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Abstract

In this paper we present a sufficient and necessary condition to ensure the el-
lipticity of the bilinear form which is related to the one–equation coupling of finite
and boundary element methods to solve a scalar free space transmission problem
for a second order uniform elliptic partial differential equation in the case of general
Lipschitz interfaces. This condition relates the minimal eigenvalue of the coefficient
matrix in the bounded interior domain to the contraction constant of the shifted
double layer integral operator which reflects the shape of the interface. Numerical
examples confirm the theoretical results on the sharpeness of the presented estimates.

1 Introduction

The coupling of finite and boundary element methods is well established in many areas
of applications, see, e.g., [5], in particular when considering the coupling of rather general
partial differential equations in an interior domain with a partial differential equation with
constant coefficients in an unbounded exterior domain. While on the continuous level
the exterior boundary value problem can be reduced to the use of the Steklov–Poincaré
operator describing the Dirichlet to Neumann map [9], the numerical analysis of related
boundary element discretizations is more involved. From a mathematical point of view, the
symmetric coupling [2] of finite and boundary element methods provides a sound stability
and error analysis for a rather general choice of finite and boundary elements. Although
there are efficient implementations available, the use of the symmetric formulation is still
not very popular in engineering or for more advanced applications.
Hence, the one–equation coupling of finite and boundary element methods [1, 4], using
single and double layer boundary integral operators only, is an attractive alternative. How-
ever, the mathematical analysis requires either the compactness of the double layer integral
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operator, and therefore a smooth interface, or a sufficiently fine boundary element mesh
for the approximation of the Neumann data [13]. While for the general case a rigorous
mathematical analysis was not available for some time, numerical examples indicated the
stability of this coupling scheme for more general situations [3]. In a recent paper [8], the
stability of the standard finite and boundary element coupling scheme was proved for the
first time. In [11] this approach was extended to prove the ellipticity of the bilinear form
for the coupled formulation. An essential ingredient of this approach is the use of differ-
ent variational and boundary integral formulations of the Steklov–Poincaré operator, or
equivalently, of the energies which are related to the interior and exterior boundary value
problems.
The result presented in [11, Theorem 2.2] is based on the assumption that the minimal
eigenvalue of the coefficient matrix of the interior boundary value problem is uniformly
bounded below by 1

4
. It was not clear whether this sufficient condition is also necessary.

This paper presents a refined analysis and provides a sufficient and necessary condition to
ensure ellipticity of the coupled bilinear form. While the main part of the proof is rather
similar to the proof as given in [11], we present more precise estimates for the involved
boundary integral operators. In particular, it is possible to derive an improved ellipticity
result by using the contraction property [12] of the shifted double layer integral operator.
It turns out, that this estimate and the underlying condition are sharp, i.e. there are
situations where the coupled bilinear form fails to be elliptic.
This paper is structured as follows: In Sect. 2 we introduce the standard boundary inte-
gral operators, and we prove some norm equivalence inequalities for the interior Steklov–
Poincaré operator which are based on the contraction property of the shifted double layer
integral operator. The variational formulation for the one–equation coupling of finite and
boundary elements is given in Sect. 3, where the main result on the ellipticity of the re-
lated bilinear form is stated in Theorem 3.1. In addition we describe a situation where
the bilinear form fails to be elliptic. In Sect. 4 we present some numerical examples to
investigate the ellipticity of the coupled bilinear form in the case of a two–dimensional
free space transmission problem for several interfaces. For a sequence of coefficients of the
interior partial differential equation we compute minimal eigenvalues of the generalized
eigenvalue problem representing the ellipticity estimate as given in Theorem 3.1. The nu-
merical results are in good agreement with the theoretical estimates on critical values for
the coefficient.

2 Boundary integral equations

Let Ω ⊂ R
n, n = 2, 3, be a bounded domain with Lipschitz boundary Γ = ∂Ω, and let

Ωc := R
n\Ω. The solution of the exterior Dirichlet boundary value problem

−∆ue(x) = 0 for x ∈ Ωc, ue(x) = g(x) for x ∈ Γ, ue(x) = O

(
1

|x|

)
as |x| → ∞

(2.1)
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is given by the representation formula

ue(x) = −

∫

Γ

U∗(x, y)
∂

∂ny
ue(y)dsy +

∫

Γ

∂

∂ny
U∗(x, y)g(y)dsy for x ∈ Ωc, (2.2)

where

U∗(x, y) =






−
1

2π
log |x− y| for n = 2,

1

4π

1

|x− y|
for n = 3

is the fundamental solution of the Laplace operator. From (2.2) we obtain the boundary
integral equation

(V te)(x) = −
1

2
g(x) + (Kg)(x) for almost all x ∈ Γ (2.3)

where

te(x) =
∂

∂nx
ue(x) for almost all x ∈ Γ

is the yet unknown normal derivative and

(V te)(x) =

∫

Γ

U∗(x, y)te(y)dsy, (Kg)(x) =

∫

Γ

∂

∂ny

U∗(x, y)g(y)dsy for x ∈ Γ

denote the single and double layer integral operators, respectively. Recall that the single
layer integral operator V symmetrizes the double layer integral operator K [7, 10], i.e.
KV = V K ′. Moreover, V : H−1/2(Γ) → H1/2(Γ) is H−1/2(Γ)–elliptic [6] satisfying

〈V τ, τ〉Γ ≥ cV1 ‖τ‖2
H−1/2(Γ) for all τ ∈ H−1/2(Γ), (2.4)

where we assume the scaling condition diam Ω < 1 for n = 2. To ensure that the solution
ue as given by the representation formula (2.2) fulfils the radiation condition in (2.1) in
the two–dimensional case, we need to assume that the normal derivative te satisfies the
scaling condition ∫

Γ

te(x)dsx = 0. (2.5)

Since the single layer integral operator V is invertible, and since we have (1
2
I +K)1 = 0,

by using (2.3) this is equivalent to

0 = 〈te, 1〉Γ = 〈V te, V
−11〉Γ = 〈(−

1

2
I +K)g, V −11〉Γ

= 〈g, V −1(
1

2
I +K)1〉Γ − 〈g, V −11〉Γ = −〈g, V −11〉Γ,

which implies for n = 2 the solvability condition

〈g, teq〉Γ = 0 with teq = V −11.
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For the analysis of the coupled boundary and finite element variational formulation of a free
space transmission problem, we need to state several results on boundary integral operators
and related norm equivalences. These results are mainly based on the contraction property
of the double layer integral operator [12]

‖(
1

2
I +K)v‖V −1 ≤ cK ‖v‖V −1 for all v ∈ H1/2(Γ) (2.6)

with

cK =
1

2
+

√
1

4
− cV1 c

D
1 < 1, ‖v‖2

V −1 = 〈V −1v, v〉Γ. (2.7)

To derive the contraction estimate (2.6) we used (2.4) and the ellipticity estimate

〈Dv, v〉Γ ≥ cD1 ‖v‖2
H1/2(Γ) for all v ∈ H1/2

∗ (Γ) :=
{
v ∈ H1/2(Γ) : 〈v, 1〉Γ = 0

}
(2.8)

for the hypersingular boundary integral operator

(Dv)(x) = −
∂

∂nx

∫

Γ

∂

∂ny
U∗(x, y)v(y)dsy for x ∈ Γ.

The solution of the exterior Dirichlet boundary value problem (2.1) defines, by the so-
lution of the boundary integral equation (2.3), the exterior Dirichlet to Neumann map
te = −Sextue, where the exterior Steklov–Poincaré operator is given by

Sext = V −1(
1

2
I −K).

For the analysis of the coupled finite and boundary element formulation we will also make
use of the interior Steklov–Poincaré operator which is given by

S int := V −1(
1

2
I +K) = D + (

1

2
I +K ′)V −1(

1

2
I +K) . (2.9)

Lemma 2.1 For all v ∈ H1/2(Γ) there hold the equivalence inequalities

1

cK
‖(

1

2
I +K)v‖2

V −1 ≤ 〈S intv, v〉Γ ≤
1

1 − cK
‖(

1

2
I +K)v‖2

V −1 (2.10)

where cK < 1 is the contraction constant as given in (2.6).

Proof. Let us first consider v ∈ H
1/2
∗ (Γ). By using the ellipticity estimates (2.8) for the

hypersingular integral operator D and (2.4) for the single layer integral operator V , we
have, see also [12, Proposition 5.2],

〈Dv, v〉Γ ≥ cD1 ‖v‖2
H1/2(Γ) ≥ cD1 c

V
1 〈V −1v, v〉Γ = cK(1 − cK) ‖v‖2

V −1 .
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Hence, the lower estimate follows from (2.6) by using the symmetric representation of S int.
On the other hand, the non–symmetric representation of S int gives

〈S intv, v〉Γ = 〈V −1(
1

2
I +K)v, v〉Γ ≤ ‖(

1

2
I +K)v‖V −1‖v‖V −1 ,

and therefore the upper estimate follows from, see [12, Theorem 5.1],

(1 − cK) ‖v‖V −1 ≤ ‖(
1

2
I +K)v‖V −1 for all v ∈ H1/2

∗ (Γ).

Due to kerS int = ker(1
2
I +K) = span{1}, the assertion holds for all v ∈ H1/2(Γ).

Remark 2.1 While the particular values of the ellipticity constants cV1 and cD1 of the single

layer integral operator V and of the hypersingular boundary integral operator D may depend

on the definition of the underlying Sobolev norms ‖ · ‖H−1/2(Γ) and ‖ · ‖H1/2(Γ), respectively,

the product of both constants can be characterized by

cV1 c
D
1 = min

06=v∈H
1/2

∗
(Γ)

〈Dv, v〉Γ
〈V −1v, v〉Γ

.

This characterization implies that the lower estimate in (2.10) is sharp, i.e. there exists a

v̂ ∈ H
1/2
∗ (Γ) such that

1

cK
‖(

1

2
I +K)v̂‖2

V −1 = 〈S intv̂, v̂〉Γ.

3 Non–symmetric BEM/FEM coupling

Next we consider the free space transmission problem

−div[A(x)∇ui(x)] = f(x) for x ∈ Ω, −∆ue(x) = 0 for x ∈ Ωc := R
n\Ω (3.1)

with the interface transmission conditions

ui(x) = ue(x), nx · [A(x)∇ui(x)] =
∂

∂nx
ue(x) = te(x) for almost all x ∈ Γ, (3.2)

and with the radiation boundary condition

ue(x) = O

(
1

|x|

)
as |x| → ∞. (3.3)

We assume that the coefficient matrix A(x) ∈ R
n×n is symmetric and uniformly positive

definite, i.e.
λmin(A) := inf

x∈Ω
min

i=1,...,n
λi(A(x)) > 0.

5



Moreover, f ∈ L2(Ω) is a given function, and nx is the exterior normal vector which is
defined for almost all x ∈ Γ.
By considering the Neumann transmission condition in (3.2), the variational formulation
of the interior Poisson equation in (3.1) is to find ui ∈ H1(Ω) such that

∫

Ω

[A(x)∇ui(x)] · ∇v(x)dx−

∫

Γ

te(x)v(x)dsx =

∫

Ω

f(x)v(x)dx

is satisfied for all v ∈ H1(Ω) while te ∈ H−1/2(Γ) is the unique solution of the variational
problem

〈V te, τ〉Γ + 〈(
1

2
I −K)ui, τ〉Γ = 0 for all τ ∈ H−1/2(Γ).

Since the domain bilinear form defines only a semi–norm in H1(Ω), we introduce the
splitting [11]

ui(x) = u0 + ũi(x) for x ∈ Ω, u0 =
1

〈1, teq〉Γ

∫

Ω

f(x)dx, 〈ũi, teq〉Γ = 0.

Recall that in the two–dimensional case the scaling condition (2.5) implies the solvability
condition ∫

Ω

f(x)dx = 0,

and therefore u0 = 0 follows when considering the case n = 2. In general, the cou-
pled finite and boundary element variational formulation [11] of the transmission prob-
lem (3.1)–(3.3) reads, when using the constraint 〈ũi, teq〉Γ = 0 for stabilization, to find
(ũi, te) ∈ H1(Ω) ×H−1/2(Γ) such that

∫

Ω

[A(x)∇ũi(x)] · ∇v(x) dx+ α 〈ũi, teq〉Γ〈v, teq〉Γ − 〈te, v〉Γ =

∫

Ω

f(x)v(x)dx, (3.4)

〈V te, τ〉Γ + 〈(
1

2
I −K)ũi, τ〉Γ = −〈u0, τ〉Γ (3.5)

is satisfied for (v, τ) ∈ H1(Ω)×H−1/2(Γ) where α ∈ R+ is a suitable stabilization parameter.
The unique solvability of the coupled variational formulation (3.4)–(3.5) and the stability
and error analysis of related Galerkin boundary element methods is based on the following
ellipticity result, which improves the results of [11, Theorem 2.2]. Recall that

‖v‖2
H1(Ω),Γ :=

∫

Ω

|∇v(x)|2dx+ [〈v, teq〉Γ]2, ‖τ‖2
V = 〈V τ, τ〉Γ

define equivalent norms in H1(Ω) and H−1/2(Γ), respectively.

Theorem 3.1 Let α ≥ λmin(A) > 1
4
cK be satisfied, where cK < 1 is the contraction

constant as given in (2.7). Then the bilinear form

a(u, t; v, τ) :=

∫

Ω

[A(x)∇u(x)] · ∇v(x) dx+ α 〈u, teq〉Γ〈v, teq〉Γ − 〈t, v〉Γ (3.6)

+〈V t, τ〉Γ + 〈(
1

2
I −K)u, τ〉Γ
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is H1(Ω) ×H−1/2(Γ)–elliptic satisfying

a(v, τ ; v, τ) ≥
1

2
(1 − cK)


1 +

λmin(A)

cK
−

√(
1 −

λmin(A)

cK

)2

+ 1



[
‖v‖2

H1(Ω),Γ + ‖τ‖2
V

]

(3.7)
for all (v, τ) ∈ H1(Ω) ×H−1/2(Γ).

Proof. As in the proof given in [11, Section 4], we have, by using α ≥ λmin(A),

a(v, τ ; v, τ) =

∫

Ω

[A(x)∇v(x)] · ∇v(x)dx+ α [〈v, teq〉Γ]2 + 〈V τ, τ〉Γ − 〈(
1

2
I +K)v, τ〉Γ

≥ λmin(A)

[∫

Ω

|∇v(x)|2dx+ [〈v, teq〉Γ]2
]

+ 〈V τ, τ〉Γ − 〈(
1

2
I +K)v, τ〉Γ

= λmin(A)

[∫

Ω

|∇v(x)|2dx+ 〈S intv, v〉Γ + [〈v, teq〉Γ]2
]

+ 〈V τ, τ〉Γ − 〈(
1

2
I +K)v, τ〉Γ,

where we have used the splitting v = vΓ + v with vΓ being the harmonic extension of v|Γ,
and ṽ ∈ H1

0 (Ω). Note that then we have

∫

Ω

∇vΓ(x) · ∇v(x) dx = 0,

∫

Ω

∇vΓ(x) · ∇vΓ(x) dx = 〈S intv, v〉Γ.

From the equivalence inequalities (2.10) we now conclude

λmin(A)〈S intv, v〉Γ + 〈V τ, τ〉Γ − 〈(
1

2
I +K)v, τ〉Γ

≥
λmin(A)

cK
‖(

1

2
I +K)v‖2

V −1 + ‖τ‖2
V − ‖(

1

2
I +K)v‖V −1‖τ‖V

=

(
λmin(A)

cK
−

1

2

1

γ2

)
‖(

1

2
I +K)v‖2

V −1 +

(
1 −

1

2
γ2

)
‖τ‖2

V

+
1

2

(
γ‖τ‖V −

1

γ
‖(

1

2
I +K)v‖V −1

)2

≥

(
1 −

1

2
γ2
∗

)[
‖(

1

2
I +K)v‖2

V −1 + ‖τ‖2
V

]

if
λmin(A)

cK
−

1

2

1

γ2
∗

= 1 −
1

2
γ2
∗

is satisfied. Hence we find

γ2
∗ = 1 −

λmin(A)

cK
+

√(
1 −

λmin(A)

cK

)2

+ 1,

7



and therefore

1 −
1

2
γ2
∗ =

1

2


1 +

λmin(A)

cK
−

√(
1 −

λmin(A)

cK

)2

+ 1


 > 0

if we assume

λmin(A) >
1

4
cK .

As in [11, Section 4] we now obtain

a(v, τ ; v, τ) ≥ λmin(A)

[∫

Ω

|∇v(x)|2dx+ [〈v, teq〉Γ]2
]

+
1

2


1 +

λmin(A)

cK
−

√(
1 −

λmin(A)

cK

)2

+ 1



[
‖(

1

2
I +K)v‖2

V −1 + ‖τ‖2
V

]

and the assertion follows from (2.10).

Lemma 3.2 The ellipticity estimate (3.7) as given in Theorem 3.1 is sharp. In particular

for A(x) = µI, x ∈ Ω, and 0 < µ ≤ 1
4
cK , there exist nontrivial (v∗, τ ∗) ∈ H1(Ω)×H−1/2(Γ)

such that

a(v∗, τ ∗; v∗, τ ∗) = 0 .

Proof. As introduced in Remark 2.1, let v̂ ∈ H
1/2
∗ (Γ) be given such that

1

cK
‖(

1

2
I +K)v̂‖2

V −1 = 〈S intv̂, v̂〉Γ.

Let û ∈ H1(Ω) be the unique weak solution of the Dirichlet boundary value problem

−∆û(x) = 0 for x ∈ Ω, û(x) = v̂(x) for x ∈ Γ.

Moreover, let t̂ ∈ H−1/2(Γ) be the unique solution of the boundary integral equation

(V t̂)(x) = (
1

2
I +K)v̂(x) for x ∈ Γ.

In particular for (v∗, τ ∗) = (û, βt̂) ∈ H1(Ω) ×H−1/2(Γ), β ∈ R+, we then obtain

a(û, βt̂; û, βt̂) = λ

∫

Ω

|∇û(x)|2 dx− β〈(
1

2
I +K)v̂, t̂〉Γ + β2〈V t̂, t̂〉Γ

= λ〈S intv̂, v̂〉Γ + β(β − 1)〈V t̂, t̂〉Γ

=
λ

cK
‖(

1

2
I +K)v̂‖2

V −1 + β(β − 1)〈V t̂, t̂〉Γ

=

[
λ

cK
+ β(β − 1)

]
〈V t̂, t̂〉Γ = 0
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if we chose

β =
1

2
+

√
1

4
−

λ

cK
∈ R for λ ≤

1

4
cK .

Remark 3.1 The ellipticity estimate as given in Theorem 3.1 implies the stability and

related error estimates for any admissible choice of finite and boundary elements. However,

by using the exterior Steklov–Poincaré operator

te = −Sextũi = −V −1(
1

2
I −K)ũi

we may consider the reduced bilinear form

ã(u, v) :=

∫

Ω

[A(x)∇u(x)] · ∇v(x) dx+ α 〈u, teq〉Γ〈v, teq〉Γ + 〈V −1(
1

2
I −K)u, v〉Γ

which is elliptic without any further restriction. But since the coupled finite and boundary

element approximation corresponds to a mixed discretization scheme, the Galerkin dis-

cretization of the exterior Steklov–Poincaré operator requires a related stability condition,

which restricts the choice of boundary elements, see, e.g., [9, 13].

4 Numerical examples

In this section, we will test the theoretical estimate (3.7) and the sharpness statement of
Lemma 3.2 with some numerical examples. We use a two–dimensional discretization of
the coupled variational formulation (3.4)–(3.5) with piecewise linear and continuous basis
functions ϕi and piecewise constant basis functions ψk for the approximation of ũi and te,
respectively. In particular, we consider the case of A(x) = µI for µ ∈ (0, 1].
The best possible constant in the ellipticity estimate (3.7) is characterized by the Rayleigh
quotient

cA1 = inf
(0,0)6=(v,τ)∈H1(Ω)×H−1/2(Γ)

a(v, τ ; v, τ)

‖v‖2
H1(Ω),Γ + 〈V τ, τ〉Γ

= inf
(0,0)6=(v,τ)∈H1(Ω)×H−1/2(Γ)

aS(v, τ ; v, τ)

‖v‖2
H1(Ω),Γ + 〈V τ, τ〉Γ

with the symmetrized bilinear form

aS(u, t; v, τ) := µ

[∫

Ω

∇u(x) · ∇v(x) dx+ 〈u, teq〉Γ〈v, teq〉Γ

]
−

1

2
〈t, v〉Γ −

1

2
〈u, τ〉Γ

+〈V t, τ〉Γ +
1

2
〈(

1

2
I −K)u, τ〉Γ +

1

2
〈t, (

1

2
I −K)v〉Γ.
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An approximation of the ellipticity constant cA1 is now given by the minimal eigenvalue of
the algebraic eigenvalue problem

(
µÃh −1

4
M⊤

h − 1
2
K⊤

h

−1
4
Mh −

1
2
Kh Vh

)(
u

t

)
= λ

(
Ãh

Vh

)(
u

t

)
, (4.1)

where the single blocks are given by

Mh[ℓ, i] = 〈ϕi|Γ, ψℓ〉Γ, Ãh[j, i] =

∫

Ω

∇ϕi(x) · ∇ϕj(x)dx+ 〈ϕi|Γ, teq,h〉Γ〈ϕj|Γ, teq,h〉Γ,

Kh[ℓ, i] = 〈Kϕi|Γ, ψℓ〉Γ, Vh[ℓ, k] = 〈V ψk, ψℓ〉Γ

for i, j = 1, . . . ,M , k, ℓ = 1, . . . , N , where M denotes the number of nodes of the finite
element mesh and N is the number of elements on the boundary. In addition we compute
an approximation teq,h of teq from

Vhteq = b where b[i] = 〈1, ψi〉Γ.

We compute the minimal eigenvalue of the eigenvalue problem (4.1) for a sequence of
coefficients µi = i

100
, i = 1, . . . , 100, by using some appropriate eigenvalue solver, e.g.,

the inverse power method, and the Lapack routine for generalized symmetric eigenvalue
problems with a positive definite matrix on the right hand side.
Since the contraction constant cK as given in (2.7) is in general unknown, we compute an
approximation from the maximal eigenvalue of the algebraic eigenvalue problem

(
1

2
M

⊤

h +K
⊤

h )V
−1

h (
1

2
Mh +Kh)v = λM

⊤

h V
−1

h Mhv, (4.2)

where the boundary element matrices are given by

V h[ℓ, k] = 〈V φk, φℓ〉Γ, Mh[ℓ, i] = 〈ϕi|Γ, φℓ〉Γ, Kh[ℓ, i] = 〈Kϕi|Γ, φℓ〉Γ

for i = 1, . . . ,M , k, ℓ = 1, . . . , 2N . Note that in addition to the piecewise linear and
continuous basis functions ϕi we use piecewise linear but discontinuous basis functions φk

on the boundary to ensure the stability of the Galerkin discretization.
As a first example we consider the transmission boundary value problem (3.1)–(3.3) in the
case when Ω is a circle with radius

√
1/8. For a circular domain the contraction constant

is cK = 1
2
. For all computations we consider polygonal approximations of the circular

boundary and a globally uniform boundary element mesh. In Fig. 1, the computed minimal
eigenvalues of several refinement levels are compared to the behavior of the constant in
the ellipticity estimate (3.7) as a function in µi. The approximations of the considered
refinement levels are almost the same. Therefore the lines of the selected refinement levels
L = 2, i.e. N = 16 boundary elements, and L = 5, i.e. N = 128 boundary elements, are
on top of each other. For µ = 0.125, we observe two zero eigenvalues for each refinement
level. As can be seen in the zoomed plot in Fig. 1, all lines intersect in the point (0.125, 0),
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Figure 1: Minimal eigenvalues for the circle and µ ∈ (0, 1].

which is in perfect agreement with the requirement µ > 1
4
cK = 1

8
of Theorem 3.1 and the

sharpness statement of Proposition 3.2.
As a second example, we consider the case when Ω = (0, 1

2
)2 is a square. Since the

contraction constant cK is not explicitely known in this case, we consider an approximation
cK ≈ 0.73 by computing the maximal eigenvalue of the algebraic eigenvalue problem (4.2)
for a refinement level L = 10, i.e. N = 4096 boundary elements. Note that we observed
a slow convergence of the largest eigenvalue while most of the other eigenvalues converge
fast. In Fig. 2, the computed minimal eigenvalues of the system (4.1) are compared to
the behavior of the constant in the ellipticity estimate (3.7) by using the approximation
cK ≈ 0.73 for several refinement levels. In this case, we observe distinguishable curves for
the considered refinement levels, but the lines of the forth and fifth refinement level are in
good agreement. As limit case we estimate µ > 1

4
cK ≈ 0.1825 which is in good agreement

with the observation that µcritical ∈ (0.17, 0.18) for the fifth refinement level, as can be seen
from the zoom in Fig. 2. On level L = 8 we estimate 1

4
cK ≈ 0.18066 and observe small

negative eigenvalues for µ = 0.1795.
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Figure 2: Minimal eigenvalues for the square and µ ∈ (0, 1].

As a last example for a non–convex domain we consider the L shaped domain with the
corners (0, 0), (0.25, 0), (0.5, 0), (0.5, 0.25), (0.25, 0.25), (0.25, 0.5), (0, 0.5), and (0, 0.25).
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On the ninth refinement level, we approximate the contraction constant by cK ≈ 0.805 and
observe a faster convergence to the largest eigenvalue of (4.2) as for the square. In Fig. 3,
the computed minimal eigenvalues of the system (4.1) are compared to the behavior of
the constant in the ellipticity estimate (3.7) with the approximation cK ≈ 0.805 for the L
shaped domain. Again the lines of the considered refinement levels are in good agreement.
On the fifth refinement level we observe the critical value of µ close to 0.2 and the theoretical
bound is µ > 1

4
cK ≈ 0.20125.
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Figure 3: Minimal eigenvalues for the L shaped domain and µ ∈ (0, 1].

5 Conclusions

In this paper we have considered the stability of the one–equation coupling of finite and
boundary element methods for an almost arbitrary choice of finite and boundary element
trial spaces. It turns out that the non–symmetric boundary element approximation of the
Steklov–Poincaré operator requires sufficient energy from the interior problem to result in
a stable discretization. An essential tool is to rewrite the energy of the interior problem
by using the Steklov–Poincaré operator which is related to an interior problem with con-
stant coefficients. Hence, by analyzing related eigenvalue problems, we can generalize this
approach to problems with (interior) boundary conditions. While the theoretical results
of this paper are independent of the space dimension, for simplicity we just considered
numerical examples for two–dimensional model problems. Moreover, this approach can
also be extended to coupled problems in linear elasticity.
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