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Abstract

High{resolution and anatomically realistic computer models of biologica tissues play
a signi cant role in the understanding of the function of cardiovasaular components in
health and disease. However, the computational e ort to handle ne grids to resolve the
geometries as well as sophisticated tissue models is very challengin@ne possibility to de-
rive a strongly scalable parallel solution algorithm is to consider nite eement tearing and
interconnecting (FETI) methods. In this study we propose and investigate the application
of FETI methods to simulate the elastic behavior of biological tissues As one particular
example we choose the artery which is { as most other biological tisas { characterized
by anisotropic and nonlinear material properties. We compare two peci c approaches
of FETI methods, classical and all{ oating, and investigate the numerical behavior of
di erent preconditioning techniques. In comparison to classical FETI, the all{ oating
approach has not only advantages concerning the implementation dtt in many cases also
concerning the convergence of the global iterative solution methd. This behavior is illus-
trated with numerical examples. We present results of linear elasticsimulations to show
convergence rates, as expected from the theory, and resultsoin the more sophisticated
nonlinear case where we apply a well{known anisotropic model to theealistic geometry
of an artery. Although the FETI methods have a great applicability on artery simulations
we will also discuss some limitations concerning the dependence on neaital parameters.

1 Introduction

The modeling of di erent elastic materials is realized by ushg a strain{energy function .

For a comprehensive overview and the mathematical theory orelastic deformations, see
[10, 20, 35, 38]. A well established model for arterial tisseis was introduced by Holzapfel
et al. [23, 26]. This model was further developed and enlargkto collagen ber dispersion
in [18, 22, 26]; see [27] for the modeling of residual stressén arteries which play also an
important role in tissue engineering. An adequate model forthe myocardium can be found
in [25]. The ne mesh structure to model cardiovascular orgas normally results in a very
large number of degrees of freedom (dof). The combination wh the high complexity of

the underlying partial di erential equations demands fast solution algorithms and, conform-
ing to up{to{date computer hardware architectures, parallel methods. One possibility to
achieve these speci cations are domain decomposition (DDjnethods which acquired a lot of



attention in the last years and resulted in the development d& several overlapping as well as
non{overlapping DD methods, see [1]. They all work accordig to the same principle: the

computational domain is subdivided into a set of (overlapp ing or non{overlapping) subdo-

mains . DD algorithms now decompose the large global problem into &et of smaller local
problems on the subdomains, with suitable transmission ornterface conditions. This yields

a natural parallelization of the underlying problem. In addition to well established standard

DD methods, other examples for more advanced domain decompition methods are hybrid

methods [45], mortar methods [8, 33, 49] and tearing and inteonnecting methods [16].

In this paper we focus on the nite element tearing and interconnecting (FETI) method
where the strategy is to decompose the computational domairinto a nite number of non{
overlapping subdomains. Therein the corresponding local fmblems can be handled e ciently
by direct solvers. The reduced global system, that is relatd to discrete Lagrange multipliers
on the interface, is then solved with a parallel Krylov spacemethod to deduce the desired
dual solution. This is, in the case of elasticity, the bounday stress and subsequentely, in a
postprocessing step, we compute the primal unknown, i.e. tl displacements, locally. For the
global Krylov space method, such as the conjugate gradient@G) or the generalized minimal
residual (GMRES) method, we need to have a suitable precontibning technique. Here we
consider a simple lumped preconditioner and an almost optiral Dirichlet preconditioner, as
proposed by Farhat et al. [15].

A variant of the classical FETI method is the all{ oating tea ring and interconnecting
approach (AF{FETI) where, in contrast to the classical approach, the Dirichlet boundary
acts as a part of the interface. It was introduced independetty for the boundary element
method by Steinbach and Of [36, 37] and as the Total{FETI (TFETI) method for nite
elements by Dostl et al. [13]. This approach shows advantges in the implementation and,
due to mapping properties of the involved operators, improes the convergence of the global
iterative method for the considered problems. This behavio is illustrated with numerical
examples, which are { to the best of our knowledge { the rst application of all{ oating FETI
method to nonlinear and anisotropic biological materials.

An essential part of FETI methods is solving the local subprdlems. Challenges occur with
so{called oating subdomains which have no contribution to the Dirichlet boundary. These
cases correspond to local Neumann problems and the solutierare { in the case of elasticity
{ only unique up to the rigid body modes. One possibility to overcome this trouble is a
modi cation of the classical approach, the dual{primal FET | (FETI{DP) method, cf. Farhat
et al. [14] and Klawonn and Widlund [30]. In this variant some specic primal dof are
xed. This yields solvable systems for all subdomains. Chosing the primal dof may be very
sophisticated [31]. This approach was already applied to madel arterial tissues by Klawonn
and Rheinbach, see, for example, [28, 41].

Both the classical FETI method, as well as all{ oating FETI, needs the construction
of a generalized inverse matrix. This may be achieved usingikct solvers with a sparsity
preserving stabilization or stabilized iterative methods. For a mathematical analysis of FETI
methods, including convergence proofs for the classical eflevel FETI method cf. [29, 30, 34].

2 Modeling Arterial Tissues

The deformation of a body B is described by a function : ¢! + with the reference
conguration o RS2 attime t = 0 and the current con guration  at time t > 0. With



this we introduce the displacement eld U in the reference con guration and the displacement
eld u in the current con guration,

x= (X)=X+UX)2 ¢ X= Yx)=x ux)2 g
and the deformation gradient as, see, e.g., [20],
F=Grad (X)=1+Grad U:

Moreover, we denote byJ = det F the Jacobian of F and by C = F”F the right Cauchy{
Green tensor. For later use, to model the nearly incompresbile behavior of biological tissues,
we introduce the following split of the deformation gradiernt in a volumetric and an isochoric
part, compare Flory [17], i.e.

F=J¥F; with detF =1: (1)

Consequently, this multiplicative split can be applied to other tensors such as the right
Cauchy{Green tensor. Thus

C=J¥C: withC=F F and detC =1:

As a starting point for the modeling of biological tissues the stationary equilibrium equations
in the current con guration are considered to nd a displacement eld u according to

div (u;x)+ bi(x)=0 forx2 (2

where (u;Xx) is the Cauchy stress tensor andb¢(x) is the body force at time t.

In addition, we incorporate boundary conditions to describe displacements or normal
stresses on the boundary ; = @ ¢, which is decomposed into disjoint parts such that@ ; =
“tp[ tn. Dirichlet boundary conditions on p correspond to a given displacement eld
u = up(x), while Neumann boundary conditions on ¢y are identi ed physically with a
given surface traction (u;x) n¢(x) = g¢(x), where n¢(x) denotes the exterior normal vector
at time t.

The equilibrium equations and the boundary conditions may dso be formulated in terms
of the reference con guration, i.e.

Div FS(U;X)+ bo(X) = 0 for X 2 ¢ 3)
UX) = Up(X) for X2 op; 4)
FS(U;X)No(X) = Go(X) for X 2 on; (5)

where S is the second Piola{Kirchho tensor and bg(X) is the body force at time t = O.
In order to formulate the boundary conditions we introduce a prescribed displacement eld
Up(X), the exterior normal vector N g(X) and the surface traction Go(X) in the reference
con guration.

Considering the study of the properties of soft biological tssue we have to deal with a
nonlinear relationship between stress and strain, with lage deformations and an anisotropic
material. Since linear elasticity models are not adequatedr treating such a complex behavior,
we take a look at the more general concept of nonlinear elagtity.

The nonlinear stress{strain response is modeled via a conitive equation that links the
stress to a derivative of a strain{energy function , representing the elastic stored energy
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per unit reference volume. Derived from the Clausius{Duheminequality, see [11, 48], we
formulate the constitutive equations as

@ C)

=2J 1FEF> and s:z@(c):

We make use of the Rivlin{Ericksen representation theorem42] and its extension to anisotropic
materials, cf. [40], to nd a representation of the strain-energy function in terms of the
principal invariants of C.

Arteries are vessels that transport blood from the heart to the organs. In vivo the artery
is a prestretched material under an internal pressure load.Healthy arteries are highly de-
formable composite structures and show a nonlinear stressfrain response with a typical
sti ening e ect at higher pressures. Reasons for this are the mbedded collagen bers which
lead to an anisotropic mechanical behavior of arterial wak. We denote byag; and by ag:2
the predominant collagen ber directions. An important observation is that arteries do not
change their volume within the physiological range of defamation, hence they are treated as
a nearly incompressible material, see, e.g., [23]. In this etk we focus on the in vitro passive
behavior of the healthy artery, see Fig. 1.

Figure 1. Diagrammatic model of the major components of a hedhy elastic artery, from [23].
The intima, the innermost layer is negligible for the modeling of healthy arteries, it plays a
very impotant role in the modeling of diseased arteries, thagh. The two predominant axial
directions of the collagen bers in the media and the adventiia are indicated with black lines.

To capture the nearly incompressibility condition we remenber the decomposition (1),
which yields an additive split of the strain{energy function into a so{called volumetric and



an isochoric part, i.e. o
(C)= w@)+ (C) (6)

This procedure leads to constitutive equations in which thestress tensors are also additively
decomposed into a volumetric and an isochoric part, i.e., cf[20],

C) @ C)
—pi+23 FE S ang s=upc 142 ; 7
P & P @ ")
Here, the scalar{valued hydrostatic pressure is de ned as

_ @ wld).

AR ®)

To capture the speci cs of this ber{reinforced composite, Holzapfel et al. [23] proposed an
additional split of the isochoric strain{energy function into an isotropic and an anisotropic
part. Hence, the complete energy function can be written as

(C)= w@)+ _iso(é) + _aniso(éi azo) + _aniso(é; an;o): )

Following the classical approach we describe the volume cinging part by
vol(J) = E(J 1)2; (10)

where > 0, which is comparable to the bulk modulus in linear elasticly, serves as a penalty
parameter to enforce the incompressibility constraint.

To model the isotropic ground substance the classical neo{blokean model, see, e.g., Ogden
[38], is used. Thus

T iso(C) = (_Z:(I_l 3); (11)

wherec > 0 is a stress{like material parameter andl ; = tr( C) is the rst principal invariant
of the isochoric part of the right Cauchy{Green tensor. In (9), aniso IS associated with
the deformation in the direction of the collagen bers. According to [23], this transversely
isotropic response is described by

~aniso(C a10) = szl expka(Ta 17 1 ; (12)
2

Tanol(Cia20) = ot explo(le 171 1 ; (19
2

with the invariants 14 := az.o (Caro), I's:= azo (Cazo) and the material parametersk; and
ko, which are both assumed to be positive. It is worth to mention that for the ansiotropic
responses (12) and (13) only contribute for the case$, > 1 or I > 1, respectively. This
condition is explained with the wavy structure of the collagen bers, which are regarded as
not being able to support compressive stresses. Thus, the &rs are assumed to be active in
extension (; > 1) and inactive in compression (; < 1). This assumption is not only based
on physical reasons but it is also essential for reasons ofdadiility, see Holzapfel et al. [24].

The material parameters can be tted to an experimentally observed response of the
biological tissue. Following [23] we use the material paramters summarized in Table 1.

Similar models can also be used for the description of otheriblogical materials, e.g., for
the myocardium, cf. [25].



Table 1: Material parameters used in the numerical experimats; parameters taken from [23].
c=3:0 kPa k; = 2:3632 kPa ko =0:8393 (-)

3 Finite Element Approximation

3.1 \Variational formulation of nonlinear elasticity probl ems

In this section we consider the variational formulation of the equilibrium equations (2) and
(3) with the corresponding Dirichlet and Neumann boundary conditions. In particular, using
spatial coordinates, we have to ndu 2 [H( {)]3, u= up on ¢p, such that
Z Z Z
hA((u);vi , = (W :"(v)dx = by vdx + gt vdsyx =@ hF;vi , (14)

t t N

is satis ed for all test functions v 2 [H( {)]3,v=0o0n ¢p and
n 1 >
(v) = > gradv + (grad v)

In (14), A: is the nonlinear operator in the current con guration which is induced by the
stress tensor representation (7), and by using the related dhality pairing h; i ,. For later use,
we introduce the corresponding terms in the reference con gration ¢ ashAq(U);Vi , and
hFo; Vi ,. Note that (14) formally corresponds to a variational formulation in linear elasticity.
However, the integral and the involved terms have to be evalated in the current con guration
which comprises the nonlinearity of the system. If the test tinction v is interpreted as the
spatial velocity gradient, then " (v) is the rate of deformation tensor so thathA;(u);vi , has
the physical interpretation of the rate of internal mechanical work.

In terms of the reference con guration we seek the displaceent eld U 2 [H( )3,
U =Upon op, such that
Z Z Z
hA(U); Vi , = S(U): (U;Vv)dX = boV dX+ Go V dsx = hFp; Vi , (15)

0 0 O;N

is satised for all V 2 [HY( )3, V = 0 on g¢p. In (15) we use the de nition of the
directional derivative of the Green{Lagrange strain tensa, i.e.

(U;V) = % Grad” VF (U)+ F>(U)Grad V ;

which is also known as the variation or the material time dervative of the Green{Lagrange
strain tensor in the literature.

It is important to note that results on existence of solutions in nonlinear elasticity can be
stated given a polyconvex strain{energy function . For mor e details we refer to the results
of Ball [4, 5], see also [10, 12] and Balzani et al. [6].

3.2 Linearization and discretization

In the following we con ne ourselves to the reference con guation . The formulations in
the current con guration ; can be deduced in an analogous way.
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For the computational domain ¢ RS2 we consider an admissible decomp@sition intdN
tetrahedral shape regular nite elements - of mesh sizeh-, i.e. o= Ty = !\I=l —, and
we introduce a conformal nite element spaceXy [H( ¢)]3, M = dim X}, of piecewise
polynomial continuous basis functions' ;. Then the Galerkin nite element discretization of
the variational formulation (15) results in a nonlinear system of algebraic equations to nd
Up 2 X satisfying an approximate Dirichlet boundary condition Uy = Up:p, on op and

hAg(Un); Vi o, = hFo; Vi (16)

forall Vh 2 Xp, Vh=00n qp. Note that Up;y 2 Xy,; ,.p denotes a suitable approximation
of the given displacementU p.

For the solution of the nonlinear system (16) we apply Newtors method to obtain the
recursion

h UnAS(UK)Vhi o = hFo; Vi o hA o(UK); Vi o UK = UR+  Up; (17)

with the displacement eld of the k{th Newton step U, the increment U} and a suitable
initial guess. For the computation of the tangential term AS(U ﬁ) we need to evaluate
VA
h Up;AJ(UK)Vhi , = Grad( Up) S(Uf): Grad V, dX (18)
°Z
+ F>Grad Up:C(UK): F” Grad(Vy)dX:
0

For a more detailed presentation how to compute the tangental term, in particular the forth{
order elasticity tensor C(U E) we refer to [3, 21].

Note that the convergence rate of the Newton method is depenght on the initial guess,
on the parameters used in the model and on the inhomogeneousirizhlet and Neumann
boundary conditions which in uence Fy.

In a time{stepping scheme we use zero for the initial guess,ral the result of the k{th
time{step as initial solution for the next step. The initial guess may also be the solution
of a modi ed nonlinear elasticity problem such as the soluton of the same nonlinear model
but with modi ed parameters, e.g., a reduced penalty paraméer , or modi ed boundary
conditions, e.g., a reduced pressure on the surface. The tat is equivalent to an incremental
load stepping scheme with a parameter 2 (0;1]; ! 1, so that

h UnAUK)V R o = h Fo;Vhi o hAUE) VR o UK = UK+ Up (19)

The standard nite element method (FEM) now yields a linear system of equations which is
equivalent to the discretized variational formulation (17). Finally, we have to solve

KYuk) u=F K(U¥); ukt=uk+ u; (20)

with the solution vector UX in the k{th Newton step and the increment U. The tangent
sti ness matrix K %is calculated according to

KAQUMGjT:= H;AQUE) i o
and the terms of the right hand side are constructed by

Eli]:=hRo;' i , and K (UM[i]= PAUEK);" i o

7



The additive split of the stress tensors (7) and the introdudion of the hydrostatic pressure
(8) leads to the additional equation

@ vol (J) —
@

which has to be satis ed in a weak sense. For this we use the ideof static condensation
where this volumetric variable is eliminated element{wise see [21]. This may be achieved in
using discontinuous basis functions; in this paper we will oncentrate on piecewise constants.
In the case of tetrahedral elements, this approach leads t®{Po{elements. Herek is the
order of the basis functions for the displacement eld. It is known that linear nite elements
are very prone to volumetric locking. Hence, for nearly inconpressible materials piecewise
gquadratic elements k = 2) are a better choice. The resulting P>{ Po{element is also the choice
to model nearly incompressible arterial materials in [28] ad is, in contrast to the widely used
P1{ Po{element, stable for the nearly incompressible linear elaicity problem, e.g., see Bo
et al. [9]. For the numerical results in this work (Sect. 5) weuse both linear (P1{ Po{element)
and quadratic (P>{ Po{element) ansatz functions for the displacement eld and canpare the
results.

Note that due to the symmetry of the stress tensorS and the major and minor symmetry
properties of the elasticity tensor C the operator AYUX) is self{adjoint. We can also show,
using the positive de niteness of the elasticity tensor, se [38], and the polyconvexity of the
strain{energy function (Sect. 3.1), that this operator is [H&( o; op)]*{elliptic and bounded,
see [3, 38]. With these properties of the operatvo(U'r‘]) we can state that the linearized
system (17){(18) admits a unique solution Uy. Furthermore, the tangent sti ness matrix
K %is symmetric and positive de nite.

Simulations with large deformations and the hence requiredderivative of the Neumann
boundary conditions (5) would yield an additional unsymmetric mass matrix on the left hand
side of (20). To stay with an symmetric system we neglect thismatrix but compensate it
with a surface update of the geometry after each Newton step.Thus, our whole system
is symmetric and we can use the conjugate gradient (CG) methd as an iterative solver.
Nonetheless, the FETI methods described in Sect. 4 also worfor unsymmetric systems by
using the GMRES method.

0; (21)

4  Finite Element Tearing and Interconnecting

To solve the linearized equations (20) arising in the Newtonmethod we apply the nite
element tearing and interconnecting approach [16], see ag28, 39, 47], and references given
therein. The derivation of the FETI system for nonlinear mechanics will be performed in
the reference con guration. In an analogous way this is alsovalid for the formulation in
the current con guration. For a bounded domain RS2 we introduce a non{overlapping
domain decomposition

_ P , o
0= oi With i\ o=, fori6j, oi= @ oj; (22)



see Fig. 2. The local interfaces are given byqjj := o\ o; foralli<j . The skeleton of
the domain decomposition (22) is denoted as

[P [ _
0C = 0i = ol 0 - (23)
i=1 i<j
We assume that the nite element meshTy matches the domain decomposition (22), i.e., we
can reorder the degrees of freedom to rewrite the linear systn (20) as

0 1
K21 (UY) KSc(UHA, 0y 1
k k :
Kgp(gp) Kgc(gp)Ap % UISI E
Fp —M
AT K (UY) ATKE(Up)  ATKE(UDA; ug
- 1 24
K (Uf 24
B K p(UF) :
P
AT K (U

i=1
where the increments gﬁl , the sti ness matrices Kﬁ(gik) and the terms on the right hand

oi- All terms with an index C correspond to degrees of freedom orthe coupling boundary
o.c, see (23), whileA; denote simple reordering matrices taking boolean values.

4.1 Classical FETI method
Starting from (24), the tearing is now carried out by
! ! !
U - Ul o KRUH KR _ KU
A U LKEUN KW

Figure 2: Decomposition of a domain ¢ into four subdomains ;.



whereA QE is related to degrees of freedom on the coupling boundarygin o. As the un-
knowns U; are typically not continuous over the interfaces we have to asure the continuity
of the solution on the interface, i.e.

U, = gj on g ihj =1;:0;p: (25)
This is done by applying the interconnecting
xXP
Bi U;=0; (26)

i=1
where the matricesB; are constructed fromf0; 1; 1g such that (25) holds. By using discrete
Lagrange multipliers _ to enforce the constraint (26) we nally have to solve the linear system

0 10 1 0, 1
K3 B] Uy f
% s E% 5 EZE@EE: -
Kp Bj Uy b
By 0 Bp O _ 0

4.2 Al oating FETI method

The idea of this special FETI method, cf., e.g., Of and Steinlach [37], is to treat all subdomains
as oating subdomains, i.e. domains with no Dirichlet boundary conditions. In addition to
the standard procedure of “gluing' the subregions along thauxiliary interfaces, the Lagrange
multipliers are now also used for the implementation of the Drichlet boundary conditions,
see Fig. 3. This simpli es the implementation of the FETI procedure since it is possible to
treat all subdomains the same way. In addition, some tests (8ct. 5) show more e ciency
than the classical FETI approach and the asymptotic behavio improves. This is due to the
mapping properties of the Steklov{Poincae operator, see[37, Remark 1]. The drawback is an
increasing number of degrees of freedom and Lagrange multiprs. Compare also to Dosal et
al. [13] for the related Total{FETI method. If all regions ar e treated as oating subdomains
the conformance of the Dirichlet boundary conditions is notgiven; they have to be enhanced
in the system of constraints using the slightly modi ed interconnecting

Bi U =08 (28)

where B is a block matrix of the kind B; = [Bi;Bp.]” and the vector b is of the form
b=1[0;by]” such that Bp;j[j;k] =1, if and only if k is the index of a Dirichlet nodej of the
subdomain i, while bj] equals the Dirichlet values corresponding to the verticesX 2 op,
see also [37].

For three{dimensional elasticity problems all subdomain ¢i ness matrices have now the
same and known defect, which equals the number of six rigid by motions and which also
simpli es the calculation of the later needed generalizedriverse matricesk {. For all{ oating
FETI we nally get the linearized system of equations

0 10 1 0 1

K9 B U, f,
! ,ER R
KP BIO UIO —

o

B1

[ay
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Figure 3: Fully redundant classical FETI (a) and all- oatin g FETI (b) formulation: o, i =
the blue dashed lines correspond to the constraints (25). Tl orange strip indicates Dirichlet
boundary conditions. Note that the number of constraints for the all{ oating approach rises
with the number of vertices on the Dirichlet boundary.

4.3 Solving the FETI system

To solve the linearized systems (27) and (29) we follow the sindard approach of tearing and
interconnecting methods. For convenience we outline the pycedure by means of the classical
FETI formulation (Sect. 4.1). However the modus operandi isanalogous for the all{ oating
approach.

First, note that in the case of a oating subdomain ¢, i.e. oi\ op = ;, the local
matrices K ? are not invertible. Hence, we introduce a generalized inveseK?’ to represent the
local solutions as

gi: K?/(f_| Bi>_)+
k=1
Here,r,.; 2 ker K 9 correspond to the rigid body motions of elasticity. For oating subdomains

we additionally require the solvability conditions
(f;, Bi_rg)=0 fori=1;:::;6

k;i L - (30)

In the case of a non{oating subdomain, i.e. kerK; = ;, we may setK?’ = K, 1 n
Sect. 4.2 we comment on an all{ oating approach where also Dichlet boundary conditions
are incorporated by using discrete Lagrange multipliers.

In general, the Schur complement system of (27) is construed to obtain

xP g X X6 N
BiKYB} _ kiBilgi = BiK?/f_i; (f, Bi ry)=0:
i=1 i=1 k=1 i=1
This can be formulated clearer as | | |
F G ' d
- = - 31
s> o o (31)



with

xP X X6 xP
F= BK/B;G= Birg; d=  BiKf;
i=1 i=1 k=1 i=1
and e constructed usingey;; = (f_iiLk;i) fori=1;:::;pandk =1;:::;6. For the solution of

the linearized system (31) the projection
1
P>=1 G GG~ G’ (32)
is introduced. It now remains to consider the projected systm

PF_=P>d: (33)

This can be solved by using a parallel iterative method with siitable preconditioning of the

form
xP
PM l:=  B;YB: (34)
i=1

cf. Sect. 3, the matrix P~ F is also symmetric. This enables us to use the conjugate graglnt
(CG) method as the global solver for (33). Be aware that the intial approximate solution _°
has to satisfy the compatibility condition G> ° = e. A possible choice is
1
0=G G°G €

In a post processing we nally recover the vector of constarg

and subsequently the desired solution (30).

4.4 Preconditioning

Following Farhat et al. [15] we apply either the lumped precaditioner

xXP
PM l:= BiK®B7; (35)
i=1
or the optimal Dirichlet preconditioner
!
1 X 00 >
PM = Bi B7; (36)

0 S

where
Si= K2c(UF) K (UMK YUkK (UK

is the Schur complement of the local nite element matrix K 2. Alternatively, one may also
use scaled hypersingular boundary integral operator preauditioners, as proposed in [32].
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5 Numerical Results

In this section numerical examples for the nite element teaing and interconnecting approach
for linear and nonlinear elasticity problems are presented First, the FETI implementation
is tested within linear elasticity. Here we are able to compae the computed results to a
given exact solution. This enables us to show the e ciency ofour implementation and also
the convergence rates, as predicted from the theory. We congre the di erent precondition-
ing technigues and present di erences between the classicllETI and the all- oating FETI
approach.

Subsequently, we apply the FETI method to nonlinear elastidgty problems. Thereby, we
focus on the anisotropic model, as described in Sect. 2, andsa a realistic triangulations of
the aorta and a common carotid artery. As in the linear elastc case, di erent preconditioning
techniques for the all{ oating and for the classical FETI method are compared.

The calculations were performed by using the/SC2-cluster (http://vsc.ac.at/ ) in Vienna.
This Linux cluster features 1314 compute nodes, each with tw AMD Opteron Magny Cours
6132HE (8 Cores, 2.2 GHz) processors and 8 x 4 RAM. This yieldke total number of 21 024
available processing units. As local direct solver we use RFdiso [43, 44], included in Intel's
Math Kernel Library (MKL).

5.1 Linear Elasticity

In this section of numerical benchmarks we consider a lineaglastic problem with the academic
example of a unit cube which is decomposed into a certain numdr of subcubes. Dirichlet
boundary conditions are imposed all over the surface p = @. The parameters used are
Young's modulusE =210 and Poisson's ratio = 0:45. The calculated solution is compared
to the fundamental solution of linear elastostatics

111+ 1k (X1 X)X X))
" = — + . — ..
Uy (X3 X ) 8 1 3 4 )jX X X X[  k=1;23 (37)
forall x2 , x 2 R3isan arbitrary point outside of the domain , and j the Kronecker

delta, see [46]. The dierent strategies of preconditioningare compared and also the all{
oating and classical FETI approaches. As global iterative method we use the conjugate

gradient (CG) method with a relative error reduction of " = 10 8. Under consideration is
a linear elasticity problem using linear tetrahedral elemats (Pi{elements) with a uniform
re nement over ve levels (" =1;:::;5) given a cube with 512 subdomains.

Hence, the number of degrees of freedom associated with th@arsest mesh is 9981 for
the all{ oating FETI approach and 6 621 for the classical FET | approach. The di erence of
the numbers is due to the decoupling of the Dirichlet bounday p. For the nest mesh we
have 31116861 (allf oating) and 31073181 (classical) deges of freedom. The number of
Lagrange multipliers varies between 38 052 for level 1 and 28 692 for level 5. Again we have
a higher number of Lagrange multipliers for the all{ oating approach due to the decoupling
of the Dirichlet boundary conditions. The computations were performed on VSC2 using 512
processing units.

First note in Table 2 that for all examined settings, the L2 error, i.e.

ku uhkLz() ; (38)
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whereuy, is the approximate andu the exact solution, and the estimated order of convergence

Inku  up;kp,()  Inku o ups ke, ()

eoc =
In2

(39)

behaves as predicted from the theory, i.e. it is of second omt. As expected the least
iteration numbers were observed for the optimal Dirichlet preconditioner. Nonetheless, since
no additional time is required to compute the lumped precondtioner, in contrast to the
more sophisticated Dirichlet preconditioner, this type of preconditioning yields comparable
computation times for each level of re nement. As a comparisn we also list the results of a
very simple preconditioning technique, using the identity matrix for Y; in (34), where almost
no reduction of the condition numbers can be noticed.

Moreover, we observe that all{ oating FETI yields better co ndition numbers for all pre-
conditioners, and hence better convergence rates of the dlal conjugate gradient method.
Although the global iterative method converges in less iteations for this approach, we achieve
lower computation times for the classical FETI method for the linear elastic case withP1{
elements. This is mainly due to the larger expenditure of time to set up the all{ oating FETI
system, the larger coarse matrixGG >, cf. (32), and due to the higher amount of Lagrange
multipliers.

Table 2: Iteration numbers (it.), condition numbers and computation times (in s) for each
preconditioning technique usingPi{elements. " is the level of uniform re nement, for the L2
error is the value given in (38) and eoc is the estimated erroof convergence.

all- oating

X identity prec. lumped prec. Dirichlet prec. L2 error eoc
6lit. 536 209s| 27it. 10.3 19.7s|21lit. 7.6 19.5s | 1.42e-04 -
711t 70.0 19.6s| 38it. 19.7 188 s| 26it. 104 184 s | 3.71e-05 1.94
88it. 108.8 21.7s| 45it. 26.1 223s|27it. 9.7 223s | 9.40e-06 1.98
119it. 216.8 28.8s| 62it. 532 26.4s|32it. 13.1 26.6s | 2.37e-06 1.99
160 it. 4327 1166 s 91lit. 126.2 99.0s| 37it. 16.8 105.9 s| 5.96e-07 1.99
lassical

ook WODN B

identity prec. lumped prec. Dirichlet prec. L2 error eoc
80it. 98.2 71s| 35it. 141 59s|29it. 10.0 59s | 1.47e-04 -
105it. 161.4 78s| 58it. 419 6.1s|37it. 164 58s | 3.72e-05 1.98
140 it. 295.7 9.3s| 85it. 1059 79s|46it. 254 7.7s | 9.41le-06 1.98
188 it. 580.9 15.2s 125it. 252.1 13.1s| 54it. 358 12.2s | 2.37e-06 1.99
251 it. 1150.3 103.4 9 179it. 555.7 88.2s| 60it. 46.3 83.6s | 596e-07 1.99

a b wN P

From level 4, with a maximum of 8907 local degrees of freedomp level 5, with a max-
imum of 66 195 local degrees of freedom, we observe an increas the local assembling and
factorization time from approximately 1:8 seconds up to about 13 seconds for all kinds of
preconditioners. This is mainly due to the higher memory regiirements of the direct solver.
Note also that the factorization of the local sti ness matric es by the direct solver is unfeasible,
if the number of local degrees of freedom gets too large. Thesason for that are memory
limitations on the VSC2 cluster. A possibility to overcome this problem is the use of fast local
iterative solvers, e.g., the CG method with a multigrid or a BPX preconditioner. Summing it
up seems that the simple lumped preconditioner and the classal FETI approach appear to
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be favorable for this academic example, with very structurel subdomains and the boundary
b = @. The latter yields a large number of oating subdomains for all{ oating FETI which

are non{ oating for the classical FETI approach and hence a nuch larger coarse matrixGG >

for all{ oating FETI. The inversion of this matrix is the mos t time consuming part for the

these cases.

Next, we consider a linear elastic problem by using tetrahechl elements and quadratic
ansatz functions, i.e. Px{elements for the same mesh and parameter properties as abev The
number of degrees of freedom now varies between 53181 (levet 1) and 26 398 269 (level
" = 4) and the number of Lagrange multipliers between 77 700 and2 908 692. Note that for
all preconditioning types and for both the all{ oating and t he classical FETI method the L2
error compared to the fundamental solution behaves as predied from the theory as we get
a cubic convergence rate, see Table 3.

For al{ oating FETI we have the very interesting case that t he global CG iteration
numbers remain almost constant for the lumped preconditiorer, and it even seems to be a
decay for the identity and the Dirichlet preconditioner, if we increase the local degrees of
freedom, i.e. increase the re nement level .

For the classical FETI approach the iteration numbers stay dmost constant for the Dirich-
let preconditioner and increase marginally for the other two preconditioning techniques. Con-
cerning the computation times we have an analogous result ais the previous case with linear
ansatz functions: the classical approach with the lumped peconditioner seems to be the best
choice for this particular example.

Table 3: Iteration numbers (it.), condition numbers and computation times (in s) for each
preconditioning technique usingP2,{elements; " is the level of uniform re nement, L2 error is
the value given in (38) and eoc is the estimated error of convgence.

all- oating

X identity prec. lumped prec. Dirichlet prec. L2 error eoc

1|149it. 4447 233s| 73it. 73.7 220s|47i. 36.7 18.7 s| 1.13e-05 -

2| 129it. 330.8 219s| 75it. 743 20.8s|43it. 27.7 19.3s| 1.44e-06 2.97

3| 114it. 2103 30.3s| 73it. 688 27.3s|36it. 16.6 28.5s| 1.81le-07 2.99

41 105it. 167.8 99.8s| 69it. 652 93.4s|33it. 144 90.2s| 2.26e-08 3.00

classical

identity prec. lumped prec. Dirichlet prec. L2 error eoc

120it. 405.0 75s| 65it. 489 6.9s|40it. 21.0 6.5s | 1.17e-05 -
108 it. 302.6 75s| 69it. 57.6 6.7s|41lit. 206 7.5s | 1.46e-06 3.00
112it. 2534 12.6s| 91it. 116.2 11.7s| 42it. 21.0 12.3s| 1.82e-07 3.01
136 it. 273.1 76.3s| 128it. 262.8 77.3s| 48it. 27.7 79.1s|2.26e-08 3.01

A OWDNPRF

5.2 Arterial Model on a Realistic Mesh Geometry

In this section we present examples to show the applicabilit of the FETI approaches for
biomechanical applications, in particular the in ation of an artery segment. We consider
the mesh of an aorta and the mesh of a common carotid artery, geFig. 4 and Fig. 5. The
geometries are from AneuriskWeb [2] and Gmsh [19]. The genation of the volume mesh was
performed using VMTK and Gmsh [19].
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The ber directions, see Fig. 6, were calculated using a methd described by Bayer et
al. [7] for the myocardium. To adapt this method for the artery we rst solved the Laplace
equation on the domain  with homogeneous Dirichlet boundary conditions on the inne
surface and inhomogeneous Dirichlet boundary conditions o the outer wall. The gradient of
the solution is used to de ne the transmural direction €, in each element. As a second step we
repeat this procedure using homogeneous Dirichlet boundgrconditions on the inlet surface
and inhomogeneous boundary conditions on the outlet surfaes which yields the longitudinal
direction &;. The cross product of these two vectors eventually provideshe circumferential
direction &p. With a rotation we get the two desired ber directions ag:; and a2 in the media
and the adventitia, respectively. Thus,

0 _ 10 .1
cos sin 0 &5
ap:1 ag:2 & = &y &1 & @sin Ccos OA@QIA & & & : (40)
0 0o 1 &

The values for the angle are \ =29 forthe mediaand 5 =62 for the adventitia, taken
from [23].

To describe the anisotropic and nonlinear cardiac tissue, & use the material model (9){
(13), with the parameters given in Table 1 and is varied. Dirichlet boundary conditions (4)
are imposed on the respective intersection areas. We perfior an in ation simulation on the
artery segment where the interior wall is exposed to a constat pressurep. This is performed
using Neumann boundary conditions (5). If not stated otherwise, we present the results of one
load step applying a rather low pressure of 1 mmHg. This is nexssary to have a converging
Newton method. Nonetheless, the material model as used is @otropic. To simulate a higher
pressure, an appropriate load stepping scheme, see (19), h#o be used. However, this does
not a ect the number of local iterations signi cantly. As alr eady mentioned in Sect. 4 we
use the CG method as global iterative solver. Experiments vih a standard non{symmetric
nonlinear elasticity system and the hence necessary GMRES ethod as an iterative solver
showed similar results as presented in the following with tle symmetric system. However, the
memory requirements of the GMRES solver are much higher.

The local generalized pseudo{inverse matrices are realidewith a sparsity preserving reg-
ularization and the direct solver package Pardiso. The globl nonlinear nite element system
is solved by a Newton scheme, where the FETI approach is used ieach Newton step. For
the considered examples the Newton scheme needed four to sterations. Due to the non-
uniformity of the subdomains the e ciency of a global preconditioner becomes more impor-
tant. It can happen that the decomposition of a mesh results h subdomains that have only
a few points on the Dirichlet boundary. This negatively a ects the convergence of the CG
method using classical FETI, but does not a ect the global iterative method of the all- oating
approach at all. This is a major advantage of all- oating FET | since here all subdomains
are treated the same and hence all subdomains are stabilizedrhis behavior is observed for
almost all settings for preconditioners and the penalty paameter as well as for linear and
quadratic ansatz functions, see Table 4, Table 5 Table 6 and dble 7.

For instance, applying all- oating FETI with the Dirichlet preconditioner to the aorta
mesh using a penalty parameter = 1000 the global CG method converged in considerable less
iterations (209) than the CG method using classical FETI (263), see Table 4. The advantage
of the smaller number of iterations is not so signi cantly re ected in the computation times
since, as for the linear case, we have higher set up times andlarger coarse systemGG .
Nonetheless, it shows for the considered examples that alfating FETI yields lower iterations
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Table 4: Iteration numbers (it.) per Newton step and computation times (in s) per Newton

step for the all- oating and the classical FETI approach with linear ansatz functions com-
paring the three considered preconditioners. The penalty prameter was varied from 10 to
1000 kPa. Mesh: mesh of the aorta subdivided in 480 subdomasncomputed with 480 cores.

all- oating
identity prec. lumped prec. Dirichlet prec.
10 | 1052 it. 57.6 s| 160 it. 31.0s| 56 it 228s
100 | 1879 it. 94.6 s| 305it. 295s| 85it. 25.4 s
1000 | 4122 it. 177.1s| 681 it 48.8 s| 209 it. 318s
classical
identity prec. lumped prec. Dirichlet prec.
10 | 2056 it. 98.7 s| 305 it 35.5s| 117 it. 27.2s
100 | 3711 it. 149.8 s| 540 it. 35.5s| 144 it. 284 s
1000 | 8245 it. 327.8 s| 1190 it. 60.9 s| 263 it. 329s

Table 5: Iteration numbers (it.) per Newton step and computation times (in s) per New-
ton step for the all- oating and the classical FETI approach with linear ansatz functions
comparing the three considered preconditioners. The pengl parameter was set to 1000
kPa. Mesh: mesh of the carotis with two layers (adventitia ard media) subdivided in 512
subdomains, computed with 512 cores.
type identity prec. lumped prec. Dirichlet prec.
all- oating | > 10000 it. -s| 1084 it. 100.6 s| 497 it. 855s
classical 5130 it. 357 s| 1794 it. 200.2 s| 588 it. 97.7 s

numbers of the global systems and is also competitive or eveadvantageous to the classical
approach concerning the computation times.

In contrast to the academic example in Sect. 5.1 the more compx Dirichlet preconditioner
is the best choice for all considered settings. Especiallyof 1 the iteration numbers with
the lumped and the identity preconditioner escalate. Admittedly, the numbers in Table 4 also
show that the convergence of the CG method, within all FETI approaches and preconditioner
settings, is dependent on the penalty parameter .

Using quadratic ansatz functions we have a total number of 2831620 d.o.f. for the
aorta mesh and 36527435 d.o.f. for the carotis mesh. In orddp not infringe the memory
limitations on the VSC2 cluster we have to use a decomposition into 1024 subdomainsrf
the carotis. For the aorta it was possible to stay with 480 suldlomains. The number of
Lagrange multipliers then are 1552 665 (aorta) and 4 585 203cérotis). Comparing the num-
bers in Table 6 and Table 7 show similar results as in the case ith linear ansatz functions.
The Dirichlet preconditioner is preferable for all test cases and the all- oating approach is
competitive to the classical FETI approach. Albeit quadratic ansatz functions resolve the
nearly incompressible elastic behavior better than linearansatz functions we also notice a
certain dependence of the global iteration numbers to the pealty parameter , see Table 6.
Nonetheless, the iteration numbers rise not as quickly as fothe P;{Po{element case and the
values ofJ = det( F) in each element are much closer to 1 foP,{ Po{elements.
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Figure 4: Mesh of an aorta consisting of 5418594 tetrahedranand 1055901 vertices. Point
of view is from above showing the links to the brachiocephati, the left common carotid and
the left subclavian artery. Colors indicate the displacemat eld (left) and the von Mises
stress (right) generated by applying a pressure to the innewalls of the arteries. Red colors
indicate high, blue colors indicate low displacement or stess respectively. Additionally, the
splits show the decomposition of the mesh into 480 subdomam

Figure 5: Mesh of a segment of a common carotid artery from twali erent points of view.
The mesh consists of 9195336 tetrahedrons and 1621365 veds. Colors indicate the von
Mises stress eld generated by applying a pressure to the iner walls of the artery. Red colors
indicate high, blue colors indicate low stressdisplacemen Additionally, the splits show the
decomposition of the mesh into 512 subdomains.
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Table 6: Iteration numbers (it.) per Newton step and computation times (in s) per Newton
step for the all- oating and the classical FETI approach with quadratic ansatz functions
comparing the three considered preconditioners. The pengl parameter was varied from
10 to 1000 kPa. Mesh: mesh of the aorta subdivided in 480 subdmins, calculated with 480
cores.

all- oating
identity prec. lumped prec. Dirichlet prec.
10 | 940 it. 491.1s| 283it. 209.5s| 71it. 1573 s
100 | 1519 it. 1186.4 s| 523 it. 332.0 s| 105 it. 178.1 s
1000 | 3371 it. 2584.5 s| 1372 it. 746.0 s| 206 it. 282.7 s
classical

identity prec. lumped prec. Dirichlet prec.
10| 1319 it. 654.2 s| 333 it. 225.2 s| 113 it. 188.4 s
100 | 2362 it. 1140.6 s| 664 it. 402.6 s| 110 it. 1775 s
1000 | 5563 it. 4168.3 s| 1742 it. 943.1 s| 204 it. 280.1 s

Table 7: Iteration numbers (it.) per Newton step and computation times (in s) per Newton
step for the all- oating and the classical FETI approach with quadratic ansatz functions
comparing the three considered preconditioners. The pensl parameter was set to 1000
kPa. Mesh: mesh of the carotis with two layers (adventitia ard media) subdivided in 1024
subdomains, calculated with 1024 cores.
type identity prec. lumped prec. Dirichlet prec.
all- oating | > 10000 it. -s| 2163 it. 1133.9 s| 674 it. 994.6 s
classical 6006 it. 2672.6 s| 4798 it. 2306.8 s| 764 it. 771.2 s

5.3 Strong Scaling for Nonlinear Elasticity

We consider the meshes of the carotid artery and the aorta asiiSection 5.2, both subdivided
into 512 subdomains. We apply the arterial model with the pamameters from Table 1 and

= 100 using the lumped preconditioner and linear ansatz funtions. For the aorta we used
all- oating FETI and needed an average of 324 global CG iterdions to reach an absolute error
of " =10 ® and 5 Newton steps to reach an absolute error of 1. In the case of the carotis
and classical FETI we needed 674 global CG iteratios and alsb Newton steps to reach the
same error limits as above.

In Table 8 and Table 9 we present the following numbers: thdocal time is the sum of all
assembling and local factorization times during the soluton steps. The factorization of the
local problems was done with the direct solver package Pardb. In most cases we observe
a super{linear speedup and hence an e ciency greater than 1dr this value. This is due to
memory issues, mainly so{called cache e ects. Thelobal CG time is the duration of all CG
solution steps together. We see that this value scales veryapd up to 256 cores for the aorta
and up to 128 cores for the carotis. Thetotal time is the total computation time including
input and output functions. It also scales admissibly well wp to 256 processing units for the
aorta and up to 128 cores for the carotis, see Table 8, Table 9nal Fig. 7. For a higher
number of cores, at least for the speci c examples, the speeg is rather low. Possiblities
to overcome this problem are for example the usage of parallsolver packages asypre and
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Figure 6: Von Mises stress looking inside the aorta (left); alues of high von Mises stress in
red and of low stress in blue. To the right the ber directions (black lines) and the two layers
(adventitia in red and media in blue) of the carotis are shown

Table 8: Computational times (in s) and e ciency (e .) for a no nlinear elastic problem using
a varying number of processing unitsp. The time is measured for 1 time step with 5 Newton
steps for all oating FETI and the lumped preconditioner

p local time e. global CG time e. total time e.

16 407.7 s - 1311.7 s - 2028.6 s -

32 203.1s 1.004 666.4 s 0.984 1054.2 s 0.962

64 101.7 s 1.002 3454 s 0.949 562.0 s 0.902
128 50.5s 1.009 184.7 s 0.888 316.7s 0.801
256 253s 1.007 103.8 s 0.790 192.8 s 0.658
512 12.7 s 1.000 67.6 s 0.606 161.0s 0.394

a more e cient assembling of the coarse system of the FETI mehod. It also will need a
more elaborate strategy with MPI and the memory management. Note that at some point
the subdomains get too small and the increasingly dominant NPl communication impedes
further strong scaling.

6 Discussion and Limitations

We have shown the application of the nite element tearing ard interconnecting method
to elasticity problems, in particular to the simulation of t he nonlinear elastic behavior of
cardiovascular tissues such as the artery. The main ideas afomain decomposition methods
were summarized and the classical and the all- oating FETI gpproach were discussed in detail.

lllustrated by numerical examples we have shown certain adantages of the all{ oating
FETI method compared to the classical FETI approach. To the best of our knowledge the
application of the all{ oating approach to nonlinear aniso tropic elasticity problems cannot
be found in the literature. For sure the mentioned advantage are in uenced by the mesh
structure and the choice of the boundary conditions, and hene the method to choose depends
on the speci ¢ problem.

We have presented and compared di erent techniques of precadtitioning: the lumped pre-
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Table 9: Computational times (in s) and e ciency (e.) for a no nlinear elastic problem on
the carotis mesh using a varying number of processing unitp. The time is measured for 1
time steps with 5 Newton steps for classical FETI and the lumped preconditioner.

p local time e. global CG time e. total time e.

16 726.0 s - 47258 s - 6519.7 s -

32 351.3s 1.033 2368.2 s 0.998 3497.0s 0.932

64 170.5s 1.065 1262.9 s 0.936 1991.2 s 0.819
128 90.7s 1.001 694.5s 0.851 11941 s 0.682
256 47.3 s 0.960 443.6 s 0.666 9144 s 0.446
512 239s 0.949 297.2 s 0.497 667.4s 0.305

T T 10000 ; ;
local time —a&—

" local tin
ocal time —a—
global CG time —&— global CG time —&—
\ total time —=— \S\S\ total time —=—
1000 £
1000

10 10

Time [sec]

/
//

16 32 64 128 256 512 16 32 64 128 256 512
Number of processes Number of processes

Figure 7: Computation times (in s) for a simulation of the anisotropic arterial model with
the aorta mesh (left) and the carotis mesh (right) using a varying number of cores.

conditioner and the optimal Dirichlet preconditioner. Fur thermore, the numerical examples
exposed some instabilities of the global iterative method dr nearly incompressible material
parameters, i.e. for a very large penalty parameter . Here we were able to present, like it was
also shown in earlier contributions, that quadratic ansatzfunctions resolve the incompressible
elastic behavior better than linear ansatz functions.
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