.660e−2 79 2.380e−2 78 1.830e−1 79
4 715 7.193e−2 261 2.217e−2 261 1.968e−1 260
5 1, 493 5.076e−2 370 2.161e−2 369 1.734e−1 384
6 2, 185 4.359e−2 423 2.047e−2 422 1.767e−1 418
7 3, 465 3.579e−2 563 1.949e−2 573 1.630e−1 579
8 9, 225 2.060e−2 840 1.684e−2 861 1.554e−1 870
9 19, 057 1.261e−2 628 1.372e−2 640 1.390e−1 658
10 26, 593 1.036e−2 628 1.086e−2 643 1.330e−1 653
11 47, 073 7.926e−3 689 9.046e−3 703 1.257e−1 713
12 134, 113 4.420e−3 1050 5.896e−3 1080 1.144e−1 1121
13 273, 281 2.779e−3 792 4.220e−3 785 1.031e−1 821
14 372, 481 2.246e−3 693 3.732e−3 711 9.833e−2 734
15 700, 161 1.722e−3 724 3.212e−3 734 9.240e−2 771
16 2, 051, 841 9.570e−4 1074 2.403e−3 1074 8.232e−2 1146
17 4, 144, 513 5.951e−4 808 1.685e−3 775 7.490e−2 843

Table 5: PCG for the mass-lumped SC system (d = 3): L2 error and number of
mass-lumped SC-PCG iterations for attaining the relative accuracy 10−11.

as well as three space dimensions. We observe the expected convergence rate for
Examples 2 and 3, cf. Tables 11-14, whereas the convergence rates for the smooth
target from Example 1 is reduced for both d = 2 and d = 3; see Tables 9 and
10, respectively. This phenomena has been explained in Remark 4; see also [26].
Figure 2 illustrates the corresponding convergence history. The robustness of the
proposed preconditioners are well confirmed by almost mesh-independent numbers
of iterations for all solvers in all cases.
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Figure 2: Convergence history for all the targets (71)-(73) and for energy regular-
ization: d = 2 (left) and d = 3 (right).

As in the preceding Subsection 5.1 for the mass-lumped Schur complement sys-
tem, we may use the nested iteration procedure on a sequence of uniformly and adap-
tively refined meshes to solve the inexact Schur complement system (68). We again
use the most interesting, discontinuous target (73) for our numerical test. To con-

trol the nested iteration error, we have used the adaptive threshold α [Nl/Nl−1]
β/3

for l = 2, 3, . . . ,, with α = 0.5 and α = 0.1 for d = 2 and d = 3, respectively, and
β = 0.5 and β = 0.75 for the uniform and adaptive refinement, respectively. For the
implementation of the operation A−1

%h within each SC-PCG iteration, several inner
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Uniform Adaptive

#Vertices ‖ỹ%h − yd‖ EOC SC-PCG #Vertices ‖ỹ%h − yd‖ SC-PCG

125 2.599e−1 − 37 [0.002 s] 125 2.599e−1 37 [0.002 s]
729 2.105e−1 0.30 5 [0.002 s] 223 2.717e−1 1 [0.0001 s]

4, 913 1.502e−1 0.49 7 [0.02 s] 1, 072 1.786e−1 12 [0.006 s]
35, 937 1.091e−1 0.46 7 [0.15 s] 4, 750 1.260e−1 9 [0.02 s]

274, 625 7.808e−2 0.48 8 [1.74 s] 18, 267 9.518e−2 12 [0.12 s]
2, 146, 689 5.555e−2 0.49 8 [13.20 s] 28, 533 8.631e−2 12 [0.23 s]

16, 974, 593 3.940e−2 0.50 8 [102.90 s] 86, 893 6.466e−2 12 [0.77 s]
106, 903 6.144e−2 12 [1.15 s]
362, 570 4.538e−2 12 [3.72 s]
404, 330 4.397e−2 11 [4.40 s]

1, 507, 002 3.195e−2 12 [18.44 s]

Table 6: Example 3 (Discontinuous Target (73), d = 2, L2 regularization, mass
lumping, nested iteration): Convergence in the L2(Q)-norm, number of nested SC-
PCG iterations, and time in seconds.

Uniform Adaptive

#Vertices ‖ỹ%h − yd‖ EOC SC-PCG #Vertices ‖ỹ%h − yd‖ SC-PCG

4, 913 1.520e−1 − 88 [0.02 s] 4, 913 1.520e−1 88 [0.02 s]
35, 937 1.083e−1 0.49 8 [0.004 s] 7, 848 1.312e−1 10 [0.003 s]

274, 625 7.744e−2 0.48 8 [0.005 s] 23, 967 8.892e−2 10 [0.004 s]
2, 146, 689 5.527e−2 0.49 8 [0.024 s] 44, 470 7.413e−2 10 [0.006 s]

16, 974, 593 3.931e−2 0.49 8 [0.18 s] 84, 302 6.290e−2 9 [0.006 s]
135, 005, 697 2.789e−2 0.49 8 [1.31 s] 189, 462 5.034e−2 9 [0.007 s]

552, 590 3.709e−2 11 [0.01 s]
747, 512 3.510e−2 10 [0.01 s]

1, 586, 023 2.723e−2 13 [0.04 s]

Table 7: Example 3 (Discontinuous Target (73), d = 2, L2 regularization, mass
lumping, parallel nested iteration): Convergence in the L2(Q)-norm, number of
nested SC-PCG iterations, and time in seconds, using 256 cores.

AMG iterations are applied, namely 3. The L2 convergence, the number of SC-
PCG iterations, and the computational time in seconds are provided in Table 15
for d = 2. From this table, we observe more efficiency without loss of accuracy
compared with the results in Tables 13 obtained for the non-nested (single-grid)
iterations.

6 Conclusion and outlook

We have considered tracking-type, distributed OCPs with both the standard L2

regularization and the more general energy regularization subject to hyperbolic state
equations without additional control and/or state constraints. The regularization
parameter % is related to the mesh size h in such way that the deviation of the
computed FE state yh from the desired state yd is of asymptotically optimal order
wrt the L2 norm in dependence on the smoothness of yd. In particular, the case
of discontinuous targets, that is the most interesting case from a practical point of
view, is covered by the analysis. The predicted convergence rate h1/2−ε is observed
in all our numerical experiments. This rate can easily be improved by a simple space-
time FE adaptivity based on the computable and localizable error ‖yd − yh‖L2(Q)

and a variable choice of % adapted to the local mesh size accordingly. In all cases,
the primal Schur complement S%h is spectrally equivalent to the mass matrix Mh,
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Uniform Adaptive

#Vertices ‖ỹ%h − yd‖ SC-PCG #Vertices ‖ỹ%h − yd‖ SC-PCG

178 2.501e−1 31 [0.003 s] 178 2.501e−1 31 [0.003 s]
715 2.001e−1 24 [0.01 s] 296 2.006e−1 12 [0.002 s]

2, 185 1.802e−1 18 [0.027 s] 569 1.880e−1 7 [0.003 s]
9, 225 1.548e−1 43 [0.26 s] 1, 316 1.620e−1 4 [0.003 s]

19, 057 1.380e−1 20 [0.31 s] 2, 167 1.475e−1 21 [0.03 s]
47, 073 1.262e−1 42 [4.45 s] 6, 479 1.274e−1 16 [0.08 s]

273, 281 1.023e−1 25 [10.62 s] 18, 895 1.127e−1 21 [0.32 s]
700, 161 9.261e−2 45 [82.68 s] 48, 705 9.441e−2 24 [1.32 s]

2, 051, 841 8.217e−2 54 [194.07 s] 77, 141 8.833e−2 23 [2.07 s]
5, 585, 665 7.132e−2 33 [496.00 s] 245, 196 7.890e−2 14 [4.00 s]

10, 828, 545 6.642e−2 40 [808.90 s] 378, 810 6.860e−2 24 [11.53 s]
32, 127, 745 5.920e−2 54 [3471.20 s] 603, 678 6.351e−2 28 [42.35 s]

762, 073 6.177e−2 32 [54.94 s]
1, 343, 769 5.786e−2 41 [98.94 s]

Table 8: Example 3 (Discontinuous Target (73), d = 3, L2 regularization, mass
lumping, nested iteration): Convergence in the L2(Q)-norm, number of nested SC-
PCG iterations, and time in seconds.

Convergence Solvers (Number of Iterations)

Level #Vertices ‖y%h − yd‖ EOC GMRES SC-PCG/CG PB-PCG

1 125 8.082e−2 − 59 36/37 63
2 729 3.749e−2 1.11 96 52/67 103
3 4, 913 1.550e−2 1.27 99 53/73 109
4 35, 937 5.994e−3 1.37 97 52/76 113
5 274, 625 2.272e−3 1.40 94 51/79 118
6 2, 146, 689 8.273e−4 1.46 91 50/80 118

Table 9: Example 1 (Smooth Target 71, d = 2, energy regularization): Con-
vergence in the L2(Q)-norm, and number of iterations for attaining the relative
accuracy 10−11.

and, therefore, to some diagonal approximation to mass matrix like the lumped
mass matrix Dh = lump(Mh). This is the basis for the construction of fast iterative
solvers like the PB-PCG and the PCG for the SID system (3) and the SPD SC
system (4), respectively. In order to ensure a fast multiplication of SC S%h with
some vector in the latter case, we can replace A−1

% by (lump(M%h))−1 for the L2

regularization, whereas inner multigrid iterations for the approximate inversion of
the algebraic space-time Laplacian must be used in the case of energy regularization.
We can control the number of inner iterations in such a way that the discretization
is not disturbed.

In practice, these solvers should always be used in a nested iteration framework
on a sequence of uniformly or adaptively refined meshes producing state approx-
imations ykll , that differ from the desired state yd wrt to the L2(Q)-norm in the
order of the discretization error, in asymptotically optimal or, at least, almost op-
timal complexity as one can observe from Tables 6, 7, 8, and 15. So, the nested
iteration process can be stopped as soon as some given (relative) accuracy of the
nested iteration approximation ykll of the desired state yd is reached or the cost of

the control measured in terms of ‖ukll ‖U exceeds some given threshold, where ukll
is the discrete control recovered from the last nested state iterate ykll ∈ Yl = Yhl

.
We refer the reader to [22] for a more detailed description of this nested iteration
procedure in the case of elliptic OCPs.

It is possible to generalize these results to other hyperbolic state equation like dy-

24



Convergence Solvers (Number of Iterations)

Level #Vertices ‖y%h − yd‖ EOC GMRES SC-PCG/CG PB-PCG

1 178 9.152e−2 − 40 23/24 51
2 235 8.818e−2 0.52 43 26/26 59
3 315 8.016e−2 1.30 94 52/43 91
4 715 6.117e−2 1.32 139 78/97 155
5 1, 493 4.843e−2 1.29 143 74/128 167
6 2, 185 4.373e−2 1.04 151 80/141 179
7 3, 465 3.801e−2 1.21 206 106/125 238
8 9, 225 2.743e−2 1.34 210 110/158 261
9 19, 057 2.113e−2 1.44 190 99/203 239
10 26, 593 1.893e−2 1.32 183 96/209 240
11 47, 073 1.570e−2 1.31 227 122/177 308
12 134, 113 1.097e−2 1.37 226 118/194 312
13 273, 281 8.462e−3 1.44 200 104/247 264
14 372, 481 7.564e−3 1.48 194 100/243 263
15 700, 161 6.146e−3 1.32 229 121/206 318
16 2, 051, 841 4.145e−3 1.46 225 118/219 316
17 4, 144, 513 3.201e−3 1.49 199 103/272 275

Table 10: Example 1 (Smooth Target 71, d = 3, energy regularization): Con-
vergence in the L2(Q)-norm, and number of iterations for attaining the relative
accuracy 10−11.

Convergence Solvers (Number of Iterations)

Level #Vertices ‖y%h − yd‖ EOC PGMRES SC-PCG/CG PB-PCG

1 125 4.817e−2 − 61 36/38 57
2 729 3.146e−2 0.61 101 54/69 94
3 4, 913 1.541e−2 1.03 103 55/73 96
4 35, 937 6.295e−3 1.29 100 53/73 98
5 274, 625 2.445e−3 1.36 97 52/73 99
6 2, 146, 689 9.191e−4 1.41 94 51/72 99

Table 11: Example 2 (Continuous Target (72), d = 2, energy regularization):
Convergence in the L2(Q)-norm, and number of iterations for attaining the relative
accuracy 10−11.

namic elasticity initial-boundary value problems. Control and/or state constraints
can be considered in the same way as was done in [13] for elliptic state equations.
The corresponding non-linear algebraic system can be solved by semi-smooth New-
ton methods [16]. The linear system arising at each step of the semi-smooth Newton
iteration has the same structure as the linear systems studied in this paper.
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Convergence Solvers (Number of Iterations)

Level #Vertices ‖y%h − yd‖ EOC PGMRES SC-PCG/CG PB-PCG

1 178 5.938e−2 − 40 23/25 54
2 235 2.587e−2 11.56 44 26/26 55
3 315 2.073e−2 3.03 97 51/42 96
4 715 1.987e−2 0.21 146 80/90 169
5 1, 493 1.971e−2 0.04 148 76/124 184
6 2, 185 1.855e−2 0.62 155 81/133 196
7 3, 465 1.772e−2 0.39 211 107/120 261
8 9, 225 1.552e−2 0.55 219 113/151 290
9 19, 057 1.261e−2 1.15 195 100/182 263
10 26, 593 1.039e−2 2.33 185 97/188 267
11 47, 073 9.086e−3 0.94 232 122/158 339
12 134, 113 6.737e−3 1.15 232 121/173 352
13 273, 281 5.345e−3 1.29 203 106/206 295
14 372, 481 4.909e−3 1.12 193 101/207 304
15 700, 161 4.158e−3 1.07 233 121/174 364
16 2, 051, 841 2.934e−3 1.28 227 118/190 369
17 4, 144, 513 2.185e−3 1.70 198 103/215 307

Table 12: Example 2 (Continuous Target (72), d = 3, energy regularization):
Convergence in the L2(Q)-norm, and number of iterations for attaining the relative
accuracy 10−11.

Convergence Solvers (Number of Iterations)

Level #Vertices ‖y%h − yd‖ EOC PGMRES SC-PCG/CG PB-PCG

1 125 2.502e−1 − 60 36/38 62
2 729 1.944e−1 0.36 100 53/68 93
3 4, 913 1.485e−1 0.39 104 55/74 97
4 35, 937 1.093e−1 0.44 103 55/74 99
5 274, 625 7.895e−2 0.47 102 55/74 103
6 2, 146, 689 5.648e−2 0.48 103 55/74 105

Table 13: Example 3 (Discontinuous Target (73), d = 2, energy regularization):
Convergence in the L2(Q)-norm, and number of iterations for attaining the relative
accuracy 10−11.
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Appendix

Recall, that in order to derive the finite element error estimates in Theorem 1 for
the L2-regularization, resulting in the optimal choice % = h4, we needed to assume
the regularization error estimates in Proposition 1, given as

|y% − yd|H1(Q) ≤ c %1/4 ‖�yd‖L2(Q),

and
|p%|H1(Q) ≤ c %3/4 ‖�yd‖L2(Q),

for yd ∈ H1,1
0;0,(Q) such that �yd ∈ L2(Q). Although, in Remark 3, we already

gave an example, showing that the estimates (18) and (17) do not hold for any
target function yd that is smooth enough, we want to numerically demonstrate that
the interpolation estimates are indeed true for some targets. To this end we will
consider the one-dimensional case in space, i.e., Q = Ω× (0, T ) = (0, 1)2 ⊂ R2 and
the smooth targets yd,i ∈ H2(Q) ∩H1,1

0;0,(Q), see Figure 3, given as

yd,1(x, t) =

{
1
2 (6t− 3x− 2)3(3x− 6t)3 sin(πx), x ≤ 2t and 6t− 3x ≤ 2,

0, else

yd,2(x, t) = sin(πx) sin(πt),

yd,3(x, t) = t2 sin(πx).

(a) yd,1 (b) yd,2 (c) yd,3

Figure 3: Targets yd,i ∈ H1,1
0;0,(Q) ∩H2(Q), i = 1, 2, 3.

In order to check the interpolation error estimates, we consider a sequence of
fixed %j > 0, j ∈ N, and compute for each target yd,i, i = 1, 2, 3, a related state
y%j = y%jh ∈ Yh on a fine mesh with nh = 131072 elements and mh = 65280 DoFs.
In Figure 4 the results for %j = 2−j , j = 14, . . . , 23 are depicted. We clearly see
the predicted behavior, i.e., |p%|H1(Q) ' %3/4 and |yd − y%|H1(Q) ' %1/4. Morover,
we also plot the L2-error of the state to the target, where we observe the behavior
‖yd − y%‖L2(Q) '

√
%, which fits perfectly to the theoretical findings. In Figure

5 we show the results for %j = 10−j , j = 2, . . . , 11. Note, that after a while the
L2-convergence breaks down, as a result of the best approximation property of Yh
in L2(Q) when computing y%j = y%jh ∈ Yh. Having a closer look, this happens
when %j ' h4. This supports the optimal choice % = h4, since choosing a smaller
parameter % > 0 will not lead to a better approximation of the desired target for a
given mesh size h > 0. Note, that the H1-error seems to stagnate even earlier.
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Figure 4: Convergence plots for the targets yd,i, i = 1, 2, 3, choosing %j = 2−j ,
j = 14, . . . , 23 for the L2-regularization where the reference solution y%j = y%jh ∈ Yh
is computed via a finite element method on a uniform mesh with nh = 131072
simplicial elements and mh = 65280 DoFs with mesh size h = 2.7621e−3.
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Figure 5: Convergence plots for the targets yd,i, i = 1, 2, 3, choosing %j = 10−j ,
j = 2, . . . , 11 for the L2-regularization where the reference solution y%j = y%jh ∈ Yh
is computed via a finite element method on a uniform mesh with nh = 131072
simplicial elements and mh = 65280 DoFs with mesh size h = 2.7621e−3.
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