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Abstract

We propose and analyse new space-time Galerkin—Bubnov type finite element
formulations of parabolic and hyperbolic second order partial differential equations
in finite time intervals. This approach is based, using Hilbert type transformations,
on elliptic reformulations of first and second order time derivatives, for which the
Galerkin finite element discretisation results in positive definite and symmetric ma-
trices. For the variational formulation of the heat and of the wave equation we prove
related stability conditions in appropriate norms, and we discuss the stability of re-
lated finite element discretisations. Numerical results are given which confirm the
theoretical results.

1 Introduction

While for the analysis of parabolic and hyperbolic partial differential equations a variety of
approaches such as Fourier methods, semigroups, or Galerkin methods is available, see, for
example, [19, 23, 24, 27, 37, 39|, standard approaches for the numerical solution are based
on semi—discretisations where the discretisation in space and time is splitted accordingly,
see, e.g., [35] for parabolic partial differential equations, and [7, 8] for hyperbolic problems.
More recently, there exist space-time approaches as for example in [1, 25, 26, 29, 32, 36]
for parabolic problems, and [3, 5, 12, 15, 40] for hyperbolic equations.

In this work we introduce a new Fourier type method for the analysis of first and second
order ordinary differential equations, and we transfer this approach to the corresponding
parabolic and hyperbolic partial differential equations. The aim of this work is to pro-
vide space-time Galerkin-Bubnov type variational formulations where unique solvability
follows from related coercivity estimates. This analysis may then serve not only as basis
for the development and numerical analysis of adaptive space—time finite element methods
simultaneously in space and time, and for the construction of time—parallel iterative solu-
tion strategies, but also for the analysis of related boundary integral equations methods for



the heat and wave equation, respectively, and the coupling of finite and boundary element
methods.

As a first model problem we consider the Dirichlet boundary value problem for the heat
equation,

adwu(z,t) — Agu(z,t) = f(x,t) for (x,t) € Q:=Q x (0,7T),
u(z,t) = 0 for (z,t) € X:=T1 x (0,7, (1.1)
u(z,0) = 0 for x € Q,

where Q2 C R?, d = 1,2,3, is a bounded domain with, for d = 2,3, Lipschitz boundary
[' =090, a > 0 is a given heat capacity constant, and f(x,t) is a given right—hand side.
Note that in the spatially one-dimensional case d = 1 we have Q = (a,b) and I' = {a, b}.

A variational formulation of (1.1) is to find w € L*(0,T; Hy(Q2)) N Hy (0,75 H(9))
such that

/OT/Qaatu(:c,t)v(x,t) dde/OT/vau(x,t)'V:vv(l’at) de di (1.2)

:/OT/Qf(:c,t)v(x,t)dxdt

is satisfied for all v € L*(0,T; H}(Q)), where we assume f € L*(0,T; H'(Q)). Note that
we use the standard Bochner spaces, where u € Hg (0, T; H~(€2)) satisfies u(x,0) = 0 for
x € Q. Related to the variational formulation (1.2) we introduce the bilinear form

a(u,v) = /OT/Q [oz Owu(z, t)v(z,t) + Vyu(z,t) - va(x,t)] dxdt. (1.3)

Since (1.2) is a Galerkin—Petrov variational formulation we need to establish an appropriate
stability condition to ensure unique solvability, see also [13, 29, 32, 36]. A key ingredient in
deriving the stability condition will be the definition of an appropriate norm as it is done
in what follows.

For u € L*(0,T;Hg(2) N Hy (0,T; HH(Q)) we define w € L*(0,T; Hj(Q)) as the
unique solution of the quasi—static Dirichlet boundary value problem

—Ayw(z,t) = adwu(z,t) — Agu(z,t)  for (z,t) € 2 x (0,T), } (1.4)

w(z,t) = 0 for (z,t) e I' x (0,7),

which is the unique solution of the variational formulation

/ /wat Vo(z,t) dedt / / a@tuxt Amu(x,t)}v(x,t)d:cdt
= /0 /Q adwu(z, t)v(x,t) + Vyu(z, t) - va(:v,t)] dr dt = a(u,v)



for all v € L*(0,T; H3(€2)). When chosing v = w this gives

T
ooy = | [ IVowlat)Pdods
T
= / /[a@tu(:c,t)—Amu(x,t) w(z,t) dxdt
0o Jo

< |ledru — AacUHL?(O,T;H—l(Q)) ||w||L2(0,T;H3(Q)),
and by duality we also obtain

(a0 — Ayu, v)g

a0 — Agul|L20,mim-1(0)) = sup
0£veL?(0,T;HL(Q)) ||U||L2(0,T;Hg(ﬂ))

<vmwa vJJU>L2(Q)
= sup v < ||Vmw||L2(Q) = ||w||L2(0,T;Hg(Q))-
0#£vEL2(0,T;HE () || mUHL?(Q)
In particular we have
|adu — AwuH%Q(O,T;H—l(Q)) = ||w||iQ(0,T;H5(Q)) = a(u,w)

as the energy norm for u € L*(0,T; Hy(Q)) N H (0,75 H(Q)). Indeed,

|l — Agul| 20,1 =0 for wu e LQ(O, T; Hé(Q)) N H&(O, T; H_l(Q))

implies u = 0 since the homogeneous heat equation with zero Dirichlet boundary conditions
and zero initial conditions has only the trivial solution. An immediate consequence of (1.5)

is the stability estimate

a(u,v)

a0 — Azullr2mm-1(0) < sup
0£veL?(0,T;HL () ”UHLQ(O,T;H(%(Q))

for w € L*(0,T; Hy(2)) N Hy (0,T; H~'(€2)). From (1.5) we further conclude

||w||iQ(0,T;Hé(Q)) = a(u,w)

= /T/Q [a@tu(:c,t)w(az, t)+ Veu(z,t) - Vyw(z, t) |de dt

< Nladwl|r20rm-1@) w2052 ) + | Vaul 2@ [ Vawl 2@

IA

V2 \/Haatu”%Q(O,T;H—l(Q)) + ”vqu%Q(Q) ”wHLQ(O,T;Hé(Q))v

i.e. for all u € L*(0,T; H'(Q)) N H'(0,T; H~'(Q2)) we have

|adiu — Ayl 20, rm-1(0)) < V2 \/”aaﬁu”%Q(QT;H*l(Q)) + [IVaullZ2g)-

3

(1.6)

(1.7)



For the reverse inequality and for u € L*(0,7; Hy(Q2)) N Hy (0,T; H~'(2)) we consider

|aOyu — A, u||L20TH oy = alu,w)=a(u,u)+alu,w —u)

:/ / a@tuu+Vu qu dazdt—l—/ /Vw Ve(w —u) dedt

= (D) 3oy + IVatll3ag) + 1 Valw = 0) 32y + (Vatt, Valw — ) 12
2

> [[Voullizg) + I Va(w = w22 iq) = I Vatll 2@ I Vel(w — u)l|2(q)
> 1 \V4 2 \V4 - 2
Z IVaull2g) + IVa(w — u)[|72q)
1 2 2
= 5 |12l + Nadulo rosr-1(a) - (1.8)
In particular,
lull 20,713 @) (0711 (0)) = \/||a8tu||i2(o,T;H—1(Q)) + IVaull72 g (1.9)

defines a norm in L*(0,T; Hy(Q2)) N Hy (0,T; H~(£2)) which is equivalent to (1.5), and
from (1.6) we now conclude the stability condition
1 a(u,v)

—= |lull L20.7:112 ()nm? (0.1 -1 () < sup
V2 (0.1 Ho ()N Hs, (0.1 HHE) ozver2 0,13 @) 10122 0,151 )

(1.10)

for w € L*(0,T; Hy(2)) N Hy (0,T; H~'(2)). Note that in [32] the norm (1.9) was used
within a finite element analysis of the variational formulation (1.2). In particular, the
bilinear form (1.3) is continuous satisfying

la(u,v)| < V2 HUHLQ(O,T;H(}(Q))OH& (0,T;H-1(Q)) vl L2(0,T;HL(€)) (1.11)

for u € L*(0,T; H} () N HY(0,T; HY(Q)) and v € L*(0,T; H}(Q)).
For v € L*(0,T; H}(Q)) we finally define

t
u(z,t) = / v(x,s)ds forxz e, te|0,T].
0
By definition we have @ € L*(0,T; Hy(2)) N H; (0,73 H~'(R)). Then,
T
a(u,v) = / / [a@tﬁ(x,t)v(:p,t) + V. u(z,t) - va(x,t)} dx dt
0 Jo
T
- / / [oz [ata(x, O + V,i(z) - Vadyilz, t)} dz dt
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By using the stability condition (1.10), the continuity (1.11), and surjectivity (1.12) this
implies unique solvability of the variational problem (1.2), see, e.g., [6, 13]. The initial
Dirichlet boundary value problem (1.1) therefore defines an isomorphism

L:L*(0,T; Hy(Q)) N Hy (0, T; H(Q)) — [L*(0, T; Hy ()] (1.13)

When considering the variational formulation (1.2) and doing integration by parts in time,
this leads to the adjoint variational formulation to find w € L?(0,T; H3(2)) such that

—/f/ﬂu(w,t)a@w(az,t) da:dt+/0T/Qqu(SC,t)'va(ﬂfat) dx dt (1.14)

:/OT/Qf(x,t)v(x,t)dxdt

is satisfied for all v € L*(0,T;Hy(Q)) N Hy(0,7; H'(Q)), where the test space now
includes the final time condition v(z,7) = 0 for x € , and where we now assume
fe[L*0,T; Hy(2)) N Hg(0,T; H(2))]'. As for the primal variational formulation (1.2)
we can establish unique solvability of the adjoint variational formulation (1.14), which then
implies an isomorphism

L:L*0,T; Hy(Q)) — [L*(0,T; Hy(2) N H(0,T5 H'())]'. (1.15)

Both the primal variational formulation (1.2) and the adjoint variational formulation (1.14)
are Galerkin—Petrov formulations where the test space is different from the ansatz space,
in particular with respect to time. This motivates to consider variational formulations for
the initial boundary value problem (1.1) where ansatz and test spaces are of the same order
also in time. Using the isomorphisms (1.13) and (1.15) and some interpolation arguments
one expects to consider test and ansatz spaces as subspaces of the anisotropic Sobolev
space H1/2(Q), e.g., [4, 19, 20, 23, 24]. In the case of an infinite time interval, i.e. T = oo,
such an approach was considered analytically in the PhD thesis of M. Fontes, [14], see also
[21] for a related numerical analysis using wavelets. However, here we will consider only
finite time intervals with 7" < oo. In the case of time—periodic boundary value problems,
a related approach is considered in [22].

Although the numerical analysis of space—time finite element methods for the variational
formulation (1.2) is well established, see, e.g., [1, 25, 26, 29, 32, 36], the analysis of boundary
integral equations and related boundary element methods for the solution of the heat
equation (1.1) relies on Galerkin-Bubnov variational formulations in anisotropic Sobolev
trace spaces of H1/2(Q), see, e.g., [2, 4]. In particular, instead of the stability condition
(1.6) in the finite element analysis, an ellipticity estimate in the boundary element analysis
is used. So we are interested in a unified approach to analyse both finite and boundary
element methods within one framework, and allowing a numerical analysis also for the
coupling of space—time finite and boundary element methods.

In addition to the initial boundary value problem (1.1) of the heat equation we also



consider the related model problem for the wave equation,
SOuu(z, t) — Apu(z,t) = f(z,t) for (z,t) € Q:=Qx (0,T),
u(z,t) = 0 for (z,t) € X:=T1 x (0,7), (1.16)
uw(x,0) = Ou(z,t)ji—0 = 0 for x € Q.

A standard approach for a space-time finite element method to solve (1.16) is to consider
an equivalent system with first order time derivatives, see, e.g., [3, 12]. Alternatively, one
may consider variational formulations of the wave equation in (1.16) using integration by
parts also in time, see, e.g., [5, 15, 40]. Here we will consider related variational formula-
tions in suitable subspaces of H(Q), and we will prove and discuss stability conditions in
appropriate function spaces.

The rest of this paper is organised as follows: In Sect. 2 we consider simple first order
ordinary differential equations to motivate the choice of a transformation operator to derive
an elliptic and symmetric bilinear form for the first order time derivative. We discuss sev-
eral properties of the Hilbert type transformation operator and we present some numerical
results to illustrate the theoretical results. The results for the first order ordinary differ-
ential equations are extended in Sect. 3 to the heat equation in several space dimensions.
We prove that the heat partial differential operator with zero Dirichlet boundary and ini-
tial conditions defines an isomorphism in certain anisotropic Sobolev spaces, implying a
stability condition as required in the numerical analysis of the proposed Galerkin scheme.
We comment on the stability of the numerical scheme and present some numerical results.
Second order ordinary differential equations are considered in Sect. 4 where we introduce
a different transformation operator which is not semi-definite as in the case of first order
equations. Hence we have to use different Sobolev norms to establish optimal stability
estimates. As for the first order equations we provide a numerical analysis for the finite
element discretisation, and we give some numerical results. Finally, in Sect. 5 we consider
the space-time variational formulation for the wave equation, we discuss the discretisation
scheme, and we provide some numerical results for illustration.

2 First order ordinary differential equations
As a first model problem we consider for 7' > 0 the simple initial value problem

Juu(t) = f(t) forte (0,7), u(0)=0, (2.1)

where we aim to derive and to analyse a coercive variational formulation which later will
be used for the discretisation of time—-dependent partial differential equations which are of
first order in time.

2.1 Primal variational formulation

If we define the Sobolev space
HY(0,T) = {v e HY0,T): v(0) = 0},
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then the primal variational formulation of (2.1) is to find u € H; (0,7)) such that

/T Opu(t)v(t) dt = /Tf(t)v(t) dt for allv € L*(0,T). (2.2)

Obviously it is sufficient to assume f € L?(0,7T) in this case. Recall that

T
Il o) 2= IOl = | Brule) a
defines a norm in Hj (0, 7).

Lemma 2.1 The bilinear form a(-,-) : Hy (0,T) x L*(0,T) — R,

T
a(u,v) = / Owu(t)v(t) dt, (2.3)
0
18 bounded, i.e.
la(u, )| < 0wl 20,1 [0]| 20y for allu € Hy (0,T), v e L*(0,T), (2.4)
and satisfies the stability condition

a(u,v)

0| 20y < sup for allu € Hy (0,T). (2.5)
ozverz(o,r) vllz20,m) ’
Moreover, it holds
|v]| 20 < sup alu, v) for allv € L*(0,T). (2.6)

0#ueH} (0,T) ”atuHL2(07T)

Proof. The boundedness estimate (2.4) is a direct consequence of the Cauchy—Schwarz
inequality. To prove (2.5), for any 0 # u € Hj(0,T) we choose T = du € L*(0,T) to
obtain

T T
a(u,T) = / Dru(t)o(t) dt = / B dt = 0u]2a 0.3 = 1Bstll 20 [T 20

1.€. _
g(u,v) < sup au,v)
HUHL2(0,T) 0#£vEL2(0,T) v HL2(0,T)

Finally, for 0 # v € L*(0,T) we define @ € H; (0,T),

Hatu”LQ(O,T) =

a(t) = /0 o(s)ds, OT(t) = v(t) fort € [0, T].

7



Then,

T T
a(ﬂ,v)z/o 8tﬂ(lﬁ)v(lﬁ)dt:/o @] dt = vl 1200y = I0llL20.m) 102l 20,1,

implying the stability condition (2.6), i.e
a_(u,v) sup a(u,v) '
||8tu||L2(O,T) 0AueH{ (0,T) ||atu||L2(O,T)

||U||L2(0,T) =
O

As a consequence of Lemma 2.1, see, e.g., [6, Satz 3.6] or [13, Corollary A.45], we conclude
unique solvability of the primal variational formulation (2.2), and the bilinear form (2.3)
implies, by using the Riesz representation theorem, a bounded and invertible operator

Bi: Hy(0,T) — L*(0,T),
satisfying
HuHH&(O,T) < || Byul| 20,y for allu € H&(O,T).

2.2 Dual variational formulation

When using integration by parts, instead of the primal variational formulation (2.2) we
may consider the dual variational formulation to find u € L?*(0,T) such that

T
/ u(t)Opv(t) / f(t)(t)dt for allv e Hy(0,T), (2.7)
0

where

T
Hy(0,T) := {v € H(0,T): v(T) = O}, ||v||§{’10(07T) = /0 [O,v(t))? dt

Now it is sufficient to assume f € [H(0,T)]'.

Lemma 2.2 The bilinear form a(-,-) : L*(0,T) x H(0,T) — R,

a(u, v) = /0 w(t)po(t) dt

18 bounded, i.e.

la(u, )] < |ull 20, 100 20y for allu € L*(0,T), v e Hy(0,T), (2.8)
and satisfies the stability condition
|ul 20 < sup _alwv) for allu € L*(0,T). (2.9)
0£veH, (0,T) ||8tv||L2(0,T)
Moreover, it holds
0wl 20y < sup _alwy) for allv € Hy(0,T). (2.10)

0#£u€L2(0,T) ”U”L2 (0,T)



Proof. The estimate (2.8) is again a consequence of the Cauchy—Schwarz inequality. To
prove (2.9), for any 0 # u € L*(0,T) we define v € H}(0,T),

o(t) = —/t u(s)ds, O(t) =wu(t) forte[0,T].

T T
a(uﬁ)zfo U(t)ﬁﬁ(t)dtZ/o [w(®)]* dt = [JullZ20.r) = l[ull 20,1y [19:T]| 207

implying the stability condition (2.9). To prove (2.10), for any 0 # v € H{(0,T') we choose
u= 0w € L*0,T) to obtain

T T
o, v) = / W(H)0y0(t) dt = / B2 dt = 0]2 0. = [Tl 2200 100 | 220
[l

As for the primal variational formulation we conclude unique solvability of the dual varia-
tional formulation (2.7), which then implies a bounded and invertible operator

By: L*(0,T) — [H(0,T)],

satisfying
HuHLQ(O,T) S HBOU‘”[H}O(O,T)}’ for all w c L2<O,T)

2.3 Interpolation of operators

Related to the initial value problem (2.1) we consider the operator Bi: Hg(0,T) —

L?(0,T) of the primal formulation (2.2), and the operator By: L*(0,T) — [H(0,T)]

of the dual formulation (2.7). Hence, using interpolation arguments we may consider for
€ (0,1) an operator

By: [Hy (0,T), L*(0,T)]s — [L*(0,T), [H (0, T)]'L,

and we may ask for a representation of By, in particular for s = % Recall that the Sobolev
space
1/2 L 1 2
Hy'"(0,T) := [Hy (0,T), L*(0,T)]12

is a dense subspace of H'/? (O, T) with norm

2 T 2
5 _ [u(t)]

For By: Hj(0,T) — L*(0,T) we define the adjoint operator Bj: L*(0,T) — [Hg (0,T)]
via

(u, Biv) o) = (Biu, v) 20y forallu e H&(O, T), v e L*0,T),

9



where (-,)(o.r) denotes the duality pairing as extension of the inner product in L*(0,T).

Then we introduce
A:=B{By: Hj(0,T)— [Hy (0,T)]"

In particular for v € Hg (0,T) we may consider the eigenvalue problem
Au=Xu in[H;(0,T)],

i.e. for all v € Hj(0,T) we have

T T
(Au,v) 0, = (Biu, Biv) 2001y = / Oru(t)opu(t) dt = )\/ u(t)v(t) dt.
0 0

Note that this is the variational formulation of an eigenvalue problem with mixed boundary
conditions,

—0pu(t) = Mu(t) forte (0,7), wu(0)=0, OJu(T)=0.

Hence we find

m t 1 /m 2
= si — — =—|= =0,1,2,3,.... 2.11
ua(t) 51n((2—|—k7r>T), A T2(2—|—k7r> . k=0,1,2,3, (2.11)
Recall that the eigenfunctions v, form an orthogonal basis in L?*(0,T') satisfying
T T
/ vk(t)w(t) dt = 5 5M, (212)
0

and in Hg (0,T),

T T 1 T 2
/0 Deon(£)Dys(t) dt = M /0 oty dt = o (54 k) e

This motivates to consider for u € Hg (0,T)

u(t) = guk sin ((g + lmr) %) wp = %/OT u(t) sin ((g + k7r> %) dt,  (2.13)

and by Parseval’s identity we have

0o 00 T ' - " ' . ;
i = 55 [ (G 0)5) ()

k=0 ¢=0
T o
) uz, (2.14)
k=0
as well as
0o 00 T o0
1 s 2
2 _ _ 2
10rull3z0.7) = ;; ;ukw /0 Orv(t)Orve(t) dt = o ;; (5 + zm) "3 (2.15)

10



Hence, using interpolation, we define an equivalent norm in H (O T), e.g., [23, 38|,

1 o= /7
0, = 3 2 (5 bm) (2.16)

as well as an inner product,

1 o
(u,v) H0m = 5 Z < +k7r)ukvk.

Analogously, we consider for w € H,lo/ 2(0, T),

=Y meon (G o)) m=g [ w0 (5 in)g) o

with the related norm and inner product,

I /7 . 1 &
||w||§{’10/2(0’T) =5 Z (5 + kw)wz, (w, 2) w2 0r) = 5 Z ( + kﬂ)wkzk

k=0 k=0
Finally we introduce the dual space [H ’10/ ?(0, 7)) with the norm

(f ) w) (0,T)
sup —_

11 g2 0,79 = '
[H ¢ ~(0,7)] 0we?(0,1) Hw”H}O/Q(o,T)

Lemma 2.3 For f € [H}O/2(O,T)]’ we have

T? N /7 —-1_o
1By = 5 2o (5+#m) T (2.17)

k=0
with

?k = % (f, wk>(o,T), wg(t) = cos <<g + kﬂ')%) )

11



Proof. From the norm definition, using a series representation of w € H 710/ 2 (0,7), and
with Holder’s inequality we first have

_ <f7 w>(O,T)
||f||[Hl/2(O,T)}’ - sup o
0 0£weHY(0,T) Hw”H}O/Q(o,T)

Z Wi (f, wi) 0,1)
k=0
sup

1/2
0£weH?(07) (1 o= /7T . /

k=0

Z (g + k?ﬂ')@i k=0
k=0
1.e.
T2 /1 -1_o
1 omy < 5 20 (5 +67) i
’ k=0

On the other hand, if the coefficients f, are given, we define

w = (5 + kﬂ)lfk

and obtain
T2 = - L 1/2
(2 Z(?“”) f’f)
k=0
o] —1__ oo __

r L) R . w3

V2 / > RN - 1/2
(EG+m) 7)) (15 (5+wm)me)
k=0 k=0

Q

ég?kE§ OT 0s ((g + k7r> ;) coS ((g + Eﬂ)i) dt

T T
00 1/2
(13 (5 br)mi)
_ {fwen (f;w)om

< sup
0£weHY?(0,T) ”wHH}O/Q(o,T)

el g = 1l 02y -

)

12



This concludes the proof. O

The variational formulation of the initial value problem (2.1) is to find u € H&/ *(0,T) such
that
(O, w0y = (fyw)or) for allw € Hy*(0,T), (2.18)

where f € [H 710/ ?(0,T)]' is given. Note that (2.18) is a Galerkin—Petrov variational formula-
tion with different trial and test spaces. Hence we have to establish an appropriate stability
condition which is equivalent to an ellipticity estimate for the bilinear form (9,u, Hrv) 1)

with some transformation operator Hrp: H017/2(0, T)— H710/2(0, T') to be specified.

2.4 Transformation operator

To motivate the particular definition of the operator Hy: Hy/ 2(0 T) — H Y/ J2(0,T) we
write, by using (2.13),

Oyu(t) = %guk<g + k7r> cos ((g + k7r> %)

as distributional derivative, i.e. for w € H,lo/ ?(0,T) we have

(B, w)o.1) = / Zuk +k:7r> cos <( +k7r);) w(t) dt.

If we define .
w(t) = (Hru)(t) = ZW cos <<g +€7r> %) : (2.19)

]l K s T s t
(O, Hru)ory = T kz: Zuku£<§ + kw) /0 CoS ((5 + k:7r> f) co <<2 + Eﬂ) T) dt
— %Z (g + k:ﬂ)ui = ||u||§{é/2(07T). (2.20)

Remark 2.1 Hru € Hi)/z(O, T) as given in (2.19) is the unique solution of the variational
problem

(Hru, z) 2 = (O, 2)(ory for allz € H}O/z((),T).

(0,7)

The definition of the transformation operator Hr therefore coincides with the definition of
the optimal test space as used, e.g. in discontinuous Galerkin—Petrov methods [9]. Indeed,

for
u(t) = Z uy sin (g + kw)%



we use the ansatz

and the test function

to obtain

1 & 1 &
(w, z) 1Y (0,1) 252( +k:7r>wkzk (Oyu, z) _52( +k:7r>ukzk

k=0 k=0

for all Zy, from which we conclude Wy = uy for k=0,1,2,....

By construction we have w = Hpu € H1/2(0 T), and Hrp: 1/2(0 T) — H1/2(0 T) is
norm preserving, i.e.

1/2
[zl 2y = ull oy gy for allu e Hy*(0,T).

Vice versa, if w € H}O/Q (0,T) is given,

0= meon ((Gokr)z). = [ w5 in)g) o

the inverse transformation operator reads

u(t) = (M :i ksm(( +k7r)%).

Next, we are going to prove some properties of the transformation operator Hy. First, we
consider a commutation property with the time derivative operator 9.

Lemma 2.4 Foru € H&/Z(O,T) we have
(OHru,v) o) = —(Hp Ou,v)or) for allv € H&/Q(O,T).

Proof. For an arbitrary ¢ € C*°([0,7]) with ¢(0) = 0 we first compute

T
(Hrp)(t ngk Cos ((g + k:7r> %) . PR = %/ ©(t) sin ((g + k:7r> %) dt,
0

14



and therefore

Oy (Hro)(t) = ——Z%( *’”) sin (g +]m)%)

follows. On the other hand,

Oyp(t) Z cpk< + k:7r> cos <<g + k:7r> %)
implies

(H'0,0)(t ZS%( + lm) sin ((g + lm)%) ,

OHrp = —Hp'Oip  for all p € C([0,T]) with (0) = 0.

Now the assertion follows by completion.

1.e.

Next we prove that Hp is unitary.
Lemma 2.5 Foru € H&/Q(O,T) and w € H}O/Q(O,T) there holds
(Hou, w) 2001 = (u, 'H;lw)Lz(oj).

and w € H}O/Z(O, T) we have

~—

Proof. Foru e H&/Z(O, T

k=0 /=0
and
t = T
(Hru) U, COS ( + km ) . (Hp'w)(t) =) wysin ( — + (7
’ Z ’ ( )T T ; ‘ (2

Hence we compute

(o, w) 2o = / (Hu) (£)uo(t) dt

- S (o)) ()
- /0 Tu(t)(H;lw)(t) dt = (u, Hz'w)r20).

)

Using Lemma 2.4 and Lemma 2.5 we conclude the following symmetry relation.

15



Corollary 2.6 Foru,v € H017/2(0, T) there holds
<8tu, ’HTU>(0,T) = <HTU, 8tv>(0,T) = <u’v>Héf2(0,T)'

Proof. For ¢, € C*([0,7T]) with ¢(0) = ¥(0) = 0 we first have Hro(T') = Hrp(T) =0
and therefore

<8t<P,HT@/)>L2(0,T) = (H}latw,?/f)L?(o,T)
= —(OHre, V) 201)

= —(HrD) W] + (Hro, 00 20
= (Hry, 8t¢>L2(0,T)

holds. Now the assertion follows by completion. O

The next property of Hyp is required when considering, instead of (2.1), more general
differential equations.

Lemma 2.7 There holds
(v, Hrv) 200y = 0 forall v e H017/2(0,T). (2.21)

Proof. By using

k=0 =0
we have
(v, Hrv) = ii /T' (z+k>i (E+€ )3 dt
v, Hrv) 201y = 2.2 VLUp i sin 5 T T coS 5 T T
1 o= — T t t
= §Zkavg/ {sin ((k+€+1)7rf) + sin ((k)—f)ﬂ'?)] dt
k=0 ¢=0 0
1 S S T t\ 1"
= - —_— k+0+1)mr=
23w [ oo (W )|
— Ziivkvﬁé |:1 _ (_1)k+€+11|
27rk:“:0 kE+0+1 ’

16



where the second integral is ignored due to symmetry. When splitting k£ and ¢ into odd
and even indices, i.e. k = 2i,2i 4+ 1, £ = 25,25 + 1, this gives

T — V2iU2; V2i+1V25+1
H = => ) d d
(v TU>L2(0,T) - [ ; . + = ;

20+25+1  214+25+3

i=0 j=0
T M M 1 1
= ;A}ILHOOZZ [v 02]/0 242 deerHva]H/o 2252 dx}
=0 7=0
T 1/ M 2 1/ M
= — lim / vy | dx + / v2i+1x2i+1 de| > 0. O
Remark 2.2 The matriz H as used in the previous proof, i.e.
Hj, i 1 forij =01 N
| = —/—/———— ort, ] =U,L,..., s
i+7+1 J

is a Hilbert matriz [17] which is positive definite, but ill conditioned. But for our purpose
it is sufficient to use that (2.21) is non—negative.

Next we will have a closer look on the definition of the transformation operator Hr to see
its relation with the well known Hilbert transform, see, e.g., [18].

Lemma 2.8 The operator Hr as defined in (2.19) allows the integral representation

(Hru)(t /Kst

as a Cauchy principal value integral where the kernel function is given as

—_

(2.22)

1
: T S5— + : TS :
sin (§57)  sin (5%)]
Proof. In fact,

(Hru)(t) = i“kc‘)S((g*k”)%)

[e.e]

- 52 [ (G o)) s (5 4 40) )

k=0

- /0 ' u(s)K (s, t) ds

17



with

K(s,t) = T sin ((72r + kﬂ')f) Ccos ((g + kﬂ') %)

By using
1 1
Zsm (( +/<;7T) ) =—-————— forz#0,24,
2sin (57)
we further conclude the representation (2.22). O

Remark 2.3 For fized s,t € (0,T),s # t, we may consider

2s
PG e ICE )]

to conclude

(me@yzllm““)Qsd&

s s—ts+t

where the kernel function shows for s — t the same behaviour as for the Hilbert transform

mmmziém“@@

for which all the previous properties are well known, see, e.g., [18].

2.5 Variational formulations
For the solution of the initial value problem (2.1) we consider the variational formulation
(2.18) to find u € H&/Q(O, T') such that

(O, Hro) o) = (f, Hro)or for allv € Hy?(0,T), (2.23)

where f € [H}O/Z(O,T)]’ is given. Since the bilinear form (9,u, Hrv)o,r) is bounded, i.e. for
u,v € H&/Z(O, T') there holds

[@et Hrw) o] < 10l e oy 0]

_,_/
—||Bl/2“||

o) = 1l gz vl g2

(0,7)’
O

and elliptic, see (2.20), we conclude unique solvability of the variational formulation (2.23).

18



Remark 2.4 From the ellipticity estimate (2.20) we also conclude the stability condition

ou, Hru Opu, w
lull 172 0,0 = O Hrwon g Owon g, e HY*(0,T),
o HHTUHH}{ 20.1)  0£weH*(0.7) Hw”H}O/Q(QT)

and from which we conclude unique solvability of the Galerkin—Petrov formulation to find
u € Hé,/2(0, T) such that

(Opu, w) o1y = (fyw) o for allw € H,IO/Q(O,T). (2.24)

Next we consider a conforming finite element discretisation for the variational formulation
(2.23). For a time interval (0,7") and a discretisation parameter N € N we consider nodes

O:t0<t1<t2<'-'<tN_1<tN:T,

finite elements 7, = (t,_1, ;) of local mesh size hy = t;, —t,_1, £ = 1,..., N, and a related
finite element space S} (0, T) of piecewise linear continuous basis functions ¢, k =0, ..., N,
with global mesh size h = max hy. Then the finite element discretisation of the variational
formulation (2.23) is to find uy, € V3, := S}(0,7) N Hé7/2(0, T) = span{yy }o_, such that

<8tuh, HTUh>L2(O,T) = <f, HT“h)(O,T) for all vp € Vh. (2.25)

Using standard arguments, e.g. [31], we conclude unique solvability of (2.25) as well as the
a priori error estimates
lw = wnll g 0,7) < b7 ||ul| =01, (2.26

~—

when assuming v € H*(0,7T) for some s € [1,2], and for o = 0, %, 1. Note that for o = %
(2.26) is a consequence of Céa’s lemma and the approximation property of S}(0,7'), while
for ¢ = 0 we use the Aubin—Nitsche trick, and for ¢ = 1 we have to use an inverse
inequality, i.e. we have to assume a globally quasi uniform mesh in this case.

The Galerkin-Bubnov finite element formulation (2.25) is equivalent to the linear sys-
tem of algebraic equations Kpu = f with a symmetric and positive definite stiffness matrix
K, defined by B

Kh[j, k] = <8t90k7 HT@]‘)LQ(O,T) for k,j = 1, ceey N.

As numerical example we consider the solution u(t) = sin (2¢) for ¢t € (0,2) = (0,T)
I

where the right-hand side is f(t) = 7 cos (gft). For the discretisation we consider a
sequence of finite element spaces S}(0,7) of uniform mesh size h = 2/N, and N = 27+,
j = 0,...,7. Since the solution u is smooth, we use s = 2 within the error estimate
(2.26) to conclude second order convergence in L?(0,2), and linear convergence in H'(0,2),
respectively. This behaviour is confirmed by the numerical results as given in Table 1. In
addition, we present the minimal and maximal eigenvalues of the stiffness matrix K} as well
as the resulting spectral condition number of K which behave as expected for a first order

differential operator. Note that these results correspond to the Galerkin discretisation of a
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lu —uplle eoc [|[Oy(u—up)llz eoc Amin(Kp) Amax(Kp)  Ko(Kp)
1.00473818 - 7.05949197 - 0.4166 0.9602 2.3
0.86127822 0.2 5.88004588 0.3 0.2844 1.1169 3.9
0.16924553 2.3 3.66044528 0.7  0.1688 1.1280 6.7
0.03246999 2.4 1.82612730 1.0 0.0915 1.1327 12.4
0.00748649 2.1 0.90514235 1.0 0.0475 1.1338 23.9
64 0.00183184 2.0 0.45124173 1.0 0.0241 1.1340 47.0
128 0.00045545 2.0 0.22543481 1.0 0.0122 1.1341 93.2
256 0.00011371 2.0 0.11269290 1.0  0.0061 1.1341 185.6

o

L =
55 oy 0 o2

Table 1: Numerical results for the Galerkin-Bubnov formulation (2.25).

hypersingular boundary integral operator in boundary element methods for second order
elliptic partial differential equations, see, e.g., [31].

The evaluation of the transformed basis functions Hrpy can be done by using the definition
(2.19). Although the piecewise linear basis functions ¢y, have local support, the transformed
basis functions Hryy are global, see Fig. 1, and therefore the stiffness matrix K}, is dense.
As in the case of the hypersingular boundary integral operator one may use different
techniques such as adaptive cross approximation [28] to accelerate the computations, but
this is far behind the scope of this contribution.

19 A 19
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' '

-0.5- -0.5-

Figure 1: Transformed basis functions Hrep, k=1,..., N, N = 4.
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Instead of the initial value problem (2.1) we now consider for ;1 > 0 the first order linear
equation

Owu(t) + pu(t) = f(t) fort € (0,7), w(0)=0, (2.27)
and the related variational formulation to find u € H, / 2(0, T') such that

(D, Hro) o) + p1(u, Heo) 2oy = (f, Hevdory  for all v € Hy/*(0,T), (2.28)
where f € [Hi)ﬂ(O,T)]’ is given. When combining (2.20) and (2.21) this gives

<8tU,HTU>(0,T) + M(vaHT'U>L2(O,T) > <atvaHTU>(O,T) = ||U||23/2(0,T)

for all v € H&/Q(O, T), i.e. the bilinear form of the variational problem (2.28) is bounded
and elliptic, implying unique solvability of (2.28). For the solution u € Hé’/ 2(O,T) of the
variational problem (2.28) we have

HuHZé/Q((],T) = <atu7 HTu>(O,T) S <atu7 HTU>(0,T) —+ ,U(U, HTU‘)LQ(O,T)

= <f7 HT“‘) (0,7) S Hf” [H}O/2(O7T)]/ ”HTUHH’IO/Q(O,T)’

implying
||u||Hé{2(O,T) < ||f||[H’10/2(0,T)}’ : (229)

For the analysis of the heat equation we also need to have appropriate estimates for the
solution u in L*(0,T).

Lemma 2.9 Letu € Hé,/z(O,T) be the unique solution of the variational problem (2.28),
where f € [H}O/Q(O,T)]’ is given. Then,

o) —=2
T f
lulZzom <5 Y= : (2.30)

T2 (5 k)2
where )
- T t
fr= TU’ W) 0,),  Wk(t) = cos ((5 + k’W) ?> :
Proof. Let (f,)nen C L?(0,T) be a sequence with hm lf — an[H1/2 pyp = 0- We write

fn € L*(0,T) as

_ 27"* cos ((g + kr) %) , / fa(2) cos ( + k) T) dt. (2.31)

Let u, € H&/ ?(0,T) be the weak solution of the differential equation (2.27) with right-hand
side f,. It follows analogously to (2.29) that

lu = wnll gy < I = Full iy
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and therefore u,, — u in Hy/*(0,T) and u, — u in L2(0,T) as n — oc.
Because of f, € L*(0, T) and using (2.31) we have the representation

t o0
up(t) = /o e f(s) ds = Z n’k/o e cos(ays) dse M
0

= ?nk |: ™
= ay sin(agt) + pcos(agt) — e_“t}, a :—<—+k7r),
E el (at) + pcos(art) — p K 5

and we obtain, when computing all integrals,

T Fok 1[ _ > ok T & Sk
2 n 2uT n n
s = 30T L ] i) Ty T
[l 20,1 B 12+ a2 i (kz%'uerai 2§u2+az

k=0

Now the assertion follows as n — oc. u
Remark 2.5 From (2.30) we immediately conclude the estimate

T3 N/ —2_»
llzom < 5 D2 (5+00) Fr = 1 lyomy -

Moreover, when we assume f & L2(0 T), (2.30) gives

||u||L2(OT =9 5. 92 Z ||f||L2 (0,T)> e f ||U||L2(0,T) < ||f||L2(0,T)-
k=

The Galerkin—Bubnov discretisation of (2.28) is to find uy, € V}, such that
<8tuh, IHT’Uh>L2(07T) + ,u(uh, rHth>L2(07T) = <f, HT”h)(O,T) for all Vp € Vh. (2.32)

As for the initial value problem (2.1) we have unique solvability of (2.32), but related a
priori error estimates depend on p in general, requiring a sufficient small mesh size h to
ensure convergence for large p.

Remark 2.6 Instead of the Galerkin—Bubnov variational formulation (2.28) we may also
consider the Galerkin—Petrov formulation to find u € Hl/ (0,T) such that

(Ovu, w) 0,1) + P, w) 201y = (fw) oy for allw € H’lo/z(O, T), (2.33)

where the ellipticity of (Oyv, Hrv) 0.1y + 11{v, Hrv) 120.1) implies a related stability estimate
from which unique solvability of (2.33) follows.

For the finite element discretisation of the Galerkin—Petrov variational formulations
(2.24) and (2.33) we have to define a suitable test space W), C H710/2(0,T). A first choice

is to use Wy, == SH(0,T) N H710/2(0,T). Although the discrete systems are always uniquely
solvable, since the stiffness matrices are regular lower triangular, the resulting scheme is
never stable when considering (2.27). The construction of a more suitable test space is, in
particular when considering partial differential equations such as the heat equation, more
challenging.
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3 Heat equation

As model problem for a parabolic partial differential equation we consider the Dirichlet
problem for the heat equation,

Owu(x,t) — Agu(x,t) = f(x,t)  for (z,t) € Q :=Q x (0,7T),
u(z,t) = 0 for (z,t) € X :=T x (0,7, (3.1)
u(z,0) = 0 for z € Q,

where 2 C R%, d = 1,2,3, is a bounded domain with, for d = 2,3 Lipschitz boundary
' = 09. To write down a variational formulation we need to have suitable Sobolev spaces.
In addition to the eigenfunctions v (t) and eigenvalues A as given in (2.11) we consider
the eigenfunctions ¢; € H} () and associated eigenvalues y;, i € N, of the spatial Dirichlet
eigenvalue problem

“ANp=pp nQ, ¢=0 onl, [¢fre=1.

Recall that the eigenfunctions ¢; form an orthonormal basis in L?*(£2), and an orthogonal
basis in H}(Q2). In addition, we have

O<p <py<pu3<... and p; — 0coasi— Q.

For a function u € L*(Q) we therefore find the representation

Z Z wive(t)di(x) = Y _Ui(t Ui(t) = uipvn(t) (3.2)
i=1 k=0 =1 k=0
/ / u(x, t)vg(t) i (x) dedt

T

/ sm(<§+k7r> f) /Qu(x,t)gb,(x) dxdt.
00 T 0o 00

lulifagy = D Uil = 5 D Dl
i=1

i=1 k=0

with the coefficients
2
Uik = T
2
T

Note that we have

and

WE

[HatUiH%Q(O,T) + NiHUiH%Q(O,T)}

uling) =
1

IS [ ]
0

1=1 k=

.
I
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This motivates to define the norm, for v € H'(Q) with u(-,0) = ujx =0,

= 2|10y, + 0

=1
[
2

= gZi {% (g +k7T) +/~Li:| Ui s

i=1 k=0

and to introduce the anisotropic Sobolev space
1,1/2
155*(@Q) = {u € L2(Q): lul gy < o0}
Note that Hol;’&/Q(Q) = H&/Q(O,T; L*(Q)) N L*(0,T; H}(2)). Analogously, we introduce
Hy'$(Q) = H{*(0,T; L*(Q)) N L*(0,T; HY(S2)), which is equipped with the norm

Il = 2 ) [f (5 T k”) + m] W .
v i=1 k=0

and
w. 2/T (W—i—/{: )t /w(az t)pi(x) dxdt
Wi =— [ cos| (= — 1) :
=T, 2o "")T) ),
Lemma 3.1 For the dual norm of f € [H&’TO/Q(Q)]’ we have
T KA1 2
2 _t (= ‘ )
W =3 22 |7 (5 +47) +i] T @3

with 5
fir= T (f, wpdi)q-
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Proof. From the norm definition, using a series representation of w € Hy LY 2(Q), and
with Holder’s inequality we first have

, W
1A ey = b H<I{7>Q
2 ozwery (@ 1Ny @

_VvT sup i=1 k=0
\/_ 0 1,1/2 0o 00 1/2
FweH, o (Q) 1 /7
i <Zz{?(§+lm>+m}wm>
i=1 k=0
_ 1/2
SvAPDS [f (§+k7f> +/~Lz} fir ]
1=1 k=0
ie.
T 0o 00 1 .
Iy < 3 22 (G en] T
The lower estimate follows as in the proof of Lemma 2.3, we skip the details. O

According to the previous sections we consider the variational formulation of (3.1) to find
u € Hé;’&/Z(Q) such that

<8tuv U>Q + <Vﬂcuv V$U>L2(Q) = <fv U>Q (34)

is satisfied for all v € HS%Q(Q), where f € [H 1/Q(Q)]’ is given, and (-,-)g denotes the
duality pairing as extension of the inner product in L*(Q).

Theorem 3.2 The variational formulation (3.4) implies an isomorphism
£: Hyo*(Q) — [Hy g Q)

satisfying

lull a2y < 211Lull for allu € Hy,*(Q) . (3.5)

@ = ol 2@V

Proof. For the solution u of the variational problem (3.4) we use the ansatz (3.2) where
U; € H&/Q(O, T') are unknown functions to be determined. When choosing, for a fixed j € N,
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v(z,t) =V (t)p;(x) with V € H}O/Q (0,T) as test function, the variational formulation (3.4)
leads to find U; € Hé7/2(0, T') such that

(OU;, Vo + 15 Us, Ve = (f, Véilo (3.6)
is satisfied for all V- € H 710/ (0, 7). Tt holds
I(f, V¢j>Q| < Hf”[Hé;’ng(Q)]/HV(bj”Hé;%Q(Q) <1+ Nj”fH[Hé;%?(Q)]/”V”H}Oﬂ(oj)

for all V € Hy*(0,7) and so, (F},V)or = (f,Vé;)o fulfils Fj € [Hy*(0,T)]. The
unique solvability of (3.6) follows analogously as for (2.27). So, we have for every j € N a
unique solution U; € Hé,/ ?(0,T) of the variational formulation (3.6), satisfying

||U]||§_Ié’/2(0,T) <atU]7HTU >
< <atUj7HTU>OT + 13Uy, HrUj) r20,1)
= <f7 ¢jHTU]>
For M € N we define y
un(2,t) = U(t);(x),
j=1

and we conclude

M M
||uM||iIé/2(O,T;L2(Q)) - Z ||Uj||§{é/2(OT Z f ¢]HTU Q
b j:1 ’ :

= <f7 HTUM>Q
Hf”[Hé’IO/Q(Q)}’ HHTUM”H&,’IOM(Q)

IN

= ||f|| 11/2 )}’HUMHH&’&/Q(Q) .

Hence, using (2.30) for

?z}k = ;(ank> 0,7) (f ¢zwk>

we obtain

HUMH%%O,T;H%(Q)) = Z Mi|’Ui|’%Q(O,T)

IA

M oo
1
r ZZJFT—_l 2||f||[H1 @)




where we have used

a a+b 2
< = for 0 beR.
a?+b = L(a+b)? a+b ori=abe

With this we have

”U‘MHZ&&/Q(Q) = HUM”2 1/2(0,T;L2(Q)) + HuMHiﬁ(O,T,Hé(Q))

1 g oty + 2 1 W

IN

@1’

and therefore
||uM||Hé:S’/2(Q) S 2 ||f||[Hé:’10/2(Q)]/

follows for all M € N. The last inequality yields the bound

M
gy = lim S [0y + 1O
=1
- A}iinoo”“M”ifé;”Q(Q <411 )

and thus, u € Hy, 1/Z(Q) with limp/e0 upr = u in HS;&/Q(Q).

The existence of a solution of the variational formulation (3.4) is proven by inserting the
constructed function u into the variational formulation (3.4) and using the approximating
sequence (Ups)pren-

The uniqueness of a solution of the variational formulation (3.4) is a consequence of
the uniqueness of the coefficient functions Uj. O

Corollary 3.3 As a direct consequence of (3.5) we immediately conclude the stability es-
timate

1 o, wyg + (Veu, Vaw) 2
Sl s sup et Hen Do 87
" 0Fwely (@) g @
for allu € HS;’&/Q(Q).
The variational formulation (3.4) is equivalent to find u € Hol;’&/ *(Q) such that
(8tu, HTU>Q + (Vmu, VxHTU>L2(Q) = <f, HT’U>Q (38)

is satisfied for all v € HS;’&/ 2(Q), where the operator Hr acts only on the time variable ¢.
The stability estimate (3.7) implies the stability estimate

1 <atu7 HT”)Q + <V u, VJ;HTU>L2(Q)
||’LL|| 11/2 sup
(Q) 0ve HE? (@)
vEHy.o,

(3.9)

”UHHl 1/2(Q)
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for all u € Hé;’ol,/ ?(Q), and therefore unique solvability of the variational formulation (3.8)
follows.

When using some conforming space—time finite element space V), C HS;&/ 2(Q), the
Galerkin variational formulation of (3.8) is to find u;, € V), such that

(Opun, Hron) r2(q) + (Vetn, VaHrvn) r2q) = (f, Hrvn)o (3.10)

is satisfied for all v, € V). Since the related finite element stiffness matrix is positive
definite, unique solvability of (3.10) follows for any conforming choice of V). However, to
perform the temporal transformation Hy easily, and to be able to present an a priori error
analysis, here we will consider a space-time tensor—product finite element space only.

Let Wy, = span{¢; }M, C H(£2) be some spatial finite element space, e.g., of piecewise
linear or bilinear continuous basis functions ; which are defined with respect to some
admissible and globally quasi—uniform finite element mesh with mesh size h,. As before,
Vi, = S3,(0,7) N H&Z(O,T) = span{yy}2_, is the space of piecewise linear functions
which are defined with respect to some globally quasi—uniform finite element mesh with
mesh size h;. Hence we can introduce the tensor—product space-time finite element space
Vi, =Wy, @V,

For a given v € H&/Q(O, T; L*(Q)) we define the H&/Z projection Q}fv € L*(Q) @V}, as
the unique solution of the variational problem

(OQy v, Horvn) 12(@) = (010, Hron,)o

for all vy, € L*(Q) ® V4,. Moreover, for v € L*(0,T; Hi(Q)) we define the H] projection
Q). v € Wy, @ L*(0,T) as the unique solution of the variational problem

T T
/ / V. Qp v(2,t) - Vyup, (x,t) do dt = / / Voo(z,t) - Voop, (z,t) de dt
o Ja 0o Jo

for all vy, € W;,, ® L?(0,T). Tt turns out that Q,ll{ Q) v € V, is well defined when assuming
Ow € L*(0,T; H}(Q)) and V,v € H017/2(O,T; L*(Q)), respectively, and that the projection
operators Q,ll{ 2, Q,llx and partial derivatives 0y, V, commute in space and time [38].

Theorem 3.4 Let u € Hé;’é7/2(Q) and up € Vy, be the unique solutions of the variational
problems (3.8) and (3.10), respectively. If u is sufficiently regular, and the spatial domain

Q 1s assumed to be either convex or has a smooth boundary I', then there hold the error
estimates

|lu — uh||H;{2(o,T;L2(Q)) < C1h?/2||u||H2(O,T;L2(Q)) + 02h2/2||u||Hé{2(07T;H3/2(Q))
eshy ]| 0V sul 2y + el |0 8ul 2y (3.11)
and
lu—unllz2@ < ahilullmzorrz@) + c2hi||ullzomr2@) + cshiba||0:V pul 12

—|—C4h326 Hatu”L2(07T;H2(Q)) —+ C5h,t2 HA:BU/”HQ(QT;[Q(Q)) . (312)
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Proof. With the norm representation in H3/2(O,T; L*(Q)), the positivity (2.21), and
the Galerkin orthogonality of the variational formulations (3.8) and (3.10), we have for
vp = Ql/ 2Q}lxu € V), using the definitions of the projections Q,ll{ % and Q}W and integration
by parts spatially,

lun = Qi Qi ull e g gy = (@l — Qi @hw), Hr(un — Q47Q1, w))g
< {0y (up, — Q1/2Q}LI ), Hor(up — QI/QQ}LIU»Q
H(Va(u, — Q1 Qb ), VaHr(un — Q) Qh,w) )
= (Oh(u— @”2@,% ), Hr(un — Q3 2Q) w))g
H(Va(u— Q) 2Qh, w), Vo Hr (un — Q)2 Qh ) 12
= (0(u— Q},u), Hr(un — Q7 Q) u)g
H(Va(u— Q) ), ViHr(un, — Q) Qh 1) )
= (0(u— Q}, ), HT<uh ~QQhw)g (3.13)
—( Ay (1 — Q%) Her(un — Q)% Q)w))g
< flu = Qh,ull a2 gy l1on = @n” @bl 20 11200
1A (= Q1 )|y 012yl — QR @l 726 71200
i.e.
[n — Ql/zQ}lzuHH&,/Q(O,T;LQ(Q))
< = @n gy rizagay + 180 = Qi W20z @yy
Hence we have
[ — uh||H1/2(0 T;L2(2))
< o= @u @b ull g sy + 1w = Q@b ull g2 120
< fJu - QWQ}WU||H01’/2(07T;L2(Q))

1/2
—l—Hu — Q}lzuHHé/Q(O,T;LQ(Q)) -+ HA;,;(U /

)”[H”% T;L2(Q)))

IN

1/2
|| Q / UH 1/2 (0,T;12(9)) + ||U - Qlixu||H3{2(07T;L2(Q))
+H (I Q1/2> (u - Qh )”H1/2 (0,7:L2(2))
1/2
Hllw = Qi ull gz gy + 1820 = Qu0lpgzo oy

and the energy error estimate (3.11) follows from standard error estimates for the involved
projection operators.
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With a Poincaré-Friedrichs type inequality and relation (3.13) we also have

1 1/2 1/2
o = QP @hulliag) < Nl = Qi Qh e,

< (O — Qpu), Hr(un — Q7Q) u))g

—(Ay(u — Qi{zu), Hor(up — Q}f@}u“))LQ(Q)
10n(w — Qb w)ll 2 llun — Q32 Qh, 20y

HIAL (1 — Q3 *u) 2y lun — @3 Qh ull 2.

IN

which implies

1/2 1/2
lun — Q2 Ok 12y < ¢ ]|8:(u — QF w)|lr20) + ¢ | As(u — Q3 u)]| 12().
and therefore

1/2 1/2
lu—wllzg) <l = Qi7Qh ullra + llun — Qi @h,ull ey

1/2 1/2
< lu— Q2Qk ull 2 + |8 (u — QL w) || 120 + ¢ | Au(u — Q3 ull 12
1/2 1/2
< llu = Q) ullza) + 1w — Qb ullseigy + (1 = Q1) (= Qb u) Iz
1/2
e |9 (u — Qb )l 2@ + ¢ 1A (u — Q) %u) | 12(0)-

Finally, (3.12) follows again from standard error estimates for the projection operators. [J
As numerical example we consider the solution u(z,t) = sin (25¢) sin (7z) for (z,t) € Q
with @ := (0,1)x(0,2). For a uniform discretisation of the Galerkin variational formulation
(3.10) with the tensor—product space-time finite element space V;, = W), ® V},, we use the
mesh sizes h, = ﬁ and h; = % with M = N = 29, j = 1,...,6. Since the solution u
is smooth, we expect a second order convergence in L*(Q), see (3.12), and a linear order
convergence in H'(Q). Note that the latter follows by standard arguments when using
the H'(Q) projection and an inverse inequality. The predicted convergence orders are

confirmed by the numerical results given in Table 2.

M,N  dof hy hy |lu—upl|pz eoc |u—up|g eoc
2 2 0.500000 1.000000 0.91080532 -  4.48436523 -
4 12 0.250000 0.500000 0.15774388 2.5 1.89083082 1.2
8 56 0.125000 0.250000 0.02936086 2.4 0.84239378 1.2
16 240 0.062500 0.125000 0.00689501 2.1 0.41495910 1.0
32 992 0.031250 0.062500 0.00169574 2.0 0.20679363 1.0
64 4032 0.015625 0.031250 0.00042203 2.0 0.10331237 1.0

Table 2: Convergence rates of the Galerkin-Bubnov formulation (3.10).
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Remark 3.1 Numerical results [38] indicate that the stability constant cg of the discrete
inf-sup condition

Oyup, Hrv 1+ (Vup, Vo Hov
CS||7~Lh||Hl,1/2(Q) < sup < t=h T h>L2(Q) < h T h)LQ(Q)
0;0,

0v, €V, lonll a2 )

for all up, € Vy, is mesh dependent, i.e. cs = O(hy). However, it seems to be possible to
derive almost optimal energy error estimates also in this case. Since this is far behind the
scope of this paper, this will be discussed elsewhere.

4 Second order ordinary differential equations
As in (2.1) we consider the initial value problem

du(t) = f(t) forte (0,T), u(0)=du(0) = 0. (4.1)

When multiplying the differential equation with a test function w satisfying w(7T") = 0,
integrating over (0, 7), and applying integration by parts once, this results in the variational
formulation to find u € Hg (0,T) such that

- / Dt (t) dt = (f, w) o) (4.2)

is satisfied for all w € H{(0,T), where f € [H(0,T)]" is given. The bilinear form

T
a(u,w) := —/ duu(t)Opw(t) dt  foru € Hy (0,T), w e Hy(0,7T) (4.3)
0

is obviously bounded and therefore it remains to establish some stability or ellipticity
estimate to ensure unique solvability of the variational formulation (4.2). For this we use
the concept of an optimal test function, see Remark 2.1.

Lemma 4.1 Let u € H} (0,T) be given. The unique solution w = Hyu € H{(0,T) of the
variational problem

T T
/ Oyw(t)op(t) dt = —/ Ou(t)Opu(t) dt  for allv € Hy(0,T), (4.4)
0 0
1S qIUen as
s T t 2 T ) T t
w(t) = kzzowk Ccos ((5 + k‘ﬂ')f) . W= ey Oru(t) sin ((5 + k‘ﬂ')f) dt.
(4.5)
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Proof. When using the ansatz and test functions

Zwk cos <( + lm)T) . u(t) = cos ((f +¢r)

t
T
within the variational formulation (4.4) and the orthogonality (2.12), this gives

2
Wy =

T
%—1—67?/0 Oyu(t) 5111((2 —|—£7T)T) dt.

As for the transformation operator Hr:

U
1/2(0 T) — H1/2(O T') we state some properties
for Hy: Hg (0,T) — H{(0,T) as defined in (4.5).

Lemma 4.2 The operator Hr as defined in (4.5) is norm preserving satisfying

[Frallis o =l o) for allu € H(0,7).
Proof. Let w = Hyu as defined in (4.5), and when using (2.15) this gives
N 2
ol 00y = 1000220y = 57 D (5 + k)
k=0
On the other hand, for z = d,u € L*(0,T) we consider the series representation

:ki;ozksm<< +k:7r)t), 2

T) *TT
and with (2.14) we have

T/OTz(t)sm ((2 +k7T)T) dt,

HUHHI (7))~ Hatu”L2 07) = = |2 HL2 0,7)

Now the assertion follows from

/atu sm( +k:7r>%
§‘|‘kﬂ'/o z(t)sm((;r+k7r)t)

Iy
k=0

- Ty
7 T

Lemma 4.3 For u,v € Hj(0,T) there holds the symmetry relation
a(u, Hrv) = a(v, Hru).
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Proof. When using the definition (4.4) this gives
a(u, Hrv) = —/OT Oyu(t) 0y, (Hyv)(t) dt
_ /O O Fr) (1)04 g0 () dit
_ /O 0, (o) (00, (Flu) (1) dt

- / 00 (1), (Firw) (1) dt = a(v, Fru).
O

Now we are in the position to prove some ellipticity estimate for the bilinear form (4.3).
Theorem 4.4 The bilinear form as given in (4.3) is elliptic, i.e.
a(u, Hru) = ||8tu||%2(07T) for allu € Hy (0,7).

Proof. Due to the construction of w = Hyu we have

a(u, Hyu) = — /OT Oru(t)Oyw(t) dt = /OT Oyw(t)Oyw(t) dt = ]\8th%2(07T),
and the assertion follows by using Lemma 4.2. O
Lemma 4.5 Foru e Hj(0,T) there holds the representation
(Hru)(t) = u(T) — u(t). (4.6)

Proof. For the coefficients in (4.5) we obtain, by using integration by parts,

w, = +k / Oyu(t sm( +k:7T>T) dt

_ 2 u(t) sin (W + k:?T) Al
Stk 2 T
1 /7
—7 <§ + k‘ﬂ' ) cos ( + k‘ﬂ' ) dt}
2 t
= n lmu(T) sin + /<:7T — / ) cos ( + k7r> T) dt

where



and

2 [T t 2
ék:?/o Cos((g—l-lm)?)dt: %+lmsin(g+lm)

are the Fourier coeffecients of the given function u(t) and of the constant function e(t) = 1,
respectively. Hence we have

FHru)(t) = iwkcos<(g+kﬂ)%)

- Yo (5 +10)f) - S (5 +10)5)
= u(T) — u(t)

Remark 4.1 From the representation (4.6) we easily conclude all the properties we have
shown before. However, the form

(w0 Hr) o = [0 lT) — ulo)] i

is indefinite, i.e. a result as (2.21) for the transformation Hr does not hold for Hr.

For a finite element discretisation of the variational formulation (4.2) we use the same
notations as in Section 2. In particular, we have to find u, € Vj, := S}(0,7) N H&(O, T)
such that

—(8tuh, atHTmeg(o,T) = <f, IHTUh>(07T) for all v, € V},. (47)

As before we have unique solvability of (4.7), the a priori error estimate (2.26) remains
valid, where for ¢ = 1 this corresponds to the energy error estimate, while for o = 0 we
have to apply a Nitsche type argument.

For the numerical example we consider the solution u(t) = sin® (37t) for ¢ € (0,T)
with 7" = 2. The numerical results are given in Table 3, where we observe optimal order of
convergence as predicted.

The stiffness matrix of the Galerkin—Bubnov finite element formulation (4.7) is symmet-
ric, see Lemma 4.3, and positive definite, see Theorem 4.4, and its spectral behaviour is
as known for finite element discretisations of second order partial differential equations.
Moreover, due to (4.6), we have for the piecewise linear basis functions ¢, € Hg (0,T),
E=1,...,N,
(Hrow)(t) = —p(t) fork=1,...,N—1,
and
1 for t € [0, tn-1],
(HT()ON><t) - i fort € (thl,T],
T -ty

34



N Jlu—up|lz eoc ||0(u—up)|rz eoc Amin(Kp) Amax(Kn)  Kk2(KR)

4 4.970 -1 - 3.465 - 0.2412 7.06 29.28

8 1.617 -1  1.60 2.088 0.73  0.1362 15.46 113.50
16 4307 -2 1.90 1.095 093 0.0724 31.71 437.70
32 1.094 -2 2.00 0.5542 0.98 0.0374 63.85 1708.66
64 2.746 -3 2.00 0.2780 1.00  0.0189 127.92 6740.68
128 6.872-4  2.00 0.1391 1.00  0.0095 255.96 26764.98
256 17184  2.00 0.0696 1.00  0.0048 511.98  106654.71

Table 3: Numerical results for the Galerkin-Bubnov formulation (4.7).

and hence B
Hr Vi, = span{py - (4.8)
Instead of (4.1) we now consider the second order linear equation, for u = v? > 0,
Onu(t) + pu(t) = f(t) fort e (0,7), u(0)=0u(0) =0, (4.9)

and the variational formulation to find u € Hg (0,7 such that

T

a(u, Hyv) = —/O ()0, (Hrv)(t)dt + p | u(t)(Hev)(t) dt = (f, Hrv)or) (4.10)

0

is satisfied for all v € Hj (0,T), where f € [H(0,T)]" is given.

Theorem 4.6 For gwen f € [H(0,T)] the variational formulation (4.10) admits a
unique solution v € Hj (0,T) satisfying

lullmy 0,1 < €L f a0,y -

Proof. By using the Riesz representation theorem we can rewrite the variational problem
(4.10) as operator equation

Au+ puCu = f,
where A: H; (0,T) — [H (0, 7)) defined via

(Au,v) = —(Opu, O Hrv) 20,1y for u,v € Hy (0,7)
is elliptic, and hence, invertible, and C: Hg (0,T) — [H; (0,T)]" defined via
(Cu,v) = (u, Hyv) 20 for u,v € Hy (0,T)

is compact. Hence we can apply the Fredholm alternative and it remains to ensure the
injectivity of A + pC. Let u € Hol’(O,T) be a solution of the homogeneous equation
(A4 pClu =0, ie.

(Opu, Opw) 20,1y = plu, w) 20,y for all w € H}O(O, T).
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This is the weak formulation of the eigenvalue problem
—Opu(t) = pu(t) forte (0,7), wu(0)=du(0)=0,

which only admits the trivial solution v = 0. U
While the result of Theorem 4.6 ensures unique solvability of the variational formulation
(4.10), it does not include an explicit dependence on the parameter p. Hence we will
provide a stability estimate from which we can conclude such a result.

Lemma 4.7 Foru e Hj(0,T) there holds the stability estimate

2 ol < .0
U L2(0,1) < sup man_. -
24T 1 0£AvEH L (0,T) 10| £2(0,7)

(4.11)

Proof. For given v € Hj (0,T) and suitable chosen w € H5(0,T) we consider the test
function v := Hyu +w € Hy(0,T). Then,

o) = - [ ot u(t) + w(®)] di + g / ")) — ult) + wit)] de
-/ [l de - / Opu(t)0t)di+ g / " uO(T) — a(t) + (o) dt
-/ R de— uol)]| + / " u(t)(r) di
+MAmeman—u@y+w@ﬂﬁ
— Aﬂ&ﬂﬂ?ﬁ—u@%ﬂdﬂ
+A2ﬁﬂ%w@+u@@ﬁ—mw+w®ﬂdt

:‘Aﬂ@mwﬁﬁ,
if
Opw(t) + pw(t) = plu(t) —u(T)] fort € (0,T7), w(T)=0ow(T)=0

is satisfied. Using u = v? we obtain

w(t) =v Tsin v(s—t)) [u(s) —u(T)]ds,
[ an(e=0)
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and therefore
ow(t) = —v° /tT cos (1/(5 - t)) [u(s) —u(T)] ds
= —vsin (v(s — 1)) [u(t) — u(T)] j 4 /t i (vls — 1)) Dau(s) ds

= v /tT sin (1/(5 - t)) Osu(s) ds

follows. With

Brw(t)]? = y2[ thm (V(s—t)> 8su(s)ds]2

IA IA
N <
[\~] [\&]
] ]
2 2
=) =)
[\~] [\~]
N /N
N N
—~ —
(Va) (Va)
| |
~ ~
S— S—
N——— N——
Y Y
(Va) (Va)
N ?\
| |
ISH IS
S <
— A~~~
= 2
o e
= oy

we further conclude

/oT[é‘tw(t)Pdt < v /OT /tT sin” (”(5 - t)) ds di /oT[atu(t)]th

Lcos’(vT) — 14 2T% (7
_ 2 2
= ! - /O Oyu(t)]? dt
1 T
< T / Q)2 dt,
0

1.e.

1
||8tw||L2(0,T) S él/T ||6tu||Lz(07T) .
With this we finally have
||8tv||L2(o7T) = [|0w — 8tu||L2(o,T)

1
< |Owwl| 2o,y + |0kl 20,7y < (1 + §VT) 10|l 20,15

and therefore

a(u,v) = [|Oull7z.r) > [0sul| L2071 Orv || £2(0,7)

24T
follows, which implies the stability condition as stated. U
While Theorem 4.6 implies unique solvability of the variational formulation (4.10) we can
use the stability condition (4.11) to conclude a bound for the solution u which explicitely
depends on v.
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Corollary 4.8 For the unique solution u € H; (0,T) of the variational formulation (4.10)
there holds

1
fouulizom < (1+ 377 Wl (4.12)

Remark 4.2 We consider the initial value problem (4.9) for f(t) = sin(vt) with the solu-
tion 1 ]
u(t) = 52 [sin(ut) — vt cos(ut)}, Ou(t) = §t sin(vt).

For this we compute

11
||8tu||%2(0’T) = 5 [ZVBTB + 3vT — 6v*T cos(vT) sin(vT)

—6vT cos*(vT) + 3 cos(vT) sin(vT)

i T3
24

12

as v — oo. On the other hand we determine w € H}O(O,T) as unique solution of the
boundary value problem

—Opw(t) = f(t) forte (0,7), Ouw(0)=w(T)=0,

1.€.

Oww(t) = L [cos(ut) - 1} :

v
Hence we compute

Do W
tw|>ﬂ

11 . .
||f||[2H’10(0’T)}, = ||6tw||%2(07T) =5 [31/T + cos(vT) sin(vT) — 4sm(1/T)] ~
as v — 00. In particular we have

[0ull 20y EI/T
||f||[H}0(0,T)]' 6

as v — 00, which shows that the estimate (4.12) is sharp with respect to the order of v and
T, respectively.

While for f € [H(0,T)] the bound (4.12) shows an explicit dependence on v = /i, we
can prove an estimate independent of p when assuming f € L*(0,T).

Lemma 4.9 For given f € L*(0,T) the unique solution u € Hg (0,T) satisfies

1
|’“|’§{37(0,T) +p HUH%Q(O,T) < §T2 ”fH%Q(O,T) : (4.13)
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Proof. For the solution u and its first order derivatitve we find the representations

u(t) = 1 /Ot sin (V(t - s)) f(s)ds

v
and .
Ou(t) = / oS (u(t — s)) f(s)ds.
0
Hence we compute

2 2

ot 42wt = [ [eos (se—9) sas] [ [sn (vt - 9) )85
< [eos (vte—9))is [ s+ [ (vte = ))as [ 156
= o [yerass<e [ yeras

and therefore we obtain

lally o) + llelieor = /T{[atu( B + pulu ()]2}dt

< / i / = ST e

Remark 4.3 As in Remark 4.2 we consider problem (4.9) for f(t) = sin(vt) with the
solution u(t) and its derivative Oyu(t) = tsin(vt), i.e

n

11
37 [I/T — cos(vT) sin(yT)] ~ —T.
v

—_

1
10l 2207y = ﬁTs, 11720y =

(\V]

Hence we conclude

”atuH%Q(OT) ~ iTQ
1 20m) 12

i.e. the estimate (4.13) is sharp with respect to the order of T'.

The Galerkin—Bubnov finite element formulation of the equivalent variational formulation
(4.10) is to find uy € Vj, := S3(0,T) N H (0, T) such that

a(up, Hrop) = —(Opun, OHron) 20,1y + p{un, Hron) 1201y = (s Hrow)o.r) (4.14)

is satisfied for all v, € Vj,. Unique solvability and related error estimates follow as for
the numerical solution of elliptic operator equations with compact perturbations, which is
based on a discrete stability condition.
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Theorem 4.10 Let

2v/3
= @+ )T
be satisfied. Then the bilinear form a(-,-) as defined in (4.10) satisfies the stability condition

(4.15)

JH
8 |Ovun| 20y < sup alu, Hrun) for alluy, € Vj,. (4.16)

0F£v, V), m

4
2+ ViT)?(2 +

Proof. For u;, € V), we define w € H&(O,T ) as the unique solution of the variational
problem

- /T Ow(t)0,(Hrv)(t) dt = —p /T up () (Hyv)(t) dt for allv € Hy (0,T), (4.17)

i.e. w € Hj(0,T) is the weak solution of the initial value problem
Opw(t) = —puy(t) fort e (0,7), w(0)= dw(0)=0.

Then, by using (Hrv)(£) = o(T) — v(t),
a(un, T, — 0 atuh O () (8) — Flrw)(®) dt
o / un(8) (Pl (8) — (FLrw)(1)) dt
/ Byun (1) [Byun(t) — Byw(t)] dt — /0 Tatw(t)[atuh(t)—atw(t)]dt

_/O Oyun(t) — pw(t)]2 dt.

In addition, let z € H&(O, T) be the unique solution of the variational formulation such
that

_ /0 02 ()0, Ty () dt = — /0 O (00 (L) (8) dt -+ 1 /0 (T o) () dt - (418)

is satisfied for all v € Hy (0,T). With (4.17) this is equivalent to

— /OT Oz(t) — (un(t) — w(t)]0(Hrv)(t)dt =0 for allv € H&(O,T),

from which we conclude, recall uy,(0) = w(0) = 2(0) =0,

2(t) = un(t) — w(t),
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l.e. we have B
a(un, Hr(un — w)) = 10:2]|72 0 1-

On the other hand, the variational formulation (4.18) gives

1020 _ o Hrz) o alun Hry)
10¢2 20,1 over 0.7) 0]l L2(0,1)

<3t27 atU>L2 0,7

= sup e 0D < 0,2 o),
0£veH} (0,T) | tUHLQ(o,T)
i.e. o
a(up, Hrv 2
||6tz||L2(O7T) = sup ( T ) > ||8tuh||L2(0,T)

oven (01) 10020y — 24+ 0T
when using (4.11). With this we now conclude

4

a(up, Hr(up —w)) > m

”atuhH%Q(O,T)'
According to (4.17) we define wy, € V}, as the unique solution of

T
/ 8twh &ﬂ}h ) / uh(t)(ﬁth)(t) dt for all Up € Vh.
0

Then there holds the Galerkin orthogonality

T
/ [Orw(t) — Opwp(t)] Opup(t) dt =0 for all v, € V4,
0

(4.19)

and the error estimate, by using Céa’s lemma and standard interpolation error estimates,

||8tw - at?~Uh||L2(0,T) < inf ||atw - atvhHL?(O,T)
VL EVR

1

1
< 0w = Iyw) || 20,7y < ﬁ h|Oww|| r2(0,m) = ﬁ ph ||| L2 0,7)-

With this we have

alup, Hr(w —wy)) = /0 Orup ()0 (w(t) — wp(t)) dt + M/o up(t)(Hr(w — wy))(t) dt

. / i (t) (Pl (w — w,))(£)

2 ||Uh||L2(0,T) ||ﬁT(w - wh)||L2(o7T)-

IN

Now we define ¢ € Hj (0,T) as unique solution of the variational formulation

0
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— / O (t) 0y (Hrv)(t) dt = /O (Hr(w — wy))(t)(Hrv)(t) dt  for allv € H (0,T),



B Db(t) = (Fr(w—w))(t) fort € (0,T), $(0) = d(t) = 0.

In particular for v = w — wy, € H (0,T) we then conclude
JE— T E— E—
Hr(w —wn)llf20r) = /0 (Hor(w = wp)) () (Hr(w — wp))(1) dt

_ / ()0 (Flr(w — wy)) (1) dt

0

/ Oh(t)[Orw(t) — Opwp(t)] dt

0

/0 AU (1) — (D) Braw(t) — Oyuwn (1)) dt
Hat(i/f - hd’)”ﬂ(o,ﬂ”@(w - wh)HL2(0,T)

1
ghz 1043 || L2 0.1 | O w]| 22 0,1

IN

IN

1 _
= thQ |[Hr(w — wp)| L2 0,1)l|un || 20,1),

i.e.
_ 1
[Hr(w —wh)|[z200,1) < g#h2||uh||L2(o,T),

and therefore, by using u; € HO{(O, T),
_ 1 1
i, Tor(w = wn) < 5 120 el ooy < 5 22T o 3o
follows. Hence we conclude

alup, He(up —wp)) = alup, Hr(up — w)) + alup, He(w — wy,))

4 1
2+ uT)? G T 19unllz2o.r)
2
> @+ Jil)? 10sun 7201
if . 5
212
—uh'lT < —o
6" =2t yar)
is satisfied, i.e.
h? < = :
(24 /BT)* T

Finally we have
10 (un — wh)HL?(o,T) < ||8tuh||L2(0,T) + ||8twh||L2(0,T)
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and

Jocanlrom = = | D (10, P ) (1) dt = / (O Frwn) (1) di
<z Pz < ST 9020l 20),
i.e.
[0ron = wn)lzay < (14 3 ) lonlzzon
This concludes the proof. O

For any w € H (0,T) we define wy, = Gyw € Vj, as the Galerkin projection satisfying
a(Gpw, Hrop) = a(w, Hroy,)  for all vy, € V,
where the stability condition (4.16) implies

4 a(Grw, Hrop,)
0,Grwl| 2 < sup 45—
Gyl PE ) 2 lon = S o

a(w, Hroy)

= sup ——— "

ozoneVi, [|0cvnllL20/m)
10w || z20.1)|Ovvnll 207y + pllw|| 20,1yl Hr v 2200,

0vp €V, |0vnllL20,1)

1
< (14 3u7) Il

le.
1
HatGh’lU”LQ(O’T) S §<2 -+ \/IET)2<2 —+ MT)QHathLQ(O,T) for all w € H&(O, T) (420)

Now we are in a position to state a convergence result for the finite element solution u; of
the variational formulation (4.10).

Theorem 4.11 Let u € Hj(0,T) and up € Vi, C Hy(0,T) be the unique solutions of the
variational formulations (4. 10) and (4.14), respectively. We assume u € H?(0,T) and let
(4.15) be satisfied. Then there holds the error estimate

1
100 = w120 < 2 [1+ 2+ /iT)? (2+MT>2} (|0t p20.7)- (4.21)

Proof. With u;, = GLu and v, = Guy, for all v, € V}, we have Céa’s lemma,
10(u — up)llz20ry < 0u(u —vi)llz20,) + [|0:Ga(uw — vp) [ 220,

1
< [+ 5@+ VADP@+ D] 9 = vn) 2y
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for all v, € V},, and the assertion follows from standard interpolation error estimates. [l
For the discretisation of the variational formulation (4.14) we use the same notation as in
Section 2 to find uy, € V}, = span{yy }o_, such that

—/0 Opun(t)Oppe(t) dt+u/0 un(t)pe(t) dt :/o f()pe(t) dt =: fo (4.22)

is satisfied for all £ =0,..., N — 1. Since we consider a uniform discretisation, the stiffness
matrix is given by

|
[\
—_
=
— R
NN
—_

1 -2 1 1 4 1
Obviously we have unique solvability of (4.22) for all x4 independent of h.

Remark 4.4 For{=2,...,N — 1 we can write the finite element formulation (4.22) as

1 1 2 2 1 1
(E + éuh) Up—1 + (g/ih — ﬁ) Up + (ﬁ + 6,LLh) Upy1 = fg, (4.23)
which is a kind of a two-step method [16, Chapter I11.2]. This method is zero—stable, iff
the root condition [16, Chapter II1.3] is satisfied. For (4.23) we therefore conclude the

condition
ph? < 12. (4.24)

For the numerical example we consider again the solution u(t) = sin® (27¢) for t € (0,7)
with 7" = 2 and p = 10. The numerical results are given in Table 4 where we observe linear
convergence in the energy norm as predicted in (4.21), and second order convergence in
L?(0,T) which can be proven when applying the Nitsche trick. In Table 5 we present the
related numerical results for the case p = 1000. We observe convergence only when h is
sufficiently small. According to (4.24) we note that /12/u =~ 0.1095. So it remains open
to improve assumption (4.15) to ensure the stability condition (4.16). On the other hand,
following [40], it is possible to derive and to analyse a stabilised variational formulation
for the initial value problem (4.9), see [33]. Using the L? projection QY on the finite
element space Sp(0,T) of piecewise constant functions we may consider, instead of (4.14),
the perturbed variational problem to find @, € S;(0,7) N Hy (0,T) such that

—{(On, Bywn) r20my + 1{Tn, QYwn) r20my = (f+wh) 0.1) (4.25)

is satisfied for all w), € S4(0,T7) N H(0,T). The stability and error analysis of (4.25)
is based on a discrete inf-sup condition [33, Lemma 6], which then results in an optimal
energy error estimate [33, Theorem 1].
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N h |lu —upll2 eoc ||0(u—up)|2 eoc
4 0.5000000 5.3407e-01 - 3.5365e+00 -
8  0.2500000 1.7632e-01 1.6 2.1021e+00 0.8
16 0.1250000 4.9649e-02 1.8 1.0979e+00 0.9
32 0.0625000 1.2804e-02 2.0 5.5462e-01 1.0
64  0.0312500 3.2263e-03 2.0 2.7800e-01 1.0
128 0.0156250 8.0816e-04 2.0 1.3909e-01 1.0
256 0.0078125 2.0214e-04 2.0 6.9555e-02 1.0
512 0.0039062 5.0541e-05 2.0 3.4779e-02 1.0
1024 0.0019531 1.2636e-05 2.0 1.7390e-02 1.0
2048 0.0009766 3.1589e-06 2.0 8.6948e-03 1.0
4096 0.0004883  7.8972e-07 2.0 4.3474e-03 1.0
8192 0.0002441 1.9737e-07 2.0 2.1737e-03 1.0

Table 4: Numerical results for the Galerkin—Petrov formulation (4.22), p = 10.

N h |lu—upllpz eoc ||0y(u— up)||2  eoc
4 0.5000000 8.0288e+00 - 4.1323e+01 -
8 0.2500000 2.3961e+02 -4.9 2.4811e+03 -5.9
16 0.1250000 4.4282e¢+01 2.4 1.1065e+03 1.2
32 0.0625000  9.5909e-03 12.2 6.2095e-01 10.8
64  0.0312500 2.7371e-03 1.8 2.8953e-01 1.1
128  0.0156250  7.1356e-04 1.9 1.4072e-01 1.0
256 0.0078125  1.8124e-04 2.0 6.9765e-02 1.0
512 0.0039062  4.5486e-05 2.0 3.4805e-02 1.0
1024 0.0019531  1.1382e-05 2.0 1.7393e-02 1.0
2048 0.0009766  2.8463e-06 2.0 8.6952¢-03 1.0
4096 0.0004883  7.1162e-07 2.0 4.3474e-03 1.0
8192 0.0002441  1.7791e-07 2.0 2.1737e-03 1.0

Table 5: Numerical results for the Galerkin—Petrov formulation (4.22), u = 1000.

5 Wave equation

As model problem for a hyperbolic partial differential equation we consider the Dirichlet
problem for the wave equation,

attu('ra t) - Amu('ra t)

u(x,t)

u(z,0) = du(z,0)

= f(l’,t)
=0
=0
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for (z,t) € Q@ :==Q x (0,7T),
for (z,t) € ¥:=T x (0,7,

for x € Q,

(5.1)



where Q C R? d = 1,2,3, is a bounded domain with, for d = 2,3, Lipschitz boundary
I' = 09). According to the previous sections we consider the variational formulation of

(5.1) to find u € Hyjy (Q) := L*(0,T; HE () N Hy (0, T; L*(2)) such that
—<8tu, 8t'U>L2(Q) + <qu, va>L2(Q) = <f, 'U)LQ(Q) (52)

is satisfied for all v € H&;}O(Q) = L*(0,T; Hy(Q)) N Hy(0,T5L*(K)). Note that the
initial condition u(-,0) = 0 is considered in the strong sense, whereas the initial condition
Oyu(-,0) = 0 is incorporated in a weak sense. For u € Hol;’év(Q), an appropriate norm is
given by

T
2 . 2 2
HUHH&,&(Q)—/O /Q[\atu(x,tﬂ + |Vou(z, t)|?| d dt .

As in [19] we state the following result on unique solvability of the variational formulation
(5.2) when assuming f € L*(Q).

Theorem 5.1 For f € L*(Q) there exists a unique solution u € H&;&(Q) of the variational
formulation (5.2) satisfying

1
lull st @ < —5 T 1 fllz2c@)

V2

Proof. When using the representation (3.2), any u € HS&(Q) can be written as

ZZumvk ()¢ ZU ()il (5.3)

=1 k=0

where v (t) are the temporal eigenfunctions as given in (2.11), and ¢;(x) are the spatial
L*(2) orthonormal eigenfunctions of the Laplacian with homogeneous Dirichlet boundary
conditions. For the solution of the variational problem (5.2) we now use the ansatz (5.3)
where the U; € H} (0,T) are unknown functions to be determined. When choosing, for
a fixed j € N, v(x t) = V(t)g;(z) with V € H(0,T) as test function, the variational
formulation (5.2) results in finding U; € Hg (0,T') such that

/ O.U; ()0 V (1) dt + p / TUj(t)V(t)dt: / ' OV dt (5.4)

is satisfied for all V- € H{(0,T) where

:/&@w@mm
Q

are the coefficients of the Fourier expansion
t)=> fi(t);(x)
j=1
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From this we conclude

// flz, ) dvdt = ZZ/ i) f;(t dt/a% r)d;(x

. . i=1 j=1
= 3 [t =3 1,

and hence we obtain, by using (4.13),

1£11Z2q)

Hu”?{é;&(@) = /T/ |8tu(x,t)|2+|qu(x,t)|2] dx dt
_ ZZU AT Ot [ 6(a)oy(a

i=1 j=1

+/OU dt/ngl V() da

1 [/OT\@Ui(t)\thJrui/OT\Ui(t)|2dt]

103 o) + ll Uil 220

[
WE

7

[
Mg

1=1
1
< 5T leﬁ“yw TQHfH%?(Q)'
U
The variational formulation (5.2) is equivalent to find u € H&;& (@) such that
—<8tu, 8tﬂTv)L2(Q) + <V$u, VxﬂTU>L2(Q) = <f, ﬂjﬂ])[ﬁ(@) (55)

is satisfied for all v € HS;& (Q), where the transformation operator Hr acts only on the
time variable t.

As in the case of the heat equation we consider the tensor—product space—time finite
element space V), = W), @V}, C H&’&(Q). Then, the Galerkin—Bubnov finite element
discretisation of the variational formulation (5.5) is to find u, € V), such that

—(Oyun, OHrvn) 12(Q) + (Vatn, ViHron) 12g) = (s Hrvn) 12(0) (5.6)

is satisfied for all v;, € V},. Recall that the transformation Hrpy, is realised by using (4.8).
Since we are using a tensor—product space-time finite element space V, = W), ® V},, we
can write

N M M
un(a,t) = > > wirpr()i(x Z Un(®¥i(x),  Uin(t) = usnpn(t)
: |
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By using
N

U, t) =Y Ui(t)i()

i=1
we can write the intermediate step of the semi—discretisation approach for solving (5.1) as

MyduU(t) + KpU(t) = f(t) forte (0,T), U(0)=a,U(0)=0,

with the spatial finite element mass matrix M), the stiffness matrix K}, and the load vector
f(t),ie fori,j=1,...,N,

Mlji] = / i)y () da,

@) = | fla,t)v;(z)da.

Q

By using
My, =L,L}, Ay=L'K,L;", W=LU gt =L"f),
we further obtain
OuW (t) + AWV (t) = g(t) fort e (0,T), W(0)=09W(0)=0.
Since Aj, is symmetric and positive definite, we conclude the diagonal representation

A =ViDiVi[, Dy =diag(M(An), Vi = (' 00Y), Aw = Aat,

By using Z(t) := V," W (t) we finally have to solve
OZ(t)+ DpZ(t) =V, g(t) = g(t) forte (0,7), Z(0)=02(0)=0,

which consists of N scalar equations of the form (4.9). The related finite element solution
is defined by finding, for k =1,..., N, 2z, € Vi, = S;,(0,7) N Hy (0,T) such that

_<atzk,h“ 8tﬁTvk,ht>L2(0,T) + )\k(Ah)<Zk,h“gTUk,h)L?(o,T) = @k,ﬁTUk,ht)(o,T)
for all vy, € V4,. By construction we have
Zy(t) = VhTL;Qh(t)
where

U,(t) = (Ulvh(t), o UN,h(t))T
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is the vector of the unknown functions of the approximation wuy(z,t).

Stability and related error estimates for the finite element solutions zjj, follow for
sufficient small time mesh sizes h;, see Theorem 4.11. However, as in Remark 4.4 we have
stability when the condition (4.24) is satisfied, i.e.

(K0, vF) - ||vail§||%2(ﬂ) . 12

A (Ap) = = < =
(Mpu*, v¥) ||Uf]f||%2(g) h?

fork=1,...,N.

With the inverse inequality
IVovnll ey < erhy? lonllfa)  for all v, € Wi,
this condition is satisfied for
crh? <12h;2,

In the particular case d = 1 we have ¢; = 12 and therefore stability follows for
hy < hyg.

When W), C H} () is also of tensor—product structure, for example when considering the
spatial domain € = (0,1)4, we conclude c¢; = 12d, and therefore the stability condition

ha
hy < —.
t_\/a

As numerical example we consider for d = 2 the spatial domain © = (0,1)?, and the exact
solution

u(wy, 9,t) = t*sin(way) sin(wwy)  for (a1, 20,t) € Q = Q2 x (0,7)

with T' = % Stability then follows when choosing

1
e B 0.7071068, (5.7)
and we observe optimal orders of convergence, see Table 6. Note that numerical experi-
ments indicate that the stability condition (5.7) is sharp, see [38].
As for the scalar case, and following [40], we can formulate and analyse a stabilised version
of the variational formulation (5.6) which is unconditionally stable, and which preserves
the optimal order of convergence, see [33].

6 Conclusions

In this paper we have formulated and analysed new non—standard variational formulations
for finite element discretisations of parabolic and hyperbolic initial boundary value prob-
lems, in particular for the heat and the wave equation. Based on this analysis we can
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dof hy hy |lu —upllz eoc |u—up|lgp eoc

2 0.500000 0.3535534 2.0970e-02 -  3.9813e-01 -
36 0.250000 0.1767767 4.8903e-03 2.1 1.9798e-01 1.0
392 0.125000 0.0883883 1.1986e-03 2.0 9.8593e-02 1.0
3600 0.062500 0.0441942 2.9813e-04 2.0 4.9240e-02 1.0
30752 0.031250 0.0220971 7.4437e-05 2.0 2.4613e-02 1.0
254016 0.015625 0.0110485 1.8603e-05 2.0 1.2305e-02 1.0

Table 6: Numerical results for the Galerkin—Bubnov formulation (5.6) for @ = (0,1)? x
(0, %), satisfying the CFL condition (5.7).

analyse related boundary integral equations and boundary element methods, where we
recover known results in the case of the heat equation [11], but we expect to derive new
results in the case of the wave equation. Moreover, using this unified framework it will be
possible to analyse the coupling of space—time finite and boundary element methods. While
the main focus of this paper was on the stability analysis of space-time variational formu-
lations, much more work is required on the design of computationally efficient methods.
This covers the formulation and analysis of inf-sup stable local basis functions for arbi-
trary space—time finite elements, of efficient and reliable a posteriori error estimators and
adaptive schemes, and the construction and analysis of preconditioned parallel iterative
solution strategies including domain decomposition methods.
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