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Abstract

A Neumann boundary control problem for a second order elliptic state equation is
considered which is regularized by an energy term which is equivalent to the H—1/2 (T)-
norm of the control. Both the unconstrained and the control constrained cases are
investigated. The regularity of the state, control, and co-state variables is studied
with particular focus on the singularities due to the corners of the two-dimensional
domain. The state and co-state are approximated by piecewise linear finite elements.
For the approximation of the control variable we take carefully designed spaces of
piecewise linear or piecewise constant functions, such that an inf-sup condition is
satisfied. Bounds for the discretization error are proved for all three variables in de-
pendence on the largest interior angle of the domain. Numerical tests suggest that
these bounds are optimal in the unconstrained case but too pessimistic in the control
constrained case with non-convex domains.

Keywords: optimal control, corner singularities, finite element method, error esti-
mates
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1 Introduction

The numerical solution of Neumann boundary control problems has been studied in a
variety of publications [1, 5, 6, 13, 17]. In all of these papers the regularization term contains
the L?*(T')-norm of the control. However, for the existence of a weak solution of a second
order elliptic state equation in the energy space H'(Q), it is sufficient that the Neumann
datum, which is the control variable in our case, is in H~*/2(I"). We call a regularization
with Neumann datum in H~'/2(T') or Dirichlet datum in H'/?(T') energy reqularization.
This kind of regularization has first been introduced by Lions in his fundamental book
[12]. So far, error estimates for control problems with energy regularization have been
studied for Dirichlet control by Of/Phan/Steinbach [19, 20].

Depending on the application in mind the energy regularization gives an optimal con-
trol which may reflect the physical behavior more properly. As we will see in Figure 3 the
optimal control behaves similar along the edges when considering L?(I')- and H~/2(T)-
regularization, but rather different in corner points. If the angles of all corner points
of the computational domain are smaller than 120° the control is in H?(T') when L*(T)-
regularization for unconstrained problems is used (see [1]). In case of the energy regu-
larization approach we expect only H;w(F)—regularity for the control. If angles are larger
than 120° the spaces H?(T') and H'(T'), respectively, have to be weakened by introducing
a weight function. The regularity of state and adjoint state coincide in general for both
approaches. As a consequence also the convergence rate of the discrete solution is lower.
For the L*(T')-regularization we know from [1] that the error estimate

”Z - Zh||L2(F) < Chmin{2,1/2+7r/w}—e7 e > 0’
holds when the postprocessing approach 17| or variational discretization [11] is used, where
w is the largest interior angle of the domain and z and z, the continuous and discrete
optimal control. One might expect that the convergence rate for H~'/?(I')-regularization
is reduced by one. The proof of this conjecture is the main result of this paper.

In the present paper the Neumann boundary control problem with energy regularization

I 1|| 1200 + a” 17
min — U — U — ||z _
2eH-1/2(I) 2 diizz@) T g I=lla=1/2(r)

s. t. —Au+u=f in 2,

Ot = 2 on I,

is studied, where the regularization term is realized with an equivalent formulation using
an inverse Steklov-Poincaré operator. We discretize the state by piecewise linears and
the control by either piecewise linears or constants on an appropriate boundary mesh
and certain modifications at corner points of the domain, and particularly focus on the
dependence of the error estimates on the maximal interior angle of the domain. This
angle is known to restrict the regularity of elliptic boundary value problems. Moreover, we



exploit sharp error estimates for the discretization error on the boundary of the domain
which were recently proven by Apel/Pfefferer /Résch in [1].

In order to formulate the main result of the paper, let (u,z) and (us, 2;,) denote the
continuous and discrete pair of optimal state and control, and w the largest interior angle
of the computational domain. For unconstrained problems we prove the error estimates

hl/zHZ — ZhHL2(F) + HZ — zhHHfl/Q(F) < Chmin{3/2,ﬂ'/w}—a7
||’LL . Uh”Hl(Q) < Chlfnin{lJ\}—a7

for arbitrary ¢ > 0 using certain discretization strategies specified later. For problems

involving additional control constraints we will show that the first estimate can be improved

and that the convergence rate min{3/2, /@, 2w /w — 1/2} is achieved where w denotes the

largest convex angle.

We formulate the optimality conditions for the model problem in Section 2.2 and study
the regularity of the state, co-state and control variables in Section 2.3. In Section 3 the
discretization strategy and a priori error estimates are presented. In particular, we observe
that the inf-sup stability of the pair of discrete spaces for state and control is mandatory
for both the analysis and the practical realization of the method.

As a by-product of our investigations we observe a special behavior of the unconstrained
control in the vicinity of corners of the domain which can also occur for Dirichlet control
problems with L?(T')-regularization [14]. The optimal control is zero in convex corners
and becomes infinity in concave corners. This behavior is sometimes questioned, but it is
not wrong; it is just the behavior of the optimal control when energy regularization for
the Neumann control is used. If it is not desirable due to practical reasons, the modeling
of the problem has to be changed. We study one such remedy, namely adding control
constraints, in Section 4. Since the control is more regular in this case we are able to
improve the convergence order of the discretization error. However, these estimates might
still be too pessimistic, as we will see in the numerical experiments from Section 5.

2 The continuous unconstrained optimal control prob-
lem

2.1 Formulation of the problem

Before we introduce the model problem, let us summarize some notation. Let 2 C R? be
a bounded open domain which is assumed to have a polygonal boundary I' with corner
points {z}9_; enumerated counter-clockwise. We write C := {1,...,d} in the following.
The two edges meeting in ) have interior angle w; € (0,27). The largest angle which has
most influence on the regularity, is denoted by w := max; w;. Moreover, we denote by I';,
j € C, the boundary edges having endpoints ) and U+, whereas we set z(t1) = z(1)
by convention. For some s € R, and p € [1,00] we denote the usual Sobolev spaces by
W*P(2) and the corresponding trace spaces by W*~1/P*(T"). The Hilbertian Sobolev spaces
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are abbreviated by H*(Q) := W**(Q) and H*(T') := W**(T). For a certain right-hand
side f € (H'(2))" and Neumann datum z € H~V/2(T") := (HY2(T")) the state equation is
given by

—Au+u=f inQ, Oyu=2z onl, (2.1)

and we decompose its solution into u = u, + us such that

O, = 2, Ohup =0 onT. '
From this we find
HquJqu(Q) = / Vu, - Vu, dz + / u?dr = /8nuzuz ds,
Q Q r
= /quz ds, = (2, Nz)p =: ||z||§1,1/2(r) (2.3)

for the representation of the energy norm in H~'/2(T"), where

(=, '>H*1/2(F),H1/2(F)

is the dual pairing. Here, N': H~Y?(') 3 z + u, € HY?(I") denotes the inverse Steklov-
Poincaré operator which realizes the Neumann-to-Dirichlet map with respect to the homo-
geneous partial differential equation. In case of f = 0 we have u = u, and the regularization
term is equal to the energy norm of the optimal state.
Note, that due to the mapping properties of A" our definition of the norm in H~'/?(T)
is equivalent to the dual Sobolev-Slobodetskii norm (compare e.g. [23, Section 4.1.3]).
We denote by

a(u,v) = /Q Vu(z) - Vo(z) + u(z)v(z)] dz

the bilinear form related to the operator —A + I and by (-, -) the inner product in L?(£2).
The weak formulations of (2.2) then read: Find u.,u; € H'(Q) such that
a(us,v) = (2,0)p Yo € H'(Q), :
aluy,v) = (£, 0)q o e (), (25)
where (-, -)g := (-, ) (1(q)y.11 () denotes the dual pairing between (H'(Q2))" and H'(Q).

For a given desired state ug € L*(Q2) and regularization parameter o > 0 we consider
the Neumann boundary control problem

1 o’ .
J(u, z) == §Hu — ugll720) + 5 (z,Nz)p — min! (2.6)

with the constraint that u and z satisfy equation (2.1). Throughout the paper, z €
H~Y2(T") denotes the control variable and u € H'(f2) the state variable. Note, that we
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will assume higher regularity of the input data later in order to prove optimal error esti-
mates. This optimization problem is used to track the desired state vy when the Neumann
datum is controlled. The operator N : H~/3(T') — H'/?(T") is linear, continuous and self-
adjoint. As a consequence, the functional R: H~'/2(I') — R defined by R(z) := 1 (2, N'2),
is Fréchet-differentiable with derivative

[R'(2)] (h) = (h,N2),  forall h e HV*T). (2.7)

2.2 Optimality conditions

The aim of this section is to derive an optimality system for the problem (2.6). In what

follows, S : H='/2(T') — H(Q) <> L2(2) denotes the solution operator of the homogeneous
state equation, i.e.

u, =S5z <= a(us,v)=(z,0)p Yo € HY(Q). (2.8)

This mapping is well-defined, linear and continuous and we may thus rewrite the original
problem (2.6) as

1
j(z) = §||Sz +uy — ud||%2(ﬂ) + % (z, Nz)p = min! s.t. z¢e H*T). (2.9)

The reduced functional j is Fréchet-differentiable and the necessary optimality condition
then reads

0= (v,5'(2))p = (Sz +uy — uq, Sv) + a (v, N2), Yve& HVXT). (2.10)

Let us summarize the linear and constant part of the optimality condition by introducing
the operator 7% : H~Y/?(I') — H'Y?(T") and the element g € H'/?(T") defined by

T :=5"S+aN, g :=S"(ug — ug). (2.11)

Then, the optimality condition can be written as 7%z +¢ = 0 in H'/?(I"). Here, S* denotes
the adjoint operator defined by S*v = [Pv]jr where P : (H'(Q))" — H'(Q) is the solution
operator of the boundary value problem

—Aw+w=wv in{, O,w=0 onl.
The operator T“ possesses the following properties:

Lemma 2.1. The bilinear form defined by (-, T%-)p : H=Y/2(T') x H=Y*(T') — R is contin-
wous and H=Y2(D)-elliptic, i. e. the inequalities

(T < M2l ol

(2, T%2)p 2 allzl}-12 (),

hold, for all z,v € H=Y/%(T") with some constant M > 0.
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Proof. The continuity follows directly from the definition of 7%, the continuity of N and
S, and the norm equivalence ||.Sv||g1 () = ||v]|g-1/2(r). Then we get

(z, T)p = (Sz,Sv) + a (z, Nv)p
< c (82l I1Svlla @) + 2l a2 lvll a-12r))

< cllzlla-r2@llvll -1z

To show the H~'/2(T)-ellipticity we express the H~/2(I")-norm by the representation (2.3)
which leads to

(2,T%2)p = (S2,82) + a (2, N2)
= |[uallZ2) + allzllr12wy 2 @llzli-1e.
[

In order to find a representation of the optimality condition which does not involve the
operators S and S* explicitly, we introduce the adjoint state p := P(Sz + uy — uq4) which
may be written as the solution of the adjoint equation

—Ap+p=u—ug in €, Owp=0 onl.

Due to the representation p = P (u — ug) the optimality condition (2.10) can be written in
the following form:

Theorem 2.2. The tuple (u,z) € H'(Q) x H~Y2(T") solves the model problem (2.6), if
and only if there exists some p € H*(Q) such that

a(uy,v) — (z,0)p =0 Vv e HY(R),
a(p,v) — (uz,v) = (uy — ugq,v) Yo € H(Q), (2.12)
(w, au, + p)yp =0 Yw e H-Y3(T).

Note, that we already used the decomposition v = u, + uy and Nz = u,r. The
optimality condition does not depend on the control explicitly.

2.3 Regularity in weighted Sobolev spaces

This section is devoted to regularity results for the solution of problem (2.12). We will first
give an overview on regularity results for the solution of the boundary value problem

—Ay+y=f inQ,

2.13
Owy=g onl, ( )

in classical Sobolev spaces, and introduce weighted Sobolev spaces afterwards which allow
a better description of the occurring corner singularities.
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We define the singular exponents ), ,, := mm/w; for j € C and m € N, and introduce
local polar coordinates (r;, ;) centered at z\) in such a way that p; = 0 and ¢; = w;
coincide with the two edges IV and IV~! which meet in 29). Then, it is well-known [9,
Section 2.7|, that the solution of (2.13) can be decomposed into

d
Aj m
y(.ﬁE) = yR(x) + Z Z Cjm nj(rj) rj], COS(Aj,m(pJ)? (214>
j=1 meN
)\j,m,<2_2/q

with a regular part yp € W24(Q). This decomposition is valid for arbitrary ¢ € [1,00)
satisfying 2—2/q # \;, for all j € C and m € N. Here, ¢;,,, € R are constants (the so-called
stress-intensity factors) and n; smooth cut-off functions with 7; = 1 in a neighborhood of
the corner 2. Since the singular functions for m = 1 are the dominating ones, we write

Aj := A;j1 and abbreviate the most restrictive one with A := min; A;. It is easy to show
that the singular parts vanish for the choice
1,2/(2—=MX)), it A<2,
q € 112/( ) . (2.15)
[1,00), otherwise,

and only in this case the classical shift theorem holds.
In the following lemma a consequence of the regularity results in classical Sobolev spaces
is presented.

Lemma 2.3. Let f,uy € LYQ) for some q satisfying (2.15). Then, the solution of the
optimality system (2.12) possesses the reqularity

e Wl—l/Q:Q(I‘j)’ VieCl, ueW?(Q), pecW>(Q).

Proof. The Lax-Milgram lemma guarantees a unique solution u € H*({2) and hence u €
L4(Q2) for arbitrary ¢ € [1,00). Under the assumption that ¢ satisfies (2.15) this implies
p € W24(Q). Consider the decomposition u, = uy — a~'p with ug € H}(2) solving the
equation —Aug + ug = a Y(=Ap + p) € L4(N). Standard results then imply wug, u, €
W24(Q). Moreover, uy € W24(Q2) follows in case of f € L4(Q2) and we thus have u =
u, +uy € W24(Q). By a standard trace theorem we obtain that z € W!=%/44(T;) for all
jec. 0

In the numerical experiments we observe that the control exhibits a similar behavior
to the optimal control of a Dirichlet control problem with L?(T')-regularization (see e. g.
[14, 20]). More precisely, the control is drawn down to zero at convex corners and tends
to oo or —oo at concave corners. In the following we will study this behavior in detail.
Let (7, ) denote polar coordinates centered at some corner ) and let B be a vicinity of
2" containing no other corners. Since p is the solution of a Neumann problem it admits
a decomposition as in (2.14), namely

T

p(x) = pr(z) + e’ cos(Ap), for x € B, \ = —
J



with a regular part pr in H*(B). Note that we omitted the cut-off function 1 as intro-
duced in (2.14) which is possible due to local considerations. Further singular terms with
exponents )\, := k7 /w; for k > 2 are neglected since the corresponding singular functions
belong to H?(B). Due to the homogeneous Neumann conditions we have

0 = 0pp = Onpr £ cAr* sin(\p). (2.16)

Since sin(Ap) = 0 for ¢ = 0 and ¢ = w; we have d,pr = 0. Due to the optimality condition
(2.10) we may now write the state in terms of u, = uy — a~*p with some ug which vanishes
on the boundary. Then, the equation (2.1) can be rewritten in the form

1
—Aug+ug=—(—Ap+p) in, =0 onT.
a

Due to the Dirichlet boundary conditions we can decompose u into a regular part upr €
W24(B) with ¢ € (2, (1 —A\)7!), and a singular part:

up () = ug,p(w) + cr*sin(Ap), x € B.
Exploiting this decomposition and z = 0,u, = 0,u¢ we obtain by some calculations

2| om0 = Oplo,r — CA Al cos(0),

2| g, = Optio,r + AT cos(Aw;),
and consequently, using the fact that A = 7/wj,
2(z) = Opuor(x) — X', z€dBNT. (2.17)

The assumption ¢ > 2 implies differentiability of the of the state since ugr € W2 —
C*(B) and hence the normal derivative is piecewise continuous, i.e. d,ug r € C(I'; N OB)
for j € C. Due to ugpr = 0 on I' the tangential derivatives on the boundary also vanish
and since the normal vector in a corner can be represented as linear combination of the
tangential vectors, this implies that

liné Opugr(r,) =0  for p € {0,w;}.
r—

However, the term A\r*~! in (2.17) could either grow unboundedly or could tend to zero,
which depends on . If 219) is a reentrant corner we have A < 1 and in case of a convex
corner A > 1. Consequently, there holds

{O, if w; <,

lim 2(r, p) —
(r.¢) +oo, ifw;>m,

r—0

for ¢ € {0, w;}.

Note that in case of w; > 7 the control tends either to +-00 on both legs, or to —oo, but
the case that it tends to +o00 on the one leg and to —oo on the other one can never occur.



Let us now discuss some improved regularity results. Weighted Sobolev spaces pro-
vide a suitable framework to prove sharp finite element error estimates in the presence of
singularities.

We denote by o € N§ a multi-index and write D*v = 921 0%2v as well as |a| = oq + .
Let {U;};cc denote a covering of € where U; contains only the corner ) and no other
ones. Moreover, we use the notation r;(x) := |z — 2()|. The weighted space Wg’q(Q)

with k& € Ny, ¢ € [1,00] and a weight vector B € R? is defined as the closure of the set
C®(Q\{zV): j € C}) with respect to the norm

( 4 1/q
Z Z/ rjq-ﬁj|D°‘U|q , ifgel,00),
o]l ) = laf<k j=1 Y UinQ (2.18)
i Z 12X €SS Sup rfj]Do‘vL if ¢ = oc0.
<k JEC zeU;N0

\

Note, that this definition is similar to the ones from [15, 18] where the presence of only
one singular point was assumed. As usual we denote the related semi-norms by | - |W:f,q(Q)

E
whose only difference to (2.18) is, that the first sum is performed only over all o € N2 with
|a| = k. The corresponding trace space Wg_l/ ?4(T) is the space of functions with finite
norm

H’UHW]jfl/q,q(F) := inf {HU/HWIE,q(Q): ulp, =v on I'; for all j € C} : (2.19)
E 3

Let us first summarize some regularity results in weighted Sobolev spaces. The proof of
the following theorem can be adapted from the one of Theorem 8.1.7 in [16], where general
polyhedra in 3D were considered. Neglecting the polyhedral corners in this proof leads to:

Theorem 2.4. Let be given some functions [ € Wg_Z’Q(Q) and g € W§_3/2’2(F) fork =2
or k = 3. Then, the solution y of (2.13) is contained in WE*(Q) if the weights satisfy

OéjZO ka—1—>\j<0,
forall j =1,...,d. Furthermore, the following a priori estimate holds:

1Wllwe2iay < € |1 lys-22gy + lglyosmzg |
Another important regularity result in weighted W% (2)-spaces is proven in [1]:

Theorem 2.5. Assume that g =0 and f € C%7(Q) for some o € (0,1). Then, the solution
y of (2.13) belongs to W;oo(Q) with a weight vector having components satisfying

2_/\j<ﬁj<2 ZfQ—)\JZO,
B =0 if2 -\ <0,

for all j € C. Furthermore, the a priori estimate ||yl|y2eq) < [[flcow @) holds.
E
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In the following corollary we will transfer these results to the optimal control problem
(2.6).

Corollary 2.6. Let f ug € L*(Q) and let be given a weight vector @ € R? satisfying
E—1—-X\<a;<k-1 if \; <k-—1,
a; =0 if Aj >k —1,
for all j € C and k = 2,3. Then the solution of the problem (2.6) possesses the regularity
(2, u.p) € Wa™22(1) x W*(Q) x Wz*(9)
Moreover, if f,uqg € C%°(Q) with some o € (0,1), and if the vector B e R? satisfies
2—-)\ < B <2 if Aj <2
Bj =0 if Aj > 2,
then the solution of (2.6) satisfies
(z,u,p) € W™ (1) x W2™(Q) x WZ>(Q).
Additionally, if the vector ¥ € R? satisfies
3/2 - ) <5 <3/2, if \j <3/2,
v =0 if \j > 3/2,
then, we have z € W%’Q(F).

Proof. We start again with u € H*2(Q) for k = 2,3. Theorem 2.4 implies now that the
adjoint state belongs to W(ifQ(Q) if @ satisfies (2.20). As in Lemma 2.3 this is transferred
to u., and the regularity u; € W5*(Q) follows from f € H'() — W1*(Q). By a trace
theorem the regularity of z can be concluded.

The WE’W(Q)—regulaﬂty of p follows from Theorem 2.5 and u € W?24(Q) — C%(Q)

which holds due to o € (0,1/2) and g € (4/3,2/(2 — X)) # 0 (see the regularity result of
Lemma 2.3). Due to the optimality condition from Theorem 2.2 we can express the state
in the form u, = —a~'p + ug with some wuq satisfying the boundary value problem

1
—Aug +ug = —(u—ug) in £, up=0 onT.
«
This is a homogeneous Dirichlet problem with right-hand side in C%“(€2). We may thus

apply a regularity result from |2, Theorem 2.2] and obtain uy € VE2 >°(Q) which is a weighted

Sobolev space with homogeneous weights rfj el but due to k — |a| > 0 the embedding
Vg’oo(Q) — W;OO(Q) follows. Consequently, we get u, € WEM(Q) The assumption
f € C%(Q) and Theorem 2.5 yield also that u; € Wg’oo(ﬂ), which leads altogether to
u € W;oo(Q) Furthermore, we have Vu € Wé"o(Q) and thus z € Wé’w(F). With the
Holder inequality we then obtain Wﬂl’w(F) — I/Vﬂ?1 (') and the last assertion follows. [

10



3 The discrete unconstrained optimal control problem

3.1 Discretization and general convergence results

In this section we deal with a conforming finite element discretization of the optimality
system (2.12). Let us introduce some notation. A family of admissible and quasi-uniform
finite element triangulations 7, with mesh size A > 0 and nodes {z’}? is considered.
We approximate the state and adjoint state variable with continuous and piecewise linear

functions, i.e. we search u;, and py in the finite-dimensional subspace
U, = {UhGC(Q): vplr € P1 VTE'EL}. (3.1)

We further search an approximation of the control z;, in the finite-dimensional space Z;, C
H~'2(T"). Since multiple choices of Z, are possible, we want to keep the analysis here as
general as possible. In Section 3.3 two choices are investigated in detail: an approximation
by piecewise constant functions on a coarser boundary mesh or the dual mesh related to
the boundary mesh of 7, and by piecewise linear and continuous functions. Let be given
two bases of U, and Z;, by

U, = span {gol}iiﬂl , Zp, = span {W};V; .

The discretized optimality system of Theorem 2.2 reads:
Find w, p,pn € Uy, 21, € Zj, such that

a(tsp, vn) — (2h, vp)p = 0 Yoy, € Uy,
a(pn, vn) — (Usp, vn) = (Upp — Ug, Up) Yoy, € Uy, (3.2)
(wh, 0z p + pp)p =0 Ywy, € Zy,

where uy ), € Zj can be computed in advance by
a(uﬁh’vh) = <f7 Uh>Q Yoy € Up,.

The finite-dimensional system (3.2) is just the optimality system of the optimization prob-
lem

1 9 o
zrhnelgh §Huz,h +Uufp — ud”L2(Q) + § <Zh,thh>F
s. t. a(wsp,vn) = (2, vp)p Vo, € Up,
where Nz, = [u. 5]

We may represent the unknown functions in terms of vectors by using the isomorphisms

Nr Na Na
7z = 5 27, Uy > Uy p = E Uy ", D pp = E P’
j=1 i=1 i=1
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Let now A denote the standard finite element stiffness matrix related to the operator
—A + I, M the mass matrix and M := (m;;) € RV a transformation matrix, having

entries
e i,
M _/()0 ¢ :
T

As a consequence the optimality system (3.2) reads in matrix-vector notation

0 A M 7 0
A -M 0 i.| =1|7]. (3.3)
MT aMT 0 —Z 0

The vector f corresponds to the right-hand side of the adjoint equation and its components
are defined by f; = [, (us, —uq)¢'. Note, that the system (3.3) can be transformed into a
symmetric one by adding « times the first row to the second one. Solving the system (3.3)
leads to the approximate solution (u, s, 25, pn). As we will see later, there exists a unique
solution of (3.3) under an additional assumption.

Let us now introduce the finite-element solution operators of S and P, defined by

Sy H YD) = Uy, up = Spz L= a(up,vp) = (z,v0)r  Vou € Uy,
P, : L*(Q) = U, pn=Pu L= a(pn,vn) = (u,vp) Yy, € Up,.

The adjoint operator to Sy, is then defined by Syu := [Pyu];r. The discrete Steklov-Poincaré
operator can be written in terms of N}z = [Shz]|p. Similar to (2.10) we may now also write
the system (3.2) in the compact form

0= <’LUh, T}?Zh + gh)r Ywy, € Zp, (34)
with
Ty = SpSp+aN, and  gn = Sy(upn — ug).

The operator T} is an approximation of the operator 7% defined in (2.11). As the prop-
erties of 7 summarized in Lemma 2.1 cannot be directly transferred to 73" we need an
additional condition:

Assumption A The spaces Z, and Uy satisfy the Ladyshenskaya-Babuska-Brezzi condi-
tion, 1. e. some c > 0 exists such that

120l =172y < € sup (zh, v

for all z, € Zp,.
v €Uy, ||Uh||H1(Q)

This is a natural assumption for mixed finite element discretizations. As a consequence
the discrete counterpart to Lemma 2.1 follows:
Lemma 3.1. Let Assumption A be satisfied. Then, the bilinear form
(T HY2T) x HY2(T) - R
is continuous and Zp-elliptic. Moreover, the equation (3.4) possesses a unique solution

zZn € Zy.
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Proof. The continuity can be proven in analogy to Lemma 2.1 since the stability properties
of S and S* also hold for their discrete versions. In order to show the Z,-ellipticity we take
into account Assumption A which leads to

Zh, Un a(Shzh, vn
Iznll-172(ry < ¢ sup Lo tnle gy A5 t) cl| Shznll i 0y-

v €U ||vh||H1(Q) v, €UR ||vh||H1(Q)

The Cauchy-Schwarz-inequality, the Ujy-ellipticity of the bilinear form a(-,-) and the defi-
nition of Sj, and N}, imply

znll5-120y < €llSnznllzn (@) < calSnzn, Snan)
= ¢ (zn, Nnzn)p < ¢ (zn, Tp'2n)p -

The last step follows from (Spzn, Spzn) > 0. The existence of a unique solution of (3.4)
follows then from the Lax-Milgram lemma. ]

In the remainder of this section a general error estimate for the optimal control problem
will be proven. Therefore, the overall error between z and z, is decomposed into separate
terms which will be discussed in Sections 3.2 and 3.3 separately.

Theorem 3.2. Let Assumption A be satisfied. For the solutions z € H‘l/Q(F) and z,, € Z,,
of (2.10) and (3.4), respectively, the following estimate holds:

|2 — Zh||H—1/2(F)
< ¢| 108 = Sw)zllza@) + (8™ = Sp)(u = wa)ll /ey + allN = Na) 2l ey
Hlug = ugallzzen + nf 112 = xllgven)| (35)
Proof. Let z;, € Z) denote the unique solution of
(o, T2+ g)r =0 Yo, € Zy,. (3.6)
Since Z;, € H~'/2(T") we get with (2.10) the orthogonality
(U, T*(z = Z))p =0 Yo, € Z. (3.7)

As a consequence of the H~'/2(T")-ellipticity and boundedness of (-, 7). (see Lemma 2.1)
and equation (3.7), the Cea-Lemma leads to

12 = Zull g-12(r) < Cxiélth 12 = Xl zr-172(r)- (3.8)

Next, an estimate for wy, := zj, — 23, is derived. We may now apply the Zj-ellipticity of T},
equation (3.4), (3.6) such as (2.10) which leads to

lwnllFr-1/2y < (wn, T (Br = 20))p = (wn, Ty Zn + gn)p
= (wn, (T =T*) 2 — g + gn)r
= (wn, (Ty = T*) (Zn = 2))p + (wn, (T3 = T%) 2 — g + gn)r (3.9)

13



The boundedness of 7% and T} together with (3.8) imply

(wn, (T = T%) (Gn = 2))p < cllwnllg-1r200) 12 = Zull =12y (3.10)

and we may apply (3.8) again.
Exploiting the definition of 7% and T} yields for the second term in (3.9)

(wn, (Ty = T*) 2+ g — gn)p
= (wp, Si(Sh — 9)z + (i — S*)Sz 4+ a(N, — N)z
+ (S = Sp) (g — ug) + Sp(ug —upn))p

< cllwnll =172y [||5;Z(5h = )zl sz + 1055 = 5) (@ = wa) |l oz
+al[Nw = Nzl vy + 1S5 (upn = uf)HHl/Q(F)]- (3.11)
Note, that the operator S} is bounded from L?(2) to H'/?(Q2) and thus one can simplify
15705 = S)zll /2y < ell(Sh = 5)2| r20- (3.12)

Inserting the estimates (3.10), (3.11) and (3.12) into (3.9) and dividing by ||wp||g-1/2(r)
leads to

[wnllgr-1/2(r) < C[H(S — Sn)zll 2@ + 157 = Sp)(u — ua) | gz ey
+al|((N = Nzl gz ey + Xig;fh Iz = Xl g-1r2qr) + llug — UﬁhHL?(Q)]-
This estimate, such as (3.8), together with the triangle inequality

12 = znllg-1200y < N2 = Znll 120y + 120 — 20/l 12

leads to the assertion. O

3.2 Error estimates for the state variable

It remains to prove estimates for the terms on the right-hand side of (3.5). Therefore, we
first collect some known convergence results and transfer these to our setting afterwards.

Theorem 3.3. Let be given some functions f, g and let y denote the solution of the
boundary value problem

—Ay+y=f 1in, Oowy=g onl,

and y, € Uy, its finite-element approximation. Assume that weight vectors a and 5 are
given satisfying

Oéj:]_—)\j+€ Zf/\ng, ﬂjZQ—Aj+€ Zf)\j§2,
Oéj:O Zf)\]>1, 5]:0 ’lf)\j >2,
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for all j € C. Then, forl =0,1, the error estimates

1y = Ynll o) < Chm_l)min{l’k_g}||y||w§»2(g)a if y € W*(Q),, (3.13)
1Y = nll L2y < chmin{zmﬂ}*s||y||wgoo(g), if y € W™ (), (3.14)
1y = ynll 12y < Chmin{?’/Z’A}_EHy||w6%»°°(g), ify € Wy (), (3.15)

hold, for arbitrary € > 0.

Proof. To prove the first estimate we can apply standard techniques: one can show an
estimate in the H'()-norm using Cea’s Lemma and the local interpolation error estimate
on an element 7" C Uj;

|y — Inyll () < Chlfaj’y‘wcff(T)'

Summing up all elements T € T, and inserting the assumptions upon the weights yields a
finite element error estimate in H*(2)-norm, namely

1y = wnllm@) < elly = Iyl
< chl—maxjec aj|y|w%2(9) < Chmm{l’A}_e\mW%’?(Q)- (316)

The Aubin-Nitsche method leads to the stated estimate in L?*(€2). For a detailed proof
using Besov spaces we refer to [4].

A proof of the second estimate can be found in [21, Corollary 3.49|. For the third
estimate we introduce the nodal interpolant I,y of y as intermediate function and apply
an inverse inequality which follows from standard inverse estimates in H'(T") with an
interpolation argument. We obtain

1y — ynllmeey < Ny = Inyllgreey + 22 [Ily = Tnyllzey + 11y — ysllzze)] - (3.17)

It remains to prove interpolation error estimates in H*(I')-norm for s = 0 and s = 1/2.
On an element E € &, with £ C 9U; we get from [21, Lemma 3.28] the local estimate

ly — Inyl s () < ch® ™57 \?J|W3J’.2(E)7

which holds for s € {0, 1} provided that v; € [0,1). We choose the weight v; = max{0, 3/2—
A\; + e} with arbitrary € € (0, A — 1/2)(# 0), and after summation over all E € &, we get
the global estimate

||y _ IhyHHS(F) S Chmin{3/2’>\_€}+1/2_8|y|W§»2(p)~ (318)
By an interpolation argument between s = 0 and s = 1 we conclude the validity of this
estimate also for s = 1/2. Furthermore, it was assumed that y € Wgw(Q) Due to the
embedding Wg’oo(f‘) — Wg’Q(F) which holds for ; < v;+1/2 and 8; = 0 if ; = 0, for all
7=1,...,d, we get
ylw22my < clylyzeq)-
25D 7@

Inserting (3.18) and (3.14) into (3.17) leads to (3.15). O
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We may now apply the finite element error estimates from the previous theorem to the
terms on the right-hand side of estimate (3.5) in Theorem 3.2.

Corollary 3.4. The following estimate holds:

1(S = Sn)zllrz@) + 1S — Sp)(w — wa) || grrr2ry
Fal|Ny = N2l ey + llup = upnllra) < chmm32A=

Proof. We show that Sz, S*(u — ug), us and Nz possess the required regularity such that

Theorem 3.3 can be applied. Let & and 5 be defined as in Corollary 2.6 or in Theorem
3.3, respectively. From Corollary 2.6 it is already known that

Sz=ueW:*Q),  S(u—u)=pr and peW:*(Q).

Lemma 2.4 yields u; € W2*(Q) for f € L*(Q). Furthermore, we exploit Nz = u,r and
u, € WEOO(Q) (see, Corollary 2.6) which also implies the required regularity. O

3.3 Approximation and error estimates for the control variable

In the numerical experiments we only obtained a solution provided that Assumption A
holds. The case of piecewise constant controls on the boundary mesh &, of 7}, is known to
be not inf-sup stable. As a consequence, the solution of (3.3) exhibits oscillations due to
the structure of the matrix M. An overview over possible pairs U, and Z), which satisfy

Assumption A can be found in [24, Section 1.2]. We discuss several choices in the following
two sections.

Py Yo Un, /2 Y1 P2 Y3 V-1
| o — | | | T | |
| | | | | | | | |
| | | | | | | | |
————¢ . —— ol o1 o 1...... e
To T T2 T3 Ln;—1 Tn, Zo T T2 T3 Tn;—1 Ln;
(a) Piecewise constant on a coarse mesh (b) Piecewise constant on the dual mesh
Y1 Y2 i3 V-1
| / |
| |
------ ———¢
Zo T T2 €3 Tn;—1 Tn,

(c) Piecewise linear and constant at cor-
ners

Figure 1: Possible choices for the discretization of the control
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3.3.1 Piecewise constant controls on a coarse mesh

In this section we discuss an approximation of the control by piecewise constant functions
on a boundary mesh £y having mesh size H > 0. More precisely, the space Zj, is defined
by

Iy = {Uh € LOO(F) UplE € Py VE € 5]-]}

However, further assumptions are necessary to obtain the validity of Assumption A. Our
analysis covers the following two possible choices:

a) The boundary mesh £ is assumed to be coarser than the boundary mesh of Ty, i.e.
there holds H/h > ~ with some sufficiently large v > 0. A proof of Assumption A
can be found in |23, Section 11.3|. Certainly, it is not known how large v has to
be, but in the numerical experiments we observed, that v = 2 is sufficient in our
case. This setting occurs for instance when we refine a given initial mesh k — 1 times
globally to obtain £, and refine uniformly once more to obtain 7, (see Figure la).

b) We can also choose £y as the dual mesh of the boundary mesh induced by 7.
Therefore, assume that the boundary edge I';, i € C, coincides with the z-axis and
that the boundary nodes of 7, on I'; have coordinates 2D =gy <z <... < Tp, =
2. Then, the elements of the dual mesh {E,}7" lying on T; are defined by

1 1

B, = (§<J]k_1 + Ik), E(xk + xk+1)) s for k = 2,...,n; — 2,

1 1
E, = ($0, 5(901 +$2)) R O B e (§($ni—2 +$ni—1),$ni) ;

which is also illustrated in Figure 1b. A proof of Assumption A for this choice can
be found in |24, Section 1.2]. Due to H ~ h we do not distinguish between h and H
in the following.

It remains to prove a best-approximation property of these spaces.

Lemma 3.5. Let be given some z € Wé’Q(F) with v; = 3/2—= XN+ if Ay <3/2, and v, =0
otherwise. Then, the error estimate

: . min{l1,A—1/2—e}+s
Xlélth 12 = Xllg-sr) < ch |Z’W$’2(F)'

holds for s € {0,1/2}.

Proof. Let PP : L*(T') — Zj, denote the L?(I")-projection onto Z,. Exploiting the definition
of negative norms and the standard estimate

le = Py < bl el sz
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we obtain

inf Iz = xllg-12@y < cllz = Pzl

XEZn
=cCc Ssup <Z - P}?za 90>p /||90||H1/2(F)
peH/2(T)
=c sup (2= Bz0— Bo)/lellmem
peH/2(T)
< ch?||z = P22l 2(ry- (3.19)

It remains to prove a local error estimate since the global projection coincides with the local
projection on each E € &,. Let p be an arbitrary constant and E denote the reference
interval (0,1). Due to the best-approximation property of P2 in L*(T'), the embedding
W.?(E) < L?*(F) which holds for arbitrary v < 1 [16, Lemma 6.2.1], and a Deny-Lions
type argument using the norm equivalence || - ”W’\}Q(E”,) ~ - |W71,2(E) + | [ - dz| proved in [1,
Lemma 2.2|, we obtain for some E C U; with g = 0 the estimate
O ~
Iz = Pzl 2y < M2 = pllzgs) < el BIYV2)12 = pllpag
< c|E|"?||2 —p||WA}}2(E) < C|E\1/2|5’|W$J12(E)

1_ .
<ch ’Y]|Z|lej2(E)' (3.20)
In case of rg > 0 we also arrive at (3.20) using the standard estimate
”Z — P}?Z||L2(E) S Ch|Z|H1(E)

and the property rj(x) > rg > h for x € E with rg > 0 which leads to 1 < h™%r;(z)%.
Summation over all £ € &, yields

Iz — P;?ZHLQ(F) < Chl_maxﬂj|z|wlv2(r)-
5

Inserting now ; = max{0,3/2 — \; + ¢} yields the assertion for s = 0 and together with
(3.19) we conclude the assertion for s = 1/2. O

3.3.2 Piecewise linear controls

Let now &, denote the boundary mesh induced by 7y, i.e. for all £ € &, there exists a
T € Ty, such that E = 0T NT; for some i € C. Without loss of generality assume that
I';, 1 € C, coincides with the x-axis. The boundary edge I'; is decomposed into boundary
elements By := (zp_1,21) € & for k=1,...,n; where 1) = 2 < 2, < ... < 1, = 20V,
The discrete control space can be defined by

Z i={v, € C(Ty): vplp, €P1, k=2,...,n;, — 1, and UnlEy, VnlE,, € Po},

and
Zy, = {vn, € L(T): vp|r, € Z}, for all i € C}. (3.21)
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Note, that we allow discontinuities at corner points, and we require that the slope of
functions in Zj, is zero on edges touching a corner. This property is necessary to ensure the
stability condition in Assumption A and a proof can be found in [3], we refer also to [22].
In the following {14 }7:" is the nodal basis of Z} , i.e. ¥y(z;) = 0, forall j = 1,...,n;—1,
which is illustrated in Figure 1c.

Now, we can show a best-approximation property of Zj,.

Lemma 3.6. The results of Lemma 3.5 also hold for the choice (3.21).

Proof. Let P? denote the L?(T';)-projection onto Z¢, i € C. Analogous to the proof of
Lemma 3.5 we can show that

Iz = Plzllg-rzey < ¢ sup |z = Pzllray e = Brellawn /el mew,).  (3:22)
PEH/2(T;)

Since P? is the best-approximation in L?(T';) we replace P? by an appropriate interpo-

lation operator onto Z; which is defined locally. Therefore, we introduce the operator

C?: LYT) — Z} defined by

n;—1

[CR(2) = Y Mo vl(@ (@),  on:= By or B,

k=1

where II,, denotes the L2-projection onto the constant functions on oy. This quasi-
interpolation operator is similar to the operator introduced by Clément [7| and has the
advantage that the stability property

1C22 2 < el|z||z2(sy), With Sk, = int(E, UG, Uay), (3.23)

holds, which is not the case for the usual Lagrange interpolation operator.
For some p € Py we observe that p = C?p. Using the triangle inequality and (3.23) we
get

Iz = CR2llz(my < ellz = pllizcss,) < ch®l2luss,,), s € (0,1], (3.24)

for arbitrary E € &,, E C I';, where the last step follows from Theorem 4.2 (for s = 1)
and Proposition 6.1 (for s € (0,1)) in [8]. An estimate in weighted Sobolev spaces can be
deduced from (3.20) and we get

Iz = CR2ll 2y < ellz = plliacss,

1_ . .
) <ch WJ|Z|WW1]’-2(SE,€)’ if £ e Uj. (325)
From (3.24) for s = 1/2 and (3.25) we conclude the global estimates
Iz = CY 2l 2,y < ch!mexice Plelwie e,

I — C}?‘PHB(D) < Chl/2|90|H1/2(ri)a

where the first estimate yields the assertion for s = 0. The assertion for s = —1/2 follows
after insertion into (3.22). O
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3.4 Error estimates for the optimal control problem

Now we are in the position to formulate the main result of this paper. Inserting the results
of Corollary 3.4 and Lemma 3.5 in case of a piecewise constant control approximation,
or Lemma 3.6 in case of continuous and linear controls into Theorem 3.2 yields an error
estimate for the control approximation in H~/2(T")-norm. It is also possible to extend this
result to other norms and also to the state variable.

Theorem 3.7. Let (u,z,p) and (up, zn, pr) denote the solution of (2.12) and (3.2), re-
spectively. Let A := min;{m/w;} be the singular exponent of the corner with the strongest
singularity. Then, the following a priori error estimates hold:

|2 = znll g-1/2r) < chmin{3/2A} =< (3.26)
HZ — ZhHLQ(F) < Chmin{l’)\ilﬂ}ig, (327)
[t — up|| oy < ch™mtEATE, (3.28)

Proof. To obtain the first estimate one has to combine Theorem 3.2, Corollary 3.4 and
the Lemmas 3.5 or 3.6. Now, let P? denote the L?(I')-projection onto Z;,. To obtain an
L?(I")-estimate we apply the triangle inequality and the inverse estimate from [23, Lemma
10.4] and arrive at

1z = zull 2y
S CHZ — P;?Z”LQ(F) + h_1/2 (HZ - P}?ZHH—U?(F) + ||Z - Zh”H—l/Q(F)) . (329)

Furthermore, we apply Lemma 3.5 (for piecewise constant controls) or Lemma 3.6 (for
piecewise linear controls that are continuous on each I';) which leads to

Iz = Bllliawy + B2z = Blzlaangy < ch™ A2 2] (3.30)

)

with 7; = max{0,3/2 — \; + ¢} for all j € C. Inserting now (3.30) together with (3.26)
into (3.29) implies the second estimate.
The error in the state variable is obtained by the triangle inequality

||u — Uh||H1(Q) = ||SZ — ShZhHHl(Q)

For the first term we take (3.13) and find that the error is bounded by ch™®{1:A=¢} Due
to the Lax-Milgram lemma we have the boundedness of S), from H~/2(T") to H*(Q2) and
using estimate (3.26) we arrive at the third assertion. O

4 The control constrained optimal control problem

Let us now investigate how the results of the foregoing sections change in case of additional
control constraints. We consider the model problem (2.6) where we search a control

2 € Zy={z€ H™Y2(T): 2, < 2 < z, on I in sense of H’l/Q(F)}.
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For simplification we take constant control bounds z,, z, € R with 2z, < z,. The control
constraints in H~'/2(T), e.g. z < z, are defined by

(z—2z,v)p <0 Vo€ HY*T) withv>0a.e onT.

The optimality condition in Theorem 2.2 transforms to a system involving a variational
inequality

a(u,,v) — (z,0)p =0 Yo € H'(Q),
a(p,v) — (uz,v) = (uf — ug, v) Vv e HY(Q), (4.1)
(w—z,au, +p)p >0 Yw € Z,q.

and in a more compact form the optimality condition can be written as
(w—2,T%+g)p >0  Yw € Zy. (4.2)

Apparently, we can expect better regularity for the optimal control. For unconstrained
problems we had e.g. lim,_,,) z = 00 near concave corners z/). With box constraints
the control z becomes then constant in a neighborhood of such a corner and is hence
regular. In what follows we abbreviate by C and C the index sets of concave and convex
corners, respectively.

In the following the active and inactive sets are denoted by

At i ={z eT: (T2 +g)(x) < 0},
A ={zel: (T +g)(z) >0}, IT:=T\(ATUA).

The optimality condition (4.2) implies that

2 on AT,
2 =1z, on A, (4.3)

v € [24,25] on Z.

Let us introduce some further notation. Let Qjé, j € C, denote angular sectors around z7)
with sufficiently small radius R such that no other corner or transition point is contained
in that ball. In the same way we define sectors Qf%, j € T, around the transition points
ng ) in such a way that no other corner or transition point is contained in that sector. The
outer boundaries are denoted by Fg% = 89% NI and IN% = 8@% N T, respectively.

For our proof we need a structural assumption upon the active set which is in most

cases satisfied.

Assumption B Assume that the control bounds are strictly active in a vicinity of reentrant
corners, 1. e. there exist some constants R, ™ > 0 such that

(T2 4+ g)(x)| >1  fora.a x €T,
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for all 5 € C. Moreover, the number of transition points xgz), jgeT ={1,...,dr}, is

finite, and transition points can only occur in the interior of a boundary edge I';, i € C.
Since singularities can also occur at the transition points ng) we introduce the weighted

Sobolev spaces Wg’q((lﬁ), k€N, g€ [l,0] and g € R, in a neighborhood of a transition

point defined as the set of functions with finite norm

( 1/q
> / pi(@)P|Dv(z)|"dx |, if g € [1,00),
A NETRAL ‘
”UHW;;"J(Q%) : la| <k "R (4 4)
Z esssup p;(2)?| D (z)], if ¢ = oo,
lal<k =€

\

for all j € T, where p;(z) := |z — 2’| The trace spaces ngl/p’p(f‘]é) are defined in
analogy to (2.19).

In the first part of this section we show that the regularity is now improved in compar-
ison to the unconstrained case. However, we also have to show that singularities occurring
in a vicinity of the transition points :ng) are weak enough such that the convergence rate
is not affected by these points. The proof of the following lemma is motivated by a similar
observation for Dirichlet control problems in H/2(T") [20].

Lemma 4.1. Let be given f,ug € C%(Q) with some o € (0,1). Let (u,,z,p) be the
solution of the optimality system (4.1) and denote by &, E’ﬁ € R the vectors defined in
Corollary 2.6. Assume that z satisfies Assumption B.

In a vicinity of the corner points 9, j € C, there holds

u. € WRA(QR) NWES(Q%), p e W2HQ) N W™ (Q}), =€ Wiy,

J J

where y; = 0 if j € C and vi = if j € C. Moreover, in a vicinity of a transition point

x(TJ), j €T, we have the local regularity

u, € H*(QR) NWEF(Q), p e HX(Q) nWS(Q}),  z€ H'(I),
with arbitrary € > 0.

Proof. From standard arguments we conclude from z € Hﬁl/QLF) that u, € H'(Q) —
LI(RY), q € [1,00), and consequently also p € H*/2+5(Q) N C%*(Q) with some s € (0,1/2]
and o € (0, s). The state variable u, satisfies the differential equation

—Au, +u, =0 in €,

as well as the Signorini boundary conditions

u, > —a lp and Oplly = 24 on A,
u, < —alp and Opll, = 2 on AT, (4.5)
u, = —a p and Ontty € [Za, 2] onZ,
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stated already in (4.3).

Let (7, ¢) denote polar coordinates centered at :z:(Tj), and without loss of generality let
¢ = 0 belong to Z and ¢ = 7 to A~. From [9, Section 2.3| it is known that the solution u,
admits the decomposition

w,(r, ) = ug(r,p) + Brisin(Ap), A =1/2,

with a regular part ugr € W29(Q%,) for ¢ < 4. Tt is easy to show that u, € C%(Q) with
o € (0,min{s,1/2}). For ug this follows from an embedding and for the singular part this
is a consequence of a direct calculation. From Theorem 2.4 and Theorem 2.5 we then get
peW2*Q) N Wgoo(Q) since u, +uy — ug € C%?(Q). The regularity of u, in the vicinity

of a corner 21, j € C, follows from the regularity of p using the arguments from the proof
of Corollary 2.6. The stated regularity of z in the vicinity of convex corners follows again
from embedding and trace theorems. In a vicinity of concave corners we have z = z, or
2 = 2 and hence z € H'(Q,) for j € C.

It remains to investigate how the regularity of p in a vicinity of a transition point is
transferred to the state u,. The definition of the weighted Sobolev space and Assumption
B imply p € W2>(Q%,) for all j € T. With the chain rule one obtains the normal derivative

Oz (1, 0) = Opur(r, ©) F BAr* ! cos(Ay)

and to fulfill (4.5) we require

!
Zq < Opu,(1,0) = Opug(r,0) — B !,
e = Ont,(r,m) = Opur(r, 7).
Since 77! grows unboundedly towards infinity for 7 — 0, we have to set B < 0 to ensure
the first condition. Moreover, we have for ¢ = 7 the inequality
!
u,(r,m) = up(r,7) + Br* > —a"'p.

Let us now take the condition u, > —a~!'p on A~ from (4.5) into account. From the trace
theorem and the Sobolev embedding theorem we get

ug,p € W2(Qp) — W2TV09(Iy) — C' (),

which holds for ¢ > 2. Thus, we can perform a Taylor expansion of ug(r,7) + o 'p(r, )
in the point » = 0 with some intermediate point £ € [0,7]. Exploiting the fact that
ur(0,7) = —a~'p(0, 7) leads to
up(r,m) +a 'p(r, ) + Br >0
—  up(0,7) +a 'p(0,7) + 10, (ur(&, ™) +a 'p(&, ) + Br* >0
— 0, (uR(f,ﬂ) + oflp(f,ﬂ)) + BrAt > 0.
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The term 9, (ug(&) + a~tp(€)) is bounded since ug and p are regular and thus the inequality
holds in case of B > 0 only. We already stated the condition B < 0 and consequently,
the boundary conditions (4.5) can only be satisfied in case of B = 0. The singular part
corresponding to A = 1/2 hence vanishes and thus

- 3
us(r, @) = Br3/?gin (égo) , B e R,

is in general the leading singularity. The regular part has the regularity ur € W2°(%,)
since the singularity corresponding to A = 5/2 is contained in that space. However, by
a direct calculation one can show ug € Wf/go(flg{) N H2(Y,) by exploiting the definition
of the weighted Sobolev space from (4.4). Moreover, we also get a decomposition of the

normal derivative into z = zg + zg with

. —Brl/2 T
zg = Oyup € H'(I'%), 2g = O g = TS
0, on A~.

A simple calculation yields then zg € H'~*(I'}) for arbitrary ¢ > 0. O

In analogy to the unconstrained case we discretize the optimality condition (4.2) and
search a solution in the discrete spaces Z; and Uj. Throughout this section Zj, is the space
of piecewise constant functions as introduced in Section 3.3.1. The choice of piecewise
linear controls considered in Section 3.3.2 is also possible, but the proof of Lemma 4.3 is
not true for this choice.

The discretized optimality system reads now: Find zj, € Zj, 44 := Z1, N Zgq and u, p, pp, €
Uy, such that

a(uzp,vp) — (2n, vp)p =0 Yo, € Uy,
a(pn, vn) — (Uzp, vn) = (Upp — Ug, Up) Yoy, € Uy, (4.6)
<wh — Zh, QU p +ph>r 2 0 vrwh S Zh,ad;

where uy ), € Uy can be computed from the equation

a(wgp,vn) = (f, vn)q Vo, € Uy,

in advance. As already done in the proof of Theorem 3.2 we introduce the solution z; €
Zh qa of the auxiliary problem

<Uh — Zh, Tagh —+ g>F Z 0 for all Vp € Zh,ad- (47)

Note that we only approximated the ansatz and test space, but not the operator 7.
Analogous to Theorem 3.2 we can now show:
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Lemma 4.2. Let Tg DT :={z € T: 2,(x) # z,(x)}. Then the estimate
12 = znll-172(r
< c[I(S = )z llzz@) + 18" = S = w) ey
+allNV = Nzl gzwy) + lup — upnllzz) + 12 = Zall g1z (4.8)
holds.

Proof. The arguments applied in the proof of Theorem 3.2 widely coincide with the control-
constrained case and we just outline the differences. We apply again the triangle inequality
and get

|z — ZhHH*ﬂ(F) <z - 5hHH71/2(r) + [12n — ZhHH71/2(r)> (4.9)
where Z, is the solution of (4.7). One easily confirms that (3.9) with w, := Z, — z, also
holds in the control-constrained case when we replace all “=" by “<”. Thus,

[wnllF-1/20y < Cwns (T = T%) (Zn = 2))p + (wns (T = T%) 2 — g + gn)r - (4.10)

The estimate (3.10) remains the same and we have
{wn, (T57 = T%) (20 = 2))p < cllwnll g2y l2 = Znllg-1/2(r)- (4.11)
Moreover, (3.11) becomes
(wa, (T =T%) 2+ 9 — gn)r
< cllwnllr-12(ry) (HSZ(Sh = 9)zllmao) + 105k = 57)(w = wa)ll a2y

185 (1r = wgmllragroy + ol Wa = Nz llvaqee) ) (112)

Dividing by ||wp|[ z-1/2(r) and exploiting stability properties of Sj yields the assertion. [J

Deriving error estimates for the term ||z — Zp|| yy-1/2(1) requires more effort in the control-
constrained case than in the unconstrained case where we merely applied the Céa-Lemma
(3.8) and inserted the best-approximation properties from Lemma 3.5.

Lemma 4.3. Let z € Z,q and Z,, € Zp qq denote the solutions of (4.2) and (4.7), respec-
twely, where Zy 4q 15 the space of functions which are feasible and piecewise constant on
each EE € &,. Then, the error estimate

||Z — 2h||H*1/2(F) S Chmin{3/2,5\}—a’ with ;\ = Hlelél )\j,
J

holds for arbitrary € > 0, provided that Assumption B holds.
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Proof. We take the Céa-type Lemma from [10, Lemma 7.16] and get by using the results
of Lemma 2.1

a . , e
EHZ - ZhH?er(r) Své%fd (v—2p, T2 + )

+ inf {(vh —2,T%% + g)p +c|lz — Uh“?{—lﬂ(r)} :

VR€Zn,ad

In the present situation the first term on the right-hand side vanishes for the choice v := 2,
(this is possible since Z, € Z,4). The second term vanishes if we choose

vy € Zh,ad = {Zh € Zhad: 2n = 2o on A™, 2z, = 2z, on /ﬁ},
since vy, — 2 =0 on AT and T%z + g = 0 on Z. We consequently get

|2 = Zullg-12ry < e inf ||z = onl g-172(y.- (4.13)
VhE€ZN ad

We insert the L?(T')-projection onto Zj, as intermediate function and obtain
Iz = vnll 12y < |2 = P/?Z”Hfl/?(r) + 1Pz - Ul =172y (4.14)

The first term also occurs for unconstrained problems and an estimate is given in Lemma
3.5. However, we can exploit that the term z — P?z vanishes in a neighborhood of concave
corners which can thus be neglected. This implies

Iz~ Bl -svaqey < eh™ Al (4.15)
Yy

)-
For the second term in (4.14) we choose

Uh|E = § Zas if ENA- #@,
Zbh, 1fEﬂ.A+ 7&(2)

Note that v, € Z;md by construction, and that Pf? z — vy, vanishes on all elements
E¢Ky={Ec&:ENA*#0 A ENT #0}.

Due to Assumption B the set K} contains a finite number of elements, independent of h.
Exploiting the orthogonality property of the projection P? we get

1Bz —onll oy = s S (P22 — v o)
Iell 1720y =1 Ee),

= sup Y (Bl —w), F)r

H‘P”Hl/z(r):l Eek),

< sup Z Iz = vnll 2 | P el 2 () - (4.16)
||<P||H1/2(F):1 E€k,,

A
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Since vy, coincides with z at the endpoint of F which belongs to AT we get with the
Poincaré-Friedrichs inequality

||Z — UhHL?(E) < Ch1_8,|Z|H175/(E), for E € ICh,

with arbitrary € € (0,1/2), where we exploited the regularity of z stated in Lemma 4.1.
For the second term on the right-hand side of (4.16) we apply the Holder inequality and
stability properties of the projection P? and get

1Bl 2 (my < ch > |l Lagmy.
Hence, (4.16) becomes

1572 = onll -2y
S Ch3/2_61_1/q Z |Z|H176/(E)||@||LQ(E)

Eeky
1/2 1/2-1/q
< chB2E ( > !z\i;lswE)) ( > 1) Il zocry
EecKy, BeXn

< Ch3/2_€,

where we exploited that the number of elements in K}, is independent of h, the embedding
lollzary < cll@llgizgy = ¢, and we chose € = 1/q = £/2. Inserting this together with
(4.15) into (4.14) completes the proof.

O

The control z is in general active in the vicinity of concave corners. In the following
lemma we show that this property is transferred also to the discrete solution z;,, and hence
we get z — 2z, = 0 near these corners. This is the key idea for the improved error estimates
that we will show in Theorem 4.5.

Lemma 4.4. Let Assumption B be satisfied. Then, some constant hg > 0 exists such that
zn(x) =2z, or zp(z) = 2, for all x € T,
provided that h < hyg.

Proof. Without loss of generality we show the assertion for the case that the upper bound
is strictly active, i.e. T®z+¢ < —7 within I';;. The key step is to show uniform convergence
of T¢*z, + gi, towards Tz + g, i.e.

(T2 + g) — (T2 + gn) | ey =5 0, (4.17)

which then implies T}z, + g, < 0 within F% when h < hy. By element-wise consideration
of the discrete optimality condition (4.2) we conclude that z, = z, and have shown the
assertion.
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From the definition (2.11) of 7% and g as well as their discrete analogues (3.5) we get

(T2 + g) — (Ty'zn + gn)llLos(r) = lla(uz — uzn) + (0 — pu) || Lo ()

Let us first derive a pointwise estimate for the state variable. With the triangle inequality
and a trace theorem we get

|tz — uzpl| Loy < e = Shz||pe@) + ISk (2 = 2n)| Lo (0)- (4.18)

For the first term we insert the intermediate function I,u,, apply the triangle inequality
and the discrete Sobolev inequality, and insert the intermediate function u, which leads to

”UZ — ShZHLoo(Q)
< cf|luy = Tpus|| L) + | In h|1/2 (||uz — Iy || o) + JJus — Shz||H1(Q))
< ¢|In p|t/2pminttA}—e (|uz|W§,2(Q) + |uZ|W§,oo(Q)) —0 as h—0. (4.19)
In the last step we applied (3.13) and (3.16), as well as the interpolation error estimate
from [21, Corollary 3.30|, and exploited the regularity stated in Lemma 4.1.

Moreover, we get with the stability of S, from L*(T') to L>(Q), the triangle inequality,
and the inverse inequality from |23, Lemma 10.10] the estimate

[Sh(z = 2n) L) < ellz = znllL2m)
<c|lz - PhazHLz(p) + K2 (Hz — P,?ZHHA/Q(F) + |z — ZhHH—l/Q(F)) ) (4.20)

With the estimates for the L?(T')-projection of Lemma 3.5 we immediately get
HZ — P}?ZHLQ(F) + h_l/ZHZ — P}?ZHH*UQ(F) § Chmin{l’/\_l/2_8}. (421)

The estimate of Lemma 4.2 for I'y = I'" and the error estimates from Theorem 3.3 and
Lemma 4.3 moreover lead to

hfl/QHZ - Zh”H*”(F)

< ch 2118 ~ Su)2ll @y + (5" = 5w = wa) vy

+ all(V = Na)2l g saqey + Ny = wgallzzge + 112 = Znllg-1vaqr) |

<e (hmin{3/2,2)\71/2}75 (e[

+ hmin{L)\_l/Q}_E(||p||W§v°°(Q) + HUZHW;OO(Q)) + hmin{l,ﬁ}—a>' (4'22)

As A > 1/2 we conclude from (4.21), (4.22) and (4.20) that

|Sh(z = 21)||Le@) = 0 as h — 0. (4.23)
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and consequently we get with (4.19) and (4.18) the property
lu: — uzpllzoeqry =0 as h — 0. (4.24)

It remains to show pointwise convergence of the discrete adjoint state. We use the defini-
tions p = S*(u, + us — ug) and pp = Sy (uyp + upn — ug), introduce several intermediate
functions and get the equivalent formulation

p—pn=5"(Sz+up —uq) — Sp(Shzn + upn — ug)
= (5" =S5;)(Sz+up —uq) + Sp(S — Sh)z
+ S;Sh(z — zn) + Sy (up — uypp). (4.25)

One easily confirms that

(5" = Sp)(S2% + up — ua)| Loy — 0,
1S5(S = Sh)z|lzeery < [I(S = Sh)zllr2@) — 0,
1555 (2 = 20) lLee @y < [1Sk(2 — 2) || Lo (@) = O,
1S5 (up — upp)lleery < llup — ugnllzz@) = 0,

as h — 0, where we can reuse the arguments used in (4.19) and (4.23) to show the first
and third estimates. The second and fourth estimates follow from stability properties of
Sy and S} as well as trivial convergence properties of the finite element method. Together
with the reformulation (4.25) and the triangle inequality we arrive at

||p — thLoo(]_") — O as h — 0
Together with (4.24) the desired property (4.17) follows. O

We are now in the position to improve the error estimates from Theorem 3.7 exploiting
the fact that z — z; = 0 in the vicinity of concave corners.

Theorem 4.5. Let )\ := min; s A; be the singular exponent of the largest conver angle of
Q. Then, the error estimates

||z _ Zh||H—1/2(r) < Chmin{3/2,5\,2>\—1/2}—e7
|z — Zh”L?(r) < Chmin{l,X—l/2,2)\—1}—a7
w — unl oy < i}

hold, provided that Assumption B is satisfied.

Proof. Due to Lemma 4.4 there exists some R > 0 such that z,(z) = 2(x) € {z4, 2} for
all z € T, and j € C. Since , behaves like the best-approximation of z (see (4.13)), w
also get zh( ) € {24, 2} for all z € T, j € C. In the following we write

Qo =0\ [[J2%h|. To=09nT.

jel
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By construction the term Z, — z, vanishes on I' \ I’y and the assumptions of Lemma 4.2
are satisfied. In order to show the estimate in the H~'/2(T")-norm we have to discuss the
four terms on the right-hand side of the estimate in Lemma 4.2.

For the first term we get from (3.13)

1(S = S)2llz2@@) < ™™ 27 flu]| 22 (4.26)

The same estimate follows for the third term exploiting that u; € W;Q(Q) For the second
term of (4.12) we write p := S*(u — ug) and p" := S;(u — u,) and therefore

lp = 2"l ar2/2000) < 2 = Inpllisrzeg) + h 2 (Il = npllzay + 0 = P lz2ey) - (427)
using the argument from (3.17). The interpolation error estimate (3.18) leads to

lp = Iupll iy + 072D = Dplliay < ch™ P2 p]l ey (4.28)

provided that v; = max{0,3/2 — \; + ¢} for all j € C. We also exploited that I'y excludes
neighborhoods of concave corners. For the finite-element error on the boundary we exploit
Lemma 3.12 in [1] which states that if p € WEJOO(Q;E) with 8; = max{1/2,2 — \; + ¢}, the
error estimate

”p - ph||L2(F§%) <c {hmin{2’1/2+)\j}_€|p|W§;°°(QgR) + Hp - ph||L2(QgR) (4'29)

holds. In [1, Equation (3.33)] an estimate on the regular part of the boundary
Q9 =\ (U Q{é) , I9=00%NT,
jec
is proved which reads in our situation
lp = p" 2 eyery < ch*FIplwzceares,) + 10 = 2"l r2e)- (4.30)
Furthermore, we use a standard L?(Q)) estimate to get
lp = p"lz2() < k™27 (Jlul 12g0) + uall o) - (4.31)
Combining the estimates (4.29), (4.30) and inserting (4.31) leads to
Ip = 2" [|72(0)
< Z Hp _thiQ([‘%) + Hp - ph”%Q(F%&g)

jel
2min{1/2+X,2}—¢ 2 d—e|, |2 o h2
< C[h Z \ﬂwg}mmgﬁ +h ’p|WQv°°(Q;f’/~"2) +lp—p HL2(Q)
jec
< Cthin{2,1/2+5\,2)\}f€. (4_32)
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From Lemma 4.1 it is known that p possesses the regularity required in (4.32). Inserting
now (4.28) and (4.32) into (4.27) leads to the estimate

||p —thHl/Q(FO) S Chmin{S/Z,)\,Q)\fl/Q}fe' (433)

It remains to estimate the fourth term on the right-hand side of (4.12). Additional singu-
larities occur now in a neighborhood of the transition points. The optimal state wu, is in
W2 only on the set

Q9 =\ (U Ul Q;;) ;o TR =003NT,
jec JET

but it possesses the regularity u, € Wf /ZO(QJ ) in a vicinity of the transition points between

active and inactive set (see Lemma 4.1), and u, € VV2 OO(QJ ) in a vicinity of corners with
p; = max{1/2,2 — \; + e}. Thus, estimate (4.29) can be applied again and we obtain for
u,r = Nz and u”jr = N,z the estimate

s = w27y

= Z ||u2’ - h||L2 FJ + Z ||uZ - uh“LQ FJ + ||u2 - UZLH%/?(F;;Q)
jec JET

< c[thm{l/H/\Q} EZ|“z|2 (@) + 0t EZ'“Z vy

je€ JET Mz
+ h47€\uz’%4/27w(9;;;2) + flus — U?H%Q(Q)}
< ch2min{1/2+3,2),2}—¢ (4.34)
In analogy to (4.28) we also get
e = Tnual ooy + b2 llus = Tnus 2y < Chmin{?’/z’H}\|uz!|w;Q(F)
and with an argument like (4.27) this implies
u, — UZHH1/2(F0) < chmin{3/2,X,20-1/2} —¢ (4.35)

The estimates (4.26), (4.33) and (4.35) together with Lemma 4.3 and Lemma 4.2 yield the
desired estimate in the H~/2(I")-norm. The estimate for the control in L?(I') and for the
state in H'(Q) follow with the same arguments like in the proof of Theorem 3.7. [

5 Numerical results

In order to confirm the theoretically predicted convergence rates we constructed a bench-
mark example on the family of domains

QY = (=1, D)2\ {(r cos,r sinp): r >0, p € (0,27 —w]} forw € [g,Q’/T).
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These domains have largest interior angle w and the smallest singular exponent is hence
A := 7m/w which defines the regularity of the solution. An example for an initial mesh of
Q7/* is illustrated in Figure 2. The data of the model problem were chosen as follows. The

Figure 2: Initial mesh for the domain Q7/4.

desired state is given by yq := 2?2 + 22, the right-hand side by f = 0 and the regularization
parameter o = 0.01 is chosen. The computed optimal control and its corresponding state
are plotted in Figure 3 for both L?(T)- and H~/?(T')-regularization.

The error norms ||z — 23|/22(0) and ||[u — up||g1(@) were computed approximately by
comparison with a solution on a finer mesh with ~ = 27°. To improve the accuracy of
the reference solution the fine mesh is further refined locally in the vicinity of the singular
corner ¢ := (0 0)" such that the mesh property

BB i =0
hTN{ o BTTER oy eT

hra#if rp >0,

holds, where ry := dist(c,T). In the presented experiments the refinement parameter
1 = 0.5 was chosen. The global and local refinement was realized by a newest-vertex
bisection strategy. The results of our computation on the domain Q372 are summarized
in Table 1.

As discussed in Section 4 one can expect better error estimates when control constraints
are active in the vicinity of reentrant corners. Thus, the model problem described above
was computed with the additional constraint

2 € Zyg={2€ HY*T): —1<2<1}. (5.1)

The numerically computed convergence rates are presented in Table 2 for the domain 3/2.
It is observed that the proven error estimates from Theorem 4.5 seem to be too pessimistic
since the rate 2\ — 1 = 1/3 is expected, but the rate one is obtained in the experiment.

In Figure 4 the convergence rates of the discrete control in L?(T") for the computation on
the domains Q¥ with w € {w/2,37/4,57/4,37/2,7r/4} are presented. The experimentally
determined convergence rates are computed from the error norms corresponding to the
meshes with » = 276 and A = 277. Again, the result of Theorem 3.7 for unconstrained
problems is confirmed, but the numerical results for constrained problems are better than
predicted in Theorem 4.5.
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Piecewise constant control Piecewise linear control

h # DOF lu—unllm@ lz—allezey  lu—wnllme Iz —zll2w)
22 113 0.43728 (0.93) 1.56294 (0.65) 0.42620 (0.97) 1.60564 (0.61)
93 417 0.27009 (0.70) 1.30371 (0.26) 0.26396 (0.69) 1.34722 (0.25)
2= 1601 0.16410 (0.72) 1.10581 (0.24) 0.16090 (0.71) 1.13909 (0.24)
275 6273 0.09991 (0.72) 0.95184 (0.22) 0.09819 (0.71) 0.97890 (0.22)
26 24833 0.06125 (0.71) 0.82659 (0.20) 0.06025 (0.70) 0.84954 (0.20)
27 98817 0.03774 (0.70) 0.71919 (0.20) 0.03714 (0.70) 0.73915 (0.20)
28 304241 0.02330 (0.70) 0.62404 (0.20) 0.02292 (0.70) 0.64130 (0.20)

Table 1: Numerical experiment without control constraints on an L-shaped domain indicat-
ing the absolute values of the computed error norms with the corresponding experimentally
computed convergence rates in parentheses.

Piecewise Constant Control Piecewise Linear Control

h o #DOF lu—wlme [z—2llze)  lu—wlme [z —20llczm

272 113 0.25044 (0.96) 0.67491 (0.71) 0.24991 (0.97) 0.76283 (0.82)
273 417 0.12798 (0.97) 0.31461 (1.10) 0.12939 (0.95) 0.36988 (1.04)
24 1601 0.06478 (0.98) 0.18287 (0.78) 0.06437 (1.01) 0.20800 (0.83)
270 6273 0.03255 (0.99) 0.10157 (0.85) 0.03193 (1.01) 0.11023 (0.92)
26 24833 0.01589 (1.03) 0.05030 (1.01) 0.01573 (1.02) 0.05432 (1.02)
27 98817 0.00767 (1.05) 0.02423 (1.05) 0.00765 (1.04) 0.02634 (1.04)
278 394241 0.00343 (1.16) 0.01234 (0.97) 0.00343 (1.16) 0.01314 (1.00)

Table 2: Numerical experiment with control constraints on an L-shaped domain indicating
the values of the computed error norms with the corresponding experimentally computed
convergence rates in parentheses.
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Figure 3: Left: solution of the optimal control problem in L?(T), right: solution of the
optimal control problem in H~/2(I'); solid surface is the state, the curve on the boundary
the optimal control.
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