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Abstract

In this paper we formulate and analyze a space-time finite element method for
the numerical simulation of rotating electric machines where the finite element mesh
is fixed in space-time domain. Based on the Babuška–Nečas theory we prove unique
solvability both for the continuous variational formulation and for a standard Galerkin
finite element discretization in the space-time domain. This approach allows for an
adaptive resolution of the solution both in space and time, but it requires the solu-
tion of the overall system of algebraic equations. While the use of parallel solution
algorithms seems to be mandatory, this also allows for a parallelization simultane-
ously in space and time. This approach is used for the eddy current approximation
of the Maxwell equations which results in an elliptic-parabolic interface problem.
Numerical results for linear and nonlinear constitutive material relations confirm the
applicability, efficiency and accuracy of the proposed approach.

1 Introduction

Electric machines have become an integral part of everyday life with a large share of global
electric energy being converted into mechanical energy by electric machines. The effi-
cient and accurate numerical simulation of electric machines is thus an important topic
in particular in order to design new machines with high performance indicators. Mathe-
matical models for computing the magnetic flux density and the magnetic field inside an
electric machine are based on low-frequency approximations to Maxwell’s equations such
as the magneto-quasi-static or the magneto-static approximations. While the former ac-
counts for eddy currents in conducting regions and is also refered to as the eddy current
approximation of Maxwell’s equations [26], the more widely used magneto-static approxi-
mation ignores these effects. Eddy currents yield thermal losses [14] and thus are typically
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an unwanted effect in electric machines and therefore often counteracted, e.g., by assem-
bling the machine from thin laminated steel sheets. Nevertheless, these effects are still
present, e.g., in permanent magnets or when non-laminated designs are chosen [20], and
their accurate computation is of high relevance. While the magneto-static approximation
to Maxwell’s equations for rotating electric machines results in a sequence of independent
static problems, the eddy current approximation yields a time-dependent problem of mixed
parabolic-elliptic type [3]. This type of problems is typically solved by frequency domain
methods such as the multi-harmonic finite element method [38] or the harmonic balance
method [13, 25], or by classical time-stepping methods in time domain [36]. Since classical
time-stepping methods suffer from the curse of sequentiality, different ways to employ par-
allelization also in time direction have been investigated over the past decades [9] including
shooting methods, domain decomposition or multigrid methods [11] in time. We mention
the application of parareal [10, 15] and multigrid reduction in time [4, 8] algorithms to the
time-parallel simulation of eddy current problems for electric machines.

On the other hand, space-time finite element methods [33] for the numerical solution
of time-dependent partial differential equations have gained increasing attention over the
past decade due to increasing computing capabilities. Here, the idea is to treat the time
variable like an additional space variable and to construct a (d+1)-dimensional space-time
mesh when the spatial domain is in Rd. In this setting, a moving domain can conveniently
be captured by the space-time mesh. While, at the first glance, the method comes with the
challenge of higher-dimensional linear systems to be solved, it allows for both parallelization
[11] and adaptivity [18, 32] not only in space or time, but also in space-time. Moreover,
in the context of optimization problems with partial differential equations as constraint,
and involving an adjoint state which is directed backward in time, space-time methods
allow for an additional level of parallelism by solving the coupled system for the state and
the adjoint in parallel [19]. Finally, we will see that for space-time finite element methods
temporal periodicity conditions as they appear for rotating electric machines at a fixed
operating point can be incorporated in a straightforward manner.

The numerical analysis of space-time variational formulations for parabolic evolution
equations in Bochner spaces is based on the Babuška–Nečas theory [2, 22] which requires the
proof of an inf-sup stability condition to ensure uniqueness, and of a surjectivity condition
to ensure existence of a solution. In the context of space-time finite element methods this
was done in [28], see also [1, 30, 37]. Alternatively, one may use isogeometric space-time
finite element methods [16], least squares formulations [35], or a Galerkin space-time finite
element method in anisotropic Sobolev spaces [34].

In this paper, we extend the analysis of [30], which is based on the Babuška–Nečas
theorem, to the case of a coupled elliptic-parabolic partial differential equation which is
formulated in a spatial domain which is changing in time. In particular we will restrict
ourselves to the case of a rotating subdomain as it is the case for rotating electric machines.
While we exploit this property in our proof of surjectivity of the bilinear form (Lemma
3.1), we claim that the presented approach can also be applied in more general settings,
also including compressible deformations of the computational domain.

The rest of this paper is organized as follows: In Section 2, starting out from Maxwell’s
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equations, we derive the mathematical model of two-dimensional magneto-quasi-statics
which we consider in the sequel. The main part of this paper is Section 3 where we
verify the conditions of the Babuška–Nečas theorem and conclude existence of a unique
solution. In Section 4 we introduce a space-time finite element discretization and give the
corresponding stability and error estimates before resorting to numerical experiments in
Section 5, where we also discuss the parallel solution of the algebraic equations. In addition
to the linear model problem we also include a nonlinear model to describe the reluctivity
in iron. Finally, we summarize and comment on ongoing and future work.

2 Model description

To model the electromagnetic fields in a rotating electric machine, e.g., an electric motor,
we consider the eddy current approximation of the Maxwell equations, see, e.g., [17],

curlyH(y, t) = J(y, t), curlyE(y, t) = −∂tB(y, t), divyB(y, t) = 0, (2.1)

subject to the constitutive equations

B(y, t) = µ(y)H(y, t) +M(y, t), J(y, t) = Ji(y, t) + σ(y)
[
E(y, t) + v(y, t)×B(y, t)

]
,

(2.2)

where µ is the material dependent magnetic permeability, σ is the electric conductivity, Ji
is an impressed electric current, M is the magnetization which vanishes outside permanent
magnets, and v = d

dt
y(t) is the velocity along the trajectory y(t) = ϕ(t, x) ∈ R3 for a

reference point x ∈ R3. We assume that the deformation ϕ is bijective and sufficiently
regular for all t ∈ (0, T ), satisfying ϕ(0, x) = x. Here, T > 0 is a given time horizon, and
we assume that divyv(y, t) = 0.

When using the vector potential ansatz B = curlyA satisfying divyB = divycurlyA = 0,
we can rewrite the second equation in (2.1) as 0 = curlyE + ∂tB = curly[E + ∂tA], which
implies, recall that the vector potential A is unique up to a gradient field only, E = −∂tA.
When using the reluctivity ν = 1/µ we then have H = ν(B −M) = ν(curlyA −M) in
order to rewrite the first equation in (2.1) as

curly

[
ν(y)

(
curlyA(y, t)−M(y, t)

)]
= Ji(y, t)− σ(y)

[
∂tA(y, t) + curlyA(y, t)× v(y, t)

]
.

(2.3)

Assuming that

H(y, t) = (H1(y1, y2, t), H2(y1, y2, t), 0)>, M(y, t) = (M1(y1, y2, t),M2(y1, y2, t), 0)>,

and
v(y, t) = (v1(y1, y2, t), v2(y1, y2, t), 0)>, Ji(y, t) = (0, 0, ji(y1, y2, t))

>,
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which is often (approximately) the case for electric machines, it follows that
A = (0, 0, u(y1, y2, t))

>, and we can consider a spatially two-dimensional reference do-
main Ω ⊂ R2 describing the cross-section of the electric motor. Using x = (x1, x2, 0)> for
(x1, x2) ∈ Ω, we can rewrite (2.3) as

σ(y1, y2)
d

dt
u(y1, y2, t)− div(y1,y2)[ν(y1, y2)∇(y1,y2)u(y1, y2, t)] (2.4)

= ji(y1, y2, t)− div(y1,y2)[ν(y1, y2)M⊥(y1, y2, t)],

where

d

dt
u(y1, y2, t) := ∂tu(y1, y2, t) + v(y1, y2, t) · ∇(y1,y2)u(y1, y2, t)

is the total time derivative, and M⊥ = (−M2(y1, y2, t),M1(y1, y2, t))
> is the perpendicular

of the first two components of the magnetization M . In addition to the partial differential
equation (2.4) we consider homogeneous Dirichlet boundary conditions u = 0 on ∂Ω ×
(0, T ) which implies that B · n = 0 on ∂Ω × (0, T ), i.e., no magnetic flux leaves the
computational domain, and either the initial condition u(x1, x2, 0) = 0 or the periodicity
condition u(x1, x2, T ) = u(x1, x2, 0), both for (x1, x2) ∈ Ω when σ(x1, x2) > 0. Note that,
in the case of periodicity conditions, we assume that also the geometry and the sources are
periodic with respect to the period T .

We consider an electric motor as shown in Fig. 1 which consists of a rotor in Ωr(t), the
stator in Ωs, and the air domain Ωair which is non-conducting, i.e., σ = 0 in Ωair. In this
case, the evolution equation (2.4) degenerates to a coupled parabolic-elliptic interface prob-
lem. Within the stator there are 48 coils excited with a current and which are considered
to be non-conducting, since certain materials are used to ensure this property. We further-
more denote the union of all non-conducting regions (σ = 0) by Ωnon, and the regions with
conducting material (σ > 0) by Ωcon. The stator in Ωs is fixed, i.e., y = ϕ(t, x) = x for all
t ∈ (0, T ) implying v ≡ 0, but the rotor and the magnets within the rotor are rotating.

To cover all different regions, i.e., rotor, stator, and air, in a unified framework, we use
polar coordinates to write (x1, x2)> = r(cosφ, sinφ)> ∈ Ω for φ ∈ [0, 2π) and r ∈ (r0, R),
where r0 and R are the interior and exterior radii of the motor, respectively. In addition,
for r ∈ (r0, r1) we describe the rotor in the domain Ωr(t) which is rotating with a velocity
α, and which may contain non-conducting areas such as air as well, while for r ∈ (r1, r2) we
have the stator domain Ωs which is fixed in time. In the remaining ring domain r ∈ (r1, r2)
we model non-conducting air in Ωair. When using

ψ(r) =


1 for r ∈ (r0, r1),

r2 − r
r2 − r1

for r ∈ (r1, r2),

0 for r ∈ (r2, R),

4



Figure 1: Finite element mesh of the reference domain Ω describing an electric motor with
the stator Ωs including the coils, the rotor domain Ωr = Ωr(t) including the magnets and
surrounding air pockets, and the thin air gap Ωair separating Ωr from Ωs.

we can introduce the deformation

y(t) = ϕ(t, x) =

(
y1(t)

y2(t)

)
= r

cos
(
φ+ αψ(r)t

)
sin
(
φ+ αψ(r)t

) ∈ Ω(t) for t ∈ (0, T ) (2.5)

which is a rotation of velocity α in the rotor, and which is fixed in the stator. Here,
Ω(t) := ϕ(t,Ω) represents the moving domain at time t ∈ [0, T ], and likewise we will use
Ωr(t), Ωnon(t) and Ωcon(t). In general, the velocity is given as

v(y, t) =
d

dt
y(t) = αψ(r) r

(− sin (φ+ αψ(r) t)

cos (φ+ αψ(r) r)

)
= αψ(r)

(
−y2(t)

y1(t)

)
.

A simple calculation shows, recall r =
√
y2

1 + y2
2, that

∂

∂y1

v1(y, t) = −α y2 ψ
′(r)

y1√
y2

1 + y2
2

,
∂

∂y2

v2(y, t) = α y1 ψ
′(r)

y2√
y2

1 + y2
2

,

and hence, div(y1,y2)v(y1, y2, t) = 0 follows. With this we can write Reynold’s transport
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theorem as

d

dt

∫
Ω(t)

u(y1, y2, t) dy1dy2 =

∫
Ω(t)

(
∂tu(y1, y2, t) + div(y1,y2)[u(y1, y2, t) v(y1, y2, t)]

)
dy1dy2

=

∫
Ω(t)

(
∂tu(y1, y2, t) + u(y1, y2, t) div(y1,y2)v(y1, y2, t) + v(y1, y2, t) · ∇(y1,y2)u(y1, y2, t)

)
dy1dy2

=

∫
Ω(t)

(
∂tu(y1, y2, t) + v(y1, y2, t) · ∇(y1,y2)u(y1, y2, t)

)
dy1dy2

=

∫
Ω(t)

d

dt
u(y1, y2, t) dy1dy2 . (2.6)

3 Space-time variational formulation

We consider the evolution equation

σ(y)
d

dt
u(y, t)− divy[ν(y)∇yu(y, t)] = ji(y, t)− divy[ν(y)M⊥(y, t)] for (y, t) ∈ Q, (3.1)

where the space-time domain Q is given by the deformation (2.5) as

Q :=
{

(y, t) ∈ R3 : y = ϕ(t, x) ∈ Ω(t), x ∈ Ω ⊂ R2, t ∈ (0, T )
}
,

with homogeneous Dirichlet boundary conditions u(x, t) = 0 for (y, t) ∈ ∂Ω(t)×(0, T ), and
with either the initial condition u(x, 0) = 0 or the periodicity condition u(x, T ) = u(x, 0)
for x ∈ Ω\Ωnon. Note that the partial differential equation (3.1) covers both conducting
(σ > 0) and non-conducting materials (σ = 0), and the case of a fixed domain (v = 0) as
well as the rotating regions.

In order to introduce a variational formulation of (3.1) in the space-domain Q we
first define the Bochner space Y := L2(0, T ;H1

0 (Ω(t)) covering the homogeneous Dirichlet
boundary conditions, equipped with the norm

‖z‖2
Y :=

∫ T

0

∫
Ω(t)

ν(y) |∇yz(y, t)|2 dy dt ,

and the ansatz space

X :=

{
u ∈ Y : σ

d

dt
u ∈ Y ∗, u(x, 0) = 0 for x ∈ Ωcon

}
⊂ Y,

in the case of homogeneous initial conditions, or

X :=

{
u ∈ Y : σ

d

dt
u ∈ Y ∗, u(x, T ) = u(x, 0) for x ∈ Ωcon

}
⊂ Y
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in the case of a periodic behavior. The graph norm in X is given in both cases as

‖u‖2
X := ‖u‖2

Y + ‖σ d
dt
u‖2

Y ∗ = ‖u‖2
Y + ‖wu‖2

Y ,

where wu ∈ Y is the unique solution of the variational formulation∫ T

0

∫
Ω(t)

ν∇ywu · ∇yz dy dt =

∫ T

0

∫
Ω(t)

σ
d

dt
u z dy dt for all z ∈ Y. (3.2)

Now, the space-time variational formulation of the evolution equation (3.1) is to find u ∈ X
such that

b(u, z) :=

∫ T

0

∫
Ω(t)

[
σ
d

dt
u z + ν∇yu · ∇yz

]
dy dt =

∫ T

0

∫
Ω(t)

[
ji z +M⊥ · ∇yz

]
dy dt

(3.3)

is satisfied for all z ∈ Y . As in the case of a fixed domain Ω, see [30], we conclude that the
bilinear form b(·, ·) is bounded, satisfying

|b(u, z)| ≤
√

2 ‖u‖X ‖z‖Y for all u ∈ X, z ∈ Y.

Moreover, similar as in [30] and due to (2.6) we can prove that the bilinear form b(·, ·)
satisfies the inf-sup stability condition

1√
2
‖u‖X ≤ sup

0 6=z∈Y

b(u, z)

‖z‖Y
for all u ∈ X . (3.4)

Indeed, for any given u ∈ X let wu ∈ Y be the unique solution of the variational formulation
(3.2). Due to X ⊂ Y we can consider zu := u+wu ∈ Y to obtain, when using (3.2) twice,

b(u, zu) = b(u, u+ wu) =

∫ T

0

∫
Ω(t)

σ
d

dt
u u dy dt+

∫ T

0

∫
Ω(t)

ν∇yu · ∇yu dy dt

+

∫ T

0

∫
Ω(t)

σ
d

dt
uwu dy dt+

∫ T

0

∫
Ω(t)

ν∇yu · ∇ywu dy dt

= 2

∫ T

0

∫
Ω(t)

σ
d

dt
u u dy dt+

∫ T

0

∫
Ω(t)

ν∇yu · ∇yu dy dt+

∫ T

0

∫
Ω(t)

ν∇ywu · ∇ywu dy dt

=

∫ T

0

∫
Ω(t)

σ
d

dt
[u]2 dy dt+ ‖u‖2

Y + ‖wu‖2
Y ≥ ‖u‖2

X .

Note that, since σ is constant in time, we can use (2.6) to conclude∫ T

0

∫
Ω(t)

σ
d

dt
[u]2 dy dt =

∫ T

0

d

dt

∫
Ω(t)

σ [u]2 dy dt =

∫
Ω(t)

σ(y) [u(y, t)]2 dy

∣∣∣∣T
0

=

∫
Ωcon(T )

σ(y) [u(y, T )]2 dy > 0
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in the case of initial conditions u(x, 0) = 0 for x ∈ Ωcon(0), or∫ T

0

∫
Ω(t)

σ
d

dt
[u]2 dy dt =

∫
Ωcon(T )

σ(y) [u(y, T )]2 dy −
∫

Ωcon(0)

σ(y) [u(y, 0)]2 dy = 0

in the case of periodicity u(x, T ) = u(x, 0).
On the other hand, by the triangle and Hölder inequality we have

‖zu‖Y = ‖u+ wu‖Y ≤ ‖u‖Y + ‖wu‖Y ≤
√

2
√
‖u‖2

Y + ‖wu‖2
Y =
√

2 ‖u‖X ,

i.e.,

b(u, zu) ≥ ‖u‖2
X ≥

1√
2
‖u‖X‖zu‖Y

implies the inf-sup stability condition (3.4).
More involved, and not as simple as in the static case, is to prove that the bilinear form

b(·, ·) is also surjective.

Lemma 3.1 For all z ∈ Y \{0} there exists a ũ ∈ X such that

b(ũ, z) 6= 0 .

Proof. We first consider the case of initial conditions u(x, 0) = 0 for x ∈ Ωcon. Using
the representation (2.5) and for given z ∈ Y \{0} we first define

ũ(y, t) = ũ(ϕ(t, x), t) :=

∫ t

0

z(ϕ(s, x), s) ds,
d

dt
ũ(y, t) = z(y, t) for y ∈ Ωcon(t), t ∈ (0, T ).

By definition we have ũ ∈ X satisfying the initial condition ũ(x, 0) = 0 for x ∈ Ωcon and

b(ũ, z) =

∫ T

0

∫
Ω(t)

σ(y)
d

dt
ũ(y, t) z(y, t) dy dt+

∫ T

0

∫
Ω(t)

ν(y)∇yũ(y, t) · ∇yz(y, t) dy dt

=

∫ T

0

∫
Ωcon(t)

σ(y) [z(y, t)]2 dy dt+

∫ T

0

∫
Ω(t)

ν(y)∇yũ(y, t) · ∇y
d

dt
ũ(y, t) dy dt .

Since the first term is obviously positive, it remains to treat the second term which involves
an integral over Ω(t) = (Ωs ∩Ωcon) ∪ (Ωr(t) ∩Ωcon(t)) ∪Ωnon(t). In the stator domain Ωs,
i.e., for r ∈ (r2, R), we have y(t) = x for all t ∈ (0, T ) and v(y, t) = 0, and hence∫ T

0

∫
Ωs∩Ωcon

ν(x)∇xũs(x, t) · ∇x∂tũs(x, t) dx dt =
1

2

∫ T

0

d

dt

∫
Ωs∩Ωcon

ν(x) |∇xũs(x, t)|2dx dt

=
1

2

∫
Ωs∩Ωcon

ν(x) |∇xũs(x, T )|2dx ≥ 0 .
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Next we consider the rotor domain Ωr(t), i.e., r ∈ (r0, r1). For the total time derivative we
then obtain

d

dt
ũ(y, t) =

∂

∂t
ũ(y, t) + v(y, t) · ∇yũ(y, t)

=
∂

∂t
ũ(y, t)− α y2

∂

∂y1

ũ(y, t) + α y1
∂

∂y2

ũ(y, t).

To compute the spatial gradient, we now consider

∂

∂y1

d

dt
ũ(y, t) =

∂

∂y1

[
∂

∂t
ũ(y, t)− α y2

∂

∂y1

ũ(y, t) + α y1
∂

∂y2

ũ(y, t)

]
=

∂

∂y1

∂

∂t
ũ(y, t)− α y2

∂2

∂y2
1

ũ(y, t) + α y1
∂

∂y1

∂

∂y2

ũ(y, t) + α
∂

∂y2

ũ(y, t)

=
∂

∂t

∂

∂y1

ũ(y, t)− α y2
∂2

∂y2
1

ũ(y, t) + α y1
∂

∂y2

∂

∂y1

ũ(y, t) + α
∂

∂y2

ũ(y, t)

=
d

dt

∂

∂y1

ũ(y, t) + α
∂

∂y2

ũ(y, t),

and

∂

∂y2

d

dt
ũ(y, t) =

∂

∂y2

[
∂

∂t
ũ(y, t)− α y2

∂

∂y1

ũ(y, t) + α y1
∂

∂y2

ũ(y, t)

]
=

∂

∂y2

∂

∂t
ũ(y, t)− α y2

∂

∂y2

∂

∂y
ũ(y, t) + αy1

∂2

∂y2
2

ũ(y, t)− α ∂

∂y1

ũ(y, t)

=
∂

∂t

∂

∂y2

ũ(y, t)− α y2
∂

∂y1

∂

∂y2

ũ(y, t) + α y1
∂2

∂y2
2

ũ(y, t)− α ∂

∂y1

ũ(y, t)

=
d

dt

∂

∂y2

ũ(y, t)− α ∂

∂y1

ũ(y, t).

Hence we obtain

∇yũ(y, t) · ∇y
d

dt
ũ(y, t) =

∂

∂y1

ũ(y, t)
∂

∂y1

d

dt
ũ(y, t) +

∂

∂y2

ũ(y, t)
∂

∂y2

d

dt
ũ(y, t)

=
∂

∂y1

ũ(y, t)

[
d

dt

∂

∂y1

ũ(y, t) + α
∂

∂y2

ũ(y, t)

]
+

∂

∂y2

ũ(y, t)

[
d

dt

∂

∂y2

ũ(y, t)− α ∂

∂y1

ũ(y, t)

]
=

∂

∂y1

ũ(y, t)
d

dt

∂

∂y1

ũ(y, t) +
∂

∂y2

ũ(y, t)
d

dt

∂

∂y2

ũ(y, t)

= ∇yũ(y, t) · d
dt
∇yũ(y, t),
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and therefore,∫ T

0

∫
Ωr(t)∩Ωcon(t)

ν(y)∇yũ(y, t) · ∇y
d

dt
ũ(y, t) dy dt

=

∫ T

0

∫
Ωr(t)∩Ωcon(t)

ν(y)∇yũ(y, t) · d
dt
∇yũ(y, t) dy dt

=
1

2

∫ T

0

∫
Ωr(t)∩Ωcon(t)

ν(y)
d

dt
|∇yũ(y, t)|2 dy dt

=
1

2

∫ T

0

d

dt

∫
Ωr(t)∩Ωcon(t)

ν(y) |∇yũ(y, t)|2 dy dt

=
1

2

∫
Ωr(T )∩Ωcon(T )

ν(y) |∇yũ(y, T )|2 dy ≥ 0

follows, i.e.,

b(ũ, z) ≥
∫ T

0

∫
Ωcon(t)

σ(y) [z(y, t)]2 dy dz +

∫ T

0

∫
Ωnon(t)

ν(y)∇yũ(y, t) · ∇yz(y, t) dy dt .

It remains to define ũ in the non-conduction regions in suitable way. In any non-conducting
subregion we can write∫ T

0

∫
Ωnon(t)

ν(y)∇yũ(y, t) · ∇yz(y, t) dy dt

=

∫ T

0

∫
Ωnon(t)

[z(y, t)]2 dy dt+

∫ T

0

∫
∂Ωnon(t)

ny · [ν(y)∇yũ(y, t)] z(y, t) dsydt,

when ũ is a solution of the quasi-static partial differential equation

−divy[ν(y)∇yũ(y, t)] = z(y, t) for y ∈ Ωnon(t), t ∈ (0, T ).

To ensure ũ ∈ L2(0, T ;H1
0 (Ω(t))) we formulate the boundary conditions ũ|Ωnon(t) = ũ|Ωcon(t)

on ∂Ωnon(t)∩∂Ωcon(t) and ũ|Ωnon(t) = 0 on ∂Ωnon(t)∩∂Ω(t) for all t ∈ (0, T ). The solution
of this quasi-static Dirichlet boundary value problem implies the Dirichlet to Neumann
map

ny ·
[
ν(y)∇yũ(y, t)

]
= (Sũ)(y, t) for y ∈ ∂Ωnon(t), t ∈ (0, T ),

with the Steklov–Poincaré operator S : H1/2(∂Ωnon(t)) → H−1/2(∂Ωnon(t)). Since the
shape of Ωnon(t) is fixed, S does not depend on time. On the other hand, since S is

10



self-adjoint and positive semi-definite, we can factorize S to write∫ T

0

∫
∂Ωnon(t)

(Sũ)(y, t) z(y, t) dsydt =

∫ T

0

∫
∂Ωnon(t)

(S1/2ũ)(y, t) (S1/2z)(y, t) dsydt

=

∫ T

0

∫
∂Ωnon(t)

(S1/2ũ)(y, t)
d

dt
(S1/2ũ)(y, t) dsydt

=
1

2

∫ T

0

d

dt

∫
∂Ωnon(t)

[
(S1/2ũ)(y, t)

]2

dsydt

=
1

2

∫
∂Ωnon(t)

[
(S1/2ũ)(y, T )

]2

dsydt ≥ 0 .

This finally gives

b(ũ, z) ≥
∫ T

0

∫
Ωcon(t)

σ(y) [z(y, t)]2 dy dt+

∫ T

0

∫
Ωnon(t)

[z(y, t)]2 dsy dt > 0.

It remains to consider the case of the periodicity condition ũ(x, T ) = ũ(x, 0) for x ∈ Ωcon.
In order to construct a suitable ũ in this case, let us recall that in the case of the initial
condition ũ(x, 0) for x ∈ Ωcon we have constructed ũ as solution of the ordinary differential
equation

d

dt
ũ(ϕ(t, x), t) = z(ϕ(t, x), t) for t ∈ (0, T ), ũ(ϕ(0, x), 0) = 0.

To allow for a periodic behavior of the solution ũ, we now consider the ordinary differential
equation

d

dt
ũ(ϕ(t, x), t) + ũ(ϕ(t, x), t) = z(ϕ(t, x), t) for t ∈ (0, T ),

with the solution

ũ(ϕ(t, x), t) = e−t ũ(ϕ(0, x), 0) +

∫ t

0

es−tz(ϕ(s, x), s) ds.

From the periodicity condition ũ(x, T ) = ũ(x, 0) we then conclude

ũ(ϕ(0, x), 0) = ũ(ϕ(T, x), T ) = e−T ũ(ϕ(0, x), 0) +

∫ T

0

es−T z(ϕ(s, x), s) ds,

i.e.,

ũ(ϕ(0, x), 0) :=
1

1− e−T

∫ T

0

es−T z(ϕ(s, x), s) ds.

11



By construction we have ũ ∈ X, and hence∫ T

0

∫
Ωcon(t)

σ(y)
d

dt
ũ(y, t) z(y, t) dy dt+

∫ T

0

∫
Ωcon(t)

ν(y)∇yũ(y, t) · ∇yz(y, t) dy dt

=

∫ T

0

∫
Ωcon(t)

σ(y)
d

dt
ũ(y, t)

[
d

dt
ũ(y, t) + ũ(y, t)

]
dy dt

+

∫ T

0

∫
Ωcon(t)

ν(y)∇yũ(y, t) · ∇y

[
d

dt
ũ(y, t) + ũ(y, t)

]
dy dt

=

∫ T

0

∫
Ωcon(t)

σ(y)

[
d

dt
ũ(y, t)

]2

dy dt+

∫ T

0

∫
Ωcon(t)

ν(y) |∇yũ(y, t)|2 dy dt

+

∫ T

0

∫
Ωcon(t)

σ(y)
d

dt
ũ(y, t) ũ(y, t) dy dt+

∫ T

0

∫
Ωcon(t)

ν(y)∇yũ(y, t) · ∇y
d

dt
ũ(y, t) dy dt.

Now the assertion follows as in the previous case. �
To summarize, all assumptions of the Babuška–Nečas theorem [2, 7, 22] are satisfied,

which finally ensures unique solvability of the space-time variational formulation (3.3).

4 Space-time finite element discretization

For the space-time finite element discretization of the variational formulation (3.3) we
introduce conforming finite dimensional spaces Xh ⊂ X and Yh ⊂ Y where we assume as
in the continuous case Xh ⊂ Yh. For our specific purpose we even consider

Xh = Yh := S1
h(Qh) ∩X = span{ϕk}Mk=1

as the space of piecewise linear and continuous basis functions ϕk which are defined with
respect to some admissible locally quasi-uniform decomposition Qh = {τ`}N`=1 of the space-
time domain Q into shape-regular simplicial finite elements τ` of mesh size h`, see e.g.
[21, 30], and Fig. 2 for a space-time finite element mesh of a rotating electric motor.

The Galerkin space-time finite element variational formulation of (3.3) reads to find
uh ∈ Xh, such that∫ T

0

∫
Ω(t)

[
σ
d

dt
uh zh + ν∇yuh · ∇yzh

]
dy dt =

∫ T

0

∫
Ω(t)

[
ji zh +M⊥ · ∇yzh

]
dy dt (4.1)

is satisfied for all zh ∈ Yh. To ensure unique solvability of (4.1) and to derive related
error estimates we proceed as in the case of a fixed domain [30]. For any u ∈ X we define
wuh ∈ Yh as the unique solution of the Galerkin variational formulation∫ T

0

∫
Ω(t)

ν∇ywuh · ∇yzh dy dt =

∫ T

0

∫
Ω(t)

σ
d

dt
u zh dy dt for all zh ∈ Yh (4.2)
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Figure 2: The space-time mesh of an 90 degrees rotating electric motor with 16 magnets
and 48 coils generated by Gmsh [12]. The mesh is divided into 30 time slices in temporal
direction and consists of 333 288 nodes and 1 978 689 elements.

in order to define the discrete norm

‖u‖2
Xh

:= ‖u‖2
Y + ‖wuh‖2

Y ≤ ‖u‖2
Y + ‖wu‖2

Y = ‖u‖2
X for all u ∈ X. (4.3)

Correspondingly, for uh ∈ Xh we define wuhh ∈ Y , and hence we can consider, due to
Xh ⊂ Yh, the particular test function zh := uh+wuhh ∈ Yh to conclude, as in the continuous
case,

b(uh, uh +wuhh) ≥ ‖uh‖2
Y + ‖wuhh‖2

Y = ‖uh‖2
Xh
, ‖zh‖Y ≤ ‖uh‖y + ‖wuhh‖Y ≤

√
2 ‖uh‖Xh

,

and therefore the discrete inf-sup condition

1√
2
‖uh‖Xh

≤ sup
06=zh∈Yh

b(uh, zh)

‖zh‖Y
for all uh ∈ Xh (4.4)

follows. From (4.4) we obtain unique solvability of the Galerkin variational formulation
(4.1), and due to

1√
2
‖uh‖Xh

≤ sup
06=zh∈Yh

b(uh, zh)

‖zh‖Y
= sup

06=zh∈Yh

b(u, zh)

‖zh‖Y
≤
√

2 ‖u‖X

we conclude the boundedness of the Galerkin projection uh = Ghu, i.e.,

‖Ghu‖Xh
= ‖uh‖Xh

≤ 2 ‖u‖X for all u ∈ X.
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From this we further obtain

‖u− uh‖Xh
≤ ‖u− zh‖Xh

+ ‖Gh(zh − u)‖Xh
≤ 3 ‖u− zh‖X for all zh ∈ Xh,

i.e., we have Cea’s lemma

‖u− uh‖Xh
≤ 3 inf

zh∈Xh

‖u− zh‖X . (4.5)

When using standard finite element error estimates [5, 29] for piecewise linear approxima-
tions we finally conclude the error estimate

‖u− uh‖Y ≤ c h |u|H2(Q)

when assuming u ∈ H2(Q), see [30] for the case of a fixed domain.
The Galerkin space-time finite element variational formulation (4.1) results in a huge

linear system of algebraic equations, which has to be solved efficiently, and in parallel.

5 Numerical experiments

In this section we provide some numerical results in order to illustrate the applicability,
the accuracy and the efficiency of the proposed approach.

We consider the electric motor as shown in Fig. 1, where both the rotor and the stator
are made of laminated iron sheets, with 16 magnets within the rotor and 48 coils within the
stator. Between the rotor and the stator there is a thin air gap, and also at the ends of the
magnets air pockets are included. The material parameters for the electric conductivity
σ and the magnetic reluctivity ν for the different materials are given in Table 1. Note
that the electric conductivity for iron and for the coils as given in Table 1 are chosen to
be zero, since the materials in the electric motor are laminated. Moreover, we account for
saturation of the ferromagnetic material, thus the reluctivity νiron in iron is a nonlinear
function of the magnitude of the magnetic flux density |B| = |∇u|. Hence, the variational
problem (4.1) is a nonlinear problem. The nonlinear reluctivity is computed from a spline
interpolation of given discrete values for the BH-curve representing the relationship be-
tween magnetic flux density B and magnet field strength H in a ferromagnetic material.
It follows from physical properties of BH-curves that the corresponding reluctivity func-
tion νiron satisfies a Lipschitz and strong monotonicity condition, see [24]. In the coils we
are given a three-phase alternating current with an amplitude of 1555A, from which the
impressed current density ji is obtained after dividing by the coil area. The magnetization
M in the permanent magnets is constant for each of the magnets and for each pair of
magnets (see Fig. 1) points alternatingly inwards or outwards. The magnetization M is
then given by the unit vector representing a magnet’s magnetization direction multiplied
with the remanence flux density BR = 1.216.

The motor is pulled up in time, where the rotation of the rotating parts, i.e., the rotor,
the magnets and the air around the magnets, is already considered within the mesh for a
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Table 1: Material parameter to desribe the electric motor.

material σ ν
air 0 107/(4π)

coils 0 107/(4π)
magnets 106 107/(4.2π)

iron 0 νiron(|∇u|)

90 degree rotation. As before, the time component is treated as the third spatial dimension
with a time span (0, T ), T = 0.015 seconds. Note that this corresponds to a rotational
speed of 1000 rotations per minute. Moreover, 30 time slices are inserted in order to have
a good temporal resolution, where the mesh is completely unstructured within the time
slices, see Fig. 2. The space-time finite element mesh consists of 978689 tetrahedral finite
elements, and 333288 nodes.

We solve the resulting system in parallel, using a mesh decomposition method provided
by the finite element library Netgen/NGSolve [27]. For our purpose, MPI parallelization
is used, however the computations are done on one computer with 384 GiB RAM and two
Intel Xenon Gold 5218 CPU’s with 20 cores each. For the solution of the nonlinear problem
we use Newton’s method with damping where the linearized system of every Newton step
is solved with GMRES supported by PETSc [6].

In a first numerical experiment, we solve a linear approximation to the nonlinear prob-
lem at hand by replacing the nonlinear magnetic reluctivity function νiron(|∇u|) by a con-
stant ν1 = 107/(5100 · 4π), which is a realistic approximation when saturation of the
material does not occur. The solution to this linear problem including homogeneous initial
conditions is displayed in Figure 3. Here, we made cross sections in temporal directions
at specific time points. In Table 2 and Table 3 the computational times with respect to
the number of cores are given for the linear problem with homogeneous initial conditions.
Next we used the solution of this linearized problem as initial guess in Newton’s method
for solving the nonlinear problem with the reluctivity function νiron = νiron(|∇u|). The
solution of the initial value problem for different points in time is depicted in Figure 4.
Table 4 shows the computational time with respect to the number of cores of the Newton
method stopped after 100 iterations. The initial value for the Newton method is the solu-
tion of the linear problem with zero initial conditions, as visualized in Fig. 3. Moreover,
the solutions for the nonlinear problem with periodic temporal conditions are displayed in
Fig. 5, but this problem was not solved in parallel.

Finally, we want to illustrate that our space-time method is also applicable to the
magnetostatic problem which is obtained from (2.4) by setting σ = 0 in the whole com-
putational domain. This yields a quasi-static problem where the right hand side and the
geometry are time-dependent, but no time derivative of the solution is involved. In this
case, the underlying function spaces are X = Y = L2(0, T ;H1

0 (Ω(t)) with their correspond-
ing conforming finite dimensional subspaces Xh = Yh as described in Section 4. We consider

15



Solution at time t = 0.0. Solution at time t = 0.0045.

Solution at time t = 0.009. Solution at time t = 0.015.

Figure 3: Cross sections of the solution for specific time points of the linear problem with
zero initial conditions, which is considered as the start value for Newton’s method.

Table 2: Computational times in seconds of the linear problem with homogeneous initial
conditions solved with MUMPS provided by PETSc [6].

number of cores 1 2 4 8 16
time in seconds 14.12 12.2 10.75 9.63 10.17

Table 3: Computational times in seconds of the linear problem with homogeneous initial
conditions solved with GMRES provided by PETSc [6] up to 1000 iterations.

number of cores 1 2 4 8 16
time in seconds 16.5 11.86 7.87 4.79 3.23
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Table 4: Computational times in seconds of the nonlinear problem with homogeneous
initial conditions solved with GMRES with 250 iterations in every Newton iteration with
a maximum of 100 Newton iterations.

number of cores 1 2 4 8 16
time in seconds 9952 5103 2761 1463 848

Solution at time t = 0.0. Solution at time t = 0.0045.

Solution at time t = 0.009. Solution at time t = 0.015.

Figure 4: Cross sections of the solution for specific time points of the nonlinear problem
with zero initial conditions.
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Solution at time t = 0.0. Solution at time t = 0.0045.

Solution at time t = 0.009. Solution at time t = 0.015.

Figure 5: Cross sections of the solution for specific time points of the nonlinear time
periodic problem.
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Table 5: Computational times in seconds of the nonlinear magnetostatic problem solved
with GMRES with 250 iterations in every Newton iteration with a maximum of 100 Newton
iterations.

number of cores 1 2 4 8 16
time in seconds 2979 1618 897 490 292

Table 6: Computational times in seconds of the nonlinear magnetostatic problem solved
with MUMPS in every Newton iteration within 53 Newton iterations.

number of cores 1 2 4 8 16
time in seconds 2166 1374 977 733 675

the nonlinear reluctivity νiron(|∇u|) and solve the resulting system in parallel using again
a damped version of Newton’s method within the FE software Netgen/NGSolve [27]. In
each Newton step the linearized system is solved with GMRES or MUMPS supported by
PETSc [6], where the computational times with respect to the number of cores are given
in Table 5 and Table 6, respectively. The solution is visualized by making cross sections
at certain time points in Fig. 6.

6 Conclusions

In this paper we have formulated and analyzed a space-time finite element method for
the numerical simulation of electromagnetic fields in rotating electric machines. As is the
case of a fixed computational domain we can apply the Babuška–Nečas theory to establish
unique solvability. We have presented first numerical results considering different settings
for the mathematical model, including a quasi-static model, as well as a nonlinear model
to describe the reluctivity. Although we have applied this approach already to an example
of practical interest, it is still a challenging task to improve the parallel solver in order
to handle problems with a much higher number of degrees of freedom. In addition to
geometric or algebraic multigrid methods we may use space-time domain decomposition
methods [31] including space-time tearing and interconnecting methods [23].

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF) under the Grant
Collaborative Research Center TRR361/F90: CREATOR Computational Electric Machine
Laboratory. P. Gangl acknowledges the support of the FWF project P 32911. We would

19



Solution at time t = 0.0. Solution at time t = 0.0045.

Solution at time t = 0.009. Solution at time t = 0.015.

Figure 6: Cross sections of the solution for specific time points of the nonlinear magneto-
static problem.
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