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A unified framework for the analysis, numerical
approximation and model reduction of linear operator

equations,
Part I: Well-posedness in space and time

Moritz Feuerle∗, Richard Löscher†, Olaf Steinbach‡, Karsten Urban§

August 12, 2025

Abstract

We present a unified framework to construct well-posed formulations for large
classes of linear operator equations including elliptic, parabolic and hyperbolic partial
differential equations. This general approach incorporates known weak variational
formulations as well as novel space-time variational forms of the hyperbolic wave
equation. The main concept is completion and extension of operators starting from
the strong form of the problem.

This paper lays the theoretical foundation for a unified approach towards nu-
merical approximation methods and also model reduction of parameterized linear
operator equations which will be the subject of the following parts.

1 Introduction

Linear operator equations can, e.g., be derived from partial differential and integral equa-
tions. Typical examples include elliptic, parabolic and hyperbolic second order partial
differential equations (PDEs) as well as boundary integral equations. The analysis of well-
posedness (existence, uniqueness and stability of solutions) as well as the construction and
investigation of numerical approximation methods are usually done problem-specific and
different for the above mentioned classes of problems.

The aim of this paper is to provide a unified framework for the analysis, numerical
approximation and model reduction of linear operator equations. In particular we aim at
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deriving a general approach which allows us to construct well-posed and optimally stable1

variational formulations for rather general linear operator equations. This is the scope
of part I of this paper series. The forthcoming part will then concentrate on deriving
corresponding discretizations and numerical approximations which will benefit from the
general framework constructed in this first part. Finally, the close relation between the
approximation error and the residual will then also allow us to construct a quite general
approach towards model reduction of parameterized linear operator equations.

In such a general framework we are able to cover stationary elliptic as well as time-
dependent parabolic and hyperbolic problems. Elliptic problems are formulated in Sobolev
and the time-dependent problems in Lebesgue-Bochner spaces using space-time variational
formulations. The latter ones are well established for parabolic problems, but less is known
for transport, wave and Schrödinger-type problems. The framework presented in this paper
allows for well-posed variational formulations for all those equations. We shall detail the
general approach to several examples, which will also include known weak and ultra-weak
formulations. To the very best of our knowledge, this is a novel framework. It is, however,
related to [5], which focuses on ultra-weak formulations. We will comment on similarities
and differences throughout the paper. Our approach also extends existing results in a
unified manner, recovering also well-known formulations for elliptic and parabolic problems,
while also allowing for well-posed formulations for hyperbolic problems.

The remainder of this paper is organized as follows. After collecting some notation and
guiding examples in the sequel of this section, Section 2 is devoted to the presentation
of the theoretical foundation of our general framework. The main technical ingredient is
completion and extension of operators to be presented in §2.2. We show applications to
the Poisson problem, the heat equation and the wave equation in Section 3. The paper
ends with some conclusions and an outlook in Section 4.

1.1 Notation and basic facts

All spaces are assumed to be vector spaces over a common field F ∈ {R,C}. Thereby, for
a normed vector space X, we denote by ∥·∥X its norm and by X ′ its dual space (F = R)
or anti-dual space (F = C). If X is an inner product space, we denote its inner product
by (·, ·)X . Hence, the inner product is a bilinear (F = R) or sesquilinear2 form (F = C).
Further, we denote by ⟨·, ·⟩X′×X : X ′ × X → F the duality pairing (or evaluation map),
given by ⟨f, x⟩X′×X := f(x) for f ∈ X ′ and x ∈ X, which is also a bilinear or sesquilinear
form, respectively. For two Banach spaces X, Y , we denote the space of all linear and
bounded operators by L(X, Y ′) := {B : X → Y ′ : B is linear and ∥B∥L(X,Y ′) < ∞}, with
∥B∥L(X,Y ′) := sup

x∈X\{0}

∥Bx∥Y ′
∥x∥X

, and the space of all linear isomorphisms by

Lis(X, Y ′) := {B ∈ L(X, Y ′) : B bijective and B−1 ∈ L(Y ′, X)}.
1In the sense that the norms of the operator and its inverse are equal to 1.
2linear in the first and anti-linear in the second argument
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As usual, we call B ∈ L(X, Y ′) isometric, if ∥B∥L(X,Y ′) = 1. Given B ∈ L(X, Y ′) and
f ∈ Y ′, seeking for an unknown x ∈ X, we call Bx = f in Y ′ interpreted as ⟨Bx, y⟩Y ′×Y =
⟨f, y⟩Y ′×Y for all y ∈ Y , a linear operator equation. We call it well-posed (in the sense of
Hadamard, [13]) if B ∈ Lis(X, Y ′) and optimally stable if B is isometric. Further, for a
Hilbert space H, we denote by RH ∈ Lis(H,H ′) the isometric Riesz operator given by

⟨RHx, y⟩H′×H := (x, y)H ∀x, y ∈ H. (1)

In addition, it holds (·, ·)H′ = ⟨·, R−1
H ·⟩H′×H , ∥·∥H = ∥RH ·∥H′ and ∥·∥H′ = ∥R−1

H ·∥H .
For two normed vector spaces X, Y with X ⊆ Y , we call X continuously embedded in
Y (abbreviated “X ↪→ Y ”) if there exists an embedding constant C < ∞, such that
∥x∥Y ≤ C∥x∥X for all x ∈ X. Further, we denote by X ⊆d Y , that X is dense in Y , and
by X ↪→d Y , that X ⊆d Y and X ↪→ Y . We collect some well-known facts.

Remark 1.1. If X ⊆d Y ↪→d Z, then X ⊆d Z and X ↪→ Z if X ↪→ Y ↪→ Z.

Remark 1.2 ([3, §5 Remark 3]). Let X ↪→d H be Banach spaces with embedding constant
C.
(i) It holds H ′ ↪→ X ′ with embedding constant C and H ′ ↪→d X

′, if X is reflexive.
(ii) Let H be a Hilbert space. Identifying H ∼= H ′ using the Riesz operator, we get

X ↪→d H ∼= H ′ ↪→ X ′, (2)

as well as ∥x∥H ≤ C∥x∥X , x ∈ X, ∥x∥X′ ≤ C∥x∥H , x ∈ H and for the duality paring
holds

⟨f, x⟩X′×X = (f, x)H ∀f ∈ H, ∀x ∈ X. (3)

Eq. (2) is usually called a Gelfand triple, denoted by (X,H,X ′). Note: If X is a
Hilbert space itself, there exists the natural Riesz isomorphism between X and X ′,
but it is not viewed as the identity map, i.e., X ̸∼= X ′. Instead, we use the Riesz
isomorphism between H and H ′ as the identity map to identify H ∼= H ′. To make
things clear, for x ∈ X, the dual norm is to be understood as ∥x∥X′ = ∥RHx∥X′ =

sup
y∈X

(x,y)H
∥x∥X

and not as ∥RXx∥X′ = sup
y∈X

(x,y)X
∥x∥X

.

Function spaces

Let I := (0, T ), 0 < T < ∞ be a time interval, Ω ⊂ Rd, d ∈ N, be an open bounded spatial
domain with Lipschitz boundary for d ≥ 2 and let Q := I × Ω denote the space-time
domain. We denote by Ck;ℓ(Q), k, ℓ ∈ N0, the set of all C(Q) functions where all partial
derivatives w.r.t. t ∈ I up to order k and all partial derivatives w.r.t. x ∈ Ω up to order ℓ
are in C(Q), define C0(Ω) := {u ∈ C(Ω) : u|∂Ω = 0} and we denote the space of continuous
functions with zero boundary in space and kth-order zero initial conditions in time by

C
(k)
0,;0(Q) := {u ∈ C(I × Ω) ∩ Ck;0([0, T )× Ω) : u|I×∂Ω = 0, ∂α

t u(0) = 0, α = 0, ..., k}.
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For function spaces in time on Ī, we shall always denote homogeneous initial conditions
u(0) = 0 by the index “0,” and homogeneous terminal conditions u(T ) = 0 by “, 0”. As
usual, C∞

0 (Ω) is the space of compactly supported functions on C∞(Ω).
For Hilbert spaces X and a domain Ω (which could also be a time interval I or a

space-time domain Q), we denote by L2(Ω;X), H1(Ω;X) and H1
0 (Ω;X) the Lebesgue-

Bochner, Sobolev-Bochner and zero-trace Sobolev-Bochner Hilbert space (see, e.g., [14]
for an introduction to Bochner spaces), endowed with the inner product (u, v)L2(Ω;X) :=∫
Ω
(u(x), v(x))X dx, (u, v)H1(Ω;X) := (u, v)L2(Ω;X) + (∇u,∇v)L2(Ω;X) and (u, v)H1

0 (Ω;X) :=

(∇u,∇v)L2(Ω;X), respectively. Further, we denote by H−1(Ω;X) ≡ [H1
0 (Ω;X)]′ the dual

space of H1
0 (Ω;X) and define the Hilbert space H∆(Ω;X) := {u ∈ H1(Ω;X) : ∆u ∈

L2(Ω;X)} endowed with (u, v)H∆(Ω;X) := (u, v)H1(Ω;X) + (∆u,∆v)L2(Ω;X). In addition, for

a time interval I, it holds H1(I;X) ↪→ C(I;X) by [2, Proposition II.5.11], i.e., point eval-
uations u(t) ∈ X, t ∈ I are well-defined for u ∈ H1(I;X), thus we can define the Hilbert
spaces

H1
0,(I;X) := {u ∈ H1(I;X) : u(0) = 0}, H1

,0(I;X) := {u ∈ H1(I;X) : u(T ) = 0},

endowed with the inner product (·, ·)H1
0 (I;X). We write L2(Ω), H1(Ω), H1

0 (Ω), H
−1(Ω),

H∆(Ω),H1
0,(I) andH1

,0(I) for L
2(Ω;R),H1(Ω;R),H1

0 (Ω;R),H−1(Ω;R),H∆(Ω;R),H1
0,(I;R)

and H1
,0(I;R), respectively. Finally, for a second Hilbert space Y , we equip the vector

space X × Y with the inner product (u⃗, v⃗)X×Y := (u1, v1)X + (u2, v2)Y , thus forming again
a Hilbert space.

1.2 Examples

We collect examples which we will reconsider in the course of this paper. All these will
be expressed (in strong form) as B◦u = f (or B◦u⃗ = f⃗), including initial and/or boundary
conditions.

Example 1.1 (Poisson equation). For f : Ω → R and u : Ω → R, the Poisson equation
takes the form −∆u = f in Ω and u = 0 on ∂Ω.

Example 1.2 (Heat equation). For f : Q → R and u : Q → R, the heat equation is
expressed by ut −∆xu = f in Q, u(0) = 0 in Ω and u = 0 on I × ∂Ω.

Example 1.3 (Wave equation). For f : Q → R and u : Q → R, the wave equation reads
utt −∆xu = f in Q, u(0) = ∂tu(0) = 0 in Ω and u = 0 on I × ∂Ω.

Example 1.4 (First-order in time wave equation). For f⃗ : Q → R2 and u⃗ : Q → R2, the

first-order in time formulation of the wave equation reads ∂tu⃗ + A◦u⃗ = f⃗ in Q, u⃗(0) = 0
in Ω and u⃗ = 0 on I × ∂Ω, where A◦ :=

(
0 −Id

−∆x 0

)
and Id denoting the identity operator.

For f⃗ = (0, f), this is equivalent to example 1.3 with u⃗ and u being related by u⃗ = (u, ∂tu).

Remark 1.3. For the sake of simplicity, we only consider homogeneous initial and bound-
ary conditions and the Laplace operator −∆x in space, but the above examples can be
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extend directly to (i) inhomogeneous initial and/or boundary conditions u(0) = g0 in Ω,
∂tu(0) = g2 in Ω and u = g3 on ∂Ω or u = g3 on I × ∂Ω using standard homogenization
techniques; and (ii) a uniformly elliptic and bounded (time variant) spatial differential op-
erator A◦(t)u(x) := −∇x ·

(
A(t, x)∇xu(x)

)
+ b(t, x) · ∇xu(x) + c(t, x)u(x) replacing −∆x,

with A : Q → Rd×d, b : Q → Rd and c : Q → R sufficiently smooth.

2 Well-posed optimally stable weak formulations

We present the announced general framework for optimally stable weak formulations for
linear operator equations, which we will then apply to the above mentioned example prob-
lems.

2.1 Operator equations

We are now going to formulate the class of linear operator equations that we will consider
in the sequel.

Classical form

We consider linear operator equations on function spaces. Typically, those operators are
defined pointwise by their mapping properties (i.e., a differential or integral operator) and
corresponding initial and/or boundary conditions. This means in particular that those kind
of conditions are included in the definition of the operator. In order to distinguish between
the pointwise interpretation of the operator and the subsequent variational form, we add
the subscript “◦” to indicate the pointwise form. Hence, we start by B◦ : D(B◦) → C(Ω),
where Ω ⊂ Rd is the domain of the primitive variables on which the seeked function is
defined (which may be replaced by a space-time cylinder Q, see §1.2). Here,

D(B◦) := {u ∈ C(Ω) : B◦u ∈ C(Ω)}

is the classical domain of the operator. Then, for f ∈ C(Ω), the classical/pointwise
formulation of an operator equation amounts seeking u∗

◦ ∈ D(B◦) satisfying

B◦u
∗
◦ = f in Ω, i.e., B◦u

∗
◦(x) = f(x) ∀x ∈ Ω. (4)

Example 2.1. With the operator equations in §1.2 their classical domains read:
(i) D(B◦) = C2(Ω) ∩ C0(Ω) for the Poisson equation in example 1.1;

(ii) D(B◦) = C1;2(Q) ∩ C
(0)
0,;0(Q) for the heat equation in example 1.2;

(iii) D(B◦) = C2;2(Q) ∩ C
(1)
0,;0(Q) for the wave equation in example 1.3;

(iv) D(B◦) = C1;2(Q;R2)∩C
(0)
0,;0(Q;R2) for the first-order in time wave equation in exam-

ple 1.4.
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Variational formulation

The classical form of an operator equation can only be expected to be well-posed in excep-
tional cases (depending on Ω and the data). Hence, we consider a variational formulation
and stress the fact that such a variational form is not unique. Thus, we introduce an
abstract framework for variational formulations and detail it for the examples mentioned
above.

For a general framework, let U be a Banach space (called the trial or ansatz space),
V be a reflexive Banach space (called the test space) and H be a Hilbert space, such that
(V,H, V ′) forms a Gelfand triple, i.e. V ↪→d H ∼= H ′ ↪→d V

′. Then, a variational operator
reads B : D(B) ⊆ U → V ′, where B is a (possibly unbounded) linear operator defined
on a linear subspace D(B) ⊆ U , called the domain of B, see [3, §2.6]. The operator B is
called bounded, if D(B) = U and B ∈ L(U, V ′). For given f ∈ V ′, an abstract variational
formulation amounts seeking u∗ ∈ D(B) satisfying the operator equation

Bu∗ = f in V ′, i.e., ⟨Bu∗, v⟩V ′×V = ⟨f, v⟩V ′×V ∀v ∈ V. (5)

As B is neither assumed to be bounded nor bijective, (5) is in general not well-posed.

Examples

We indicate some possible variational formulations for the examples introduced in §1.2.
Generally speaking, to derive a variational formulation (5) of the classical form (4), select
a Hilbert space H, typically H := L2(Ω), multiply by a test function v ∈ C∞

0 (Ω) and, in
case of H = L2(Ω), integrate over Ω, leading to

(B◦u, v)H = (f, v)H ∀u ∈ D(B◦), ∀v ∈ C∞
0 (Ω).

After possibly applying integration by parts on the left-hand side, this gives rise to a varia-
tional operator B, for wich the domain D(B) and codomain V ′ are now to be determined.
Starting by the codomain, V has to be a reflexive Banach space such that V ↪→d H while
the relation (B◦u, v)H = ⟨Bu, v⟩V ′×V has to hold for all v ∈ V instead of for all v ∈ C∞

0 (Ω)
(and all u ∈ D(B◦)). Of course, this leaves some room for the choice of V , although V
is typically chosen as the largest of these spaces. Next, for the domain D(B) we need
D(B◦) ⊆ D(B) and it has to impose all initial and boundary conditions that have not
already been imposed implicitly during the construction of B using integration by parts.
Although D(B◦) does not need to be a Banach space itself, it has to be embedded (densely
for §2.3) in some Banach space U . By these assumptions, it becomes evident, that every
solution u∗

◦ of the classical formulation (4) also solves the variational formulation (5). Re-
garding our naming convention, we call a variational formulation (of a 2nd order operator)
strong, weak or ultra-weak (in a variable), if it was derived by applying none, one or two
integrations by parts (with respect to this variable).

To get a better hold on this procedure, consider Poisson’s equation in example 1.1
and let u ∈ D(B◦) with D(B◦) given in example 2.1. Multiplying by v ∈ C∞

0 (Ω) and
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integrating over Ω gives (B◦u, v)L2(Ω) = (−∆xu, v)L2(Ω) while further applying one or two
integrations by parts (recalling that u|∂Ω = v|∂Ω = 0) yield (B◦u, v)H = (∇xu,∇xv)L2(Ω) =
(u,−∆xv)L2(Ω) for all u ∈ D(B◦) and v ∈ C∞

0 (Ω). This gives rise to the following strong,
weak and ultra-weak operator

−∆st
x : H∆(Ω) → L2(Ω), (−∆st

x u, v)L2(Ω) := (−∆xu, v)L2(Ω),

−∆we
x : H1(Ω) → [H1(Ω)]′, ⟨−∆we

x u, v⟩[H1(Ω)]′×H1(Ω) := (∇xu,∇xv)L2(Ω),

−∆uw
x : L2(Ω) → [H∆(Ω)]′, ⟨−∆uw

x u, v⟩[H∆(Ω)]′×H∆(Ω) := (u,−∆xv)L2(Ω),

(6)

representing the starting point for a variational operator Bst, Bwe and Buw, respectively.
Now, we have to select a suitable domain D(Bst), D(Bwe) and D(Buw) as well as a suitable
codomain [V st]′, [V we]′ and [V uw]′. Choosing the largest possible test space V while still
ensuring (B◦u, v)H = ⟨Bu, v⟩V ′×V for all v ∈ V , we end up with V st := L2(Ω), V we :=
H1

0 (Ω) and V uw := H∆(Ω) ∩H1
0 (Ω), which are – of course – not the only possible options,

but the most natural choices. Thereby, we note, that V st, V we, V uw ↪→d L2(Ω). Now,
regarding the domains, we first note, that D(B◦) ⊆ D(Bst), D(Bwe), D(Buw) provides a
lower bound. Second, regarding the boundary conditions, we note that in context of Buw,
the boundary condition is already implicitly imposed by the construction of the operator
in form of a vanishing boundary integral, while for Bst and Bwe, the boundary condition
needs to be imposed by the domain, i.e., D(Bst), D(Bwe) ⊆ H1

0 (Ω). Hence, as an upper
bound, we get D(Bst) ⊆ U st := H∆(Ω) ∩ H1

0 (Ω) as well as D(Bwe) ⊆ Uwe := H1
0 (Ω) and

D(Buw) ⊆ Uuw := L2(Ω). Thereby, we note, that each domain is a dense subspace of the
Banach space U st, Uwe and Uuw, respectively, as D(B◦) is already dense in each of them.
In a similar fashion, we can derive several variational formulations for each example given
in §1.2, for which the following formulations will be considered in the scope of this paper.

Remark 2.1. We stress, that H∆(Ω)∩H1
0 (Ω) = H2(Ω)∩H1

0 (Ω) if Ω is quasi-convex [11,
Def. 8.9, Lem. 8.11], in particular if Ω is convex or has a smooth boundary. In this case

(∥∇·∥2L2(Ω) + ∥∆·∥2L2(Ω))
1
2 is a norm on H∆(Ω) ∩H1

0 (Ω) equivalent to the standard H2(Ω)

norm, e.g. [12, Thm. 8.12].

Example 2.2 (Poisson equation). For the Poisson equation in example 1.1, set H :=
L2(Ω), let D(B◦) as given in example 2.1 and consider the formulations
(i) strong: V := L2(Ω) and U := H∆(Ω)∩H1

0 (Ω) with B := −∆st
x |D(B) : D(B) ⊆ U → V ′

for any domain D(B) such that D(B◦) ⊆ D(B) ⊆ U ;
(ii) weak: V := H1

0 (Ω) and U := H1
0 (Ω) with B := −∆we

x |D(B) : D(B) ⊆ U → V ′ for any
domain D(B) such that D(B◦) ⊆ D(B) ⊆ U ;

(iii) ultra-weak: V := H∆(Ω) ∩ H1
0 (Ω) and U := L2(Ω) with B := −∆uw

x |D(B) : D(B) ⊆
U → V ′ for any domain D(B) such that D(B◦) ⊆ D(B) ⊆ U .

Thereby, we equip H∆(Ω) ∩H1
0 (Ω) with (∥∇·∥2L2(Ω) + ∥∆·∥2L2(Ω))

1
2 as norm. Further holds

in all three cases, that D(B) ⊆d U as D(B◦) is already dense in U .

Example 2.3 (Heat equation – strong in time). For the heat equation given in example 1.2,
set H := L2(Q) and define the Hilbert spaces V := L2(I;H1

0 (Ω)) and U := L2(I;H1
0 (Ω)) ∩
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H1
0,(I;H

−1(Ω)) with their corresponding norms ∥·∥V := ∥∇x·∥L2(Q) and ∥·∥2U := ∥·∥2V +
∥∂t·∥2V ′, respectively. We consider the variational operator B : U → V ′ arising from B◦
in example 1.2 by one integration by parts in space, for all u ∈ U and v ∈ V given by
⟨Bu, v⟩V ′×V := (∂tu, v)L2(Q) + ⟨−∆we

x u, v⟩L2(I;H−1(Ω))×L2(I;H1
0 (Ω)), see also [6, 17].

Example 2.4 (Heat equation – weak in time). For the heat equation given in example 1.2,
set H := L2(Q) and define the Hilbert spaces U := L2(I;H1

0 (Ω)) and V := L2(I;H1
0 (Ω)) ∩

H1
,0(I;H

−1(Ω)) with their corresponding norms ∥·∥U := ∥∇x·∥L2(Q) and ∥·∥2V := ∥·∥2U +
∥∂t·∥2U ′, respectively. We consider the variational operator B : U → V ′ arising from B◦ in
example 1.2 by one integration by parts in time and one in space, for all u ∈ U and v ∈ V
given by ⟨Bu, v⟩V ′×V := −(u, ∂tv)L2(Q) + ⟨−∆we

x u, v⟩L2(I;H−1(Ω))×L2(I;H1
0 (Ω)), see also [1, 4].

Example 2.5 (Wave equation – strong in time). For the first order in time reformulation
of the wave equation given in example 1.4, set H := L2(Q;R2) and define the Hilbert spaces
U := H1

0,(I;L
2(Ω)×H−1(Ω))∩L2(I;H1

0 (Ω)×L2(Ω)) and V := L2(I;L2(Ω)×H1
0 (Ω)) with

their corresponding norms ∥·∥V := ∥·∥L2(I;L2(Ω)×H1
0 (Ω)) and ∥·∥2U := ∥∂t·∥2L2(I;L2(Ω)×H−1(Ω)) +

∥·∥2
L2(I;H1

0 (Ω)×L2(Ω))
, respectively. Introducing the operator A :=

(
0 −Id

−∆we
x 0

)
: H1

0 (Ω) ×
L2(Ω) → L2(Ω) × H−1(Ω), we consider the variational operator B : U → V ′ araising
from B◦ in example 1.4 by one integration by parts in space, for all u⃗ ∈ U and v⃗ ∈ V given
by

⟨Bu⃗, v⃗⟩V ′×V := ⟨∂tu⃗+ Au⃗, v⃗⟩V ′×V

= (∂tu1 − u2, v1)L2(Q) + ⟨∂tu2 −∆we
x u1, v2⟩L2(I;H−1(Ω))×L2(I;H1

0 (Ω)).

Example 2.6 (Wave equation – weak in time). For the wave equation given in example 1.3,
set H := L2(Q) and define the Hilbert spaces U := H1

0,(I;H
1
0 (Ω)) and V := H1

,0(I;H
1
0 (Ω))

with norms ∥·∥2U ≡ ∥·∥2V := ∥∂t·∥2L2(Q) + ∥∇x·∥2L2(Q). We consider the variational operator

B : U → V ′ arising from B◦ in example 1.3 by one integration by parts in time and one in
space, for all u ∈ U and v ∈ V given by

⟨Bu, v⟩V ′×V := −(∂tu, ∂tv)L2(Q) + ⟨−∆we
x u, v⟩L2(I;H−1(Ω))×L2(I;H1

0 (Ω)). (7)

Example 2.7 (Wave equation – ultra-weak in time). For the first order in time re-
formulation of the wave equation given in example 1.4, set H := L2(Q;R2) and de-
fine the Hilbert spaces U := L2(I;H1

0 (Ω) × L2(Ω)) and V := H1
,0(I;H

−1(Ω) × L2(Ω)) ∩
L2(I;L2(Ω) × H1

0 (Ω)) with their corresponding norms ∥·∥U := ∥·∥L2(I;H1
0 (Ω)×L2(Ω)) and

∥·∥2V := ∥∂t·∥2L2(I;H−1(Ω)×L2(Ω)) + ∥·∥2
L2(I;L2(Ω)×H1

0 (Ω))
, respectively. Using, that −∆we

x and

Id are self-adjoint, the adjoint of A given in example 2.5 reads A∗ =
(

0 −∆we
x

−Id 0

)
: L2(Ω)×

H1
0 (Ω) → H−1(Ω) × L2(Ω) and we consider the variational operator B : U → V ′ araising

from B◦ in example 1.4 by one integration by parts in time (due to the first order refor-
mulation, this effectively corresponds to two integration by parts in time, thus the name
ultra-weak in time) and one in space, for all u⃗ ∈ U and v⃗ ∈ V given by

⟨Bu⃗, v⃗⟩V ′×V := ⟨u⃗,−∂tv⃗ + A∗v⃗⟩U×U ′

= ⟨u1,−∂tv1 −∆we
x v2⟩L2(I;H1

0 (Ω))×L2(I;H−1(Ω)) + (u2,−∂tv2 − v1)L2(Q).

8



Remark 2.2. The above variational formulations involving −∆we
x can be extended directly

to an arbitrary bounded and coercive (time variant) operator A(t) : H1
0 (Ω) → H−1(Ω)

instead of −∆we
x . In particular, for the elliptic operator A◦ defined in remark 1.3 (omitting

the time variance for brevity), we end up with the strong, weak and ultra weak operator

(Astu, v)L2(Ω) := (−∇x · (A∇xu) + b · ∇xu+ cu, v)L2(Ω),

⟨Aweu, v⟩[H1(Ω)]′×H1(Ω) := (A∇xu,∇xv)L2(Ω) + (b · ∇xu, v)L2(Ω) + (cu, v)L2(Ω),

⟨Auwu, v⟩[H2(Ω)]′×H2(Ω) := (u,−∇x · (A⊤∇xv)− b · ∇xv + (c−∇x · b)v)L2(Ω),

respectively, replacing (6) – assuming that A, b and c are sufficiently smooth.

These examples already show that there is a huge variety regarding the choice of the test
space V and the variational formulation (5), recalling that well-posedness is not required
as (5) only serves as a starting point.

2.2 Completion and extension

Our goal is to construct a well-posed and optimally stable extension B : U → V ′ of (5).
Thereby, an extension of (5) means that D(B) ⊆d U and B|D(B) = B. To this end, it turns
out that the following two properties are crucial:

(B1) B is injective on D(B);

(B2) the range R(B) of B is dense in V ′ (weak surjectivity of B).

We first note a sufficient condition for (B1) and (B2), namely that (5) is well-posed and
stable on a dense subspace Y ⊆d V

′ of right-hand sides.

Lemma 2.1. Let Y ⊆d V ′ be a normed subspace and C < ∞. If (5) admits a solution
u∗ ∈ D(B) for each f ∈ Y satisfying the stability estimate ∥u∗∥U ≤ C∥f∥Y , then (B1) and
(B2) are valid.

Proof. Consider the operator equation (5) for f = 0. Since Y is a subspace, we have 0 ∈ Y ,
i.e., there exists some u∗ ∈ D(B) such that Bu∗ = 0 in V ′ and ∥u∗∥U ≤ C∥f∥Y = 0 by
assumption. Thus, if Bu∗ = 0 then u∗ = 0, i.e., the solution of the homogeneous problem
is unique and hence ker(B) = {0}, i.e., B is injective on D(B), i,e., (B1). Since Y is dense
in V ′ and Y ⊆ R(B) ⊆ V ′, we conclude that R(B) is dense in V ′, i.e., (B2).

Remark 2.3. Using that (V,H, V ′) forms a Gelfand triple together with remark 1.1, pos-
sible choices for Y include in particular Y ⊆d H and Y ⊆d V . In fact, this is the main
reason, why the Gelfand triple (V,H, V ′) is important as it is often sufficient to consider the
operator equation for smooth right-hand sides, where existence results are typically easier
to derive.
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If (B1) holds, then it is easy to see, that ∥·∥D(B) := ∥B·∥V ′ defines a norm on D(B).
Thus, there exists a (up to isometric isomorphisms) uniquely determined completion (U, ∥·∥U)
of (D(B), ∥·∥D(B)), e.g. [7, Theorem 2.32 & Corollary 2.60]. Furthermore, there exists
a uniquely determined continuous extension B ∈ L(U, V ′) of B from D(B) to U , e.g.
[7, Proposition 2.59]. By definition, U is a Banach space, D(B) ⊆d U and B|D(B) = B.
Furthermore, it is easy to see3, that

∥ū∥U = ∥Bū∥V ′ , ū ∈ U and ∥u∥U = ∥u∥D(B) = ∥Bu∥V ′ , u ∈ D(B). (8)

Now, for f ∈ V ′, we seek the solution ū∗ ∈ U of the extended operator equation

Bū∗ = f in V ′, i.e., ⟨Bū∗, v⟩V ′×V = ⟨f, v⟩V ′×V ∀v ∈ V. (9)

By B|D(B) = B and D(B) ⊆ U , it is easy to see, that every solution u∗ of (5) also solves
(9), but not the other way around. Hence, the extended problem (9) is a weaker form of
(5).

Remark 2.4. (i) If B is bounded (i.e., D(B) = U and B ∈ L(U, V ′)), it holds

U ↪→d U, with ∥u∥U ≤ ∥B∥L(U,V ′)∥u∥U ∀u ∈ U. (10)

(ii) The space U consists of the limits of all Cauchy sequences in (D(B), ∥·∥D(B)). The
extension B reads Bū = limn→∞Bun for the limit ū := limn→∞ un of a Cauchy
sequence (un)n∈N ⊂ D(B). Note, that (un)n∈N is a Cauchy sequence in D(B) if and
only if (Bun)n∈N is a Cauchy sequence in V ′, i.e., B is well-defined, since V ′ is
complete.

(iii) The extended problem (9) is independent of the chosen variational formulation (5) for
the classical problem (4), as long as the test space V is fixed. In fact, the completion
and the continuous extension are both unique. Thus, for any other operator B⋆ :
D(B⋆) ⊆ U⋆ → V ′ satisfying (B1) with D(B⋆) ⊆d U and B|D(B⋆) = B⋆ we have
U⋆ ≡ U and B⋆ ≡ B, with U⋆ and B⋆ denoting the completion and continuous
extension of D(B⋆) and B⋆, respectively. See also remark 3.1 below.

We now state our main result that the extended operator B is an isometric isomorphism,
i.e., the operator equation (9) is well-posed and optimally stable.

Theorem 2.2. Let (B1) and (B2) hold. The operator B from (9) is
(a) an isomorphism, i.e., B ∈ Lis(U, V ′) (well-posedness) and

(b) isometric, i.e., ∥B∥L(U,V ′) = ∥B−1∥L(V ′,U) = 1 (optimal stability).

Proof. First, note that U and B are well-defined thanks to (B1). By (8) we have that the
operator B : U → R(B) ⊆ V ′ is an isometry, thus injective and ∥B∥L(U,V ′) = 1. It remains

3By the representations of ∥·∥U and B given in the proofs of [7, Theorem 2.32 & Proposition 2.59],
respectively, it holds for all ū ∈ U , that ∥ū∥U = limn→∞∥Bun∥V ′ = ∥limn→∞ Bun∥V ′ = ∥Bū∥V ′ , with
(un)n∈N ⊂ D(B) denoting any sequence with limn→∞ un = ū in U (note that D(B) ⊆d U).
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to shown, that (i) B is surjective, i.e., R(B) = V ′, and (ii) ∥B−1∥L(V ′,U) = 1. To show the
surjectivity, let f ∈ V ′ be arbitrary but fixed. By (B2), the range of B is dense in V ′.
Hence, there exists a sequence (un)n∈N ⊂ D(B), such that limn→∞∥f −Bun∥V ′ = 0. Thus,
for all n,m ∈ N

∥un − um∥U
(8)
= ∥un − um∥D(B) = ∥B(un − um)∥V ′ ≤ ∥Bun − f∥V ′ + ∥Bum − f∥V ′ → 0

as n,m → ∞, i.e., (un)n∈N is a Cauchy sequence in U . Hence, by the completeness of U ,
there exists ū ∈ U with lim

n→∞
∥ū− un∥U = 0, and it holds

∥f −Bū∥V ′ ≤ ∥f −Bun∥V ′ + ∥Bun −Bū∥V ′ = ∥f −Bun∥V ′ + ∥un − ū∥U
n→∞
−−−→ 0,

i.e., f = Bū ∈ R(B) so that V ′ ⊆ R(B) ⊆ V ′, where the second inclusion follows from
(B2). Hence we conclude V ′ = R(B), i.e., (i). In order to show (ii), we have

∥B−1∥L(V ′,U) = sup
f∈V ′\{0}

∥B−1
f∥U

∥f∥V ′
= sup

f∈V ′\{0}

∥BB
−1
f∥V ′

∥f∥V ′
= sup

f∈V ′\{0}

∥f∥V ′

∥f∥V ′
= 1.

In particular, the inverse B
−1

: V ′ → U is bounded (even isometric) and thus B ∈
Lis(U, V ′), which concludes the proof.

Corollary 2.3. Under the assumptions of theorem 2.2, we have, that
(a) the trial space U is reflexive as the test space V is reflexive;
(b) the trial space U is a Hilbert space w.r.t. the inner product (·, ·)U := (B·, B·)V ′ if and

only if the test space V is a Hilbert space.

Proof. theorem 2.2 yields that U ∼= V ′ ∼= V are isomorphic.

Remark 2.5. (i) The identity ∥ū∗∥U = ∥f∥V ′ is of particular interest in numerical ap-
plications as it leads to the error-residual identity ∥ū − ū∗∥U = ∥Bū − f∥V ′ for all
ū ∈ U . This will be explored in Part II.

(ii) The operator B and hence also B are often defined in terms of a bilinear (F = R) or
sesquilinear (F = C) form b : D(B)× V → F and b : U × V → F, respectively. Then,
theorem 2.2 states, that b is continuous and inf-sup stable, with

γ

β

β∗


:=


sup

ū∈U\{0}
sup

v∈V \{0}
inf

ū∈U\{0}
sup

v∈V \{0}
inf

v∈V \{0}
sup

ū∈U\{0}


|b(ū, v)|

∥ū∥U∥v∥V
=



∥B∥L(U,V ′)

∥B−1∥−1

L(V ′,U)

∥B−∗∥−1

L(U ′
,V )


= 1,

where B
−∗

:= (B
∗
)−1 denotes the inverse of the adjoint of B.
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Let us add a note regarding the norm ∥·∥U = ∥B·∥V ′ on U . To this end, assume that
V is a Hilbert space and denote the Riesz operator (1) by RV : V → V ′. Now, for u ∈ U ,
defining vu := R−1

V Bu ∈ V , it holds ∥vu∥V = ∥R−1
V Bu∥V = ∥Bu∥V ′ and

∥u∥2
U
= ∥Bu∥2V ′ = (Bu,Bu)V ′ = ⟨Bu,R−1

V Bu⟩V ′×V = ⟨Bu, vu⟩V ′×V . (11)

Thus, vu is a supremizer of ∥Bu∥V ′ . Before we continue, let us summarize the procedure
how to derive an optimally stable well-posed formulation:

1. Starting from the classical formulation B◦ : D(B◦) → C(Ω), find a Gelfand triple
V ↪→d H ∼= H ′ ↪→d V

′ for the test space and a variational form Bu = f in V ′ for
B : D(B) ⊆ U → V ′, being a (possibly unbounded) linear operator defined on a
linear subspace D(B) of a Banach space U .

2. Either show (B1) and (B2) or find a normed subspace Y ⊆d V
′ such that Bu = f

is well-posed and stable on Y (i.e., only for f ∈ Y ).
3. Build the unique completion (U, ∥·∥U) of D(B) w.r.t. ∥·∥D(B) := ∥B·∥V ′ .
4. Build the unique continuous extension B ∈ L(U, V ′) of B form D(B) to U .
⇒ B ∈ Lis(U, V ′) (well-posedness)

and ∥B∥L(U,V ′) = ∥B−1∥L(V ′,U) = 1 (optimal stability).

2.3 Gelfand triple for the trial space

The sufficient condition formulated in lemma 2.1 and required for theorem 2.2 relies on
(V,H, V ′), i.e., a Gelfand triple for the test space. Even more can be said, if also the trial
space admits a Gelfand triple structure, which is in fact the case for all examples 2.2 to 2.7,
see example 2.8 below. To fix the notation, let G be a Hilbert space, such that (U,G, U ′)
forms a Gelfand triple. It would be beneficial, if the Gelfand triple structure would carry
over from U to U . It turns out that this can be achieved by an assumption similar to
lemma 2.1 (B is well-posed and stable on a dense subspace Y ⊆d V

′), but for the adjoint
operator B∗. In order to define B∗, B needs to be densely defined, i.e., D(B) ⊆d U . Thus,
we consider the following embeddings

D(B) ⊆d U ↪→d G ∼= G′ ↪→ U ′. (12)

Then, following e.g. [3, §2.6], there exists a unique adjoint operator B∗ : D(B∗) ⊆d V → U ′

of the (possibly unbounded) operator B : D(B) ⊆d U → V ′, with its domain

D(B∗) :=
{
v ∈ V : sup

u∈D(B)\{0}

|⟨Bu, v⟩V ′×V |
∥u∥U

< ∞
}

(13)

being dense in V (even D(B∗) = V if B is bounded), and

⟨B∗v, u⟩U ′×U = ⟨Bu, v⟩V ′×V ∀u ∈ D(B), ∀v ∈ D(B∗). (14)
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Theorem 2.4. Let (B1), (B2) and (12) hold, X ⊆d G be a subset and C∗ < ∞. If the
adjoint problem of (5), namely to find v∗ ∈ D(B∗) such that B∗v∗ = g in U ′, admits a
solution for each g ∈ X and the solution satisfies the stability estimate ∥v∗∥V ≤ C∗∥g∥G,
then

U ↪→d G ∼= G′ ↪→d U
′

with ∥ū∥G ≤ C∗∥ū∥U ∀ū ∈ U. (15)

Proof. First, note that B∗ is well-defined by D(B) ⊆d U , while U and B are well-defined
by (B1). We denote by V := {v ∈ D(B∗) : B∗v ∈ X} ⊆ D(B∗) ⊆ V the set of all solutions
of the adjoint problem with right-hand sides in X. Thus, in particular ∥v∥V ≤ C∗∥B∗v∥G
for all v ∈ V by the stability of the adjoint problem and B∗(V) = X as there exists a
solution for all right-hand sides in X. Thus, we get for all u ∈ D(B) ⊆ G, that

∥u∥D(B)
(8)
= ∥Bu∥V ′ = sup

v∈V

|⟨Bu, v⟩V ′×V |
∥v∥V

≥ sup
v∈V

|⟨Bu, v⟩V ′×V |
∥v∥V

≥ sup
v∈V

|⟨Bu, v⟩V ′×V |
C∗∥B∗v∥G

(14)
= sup

v∈V

|⟨B∗v, u⟩U ′×U |
C∗∥B∗v∥G

= sup
g∈X

|⟨g, u⟩U ′×U |
C∗∥g∥G

(3)
= sup

g∈X

|(g, u)G|
C∗∥g∥G

(∗)
= sup

g∈G

|(g, u)G|
C∗∥g∥G

≥ |(u, u)G|
C∗∥u∥G

=
1

C∗∥u∥G,

where we used in (∗), thatX is dense in G (w.r.t. ∥·∥G). Thus, the graph-type norm defined
by ∥·∥2B := ∥·∥2G + ∥B·∥2V ′ of B is equivalent to ∥·∥D(B) on D(B) since for all u ∈ D(B)

∥u∥2D(B) := ∥Bu∥2V ′ ≤ ∥u∥2B = ∥u∥2G + ∥Bu∥2V ′ ≤ (1 + C∗2)∥Bu∥2V ′ = (1 + C∗2)∥u∥2D(B).

Denoting by (Ũ , ∥·∥Ũ) the completion of D(B) w.r.t. ∥·∥B instead of ∥·∥D(B), we have

Ũ ⊆ G by the definition of ∥·∥B and the completeness of G. Moreover, Ũ = U (as sets)
by the equivalence of ∥·∥B and ∥·∥D(B). Due to the definitions of ∥·∥B and ∥·∥D(B), we

obtain that ∥·∥2
Ũ

= ∥·∥2G + ∥B·∥2V ′ . Now, let ū ∈ U be arbitrary but fixed. By ū ∈ Ũ

and D(B) ⊆d Ũ there exists a sequence (un)n∈N ⊂ D(B) with 0 = lim
n→∞

∥ū − un∥2Ũ =

lim
n→∞

(∥ū − un∥2G + ∥ū − un∥2U), i.e., lim
n→∞

un = ū w.r.t. ∥·∥G and ∥·∥U . Thus, ∥ū∥U =

limn→∞∥un∥U = limn→∞∥un∥D(B) ≥ limn→∞
∥un∥G
C∗ = ∥ū∥G

C∗ , and we conclude U ↪→ G.

Finally, U ⊆d G follows by D(B) ⊆ U ⊆ G, and the fact that D(B) is dense in G by (12)

and remark 1.1. Finally, G′ ↪→d U
′
holds by remark 1.2 and the fact that U is reflexive by

corollary 2.3.

Remark 2.6. By (12) and remark 1.1, possible choices for X include X ⊆d G, X ⊆d U
and X ⊆d D(B), where the density in the latter is taken w.r.t. ∥·∥U or ∥·∥G but not ∥·∥D(B).
Note that the stability estimate for the adjoint problem has to hold w.r.t. ∥·∥G, unlike to
lemma 2.1, where the norm could be chosen arbitrary.

Remark 2.7. (i) If B is bounded, it holds U ↪→d U ↪→d G ∼= G′ ↪→d U
′
↪→d U ′, using

(10) and (15).
(ii) By (15), the graph-type norm ∥·∥2

B
:= ∥·∥2G + ∥B·∥2V ′ is equivalent to ∥·∥U .

Let us summarize the procedure.
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5. Check if the trial space admits a Gelfand structure U ↪→d G ∼= G′ ↪→ U ′.
6. Find a dense subset X ⊆d G such that the adjoint problem B∗v = g in U ′ is

well-posed and stable on X (i.e. only for g ∈ X).

⇒ The extended trial space admits a Gelfand structure U ↪→d G ∼= G′ ↪→d U
′
.

Remark 2.8. Note that theorem 2.4 implies (B1) and (B2) but for B∗ instead of B by
a similar argument to that in lemma 2.1. These are precisely the assumption (A∗1) and
(A∗2) in [5]. There, (A∗1) and (A∗2) are used to construct a well-posed extension of B∗,
while we use these assumptions to add additional structure to an existing extension instead.

Example 2.8. For the variational formulations in examples 2.2 to 2.7, we have that G :=
L2(Ω) for the Poisson equation, G = L2(Q) for the heat equation and the weak in time
form of the wave equation as well as G = L2(Q,R2) for the strong and ultra-weak in time
form of the wave equation.

3 Applications

Now, with the abstract operator framework at hand, let us consider the examples intro-
duced in §1.2, in particular, their variational formulations as given in examples 2.2 to 2.7
(together with the pivot space G as given in example 2.8). For each of these formula-
tions, we are now going to build their well-posed and optimally stable extension (9) and
characterize the extended trial space U and the extended operator B as far as possible.

3.1 The Poisson equation

It is well known by Kellogg’s theorem, e.g. [12, Theorem 6.14], that – under suitable regu-
larity assumptions on the domain Ω – the classical formulation of the Poisson problem given
in example 1.1 has a unique solution4 u∗ ∈ C2,α

0 (Ω) satisfying ∥u∗∥C2,α(Ω) ≤ C∥f∥C0,α(Ω)

for all right-hand sides f ∈ C0,α(Ω) and some C < ∞. As it holds C∞
0 (Ω) ⊂ Ck,α

0 (Ω) ⊂
Ck

0 (Ω) ⊂ L2(Ω), we conclude, that u∗ ∈ D(B◦) and, by the density of C∞
0 (Ω) in L2(Ω), that

C0,α(Ω) is dense in L2(Ω). Thus, u∗ is a solution for each variational formulation given
in example 2.2 and for each formulation holds theorem 2.2 by lemma 2.1 and remark 2.3.
We will now see, that the abstract framework introduced in §2 recovers the well-known
formulations for the Poisson problem.

3.1.1 Strong formulation

Consider the operator B := −∆st
x |D(B) : D(B) ⊆d H∆(Ω) ∩ H1

0 (Ω) → L2(Ω) given in
example 2.2 (i). Then, writing −∆ ≡ −∆st

x , it holds for all u ∈ D(B), that ∥Bu∥V ′ =
∥−∆st

x |D(B)u∥L2(Ω) = ∥∆u∥L2(Ω), while the norm on U := H∆(Ω) ∩ H1
0 (Ω) reads ∥·∥2U =

4Ck,α(Ω), k ∈ N, is the Hölder space with Hölder exponent α∈(0, 1]; Ck,α
0 (Ω) = Ck,α(Ω) ∩ C0(Ω).
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∥∇·∥2L2(Ω) + ∥∆·∥2L2(Ω). Note, that the norm induced by B and the norm on U are equiv-
alent, as it holds by integration by parts, the Cauchy–Schwarz inequality and Poincaré’s
inequality, that

∥∇u∥2L2(Ω) = (∇u,∇u)L2(Ω) = (u,−∆u)L2(Ω) + (u, n⃗ · ∇u)L2(∂Ω)︸ ︷︷ ︸
=0 as u=0 on ∂Ω

≤ ∥u∥L2(Ω)∥∆u∥L2(Ω) ≤ CΩ∥∇u∥L2(Ω)∥∆u∥L2(Ω),

for all u ∈ H∆(Ω) ∩H1
0 (Ω), where CΩ < ∞ denotes the Poincaré constant on Ω. Dividing

by ∥∇u∥L2(Ω) then gives the norm equivalence as it holds for all u ∈ H∆(Ω)∩H1
0 (Ω), that

∥∆u∥2L2(Ω) ≤ ∥∇u∥2L2(Ω) + ∥∆u∥2L2(Ω) ≤ (1 + C2
Ω)∥∆u∥2L2(Ω). (16)

As D(B) ⊆d H
∆(Ω)∩H1

0 (Ω) and H∆(Ω)∩H1
0 (Ω) is complete with respect to ∥∇·∥L2(Ω) +

∥∆·∥L2(Ω), it holds for the well-posed and optimally stable completion (9), that U =

H∆(Ω) ∩H1
0 (Ω) and B = −∆st

x .

3.1.2 Weak formulation

Consider the operator B := −∆we
x |D(B) : D(B) ⊆d H

1
0 (Ω) → H−1(Ω) given in example 2.2

(ii). As the isometric Riesz operator (1) on H1
0 (Ω) reads RH1

0 (Ω) ≡ −∆we
x , it holds for all

u ∈ D(B), that

∥Bu∥V ′ = ∥−∆we
x |D(B)u∥H−1(Ω) = ∥−∆we

x u∥H−1(Ω) = ∥u∥H1
0 (Ω) = ∥∇u∥L2(Ω).

Hence, the norm induced by the operator B is the H1-seminorm. As D(B) ⊆d H1
0 (Ω)

and H1
0 (Ω) is complete with respect to ∥∇·∥L2(Ω), it holds for the well-posed and optimally

stable completion (9), that U = H1
0 (Ω) and B = −∆we

x .

3.1.3 Ultra-weak formulation

Consider the operator B := −∆uw
x |D(B) : D(B) ⊆d L2(Ω) → [H∆(Ω) ∩ H1

0 (Ω)]
′ given in

example 2.2 (iii). Let u ∈ D(B) be arbitrary. We have already seen in context of the
strong formulation, that −∆ ≡ −∆st

x : H∆(Ω) ∩ H1
0 (Ω) → L2(Ω) is an isomorphism and

it holds (16), i.e., there exists a vu ∈ H∆(Ω) ∩ H1
0 (Ω) such that −∆vu = u in L2(Ω) and

∥u∥L2(Ω) ≤ ∥vu∥V ≤
√
(1 + C2

Ω)∥u∥L2(Ω) with ∥·∥2V := ∥∇·∥2L2(Ω)+∥∆·∥2L2(Ω). Thus, it holds
for vu, that

|⟨Bu, vu⟩V ′×V |
∥vu∥V

=
|(u,∆vu)L2(Ω)|

∥vu∥V
=

|(u, u)L2(Ω)|
∥vu∥V

≥ 1√
(1 + C2

Ω)
∥u∥L2(Ω),

and for all v ∈ H∆(Ω) ∩H1
0 (Ω), that

|⟨Bu, v⟩V ′×V |
∥v∥V

=
|(u,∆v)L2(Ω)|

∥v∥V
≤

∥u∥L2(Ω)∥∆v∥L2(Ω)

∥v∥V
≤

∥u∥L2(Ω)∥v∥V
∥v∥V

= ∥u∥L2(Ω).
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Hence, we conclude, that the norm induced by the operator and the L2-norm are equivalent
as it holds 1√

(1+C2
Ω)
∥u∥L2(Ω) ≤ ∥Bu∥[H∆(Ω)∩H1

0 (Ω)]′ ≤ ∥u∥L2(Ω). As D(B) ⊆d L2(Ω) and

L2(Ω) is complete with respect to ∥·∥L2(Ω), it holds for the well-posed and optimally stable

completion (9), that U = L2(Ω) and B = −∆uw
x .

Remark 3.1. In the three settings given in example 2.2, the domain D(B) was not fixed
and was allowd to range from D(B◦) to U . Choosing D(B) = D(B◦) we can replace B by
B◦ as it holds B|D(B◦) = B◦ in V ′ by the construction of B and V ′. Further, we could also
replace U by5 L2(Ω). Even after applying these changes (regarding B, D(B) and U) to
each of the three formulations – in particular, we can choose B = B◦, D(B) = D(B◦) and
U = L2(Ω) for all three cases – they still lead to the same well-posed extensions U and B
as presented above. Thus, V is the sole quantity that encodes the regularity of the resulting
extension, i.e., the choice of V determines if we end up with −∆st

x , −∆we
x or −∆uw

x .

Remark 3.2. The above results still hold for general bounded elliptic second-order differ-
ential operators as defined in remark 2.2 although the constants of the norm equivalence
between ∥·∥U and ∥B·∥V ′ will change. In case of the weak formulation, this coincides with
the well-known result that ∥B·∥H−1(Ω) defines an equivalent norm to ∥·∥H1

0 (Ω) on H1
0 (Ω) for

any bounded self-adjoint and coercive operator6 B : H1
0 (Ω) → H−1(Ω). In this case, the iso-

metric Riesz operator (1) on H1
0 (Ω) equipped with the norm ∥B·∥H−1(Ω) reads RH1

0 (Ω) ≡ B
instead of RH1

0 (Ω) ≡ −∆we
x .

3.2 The heat equation

Let us consider the heat equation in example 1.2.

3.2.1 Strong in time

Starting with the strong in time variational formulation given in example 2.3. It is well
known, that Bu = f in V ′ admits a unique solution u∗ ∈ U for each f ∈ V ′, [10, 17, 19].
In particular, B ∈ L(U, V ) and there holds the inf-sup stability

∥u∥U ≤ sup
0̸=v∈V

⟨Bu, v⟩V ′×V

∥v∥V
= ∥Bu∥V ′ , (17)

for all u ∈ U . Thus, we have the norm equivalence

∥u∥U ≤ ∥Bu∥V ′ ≤
√
2∥u∥U ∀u ∈ U, (18)

and we immediately see, that the norm induced by the operator is equivalent to the norm
on U . Thus, applying our abstract framework to the heat equation does not do much, in

5Note that the upper bound of D(B) is fixed and does not increase with U .
6By RH1

0 (Ω) ≡ B holds ∥B·∥2H−1(Ω) = (B·, B·)H−1(Ω) = ⟨B·, ·⟩H−1(Ω)×H1
0 (Ω). Then, the norm equivalence

immediately follows by the boundedness and coercivity of B, while the self-adjointness gives rise not only
to a norm but also to an inner product.
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fact, as ∥·∥U and ∥B·∥V ′ are equivalent on U , and U is already complete with respect to
∥·∥U , the completion of U with respect to ∥B·∥V ′ simply reads U ≡ U and ∥·∥U = ∥B·∥V ′

as it holds B ≡ B. Hence, by going from U to U , we effectively replaced the norm by
an equivalent one. Thus, let us use our abstract framework to compute this norm ∥B·∥V ′ .
Therefore, we need the Riesz operator (1) on V given by RV ≡ −∆we

x , i.e., B = ∂t + RV .
Then using (11), we compute for u ∈ U , that

∥Bu∥2V ′ = ⟨Bu,R−1
V Bu⟩V ′×V = ⟨∂tu+RV u,R

−1
V (∂tu+RV u)⟩V ′×V

= ⟨∂tu,R−1
V ∂tu⟩V ′×V + 2⟨∂tu, u⟩V ′×V + ⟨RV u, u⟩V ′×V

= ∥∂tu∥2V ′ + ∥u∥2V + 2⟨∂tu, u⟩V ′×V = ∥u∥2U + 2⟨∂tu, u⟩V ′×V .

(19)

The norm equivalence (18) thus relies on the fact that

0 ≤ ∥u(T )∥2L2(Ω) =

∫
Ω

u(T, x)2 dx
u(0)=0
=

∫
Ω

∫
I

∂tu(t, x)
2 dt dx = 2⟨∂tu, u⟩V ′×V

≤ 2∥∂tu∥V ′∥u∥V ≤ ∥∂tu∥2V ′ + ∥u∥2V = ∥u∥2U .

Hence, we get B = B = ∂t −∆we
x and U = U = L2(I;H1

0 (Ω)) ∩H1
0,(I;H

−1(Ω)) with norm

∥·∥U =
√

∥·∥2U + 2⟨∂t·, ·⟩V ′×V .

Remark 3.3. As seen above, the mixed term in the norm can be written as 2⟨∂tu, u⟩V ′×V =
∥u(T )∥2L2(Ω), i.e., the norm ∥·∥U and therefore the well-posed formulation (9) of the heat
equation corresponds exactly to the well-posed and optimally stable formulation introduced
in [23].

Remark 3.4. Note, that the supremizer of (17) is given in (11) as vu = R−1
V Bu =

R−1
V ∂tu + u, which was already used in [8, 17, 18, 21, 22, 23] to show the stability of the

formulation.

Remark 3.5. The above results hold true when replacing −∆we
x by an arbitrary bounded

self-adjoint coercive operator Ax : H1
0 (Ω) → H−1(Ω) as we can replace the norm on H1

0 (Ω)
by the equivalent norm ∥Ax·∥H−1(Ω) as mentioned in remark 3.2.

3.2.2 Weak in time

Now, let us consider the weak in time variational formulation given in example 2.4, which
is exactly the formulation used e.g. in [1, 4]. It was shown in [4, Thm. 2.2], that B ∈
Lis(U, V

′), i.e. (5) is already well-posed and we immediately get U ≡ U with ∥·∥U being
equivalent to ∥·∥U , and B ≡ B. Hence, the application of our framework reduces to
changing the norm on the trial space and thus adding optimal stability to the already
given well-posedness. Unlike to the strong in time formulation above, there is no explicit
representation for the Riesz operator RV . Hence, we can not give an representation for
∥·∥U by a similar calculation to (19).
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3.3 The wave equation

Next, we consider the wave equation in example 1.3.

3.3.1 Strong in time

We start with the strong in time variational formulation of the wave equation as given in
example 2.5. We denote by F the 2D flip operator, i.e. for two Banach spaces X1 and X2,
their vector product X := X1 ×X2 and ( x1

x2 ) ∈ X, we have

F( x1
x2 ) = ( x2

x1 ), F(X1 ×X2) = X2 ×X1, ∥·∥FX = ∥F·∥X ,
(FX)′ = FX ′, FL2(I;X) = L2(I;FX).

Thus, with W := L2(Ω) ×H1
0 (Ω), we get U = H1

0,(I;W
′) ∩ L2(I;FW ) and V = L2(I;W )

and their norms are given by ∥w⃗∥2W := ∥w1∥2L2(Ω) + ∥w2∥2H1
0 (Ω)

, ∥·∥2U := ∥∂t·∥2V ′ + ∥·∥2FV and

∥·∥V := ∥·∥L2(I;W ). Now, for f⃗ ∈ V ′, the variational formulation in example 2.5 amounts
to find u⃗∗ ∈ U such that

Bu⃗∗ = f⃗ in V ′ with ⟨Bu⃗, v⃗⟩V ′×V := ⟨∂tu⃗+ Au⃗, v⃗⟩V ′×V , (20)

for all u⃗ ∈ U and all v⃗ ∈ V and A :=
(

0 −Id
−∆we

x 0

)
: FW → W ′. Further, by W ′ =

L2(Ω)×H−1(Ω), the dual space and the dual norm of V ′ read

V ′ = L2(I;W ′), ∥·∥2V ′ = ∥·∥2L2(Q) + ∥·∥2L2(I;H−1(Ω)). (21)

Remark 3.6. The operator B in (20) is bounded, i.e. B ∈ L(U, V ′), as it holds for u⃗ ∈ U ,
using RH1

0 (Ω) ≡ −∆we
x for the Riesz operator (1) on H1

0 (Ω), that

∥Bu⃗∥2V ′
(21)
= ∥∂tu1 − u2∥2L2(Q) + ∥(∆we

x )−1(∂tu2 −∆we
x u1)∥2L2(I;H1

0 (Ω))

≤ 2
(
∥∂tu1∥2L2(Q) + ∥u2∥2L2(Q) + ∥∂tu2∥2L2(I;H−1(Ω)) + ∥u1∥2L2(I;H1

0 (Ω))

)
= 2(∥u⃗∥2FV + ∥∂tu⃗∥2V ′) = 2∥u⃗∥2U .

Theorem 3.1 ([16, Ch. 3 Thm. 8.1 & eq. (8.15)]). Let f ∈ L2(Q), then there exists a unique
u∗ ∈ H2(I;H−1(Ω)) ∩H1(I;L2(Ω)) ∩ L2(I;H1

0 (Ω)) such that

∂ttu
∗ −∆we

x u∗ = f in L2(I;H−1(Ω)), u∗(0) = 0, ∂tu
∗(0) = 0.

Further, there exists Ĉ < ∞ independent of u∗ and f such that ∥∂tu∗∥2L2(Q)+∥u∗∥2
L2(I;H1

0 (Ω))
≤

Ĉ∥f∥2L2(Q).

Remark 3.7. Using the techniques of [19, Theorem 5.1, Remark 4.6], we can show that
the constant in the preceding theorem equals Ĉ = T 2

2
and the estimate is in fact sharp in

the powers of T .
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Corollary 3.2. The variational formulation (20) possesses a solution u⃗∗ ∈ U for each

f⃗ ∈ Y := H1
0,(I;L

2(Ω)) × L2(Q). Furthermore, there exists CQ < ∞ independent of u⃗∗

and f⃗ such that ∥u⃗∗∥U ≤ CQ∥f⃗∥L2(Q;R2). In particular theorem 2.2 holds by lemma 2.1
and remark 2.3.

Proof. For f⃗ = (f1, f2) ∈ Y define f := ∂tf1 + f2 ∈ L2(Q) and denote by u∗ and C the
solution and the constant given by theorem 3.1 with respect to the right-hand side f . Now,
defining u⃗∗ ≡ (u∗

1, u
∗
2) := (u∗, ∂tu

∗ − f1), it holds u⃗∗ ∈ U , ∂tu
∗
1 − u∗

2 = f1 in L2(Q) and
∂tu

∗
2 −∆we

x u∗
1 = ∂ttu

∗ − ∂tf1 −∆we
x u∗ = f2 in L2(I;H−1(Ω)). Hence, we conclude, that u⃗∗

solves (20) as it holds for all v⃗ ∈ V , that

⟨Bu⃗∗, v⃗⟩V ′×V = (∂tu
∗
1 − u∗

2, v1)L2(Q) + ⟨∂tu∗
2 −∆we

x u∗
1, v2⟩L2(I;H−1(Ω))×L2(I;H1

0 (Ω))

= (f1, v1)L2(Q) + ⟨f2, v2⟩L2(I;H−1(Ω))×L2(I;H1
0 (Ω)) = ⟨f⃗ , v⃗⟩V ′×V .

Now, regarding the stability estimate, it first holds by theorem 3.1, together with the 1D
Poincaré inequality ∥∂tf∥L2(Q) ≤ T√

2
∥f∥L2(Q) for all f ∈ H1

0,(I;L
2(Ω)), that

∥∂tu∗
1∥2L2(Q) + ∥u∗

1∥2L2(I;H1
0 (Ω)) ≤ Ĉ∥∂tf1 + f2∥2L2(Q) ≤ 2Ĉ(∥∂tf1∥2L2(Q) + ∥f2∥2L2(Q))

≤ 2ĈC̃T∥f⃗∥2L2(Q;R2),

with C̃T := max{1, T 2

2
}. Next, using Poincaré’s inequality in Ω, it holds H1

0 (Ω) ↪→d L
2(Ω)

for some CΩ < ∞, in particular ∥f∥L2(I;H−1(Ω)) ≤ CΩ∥f∥L2(Q) for all f ∈ L2(Q) by re-
mark 1.2, and thus

∥∂tu∗
2∥2L2(I;H−1(Ω)) + ∥u∗

2∥2L2(Q) = ∥f2 +∆we
x u∗

1∥2L2(I;H−1(Ω)) + ∥∂tu∗
1 − f1∥2L2(Q)

≤ 2
(
∥f2∥2L2(I;H−1(Ω)) + ∥u∗

1∥2L2(I;H1
0 (Ω)) + ∥∂tu∗

1∥2L2(Q) + ∥f1∥2L2(Q)

)
≤ (2C̃Ω + 4ĈC̃T )∥f⃗∥2L2(Q;R2),

with C̃Ω := max{1, C2
Ω}. Now, defining C2

Q := 2C̃Ω + 6ĈC̃T , we get

∥u⃗∗∥2U = ∥∂tu∗
2∥2L2(I;H−1(Ω)) + ∥∂tu∗

1∥2L2(Q) + ∥u∗
1∥2L2(I;H1

0 (Ω)) + ∥u∗
2∥2L2(Q)

≤ CQ∥f⃗∥2L2(Q;R2).

Although, (20) admits a unique solution u⃗∗ ∈ U for all f⃗ ∈ H1
0,(I;L

2(Ω))×L2(Q) ⊂ V ′

we will now show that this can not be extended to all f⃗ ∈ V ′. Thus, for the wave equation,
unlike the previous examples, considering U and B instead of U and B, respectively, is
in fact necessary for a well-posed formulation (instead of just the optimal stability) as
B : U → V ′ isn’t already an isomorphism.

Theorem 3.3. The operator B in (20) does not define an isomorphism as there does not
exists an inf-sup constant β > 0 such that β∥u⃗∥U ≤ ∥Bu⃗∥V ′ for all u⃗ ∈ U , i.e. the inverse
of B is not bounded.
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Proof. We construct a counterexample, following the ideas presented in [24, Theorem
4.2.24]. To this end, let ϕk ∈ H1

0 (Ω) denote the normalized eigenfunctions and 0 < λ1 ≤
λ2 ≤ . . . → ∞ the eigenvalues of the spatial Laplacian, given as −∆xϕk = λkϕk in Ω with
∥ϕk∥L2(Ω) = 1, and consider the function

u⃗k(t, x) :=

(
ϕk(x)

∫ t

0
s sin(

√
λks) ds

ϕk(x)t sin(
√
λkt)

)
,

which solves (20) for f⃗k := (0, fk), fk(t, x) := 2ϕk(x) sin(
√
λkt). Elementary computations

give ∥u⃗k∥2U = λ
−3/2
k

(
T
√
λk+

2
3
T 3λ

3/2
k −1

2
T sin(

√
λkT )

)
and ∥f⃗k∥2V ′ = λ

−3/2
k

(
2T

√
λk − sin(2

√
λkT )

)
.

Therefore, taking the limit we get
∥f⃗k∥V ′
∥u⃗k∥U

→ 0 for k → ∞ which completes the proof.

Thus, in contrast to elliptic and parabolic PDEs, in this case the norm induced by
the operator is not equivalent to the norm on U . In order to determine ∥B·∥V ′ , using
RH1

0 (Ω) ≡ −∆we
x , it holds for all u⃗ ∈ U , that

∥Bu⃗∥2V ′
(21)
= ∥∂tu1 − u2∥2L2(Q) + ∥∂tu2 −∆we

x u1∥2L2(I;H−1(Ω))

= ∥∂tu1∥2L2(Q) + ∥u2∥2L2(Q) − 2(∂tu1, u2)L2(Q)

+ ∥∂tu2∥2L2(I;H−1(Ω)) + ∥u1∥2L2(I;H1
0 (Ω)) + 2⟨∂tu2, u1⟩L2(I;H−1(Ω))×L2(I;H1

0 (Ω))

= ∥u⃗∥2U + 2⟨∂tu⃗, Ju⃗⟩V ′×V ,

with J :=
(

0 −Id
Id 0

)
.

Remark 3.8. Alternatively, using the Riesz operator (1) on V , given by RV =
(
Id 0
0 −∆we

x

)
,

together with (11), we get

∥Bu⃗∥2V ′ = ⟨Bu⃗,R−1
V Bu⃗⟩V ′×V = ⟨∂tu⃗+ Au⃗,R−1

V (∂tu⃗+ Au⃗)⟩V ′×V

= ⟨∂tu⃗, R−1
V ∂tu⃗⟩V ′×V + 2⟨∂tu⃗, R−1

V Au⃗⟩V ′×V + ⟨A∗R−1
V Au⃗, u⃗⟩FV ′×FV ,

where A∗ =
(

0 −∆we
x

−Id 0

)
: W → FW ′ denotes the adjoint of A. To further simplify this

expression, note that RV = AJ∗ and J−1 = J∗, hence R−1
V A = J as well as A∗R−1

V A =( −∆we
x 0

0 Id

)
= RFV , with RFV denoting the Riesz operator (1) on FV . Thus, we get the same

result, namely

∥Bu⃗∥2V ′ = ⟨∂tu⃗, R−1
V ∂tu⃗⟩V ′×V + 2⟨∂tu⃗, Ju⃗⟩V ′×V + ⟨RFV u⃗, u⃗⟩FV ′×FV

= ∥∂tu⃗∥2V ′ + 2⟨∂tu⃗, Ju⃗⟩V ′×V + ∥u⃗∥2FV = ∥u⃗∥2U + 2⟨∂tu⃗, Ju⃗⟩V ′×V .
(22)

As we can see, the representation of the norm ∥B·∥V ′ is quite similar to the one derived
for the heat equation in (19). However, the additional term

2⟨∂tu⃗, Ju⃗⟩V ′×V = 2⟨∂tu2, u1⟩L2(I;H−1(Ω))×L2(I;H1
0 (Ω)) − 2(∂tu1, u2)L2(Q)

can not be bounded from below by zero. In fact, for u⃗k as defined in the proof of theo-

rem 3.3, we compute ⟨∂tu⃗k, Ju⃗k⟩V ′×V = −T 3

3
− sin(2

√
λkT )

4λ
3/2
k

+ T
2λk

, which goes to −T 3

3
< 0
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as k → ∞. Moreover, as the function u⃗k solves (20) for the right-hand side f⃗k, it holds

Bu⃗k = f⃗k and we get

∥f⃗k∥V ′

∥Bu⃗k∥V ′
=

∥f⃗k∥V ′

∥f⃗k∥V ′
= 1 but

∥f⃗k∥V ′

∥u⃗k∥U
→ 0, k → ∞.

Hence, the norms ∥B·∥V ′ and ∥·∥U are not equivalent. By (8) and (22), we have a charac-
terization of ∥·∥U on U ⊆d U . Now, with the norm ∥·∥U characterized (at least on U), let
us consider the space U . Unlike to the elliptic and parabolic equations, we cannot give U
explicitly, but we can characterize it to some extend by theorem 2.4.

Corollary 3.4. The adjoint problem of (20), namely to find v⃗∗ ∈ V such that

⟨B∗v⃗∗, u⃗⟩U ′×U = ⟨g⃗, u⃗⟩U ′×U ∀u⃗ ∈ U,

possess a solution for each g⃗ ∈ X := L2(Q) × H1
,0(I;L

2(Ω)) ⊂d G. Further, there ex-
ists C∗

Q < ∞ independent of v⃗∗ and g⃗ such that ∥v⃗∗∥V ≤ C∗
Q∥g⃗∥L2(Q;R2). In particular

theorem 2.4 holds by remark 2.6.

Proof. In addition to the flip operator F, we define the time reversal operator by Tf(t) :=
f(T − t) for almost all t ∈ I. It is easy to see, that F2 = Id, T2 = Id, F∗ = F, T∗ = T,
TF = FT, ∂tTF = −TF∂t and TFA = A∗TF. Further, it holds TFu⃗ ∈ V , (TFu⃗)(T ) = 0 and

TFAu⃗ ∈ FV ′ for all u⃗ ∈ U . Now, let g⃗ ∈ X be arbitrary but fixed, define f⃗ := TFg⃗ ∈ Y
and denote by u⃗∗ ∈ U the solution of Bu⃗∗ = f⃗ in V ′ given by corollary 3.2. Defining
v⃗∗ := TFu⃗∗ ∈ V , it holds for all u⃗ ∈ U , that

⟨B∗v⃗∗, u⃗⟩U ′×U = ⟨Bu⃗, v⃗∗⟩V ′×V = ⟨∂tu⃗+ Au⃗, v⃗∗⟩V ′×V = ⟨∂tu⃗+ Au⃗,TFu⃗∗⟩V ′×V

= ⟨TF∂tu⃗+ TFAu⃗, u⃗∗⟩FV ′×FV = ⟨−∂tTFu⃗+ A∗TFu⃗, u⃗∗⟩FV ′×FV

= ⟨∂tu⃗∗ + Au⃗∗,TFu⃗⟩V ′×V + (u⃗∗(T ), (TFu⃗)(T )︸ ︷︷ ︸
=0

)L2(Ω) − (u⃗∗(0)︸ ︷︷ ︸
=0

, (TFu⃗)(0))L2(Ω)

= ⟨Bu⃗∗,TFu⃗⟩V ′×V = ⟨f⃗ ,TFu⃗⟩V ′×V = ⟨TFg⃗,TFu⃗⟩V ′×V = ⟨g⃗, u⃗⟩U ′×U ,

i.e., v⃗∗ ∈ V is a solution of the adjoint problem. Thereby we used in the last step, that
g⃗, u⃗,TFg⃗,TFu⃗ ∈ L2(Q;R2) and thus ⟨TFg⃗,TFu⃗⟩V ′×V = (TFg⃗,TFu⃗)L2(Q;R2) = (g⃗, u⃗)L2(Q;R2) =
⟨g⃗, u⃗⟩U ′×U by (3) and the Gelfand triples (V,H, V ′) and (U,G, U ′). Finally, using the sta-
bility estimate for u⃗∗ provided by corollary 3.2, it holds ∥v⃗∗∥V = ∥u⃗∗∥FV ≤ ∥u⃗∗∥U ≤
CQ∥f⃗∥L2(Q;R2).

Let us collect our results.

Corollary 3.5. For the well-posed extension (9) of example 2.5 holds
(i) U ↪→d U ↪→d L

2(Q;R2), and the embedding constants read ∥u∥L2(Q;R2) ≤ CQ∥u∥U , u ∈
U and ∥u∥U ≤

√
2∥u∥U , u ∈ U , with the constant CQ =

√
max{1, C2

Ω}+max{3T 2, 3
2
T 4};
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(ii) the other directions of the norm inequalities do not holds, i.e. ∥·∥U is neither equiv-
alent to ∥·∥L2(Q;R2) on U , nor equivalent to ∥·∥U on U ;

(iii) U ⊊ U ⊊ L2(Q;R2);

(iv) for u⃗ ∈ U , we have ∥u⃗∥U =
√

∥u⃗∥2U + 2⟨∂tu⃗, Ju⃗⟩V ′×V , where J :=

(
0 −Id
Id 0

)
.

Proof. The first statement is given by corollary 3.4 and remark 2.7 implying C∗
Q ≡ CQ,

together with the definition of CQ and Ĉ in corollary 3.2 and remark 3.7, respectively, while
∥B∥L(U,V ′) ≤

√
2 holds by remark 3.6. The last statement was shown in (22). Further,

that ∥·∥U is not equivalent to ∥·∥U follows by theorem 3.3 and (8). Next, if ∥·∥U would
be equivalent to ∥·∥L2(Q;R2), we would get U = L2(Q;R2) since U is dense in L2(Q;R2) by

(i) but also complete w.r.t. ∥·∥U . Since B : U → V ′ is an isomorphism, we would end
up with L2(Q;R2) being isomorph to V ′ = L2(I;L2(Ω) ×H−1(Ω)), which is not the case
as L2(Ω) is not isomorph to H−1(Ω). Thus, we have also shown, that U ̸= L2(Q;R2) has
to hold. Finally, by the construction of U , it would follow from U = U , that R(B) = V ′,
i.e. B ∈ Lis(U, V

′) by the bounded inverse theorem/open mapping theorem, (B1) and
remark 3.6. This is a contradiction to theorem 3.3, and we conclude U ̸= U .

Remark 3.9. By remark 3.2, we can replace −∆we
x by any bounded self-adjoint coercive

operator Ax : H1
0 (Ω) → H−1(Ω) provided that Ax satisfies the assumptions of [16, Ch. 3

Thm. 8.1] (i.e. theorem 3.1 holds true), by replacing the norm on H1
0 (Ω) by ∥Ax·∥H−1(Ω).

3.3.2 Weak in time

We consider the weak in time variational formulation of the wave equation as given in
example 2.6.

Remark 3.10. The operator B in (7) is bounded, i.e. B ∈ L(U, V ′) as it holds for
u ∈ U and v ∈ V by Young’s inequality7, that |⟨Bu, v⟩V ′×V | ≤ ∥∂tu∥L2(Q)∥∂tv∥L2(Q) +
∥∇xu∥L2(Q)∥∇xv∥L2(Q) = ∥u∥U∥v∥V .

Theorem 3.6. The variational problem (7) possess a unique solution u∗ ∈ U for all
f ∈ L2(Q) and the solution satisfies ∥u∗∥H1

0 (Ω) ≤ T√
2
∥f∥L2(Q).

Proof. This is a well known result, see e.g. [19, Theorem 5.1] for this exact statement or
[15, ch. IV Theorems 3.1&3.2, eq. (3.17)] for a more general setting.

Remark 3.11. By the above existence result, theorem 2.2 holds by lemma 2.1 and re-
mark 2.3, while theorem 2.4 holds as B is symmetric and thus self-adjoint (except for a
switch of the initial/terminal conditions encoded in U and V , but U and V are isometric
isomorphic and thus interchangeable).

As for the strong in time formulation, the above existence result cannot be generalized
to all right-hand sides f ∈ V ′ as the operator is not inf-sup stable.

7ab+ cd =
√
(ab+ cd)2 ≤

√
a2b2 + a2d2 + b2c2 + c2d2 =

√
a2 + c2

√
b2 + d2 for all a, b, c, d ≥ 0.
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Theorem 3.7 ([20, Theorem 1.1]). The operator B in (7) does not define an isomorphism.
In particular, there does not exist an inf-sup constant β > 0 such that β∥u∥U ≤ ∥Bu∥V ′

for all u ∈ U , i.e., the inverse of B is not bounded.

Now, denoting the well-posed and optimally stable extension of U and B by U and B,
respectively, we get the following result, which is proven analogously to corollary 3.5.

Corollary 3.8. For the well-posed extension (9) of (7) holds
(i) U = H1

0,(I;H
1
0 (Ω)) ↪→d U ↪→d L2(Q) and the embedding constants read ∥u∥L2(Q) ≤

T√
2
∥u∥U , u ∈ U and ∥u∥U ≤ ∥u∥H1

0 (Q), u ∈ U ;

(ii) the other directions of the norm inequalities do not holds, i.e. ∥·∥U is neither equiv-
alent to ∥·∥L2(Q) on U , nor equivalent to ∥·∥H1

0 (Q) on U ;

(iii) U ⊊ U ⊊ L2(Q), i.e. U is a strict subset of L2(Q) and a strict superset of U .

Remark 3.12. Although constructed by completely different means, the well-posed and
optimally stable extension (9) of the weak wave equation in example 2.6 corresponds (up
to isometric isomorphism) exactly with the well-posed and optimally stable formulation of

the wave equation introduced in [20], with U ≡ H0;0, and B ≡ E∗□(̃·). This becomes clear
by the uniqueness of the completion and continuous extension as stated in remark 2.4.
Moreover, our framework also covers other formulations, e.g., [9], where the wave equation
is reformulated as a first order system in the velocity and the flux variable.

Remark 3.13. By remark 3.2, we can replace −∆we
x by any bounded self-adjoint coercive

operator Ax : H1
0 (Ω) → H−1(Ω) provided that Ax satisfies the assumptions of [15, ch. IV

Theorems 3.1& 3.2] (i.e. theorem 3.6 holds true), by replacing the norm on H1
0 (Ω) by

∥Ax·∥H−1(Ω).

3.3.3 Ultra-weak in time

We consider the ultra-weak in time variational formulation of the wave equation as given
in example 2.7. As this setting can be reduced to the strong in time formulation given in
example 2.5, we denote by B,U and V the strong in time operator, trial space and test
space, respectively, as given in example 2.5 and denote the ultra-weak in time operator,
trial space and test space as given in example 2.7 by Buw, Uuw and V uw, respectively.
Using the flip operator F( x1

x2 ) := ( x2
x1 ) and the time reversal operator Tf(t) := f(T − t) as

introduced in §3.3.1, we get

Uuw = TFV = FV, V uw := TFU, ⟨Buwu⃗, v⃗⟩[V uw]′×V = ⟨u⃗,−∂tv⃗ + A∗v⃗⟩FV×FV ′ ,

for all u⃗ ∈ Uuw and all v⃗ ∈ V uw. Using −TF∂t = ∂tTF, TFA∗ = ATF and (TF)∗ = TF as
stated in the proof of corollary 3.4, it holds for all u⃗ ∈ Uuw and all v⃗ ∈ V uw, that

⟨Buwu⃗, v⃗⟩[V uw]′×V uw = ⟨−∂tv⃗ + A∗v⃗, u⃗⟩TFV ′×TFV = ⟨−TF∂tv⃗ + TFA∗v⃗,TFu⃗⟩V ′×V

= ⟨∂tTFv⃗ + ATFv⃗,TFu⃗⟩V ′×V = ⟨BTFv⃗,TFu⃗⟩V ′×V = ⟨B∗TFu⃗,TFv⃗⟩U ′×U

= ⟨TFB∗TFu⃗, v⃗⟩[V uw]′×V uw .
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Thus, it holds Buw = TFB∗TF and by a similar calculation (Buw)∗ = TFBTF. With that,
we can use remark 3.6, corollaries 3.2 and 3.4, and theorem 3.3 to state similar results
regarding Buw and (Buw)∗, noting, that Buw is bounded / isomorphic if and only if (Buw)∗

is bounded / isomorphic. The only result in §3.3.1, that cannot be reproduced for Buw is
the norm representation (22) as we do not have an explicit formula for the dual norm or
for the inverse of the Riesz operator on U (and hence on V uw = TFU) as it was the case in
(21). Thus, we are not able to derive a representation formula for ∥Buw·∥[V uw]′ , neither by
a direct calculation nor by using (11). Now, denoting the well-posed and optimally stable
extension of Uuw and Buw by U

uw
and B

uw
, respectively, corollary 3.5 holds true after

replacing every U and U by Uuw and U
uw
, respectively, except for the norm representation

(iv).

4 Conclusions and Outlook

In this paper, we presented a general abstract framework towards well-posed and (opti-
mally) stable formulations of linear operator equations. The starting point is always a
classical formulation, which does not need to be well-posed. This requires a Gelfand triple
structure for the test space. The second step is to restrict the space for the right-hand
sides in such a way that the operator equation admits a solution for such right-hand side
data (think of smooth functions). Finally, we form a completion for the trial space and a
unique continuous extension of the operator. This procedure can be made more explicit if
also the trial space allows for a Gelfand triple structure.

This general framework is applied to the Poisson, heat and wave equation, the latter two
in a variational space-time setting. Our findings are summarized in Table 1. We reproduce
well-known results concerning strong, weak and ultra-weak formulations of elliptic and
parabolic problems. However, the presented setting also applies for the hyperbolic wave
equation, where we derive well-posed formulations, which are (to the very best of our
knowledge) new. We can characterize trial spaces and induced norms in such a way that
the formulation of the wave equation in these spaces is well-posed and optimally stable. It
turns out that these are non-standard Sobolev-type spaces.

As already indicated above, this paper is meant to lay the theoretical foundation for
a subsequent numerical discretization (in terms of Galerkin and Petrov-Galerkin schemes)
and also for model reduction of parameterized linear operator equations. This will be
the topic of subsequent parts of this work. It is clear that the numerical realization of
the involved norms will be a challenge. Concerning model reduction, we will investigate
to which extend the combination of parameter-dependent trial spaces (i.e., leaving the
realm of linear model reduction and the known barrier of the Kolmogorov n-width for
transport- and wave-type problems) and parameter-independent test spaces (allowing for
an efficient computation of the norm of the residual as an a posteriori error estimator)
might be beneficial.

Moreover, we are aiming to apply the presented framework also to first order transport
problems, singular integral and Schrödinger-type operators.
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Eq. Form U V Ū Ref.

Poisson strong H∆ ∩H1
0 L2 U §3.1.1

weak H1
0 H1

0 U §3.1.2

ultra-weak L2 H∆ ∩H1
0 U §3.1.3

heat strong in t
L2(I;H1

0 )
∩H1

0,(I;H
−1)

L2(I;H1
0 ) U §3.2.1

weak in t L2(I;H1
0 )

L2(I;H1
0 )

∩H1
,0(I;H

−1)
U §3.2.2

wave
strong in t
(1st or.)

H1
0,(I;L

2 ×
H−1)
∩L2(I;H1

0 ×
L2)

L2(I;L2 ×H1
0 )

U ↪→d U ↪→d

L2(Q)2

U ⊊ U ⊊ L2(Q)2
§3.3.1

weak in t H1
0,(I;H

1
0 ) H1

,0(I;H
1
0 )

U ↪→d U ↪→d

L2(Q)
U ⊊ U ⊊ L2(Q)

§3.3.2

ultra-
weak in t
(1st or.)

L2(I;H1
0 × L2)

H1
,0(I;H

−1 ×
L2)
∩L2(I;L2 ×
H1

0 )

U ↪→d U ↪→d

L2(Q)2

U ⊊ U ⊊ L2(Q)2
§3.3.3

Table 1: Summary of the application of the general framework to the described examples.
We omit the dependency on Ω for brevity.
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