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Olaf Steinbach2, Carolina Urzúa–Torres1
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Abstract

In this paper, we recast the variational formulation corresponding to the single
layer boundary integral operator V for the wave equation as a minimization prob-
lem in L2(Σ), where Σ := ∂Ω × (0, T ) is the lateral boundary of the space-time
domain Q := Ω × (0, T ). For discretization, the minimization problem is restated
as a mixed saddle point formulation. Unique solvability is established by combining
conforming nested boundary element spaces for the mixed formulation such that the
related bilinear form is discrete inf-sup stable. We analyze under which conditions
the discrete inf-sup stability is satisfied, and, moreover, we show that the mixed for-
mulation provides a simple error indicator, which can be used for adaptivity. We
present several numerical experiments showing the applicability of the method to
different time-domain boundary integral formulations used in the literature.

1 Introduction

Time-domain boundary integral equations and boundary element methods (BEM) for evo-
lution problems are well established in the literature, see, for example [12] for an overview.
The common procedure is to either first discretize the temporal part using convolution
quadrature, and then applying a boundary element method for the spatial variables, see,
e.g., [5, 7, 26, 36]; or to use BEM with spatial basis functions and temporal basis func-
tions chosen separately, and then considered together as tensor product. We refer to
[1, 2, 3, 20, 21, 22, 23, 25], to name a few. Typically, the choice of temporal basis func-
tion is done in order to obtain a marching-on-in-time algorithm, which is an explicit time
stepping scheme [47].
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Lately, the interest of discretizing space and time simultaneously has been increasing,
resulting in so called space-time discretization methods. Admittedly, space-time discretiza-
tions lead to larger systems of algebraic equations to be solved. Nevertheless, these methods
offer the advantage of having full control of the discretization in space and time at once,
allowing for space-time adaptivity. In order to see this, it is worth noting that although
space-time discretizations may lead to tensor-product basis functions on structured space-
time meshes, they treat time as if it were another spatial variable, and thus, also permit
unstructured meshes. Moreover, space-time methods allow for preconditioning and par-
allelization in the space-time domain, which gives more flexibility in the construction of
efficient solvers than time stepping methods, see, e.g., [18, 19].

The success of space-time BEM for parabolic problems [14, 15, 32] and the promising
developments for the wave equation when using space-time finite element methods (FEM)
[13, 31, 33, 43, 44], encourage us to also study space-time BEM for hyperbolic problems.
For this, the first step is to consider the literature on time-domain boundary integral
equations for the wave equation.

The standard approaches for BEM for the wave equation started with the groundbreak-
ing works of Bamberger and Ha-Duong [6], and Aimi et al. [2]. The main difficulty in the
numerical analysis of these formulations is in the so-called norm gap, coming from continu-
ity and coercivity estimates in different space-time Sobolev norms. When using the ener-
getic BEM from [2], a complete stability and error analysis can be done in L2(Σ), see [28],
where Σ := ∂Ω× (0, T ) is the lateral boundary of the space-time domain Q := Ω× (0, T ).
Hence, the energetic BEM is amenable to space-time discretizations. Its disadvantage,
though, is that it requires the Dirichlet data to be sufficiently regular, i.e., in H1(Σ).

Using a generalized inf-sup stable variational formulation [44] for the wave equation, in
[40] we derived inf-sup stability conditions for all boundary integral operators in related
trace spaces, overcoming norm-gaps and also the need for extra regularity of the Dirichlet
data. However, the standard discretization of the single layer boundary integral operator
V by means of space-time piecewise constant basis functions does not provide an inf-sup
stable pair [24] in one spatial dimension, which we believe will also be the case for d = 2, 3.

As an alternative, we proposed a regularisation via a modified Hilbert transform [43],

the resulting composition with V becomes elliptic in the natural energy space [H
1/2
,0 (Σ)]′,

similarly to what is known for boundary integral operators for second-order elliptic par-
tial differential equations [41]. At the time of writing this article, this strategy had two
drawbacks: it introduces further computational costs, and so far it is only applicable to
space-time meshes that admit a tensor product structure. However, these obstacles could
be circumvented applying techniques used in [45].

Another approach is to replace the straightforward variational formulation by a least-
squares/minimal residual equation. For FEM this has been extensively studied for time
independent problems, see Bochev and Gunzberger [9, 10, 11]. Time dependent parabolic
problems have been investigated in the context of first order least squares systems (FOSLS)
in [16] and in the context of minimal residual Petrov–Galerkin methods in [4, 46]. In the
context of BEM for elliptic partial differential equations this has been studied in [39] and,
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recently, for FEM for the wave equation in [17, 29]. In this paper we combine these
ideas to also have a least-squares boundary integral formulation that works for hyperbolic
problems. In addition to a stable method, we get an error indicator that can be used for
space-time adaptivity. It is worth pointing out that, although we present the theory for the
wave equation in one spatial dimension, the underlying abstract framework is dimension-
independent and, consequently, we expect the theory to carry over to higher dimensions.

This paper is organized as follows. Section 2 introduces our notation and model prob-
lem. In particular, we remind the reader that in one spatial dimension the single layer
boundary integral operator V is an isomorphism from [H1

,0(Σ)]′ to L2(Σ), and we derive
the associated inf-sup constant. Then, we introduce a least-squares variational formulation
for the related boundary integral equation. In Section 3, we present the stable discretiza-
tion of our least squares formulation. For this, we propose a mixed BEM, and show its
unique solvability in Theorems 3.1 and 3.2. Moreover, Lemma 3.3 establishes the con-
vergence of the method, and Lemma 3.4 provides the conditions under which we obtain
a reliable error indicator. In Section 4, we provide numerical experiments to verify our
theory. There, we investigate the performance of the proposed least-squares formulation
for three different first-kind boundary integral equations related to our Dirichlet problem.
With this, we compare how different mapping and stability properties affect the numerical
behaviour of the proposed method. We pay special attention to the requirements to have a
reliable error indicator and the numerical study of the resulting adaptive scheme. Finally,
we give some conclusions and comment on ongoing work.

2 Least-Squares Variational Formulation

As in [2, 41], we consider the Dirichlet boundary value problem for the homogeneous wave
equation in the one-dimensional spatial domain Ω = (0, L), with zero initial conditions,
and for a given time horizon T > 0,

∂ttu(x, t)− ∂xxu(x, t) = 0 for (x, t) ∈ Q := (0, L)× (0, T ),

u(x, 0) = ∂tu(x, t)|t=0 = 0 for x ∈ (0, L),

u(0, t) = g0(t) for t ∈ (0, T ),

u(L, t) = gL(t) for t ∈ (0, T ).

 (2.1)

In the one-dimensional case, the fundamental solution of the wave equation is the Heaviside
function

U∗(x, t) =
1

2
H(t− |x|),

and we can represent the solution u of (2.1) by using the single layer potential

u(x, t) := (Ṽw)(x, t) =
1

2

∫ t−|x|

0

w0(s) ds+
1

2

∫ t−|x−L|

0

wL(s) ds for (x, t) ∈ Q.
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To determine the yet unknown density functions (w0, wL), we consider the boundary inte-
gral equations for x→ 0,

(V0w)(t) :=
1

2

∫ t

0

w0(s) ds+
1

2

∫ t−L

0

wL(s) ds = g0(t) for t ∈ (0, T ), (2.2)

and for x→ L,

(VLw)(t) :=
1

2

∫ t−L

0

w0(s) ds+
1

2

∫ t

0

wL(s) ds = gL(t) for t ∈ (0, T ). (2.3)

We write the boundary integral equations (2.2) and (2.3) in compact form, for w = (w0, wL),
as

(Vw)(t) =

(
(V0w)(t)
(VLw)(t)

)
=

(
V00 V0L

VL0 VLL

)(
w0

wL

)
(t) =

(
g0(t)
gL(t)

)
= g(t), t ∈ (0, T ). (2.4)

In energetic BEM [2], instead of (2.4), the time derivative of (2.4) is considered,

∂t(Vw)(t) = ∂tg(t) for t ∈ (0, T ). (2.5)

Recall the ellipticity estimate [2, Theorem 2.1], see also [41, Theorem 2.1],

〈w, ∂t Vw〉L2(Σ) ≥ cS(n) ‖w‖2
L2(Σ) for all w = (w0, wL) ∈ L2(Σ) := L2(0, T )× L2(0, T ),

where
cS(n) := sin2 π

2(n+ 1)
,

and
n := min

{
m ∈ N : T ≤ mL

}
,

is the number of time slices Tj := ((j− 1)L, jL) for j = 1, . . . , n when T = nL. In the case
T < nL, we define the last time slice as Tn := ((n − 1)L, T ), while all the others remain
unchanged.

Since ∂t V : L2(Σ)→ L2(Σ) is also bounded, unique solvability of the boundary integral
equation (2.5) follows. Let us introduce H1

0,(Σ) := H1
0,(0, T ) × H1

0,(0, T ), and note that
z ∈ H1

0,(0, T ) covers the zero initial condition z(0) = 0. Moreover, for u = (u0, uL) ∈ H1
0,(Σ)

we have the norm definition

‖u‖2
H1

0,(Σ) := ‖∂tu0‖2
L2(0,T ) + ‖∂tuL‖2

L2(0,T ).

Given that the time derivative ∂t : H1
0,(Σ)→ L2(Σ) is an isomorphism, e.g., [43, Sect. 2.1],

we also have that V : L2(Σ)→ H1
0,(Σ) is an isomorphism.

We define H1
,0(Σ) := H1

,0(0, T ) × H1
,0(0, T ) in a similar way, but with a zero terminal

condition at t = T . As in [41, eqn. (2.9)] we also have the ellipticity estimate

−〈∂−1

t Vw,w〉Σ ≥ cS(n) ‖w‖2
[H1

,0(Σ)]′ for all w ∈ [H1
,0(Σ)]′,
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where

(∂
−1

t f)(t) = −
∫ T

t

f(s) ds, t ∈ (0, T ),

is the inverse of ∂t : H1
,0(Σ)→ L2(Σ), and [H1

,0(Σ)]′ denotes the dual space of H1
,0(Σ) with

respect to L2(Σ), which is equipped with norm

‖w‖[H1
,0(Σ)]′ = sup

06=v∈H1
,0(Σ)

〈w, v〉Σ
‖v‖H1

,0(Σ)

,

where 〈·, ·〉Σ : [H1
,0(Σ)]′×H1

,0(Σ)→ R denotes the duality pairing as extension of the inner
product 〈·, ·〉L2(Σ) in L2(Σ).

Hence we conclude that V : [H1
,0(Σ)]′ → L2(Σ) is an isomorphism and, in particular,

bounded and satisfying the inf-sup stability condition. Our next aim is to find the inf-sup
constant c̃S(n) > 0 of

c̃S(n)‖w‖[H1
,0(Σ)]′ = sup

06=q∈L2(Σ)

〈Vw, q〉L2(Σ)

‖q‖L2(Σ)

= ‖Vw‖L2(Σ).

With this goal in mind, we first consider two auxiliary lemmas, where we follow the ideas
and notation of [43].

Lemma 2.1 Let {Wk(t)}∞k=0 := {cos(αkt)}∞k=0 with αk :=
(
π
2

+ kπ
)

1
T

, and w ∈ [H1
,0(0, T )]′.

Then there exists a unique v ∈ L2(0, T ) such that ∂tv = w and

‖w‖2
[H1

,0(0,T )]′ =
2

T

∞∑
k=0

α−2
k w2

k = ‖v‖2
L2(0,T ),

where wk := 〈w,Wk〉(0,T ).

Proof. First, let us remind the reader that {Wk(t)}∞k=0 forms an orthogonal basis for
L2(0, T ) and H1

,0(0, T ), while {Vk(t)}∞k=0 := {sin(αkt)}∞k=0 is an orthogonal basis for L2(0, T )
and H1

0,(0, T ). Since ∂t : L2(0, T ) → [H1
,0(0, T )]′ is an isomorphism, we can write w = ∂tv

for a unique v ∈ L2(0, T ). By representing v by the orthogonal basis {Vk}∞k=0, i.e., v =∑∞
k=0 vkVk, with vk := 2

T
〈v,Vk〉L2(0,T ), we obtain

‖v‖L2(0,T ) =

(
T

2

∞∑
k=0

|vk|2
)1/2

,

and further

w = ∂tv =
∞∑
k=0

vkαkWk. (2.6)
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Using, that we can represent any function q ∈ H1
,0(0, T ) as q(t) =

∑∞
k=0 qkWk(t), with

qk = 2
T
〈q,Wk〉L2(0,T ), we first compute that

‖∂tq‖L2(0,T ) =

(
T

2

∞∑
k=0

|qk|2α2
k

)1/2

.

Now, by the definition of ‖ · ‖[H1
,0(0,T )]′ , we have that

‖w‖[H1
,0(0,T )]′ = sup

0 6=q∈H1
,0(0,T )

〈w,
∞∑
k=0

qkWk〉(0,T )

‖∂tq‖L2(0,T )

= sup
06=q∈H1

,0(0,T )

∞∑
k=0

qk〈w,Wk〉(0,T )(
T

2

∞∑
k=0

α2
k|qk|2

) 1
2

= sup
06=q∈H1

,0(0,T )

∞∑
k=0

αkqkα
−1
k wk(

T

2

∞∑
k=0

α2
k|qk|2

) 1
2

≤

(
2

T

∞∑
k=0

w2
kα
−2
k

)1/2

.

By picking

q̂ =
∞∑
k=0

α−2
k wkWk ∈ H1

,0(0, T ),

we can bound ‖w‖[H1
,0(0,T )]′ from below by the same estimate, i.e.,

‖w‖[H1
,0(0,T )]′ = sup

06=q∈H1
,0(0,T )

〈w, q〉(0,T )

‖∂tq‖L2(0,T )

≥
〈w, q̂〉(0,T )

‖∂tq̂‖L2(0,T )

=

(
2

T

∞∑
k=0

w2
kα
−2
k

)1/2

.

Thus, we have that

‖w‖[H1
,0(0,T )]′ =

√√√√ 2

T

(
∞∑
k=0

w2
kα
−2
k

)
.

By (2.6), we get wk = αkvk and compute,

‖w‖2
[H1

,0(0,T )]′ =
2

T

∞∑
k=0

α−2
k w2

k =
T

2

∞∑
k=0

|vk|2 = ‖v‖2
L2(0,T ).

Remark 2.1 The results of Lemma 2.1 also hold when considering the lateral boundary Σ
as the domain, instead of (0, T ).
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Using the compact form (2.4) for w = (w0, wL), we define the operators VD and VOD as

VD(t) :=

(
V00 0
0 VLL

)
and VOD(t) :=

(
0 V0L

VL0 0

)
. (2.7)

Given Lemma 2.1 and definition (2.7), we can relate ‖VD w‖L2(Σ) to ‖w‖[H1
,0(Σ)]′ as sum-

marised in the following lemma:

Lemma 2.2 Let w ∈ [H1
,0(Σ)]′ and VD be defined as in (2.7). Then

‖VD w‖2
L2(Σ) =

1

4
‖w‖2

[H1
,0(Σ)]′ .

Proof. Let w = ∂tv for some v ∈ L2(Σ). By definition of VD we have

VD w = VD ∂tv =
1

2
v(t).

Hence, by Lemma 2.1

‖VD w‖2
L2(Σ) =

1

4
‖v‖2

L2(Σ) =
1

4
‖w‖2

[H1
,0(Σ)]′ .

Now we have all the tools to return to our study of the inf-sup constant c̃S(n) and provide
the main result of this section.

Theorem 2.3 Let w ∈ [H1
,0(Σ)]′ and let n ∈ N denote the number of time-slices. Then

the operator V : [H1
,0(Σ)]′ → L2(Σ) is continuously bounded from below by constant c̃S(n),

i.e.,

‖Vw‖2
L2(Σ) ≥ c̃S(n)2‖w‖2

[H1
,0(Σ)]′ , where c̃S(n) := sin

(
π

2(2n+ 1)

)
.

Proof. We have

‖Vw‖L2(Σ) = 〈(VD +VOD)w, (VD +VOD)w〉L2(Σ)

= ‖VD w‖2
L2(Σ) + 2〈VD w,VOD w〉L2(Σ) + ‖VOD w‖2

L2(Σ). (2.8)

Let Σj, j = 1, . . . , n, denote the lateral trace, restricted to the jth time-slice in time. By
using the definitions (2.7), one can verify the following relation for all w ∈ [H1

,0(Σ)]′:

‖VD w‖L2(Σj−1) = ‖VOD w‖L2(Σj), j = 2, . . . n. (2.9)

Using (2.8) and (2.9), we get

‖Vw‖2
L2(Σ) ≥

n∑
i=1

‖VD w‖2
L2(Σi)

− 2
n∑
i=2

‖VD w‖L2(Σi)‖VD w‖L2(Σi−1) +
n∑
i=2

‖VD w‖2
L2(Σi−1),
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which can be represented in matrix form as

‖Vw‖2
L2(Σ) ≥

〈
2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 1




‖VD w‖L2(Σ1)

‖VD w‖L2(Σ2)
...

‖VD w‖L2(Σn−1)

‖VD w‖L2(Σn)

 ,


‖VD w‖L2(Σ1)

‖VD w‖L2(Σ2)
...

‖VD w‖L2(Σn−1)

‖VD w‖L2(Σn)


〉
.

(2.10)
The matrix in (2.10) corresponds to the one dimensional finite difference matrix with
(zero) initial Dirichlet condition and terminal Neumann condition. The spectral properties
of this matrix are henceforth well understood, and its smallest eigenvalue is given by

λmin = 4 sin2
(

π
2(2n+1)

)
. Consequently, we obtain the bound

‖Vw‖2
L2(Σ) ≥ λmin

n∑
i=1

‖VD w‖2
L2(Σi)

= 4 sin2

(
π

2(2n+ 1)

)
‖VD w‖2

L2(Σ) ≥ sin2

(
π

2(2n+ 1)

)
‖w‖2

[H1
,0(Σ)]′ ,

where we applied Lemma 2.2 in the last step.

As a direct consequence of Theorem 2.3, the inf-sup stability condition is given by

c̃S(n) ‖w‖[H1
,0(Σ)]′ ≤ sup

06=q∈L2(Σ)

〈Vw, q〉L2(Σ)

‖q‖L2(Σ)

for all w ∈ H1
,0(Σ), (2.11)

with the constant c̃S(n) as given in Theorem 2.3. In order to find its solution w ∈ [H1
,0(Σ)]′,

we consider the minimization of the functional

J (v) :=
1

2
‖V v − g‖2

L2(Σ),

over all v ∈ [H1
,0(Σ)], whose minimizer w ∈ [H1

,0(Σ)]′ is determined as unique solution of
the gradient equation

V∗ Vw = V∗ g, (2.12)

where V∗ : L2(Σ)→ H1
,0(Σ) is the adjoint of V : [H1

,0(Σ)]′ → L2(Σ). When introducing the
adjoint p := g − Vw, we end up with a mixed variational formulation to find p ∈ L2(Σ)
and w ∈ [H1

,0(Σ)]′ such that

〈p, q〉L2(Σ) + 〈Vw, q〉L2(Σ) = 〈g, q〉L2(Σ), 〈p,V v〉L2(Σ) = 0 (2.13)

is satisfied for all q ∈ L2(Σ), and for all v ∈ [H1
,0(Σ)]′. In fact, the gradient equation (2.12)

is the Schur complement system of the mixed formulation (2.13). To establish unique
solvability of (2.12), and therefore of (2.13), we consider the Schur complement operator

8



S := V∗ V : [H1
,0(Σ)]′ → H1

,0(Σ). For w ∈ [H1
,0(Σ)]′ define pw = Vw ∈ L2(Σ) as unique

solution of the variational formulation

〈pw, q〉L2(Σ) = 〈Vw, q〉L2(Σ) for all q ∈ L2(Σ).

With this we obtain

〈Sw,w〉Σ = 〈V∗ Vw,w〉Σ = 〈pw,Vw〉L2(Σ) = 〈pw, pw〉L2(Σ) = ‖pw‖2
L2(Σ),

and the inf-sup stability condition (2.11) gives

c̃S(n) ‖w‖[H1
,0(Σ)]′ ≤ sup

0 6=q∈L2(Σ)

〈Vw, q〉L2(Σ)

‖q‖L2(Σ)

= sup
06=q∈L2(Σ)

〈pw, q〉L2(Σ)

‖q‖L2(Σ)

≤ ‖pw‖L2(Σ). (2.14)

Hence, S : [H1
,0(Σ)]′ → H1

,0(Σ) is elliptic satisfying

〈Sw,w〉Σ ≥ [c̃S(n)]2 ‖w‖2
[H1

,0(Σ)]′ for all w ∈ [H1
,0(Σ)]′.

From this, we conclude unique solvability of the gradient equation (2.12) and of the mixed
variational formulation (2.13).

3 A Mixed Boundary Element Method

Let
S0
H(Σ) := S0

H,0(0, T )× S0
H,L(0, T ) = span{φ`}

NH,0

`=1 × span{φ`}NH
`=NH,0+1

and
S0
h(Σ) := S0

h,0(0, T )× S0
h,L(0, T ) = span{ϕk}

Nh,0

k=1 × span{ϕk}Nh
k=Nh,0+1

be two conforming nested boundary element spaces, i.e.,

S0
H(Σ) ⊂ S0

h(Σ) ⊂ L2(Σ) ⊂ [H1
,0(Σ)]′,

spanned by piecewise constant basis functions φ` and ϕk, which are defined with respect to
some nested decomposition of Σ into boundary elements τH` and τhk with local mesh sizes
H` and hk, respectively. For τhk ⊂ τH` we assume H` = mhk for some m ∈ N. So we may
define a coarse grid mesh ΣH first, and any element τH` of ΣH is decomposed into m equal
sized elements τhk of the fine mesh Σh.

The Galerkin formulation of (2.13) is to find ph ∈ S0
h(Σ) and wH ∈ S0

H(Σ) such that

〈ph, qh〉L2(Σ) + 〈VwH , qh〉L2(Σ) = 〈g, qh〉L2(Σ), 〈ph,V vH〉L2(Σ) = 0 (3.1)

is satisfied for all qh ∈ S0
h(Σ) and for all vH ∈ S0

H(Σ). This is equivalent to a linear system
of algebraic equations, (

Dh Vh
V >h

)(
p
w

)
=

(
g
0

)
, (3.2)
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where for j, k = 1, . . . , Nh and for ` = 1, . . . , NH we have

Dh[j, k] =

∫
Σ

ϕk(x)ϕj(x) dsx, Vh[j, `] =

∫
Σ

(V φ`)(x)ϕj(x) dsx, gj =

∫
Σ

g(x)ϕj(x) dsx.

Since the diagonal matrix Dh is invertible, we can eliminate p = D−1
h [g − Vhw] to end up

with the Schur complement system

Shw := V >h D
−1
h Vhw = V >h D

−1
h g, (3.3)

which is nothing more than a Galerkin approximation of the gradient equation (2.12).
By construction, the Schur complement matrix Sh = V >h D

−1
h Vh is symmetric and at least

positive semi-definite. We will prove that the matrix Sh is actually positive definite and
hence that (3.3) and therefore (3.2) admits a unique solution.

Theorem 3.1 Assume T = L, i.e., n = 1. Let ΣH be a mesh of Σ, which may be non-
uniform and adaptive. Let Σh be the fine mesh where each element τH` of ΣH is decomposed
into m equal sized elements τhk . Then the Schur complement matrix SLh is positive definite
for all m > 2, i.e.,

(SLhw,w) ≥
(1

2
− 1

m

)2

‖wH‖2
[H1

,0(Σ)]′ for all w ∈ RNH ↔ wH ∈ S0
H(Σ).

Here SLh denotes the Schur complement matrix for a single time slice.

Proof. For wH ∈ S0
H(Σ) ⊂ [H1

,0(Σ)]′ the application of the Schur complement operator S
reads SwH = V∗ VwH = V∗ pwH

where pwH
∈ L2(Σ) is the unique solution of the variational

formulation
〈pwH

, q〉L2(Σ) = 〈VwH , q〉L2(Σ) for all q ∈ L2(Σ).

Now we consider the related Galerkin approximation pwH ,h ∈ S0
h(Σ) as unique solution of

the variational formulation

〈pwH ,h, qh〉L2(Σ) = 〈pwH
, qh〉L2(Σ) = 〈VwH , qh〉L2(Σ) for all qh ∈ S0

h(Σ), (3.4)

i.e., we have to solve the linear system

Dhp = Vhw .

Instead of SwH = V∗ pwH
we now define the approximation S̃wH := V∗ pwH ,h for which we

derive the matrix representation

SLh = V >h D
−1
h Vh .

Hence, we can write

(SLhw,w) = 〈S̃wH , wH〉Σ = 〈V∗ pwH ,h, wH〉Σ
= 〈pwH ,h,VwH〉L2(Σ) = 〈pwH ,h, pwH ,h〉L2(Σ) = ‖pwH ,h‖2

L2(Σ). (3.5)
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From the triangle inequality

‖pwH
‖L2(Σ) = ‖pwH

− pwH ,h + pwH ,h‖L2(Σ) ≤ ‖pwH
− pwH ,h‖L2(Σ) + ‖pwH ,h‖L2(Σ)

we get, by using (2.14),

‖pwH ,h‖L2(Σ) ≥ ‖pwH
‖L2(Σ) − ‖pwH

− pwH ,h‖L2(Σ)

≥ c̃S(n) ‖wH‖[H1
,0(Σ)]′ − ‖pwH

− pwH ,h‖L2(Σ), (3.6)

and it remains to estimate the approximation error of ‖pwH
− pwH ,h‖L2(Σ).

In the case T = L, the application of the wave single layer boundary integral operator
V is decoupled, i.e.,

pwH ,0(t) =
1

2

∫ t

0

wH,0(s) ds, pwH ,L(t) =
1

2

∫ t

0

wH,L(s) ds, t ∈ (0, T ).

For the coefficients of the piecewise constant approximation at x = 0,

pwH ,0,h(t) =

Nh,0∑
k=1

p0,kϕk(t),

we find from (3.4) that

p0,k =
1

hk

∫ tk

tk−1

pwH ,0(s) ds for k = 1, . . . , Nh,0.

By using standard arguments, see, e.g., [38], and p′wH ,0
(t) = 1

2
wH,0(t), we obtain the error

estimate∫ tk

tk−1

[pwH ,0(t)− pwH ,0,h(t)]
2 dt ≤ 1

3
h2
k

∫ tk

tk−1

[p′wH ,0
(t)]2dt =

1

12
h2
k

∫ tk

tk−1

[wH,0(t)]2dt ,

and summing up this gives∫ T

0

[pwH ,0(t)− pwH ,0,h(t)]
2 dt ≤ 1

12

Nh,0∑
k=1

h2
k

∫ tk

tk−1

[wH,0(t)]2dt .

When inserting

wH,0(t) =

NH,0∑
`=1

w`φ`(t),

assembling all fine grid contributions from the elements τhk ⊂ τH` , and using H` = mhk, we
further conclude ∫ T

0

[pwH ,0(t)− pwH ,0,h(t)]
2 dt ≤ 1

12

1

m2

NH,0∑
`=1

H3
`w

2
` .
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By doing the same computations at x = L, and summing up both contributions, this gives

‖pwH
− pwH ,h‖2

L2(Σ) ≤
1

12

1

m2

NH∑
`=1

H3
`w

2
` .

We now consider a piecewise quadratic function

vH(t) =

NH∑
`=1

w`ψ`(t),

where the bubble function ψ` in the boundary element τH` is defined by its form function

ψ(s) = s(H − s) for s ∈ (0, H).

For this we compute ∫
τH`

ψ`(t) dt =
1

6
H3
` ,

∫
τH`

[ψ′`(t)]
2 dt =

1

3
H3
` .

Thus, we have

〈wH , vH〉L2(Σ) =
1

6

NH∑
`=1

w2
` H

3
` , and ‖v′H‖2

L2(Σ) =
1

3

NH∑
`=1

w2
` H

3
` .

With this, we finally obtain

‖pwH
− pwH ,h‖L2(Σ) ≤

1

m

√√√√ 1

12

NH∑
`=1

H3
`w

2
` =

1

m

1
12

NH∑̀
=1

H3
`w

2
`√

1
12

NH∑̀
=1

H3
`w

2
`

=
1

m

1
2
〈wH , vH〉L2(Σ)

1
2
‖v′H‖L2(Σ)

≤ 1

m
sup

06=v∈H1
,0(Σ)

〈wH , v〉L2(Σ)

‖v′‖L2(Σ)

=
1

m
‖wH‖[H1

,0(Σ)]′ .

Hence, we can write (3.6) as

‖pwH ,h‖L2(Σ) ≥
(
c̃S(n)− 1

m

)
‖wH‖[H1

,0(Σ)]′ , (3.7)

which is positive for

1

m
< c̃S(n) = sin

(
π

2(2n+ 1)

)
n=1
= sin

π

6
=

1

2
, i.e., for m > 2.

The assertion now follows from (3.5).

Theorem 3.1 ensures unique solvability of the linear system (3.3), and therefore of the
mixed variational formulation (3.1) in the particular case T = L. But this result can be
generalized as follows.
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Theorem 3.2 Let T = nL for some n ∈ N that induces time slices ((j − 1)L, jL) for
j = 1, . . . , n. Let ΣH be a uniform mesh of Σ. Let Σh be the fine mesh where each element
τH` of ΣH is decomposed into m equal sized elements τhk . We assume that jL, j = 0, . . . , n,
are nodes of the mesh ΣH at x = 0 and at x = L, respectively. Then,

(SnLh w,w) ≥ 4 sin2

(
π

2(2n+ 1)

) (1

2
− 1

m

)2

‖wH‖2
[H1

,0(Σ)]′ for all w ∈ RNH ↔ wH ∈ S0
H(Σ).

Here, SnLh denotes the Schur complement matrix for n time slices.

Proof. Let Qh denote the L2 projection with respect to the fine mesh Σh, defined as

〈Qhu, vh〉L2(Σ) = 〈u, vh〉L2(Σ), for all vh ∈ S0
h(Σ), (3.8)

when u ∈ L2(Σ) is given. In case of a uniform refinement, we retain an equality analogous
to (2.9), i.e.,

‖Qh VD w‖L2(Σj−1) = ‖Qh VOD w‖L2(Σj), j = 2, . . . , n. (3.9)

Hence, we get

(SnLh w,w) = (V T
h D

−1
h Vh, w, w) =

(
sup

06=qh∈S0h(Σ)

〈V wH , qh〉L2(Σ)

‖qh‖L2(Σ)

)2

= ‖QhV wH‖2
L2(Σ). (3.10)

Given (3.9), and following the lines of the proof of Theorem 2.3, we get

‖Qh VwH‖2
L2(Σ) ≥ 4 [c̃S(n)]2 ‖Qh VD wH‖2

L2(Σ). (3.11)

Next, we make the observation that ‖Qh VD wH‖2
L2(Σ) is equivalent to considering the dis-

cretized operator Qh V on one time-slice, which suggests that we can apply Theorem 3.1.
The result now follows from this observation, (3.10) and (3.11),

(SnLh w,w) = ‖Qh VwH‖2
L2(Σ) ≥ 4 [c̃S(n)]2 ‖Qh VD wH‖2

L2(Σ)

≥ 4 [c̃S(n)]2
(1

2
− 1

m

)2

‖wH‖2
[H1

,0(Σ)]′ . (3.12)

Remark 3.1 The relation (3.9) does not need to hold on non-uniform refinements. How-
ever, in absence of rounding errors, adaptively refined meshes should retain the property
(3.9) if one starts with a uniform initial mesh, and, as a consequence, the mixed bound-
ary element method remains discrete inf-sup stable. We will see later, in the numerical
experiments, how numerical errors do break this condition and how to remedy it.

Remark 3.2 Note, that in the limit case h → 0, we have m → ∞ and the bound of
Theorem 3.2 becomes exactly the bound of Theorem 2.3 in the continuous case.
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It remains to provide an a priori error estimate for the unique solution of the mixed
variational formulation (3.1). Although this follows as in the elliptic case for the Laplace
equation [39], here we present the main steps:

Lemma 3.3 Let the assumption of Theorem 3.2 hold. Then, for the unique solutions
w ∈ [H1

,0(Σ)]′ of (2.4) and wH ∈ S0
H(Σ) of (3.1), there holds

‖w − wH‖[H1
,0(Σ)]′ ≤

1 +
2mcV2

sin
(

π
2(2n+1)

)
(m− 2)

 inf
vH∈S0H(Σ)

‖w − vH‖[H1
,0(Σ)]′ .

Proof. When combining (3.10) and (3.12) we immediately obtain the discrete inf-sup
stability condition

2c̃S(n)

(
1

2
− 1

m

)
‖vH‖[H1

,0(Σ)]′ ≤ sup
06=qh∈S0h(Σ)

〈V vH , qh〉L2(Σ)

‖qh‖L2(Σ)

for all vH ∈ S0
H(Σ).

Then, for the solution wH of (3.1) and for arbitrary vH ∈ S0
H(Σ), we obtain, by using the

triangle inequality,

‖w − wH‖[H1
,0(Σ)]′ ≤ ‖w − vH‖[H1

,0(Σ)]′ + ‖vH − wH‖[H1
,0(Σ)]′ .

Now, for the second term, we can use the discrete inf-sup stability condition and (3.1) for
g = Vw to estimate

2c̃S(n)

(
1

2
− 1

m

)
‖vH − wH‖[H1

,0(Σ)]′ ≤ sup
06=qh∈S0h(Σ)

〈V(vH − wH), qh〉L2(Σ)

‖qh‖L2(Σ)

= sup
06=qh∈S0h(Σ)

〈V vH − (g − ph), qh〉L2(Σ)

‖qh‖L2(Σ)

= sup
06=qh∈S0h(Σ)

〈V(vH − w) + ph, qh〉L2(Σ)

‖qh‖L2(Σ)

≤ cV2 ‖vH − w‖[H1
,0(Σ)]′ + ‖ph‖L2(Σ).

Thus, it remains to estimate ‖ph‖L2(Σ). Therefore, we consider (3.1) with qh = ph, to get

‖ph‖2
L2(Σ) = 〈ph, ph〉L2(Σ) = 〈g − V wH , ph〉L2(Σ) = 〈V(w − wH), ph〉L2(Σ)

= 〈V(w − vH), ph〉L2(Σ) + 〈V(vH − wH), ph〉L2(Σ)

= 〈V(w − vH), ph〉L2(Σ) ≤ cV2 ‖w − vH‖[H1
,0(Σ)]′‖ph‖L2(Σ).

Now, combining the estimates and taking the infimum over all vH ∈ S0
H(Σ) we obtain

‖w − wH‖[H1
,0(Σ)]′ ≤

(
1 +

cV2
c̃S(n)

(
1
2
− 1

m

)) inf
vH∈S0H(Σ)

‖w − vH‖[H1
,0(Σ)]′

=

(
1 +

2mcV2
c̃S(n)(m− 2)

)
inf

vH∈S0H(Σ)
‖w − vH‖[H1

,0(Σ)]′ .
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Let 0 < h < H < H be given such that the inclusion S0
H(Σ) ⊂ S0

H(Σ) ⊂ S0
h(Σ) holds, and

assume that there exists c̃S(n) > 0 such that

c̃S(n) ‖vH‖[H1
,0(Σ)]′ ≤ sup

0 6=qh∈S0h(Σ)

〈V vH , qh〉L2(Σ)

‖qh‖L2(Σ)

for all vH ∈ S0
H(Σ) (3.13)

is satisfied. Then (3.1) admits a unique solution (ph, wH) ∈ S0
h(Σ) × S0

H(Σ). Note that,
due to the inclusion S0

H(Σ) ⊂ S0
H(Σ), we have that

c̃S(n) ‖vH‖[H1
,0(Σ)]′ ≤ sup

06=qh∈S0h(Σ)

〈V vH , qh〉L2(Σ)

‖qh‖L2(Σ)

holds true for all vH ∈ S0
H(Σ), and thus (3.1) also admits a unique solution (ph, wH) ∈

S0
h(Σ) × S0

H(Σ). Under a saturation assumption, we can now show that ph ∈ S0
h(Σ) is an

error estimator.

Lemma 3.4 Let w ∈ [H1
,0(Σ)]′ be the unique solution of (2.4). Further, let (ph, wH) ∈

S0
h(Σ) × S0

H(Σ) and (ph, wH) ∈ S0
h(Σ) × S0

H(Σ) be the unique solution of (3.1). If the
saturation assumption

‖w − wH‖[H1
,0(Σ)]′ ≤ δ ‖w − wH‖[H1

,0(Σ)], for δ ∈ (0, 1) (3.14)

holds, then

1

cV2
‖ph‖L2(Σ) ≤ ‖w − wH‖[H1

,0(Σ)] ≤
cV2

[c̃S(n)]2
1

1− δ
‖ph‖L2(Σ).

Proof. First, using (3.1) and Vw = g and the boundedness of V, we compute

‖ph‖2
L2(Σ) = 〈ph, ph〉L2(Σ) = 〈g − VwH , ph〉L2(Σ)

= 〈V(w − wH), ph〉L2(Σ) ≤ cV2 ‖w − wH‖[H1
,0(Σ)] ‖ph‖L2(Σ),

from which we conclude the first bound. To bound the error by ‖ph‖L2(Σ), let us first
estimate

‖w − wH‖[H1
,0(Σ)]′ ≤ ‖w − wH‖[H1

,0(Σ)]′ + ‖wH − wH‖[H1
,0(Σ)]′ .

With the saturation (3.14), we conclude

‖w − wH‖[H1
,0(Σ)]′ ≤

1

1− δ
‖wH − wH‖[H1

,0(Σ)]′ .

Thus, it is sufficient to bound the discrete error. We note that wH − wH ∈ S0
H(Σ) and we

can use the discrete inf-sup stability (3.13), and together with (3.1) we get

c̃S(n) ‖wH − wH‖[H1
,0(Σ)]′ ≤ sup

06=qh∈S0h(Σ)

〈V(wH − wH), qh〉L2(Σ)

‖qh‖L2(Σ)

= sup
06=qh∈S0h(Σ)

〈ph − ph, qh〉L2(Σ)

‖qh‖L2(Σ)

= ‖ph − ph‖L2(Σ).
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We can further bound this term by using again (3.1) as follows

‖ph − ph‖2
L2(Σ) = 〈ph − ph, ph − ph〉L2(Σ) = 〈V(wH − wH), ph − ph〉L2(Σ)

= 〈V(wH − wH , ph〉L2(Σ) ≤ cV2 ‖wH − wH‖[H1
,0(Σ)]′‖ph‖L2(Σ).

Altogether, we now obtain that

‖wH − wH‖[H1
,0(Σ)]′ ≤

cV2
[c̃S(n)]2

‖ph‖L2(Σ),

which concludes the proof.

Remark 3.3 The solution (ph, wH) ∈ S0
h(Σ) × S0

H(Σ) is only needed for the proof of the
error estimator and does not need to be computed. In general, the idea is to have a stable
method and then refine the mesh of the dual variable once more to get an error estimator.
In particular, if the method is stable for the choices H = H/2 then the choice h = H/4
gives an error estimator (or merely H = H is stable then h = H/2 gives an estimator).
This is in some sense a generalization of the h−h/2 error estimator for elliptic equations.
The behavior is also resembled by our numerical examples, as the choice m = 2 gives a
method that is stable in the primal variable, thus we have (3.13), but only when choosing
m = 3 the dual variable provides an error estimator. Also note, that we chose S0

H(Σ) just
for ease of presentation. It is sufficient to have a discrete space S0

H(Σ) ⊂ XH ⊂ S0
h(Σ)

that fulfills the discrete inf-sup stability (3.13) for all vH ∈ XH and for which the solution
(ph, wH) ∈ S0

h(Σ)×XH fulfills the saturation assumption (3.14).

4 Numerical Experiments

4.1 Set up

We revisit two experiments, introduced in [41], and consider an additional experiment, all
of which are posed on the same spatial domain (0, 3), i.e., L = 3 and on the time interval
(0, 6), i.e., T = 6. We consider the following three different Dirichlet data

g1(x, t) :=


1
2
(t− 2)3(−t)3 for 0 ≤ t ≤ 2 and x = 0,

1
2
(t− 5)3(3− t)3 for L ≤ t ≤ L+ 2 and x = L,

0 otherwise,

g2(x, t) :=


1
2
| sin(−πt)| for 0 ≤ t and x = 0,

1
2
| sin(π(L− t))| for L ≤ t and x = L,

0 otherwise,
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and

g3(x, t) :=


t1/4 for 0 ≤ t and x = 0,

(t− L)1/4 for L ≤ t and x = L,

0 otherwise.

(4.1)

We will be looking for solutions of the variational formulation for the mixed boundary
element method as described in (3.1). For comparison, we will also consider two other
variational formulations: the energetic BEM formulation, as described in [2, 41]; and the
modified Hilbert transform (MHT) formulation from [41]. For clarity, let us restate the
mixed boundary element methods for the specific numerical experiments, i = 1, 2, 3.

• standard least squares formulation: find ph ∈ S0
h(Σ) ⊂ L2(Σ) and wH ∈ S0

H(Σ) ⊂
[H1

,0(Σ)]′ such that

〈ph, qh〉L2(Σ) + 〈VwH , qh〉L2(Σ) = 〈gi, qh〉L2(Σ), 〈ph,V vH〉L2(Σ) = 0, (4.2)

is satisfied for all qh ∈ S0
h(Σ) and for all vH ∈ S0

H(Σ).

• energetic BEM: find ph ∈ S0
h(Σ) ⊂ L2(Σ) and zH ∈ S0

H(Σ) ⊂ L2(Σ) such that

〈ph, qh〉L2(Σ) + 〈∂t V zH , qh〉L2(Σ) = 〈∂tgi, qh〉L2(Σ), 〈ph, ∂t V vH〉L2(Σ) = 0, (4.3)

is satisfied for all qh ∈ S0
h(Σ) and for all vH ∈ S0

H(Σ).

• modified Hilbert transform formulation: Let HT be the modified Hilbert transform
defined in [43, eqn. (2.8)], we want to solve: find ph ∈ S0

h(Σ) ⊂ L2(Σ) and wH ∈
S0
H(Σ) ⊂ [H1

,0(Σ)]′ such that

〈ph, qh〉L2(Σ) + 〈HT VwH , qh〉L2(Σ) = 〈HTgi, qh〉L2(Σ), 〈ph,HT V vH〉L2(Σ) = 0, (4.4)

is satisfied for all qh ∈ S0
h(Σ) and for all vH ∈ S0

H(Σ).

Throughout this section, the numerical experiments are implemented in Python. For the
solution of all linear systems built-in direct symmetric solvers are used1.

4.2 Computation of the dual norm

In order to compute the error ‖w − wH‖[H1
,0(Σ)]′ , we require the exact solution w, and a

proper representation of the dual norm ‖w − wH‖[H1
,0(Σ)]′ . In general, solutions to the

indirect approach as considered in this paper do not yield densities that can be interpreted
physically. However, in our specific setting, we are able to derive the exact density w by
noting that for all functions gi we have gi(0, t−L) = gi(L, t) for t ≥ 0. We aim to find the
exact solution wi, satisfying Vwi = gi. Let us define

w̃i(x, t) :=

{
2∂t gi(0, t) for x = 0,

0 for x = L.

1SciPy.Linalg.solve
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Then, one can verify that

(V w̃i) (x, t) =

{
gi(0, t) for x = 0,

gi(0, t− L) = gi(L, t) for x = L,

i.e., wi = w̃i.
In order to compute the dual norm ‖ · ‖[H1

,0(Σ)]′ , note, that by the Riesz representation

theorem, for w ∈ [H1
,0(0, T )]′ there exists exactly one φw ∈ H1

,0(0, T ) such that

〈φw, v〉H1
,0(0,T ) =

∫ T

0

∂tφw(t)∂tv(t) dt = 〈w, v〉(0,T ) for all v ∈ H1
,0(0, T ), (4.5)

and that
‖φw‖2

H1
,0(0,T ) = ‖∂tφw‖2

L2(0,T ) = 〈w, φw〉(0,T ) = ‖w‖2
[H1

,0(0,T )]′ . (4.6)

Note that (4.5) is the variational formulation of the boundary value problem

−∂ttφw(t) = w(t) for t ∈ (0, T ), ∂tφw(0) = 0, φw(T ) = 0,

for which the solution is given, using Greens function, as

φw(t) =

∫ T

0

G(t, s)w(s) ds, where G(t, s) =

{
T − t, s ∈ (0, t),

T − s, s ∈ (t, T ).

4.3 Numerical results

We start by checking numerically if the theoretical results in Theorems 3.1 and 3.2, and
Lemma 3.3 are sharp in excluding m = 2 (namely, when each element of ΣH is decomposed
into two equally sized elements to obtain the fine mesh Σh). Fig. 1 shows the results for
the standard formulation (4.2), given m = 2, while those of energetic BEM and MHT are
displayed in Fig. 2 and 3, respectively. In all cases, the method converges. However, we
see that they behave differently when considering adaptive refinements.

It is clear from Fig. 1 that ‖ph‖L2(Σ) does not provide a reliable error estimator for the
standard formulation (4.2) whenm = 2. This fits the theory presented in Lemma 3.4, which
states that, in order to show ‖ph‖L2(Σ) is an error estimator, the saturation assumption
(3.14) must hold. This only happens when m > 2 for the standard formulation (4.2), while
it is already true for m = 2 for energetic BEM and MHT, since these formulations are
discrete inf-sup stable for the case h = H.

In order to verify that ‖ph‖L2(Σ) becomes an error estimator for the standard formulation
(4.2) when m > 2, Fig. 4 depicts the results for the standard formulation (4.2) when we
consider a fine mesh Σh such that each element of ΣH is decomposed into three (m = 3)
equally sized elements. Interestingly, in the uniform case the exact error ‖w − wH‖[H1

,0(Σ)]′

does not change significantly, but the convergence rate of ‖ph‖L2(Σ) seems to correspond to
the convergence rate of the exact error in this case. As shown in Fig. 5, further increasing
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the value of m does not seem to affect the convergence rate of the the error indicator
‖ph‖L2(Σ) and the error ‖w−wH‖[H1

,0(Σ)]′ for uniform refinements of the standard formulation

(4.2). Moreover, the difference in the error ‖w − wH‖[H1
,0(Σ)]′ seems to be negligible for

different choices of m.
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Figure 1: Comparison of errors and error indicators for uniform and adaptive refinement
using the standard formulation (4.2), m = 2, and different Dirichlet data.
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Figure 2: Comparison of errors and error indicators for uniform and adaptive refinement
using the energetic formulation (4.3), m = 2, and different Dirichlet data.

Up until this point, we have not yet considered results related to g3. For notational
convenience, let us define w as the exact solution to the BIE for either the standard,
energetic or MHT formulation. Then, given Dirichlet data g3 as defined in (4.1), the
density w will not be in L2(Σ). Hence, solutions of this kind do not fit our current
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Figure 3: Comparison of errors and error indicators for uniform and adaptive refinement
using the MHT formulation (4.4), m = 2, and different Dirichlet data.
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Figure 4: Comparison of errors and error indicators for uniform and adaptive refinement
using the standard formulation (4.2), m = 3, and different Dirichlet data.

framework for the energetic formulation (4.3). With that being said, we still adhere to the
same energetic formulation and discretization as already considered for g1 and g2. When
it comes to energetic formulations with g3, only the norm in which the error is measured
is changed into [H1

,0(Σ)]′ as opposed to the usual L2(Σ) norm. The results related to g3,
for different formulations, are presented in Fig. 6. There we see that the three different
formulations converge with rate 0.75 on uniform meshes. For energetic BEM, ‖ph‖L2(Σ) no

longer serves as an error estimator for the error in the [H1
,0(Σ)]′ norm. This explains why

convergence of the adaptive routine for energetic BEM halts after some refinements.
The next point in our ’numerical agenda’ is to study the need for uniform meshes in
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Figure 5: The error indicator and the error of the solution when using the standard for-
mulation (4.2), uniform meshes, Dirichlet datum g2, and different choices of m.

Theorem 3.2. We remind the reader that discrete inf-sup stability of V relies on the assump-
tion that (3.9) is satisfied. As stated in Remark 3.1, the adaptive procedure should uphold
the constraint on the mesh given by (3.9) when the initial mesh is uniform. In practice,
however, it seems that at some point during the refinement routine the constraint on the
mesh is no longer satisfied, resulting in a loss of discrete inf-sup stability. This explains the
inability of the adaptively refined formulation to converge after a certain number of refine-
ments, as visualised in Fig. 4. To circumvent this issue, we consider a constrained adaptive
algorithm with the mesh condition (3.9) hard-coded into the implementation. Ensuring
that the mesh on the boundary restricted to a time-slice corresponds to the mesh on the
opposite boundary of the subsequent time-slice, provides a sufficient condition to satisfy
(3.9). An example of a mesh satisfying this condition is given in Fig. 7. The constrained
adaptive refinement routine is realised by enforcing this condition at each iteration. A
comparison of the non-constrained and constrained adaptive refinement routines is given
in Fig. 8. During the early stages of the refinement procedure, non-constrained adaptive
refinement may result in a higher convergence rate compared to the constrained algorithm.
This can be explained by the fact the constrained refinement scheme may unnecessarily
refine parts where the Galerkin solution is zero. After several refinements, the constrained
algorithm overcomes the issue encountered by its unconstrained counterpart.
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(b) Energetic BEM (4.3)
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Figure 6: Comparison of errors and error indicators for uniform and adaptive refinement
schemes given Dirichlet datum g3.

1st time-slice

2nd time-slice

t = 0

t = L

t = 2L

x = 0 x = L

Figure 7: Example mesh satisfying (3.9). On each time-slice, the degrees of freedom (DoFs)
of each boundary agree with the DoFs on the opposite boundary shifted in time by L.
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Figure 8: Error convergence comparison between non-constrained (NC) and constrained(C)
adaptive refinement algorithms for (4.2), given m = 3 and different Dirichlet data.

Finally, we compare the performance of the proposed adaptive algorithm from formu-
lation (4.3), which we will dub LSBEM, with an adaptive BEM routine introduced in [37]
and applied to the wave equation in [42], here referred to as SteZan. Performance is mea-
sured by considering the error with respect to the amount of degrees of freedom. For the
numerical experiments a Galerkin approximation of the direct energetic BIE is considered:
For i ∈ {1, 2}, find zH ∈ S0

H(Σ) ⊂ L2(Σ) such that

〈∂t VwH , qH〉Σ =
1

2
〈∂tgi, qH〉Σ + 〈∂t K gi, qH〉Σ, ∀qH ∈ S0

H(Σ) ⊂ L2(Σ), (4.7)

where K denotes the double layer operator, which is given for g = 0 outside of Σ by [42]:

K g(x, t) =

{
−1

2
g(L, t− L) x = 0,

−1
2
g(0, t− L) x = L.
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Figure 9: L2(Σ)-error convergence comparison for proposed adaptive algorithm (LSBEM)
and method from the literature (SteZan).

A comparison of both methods is presented in Fig. 9 using Dirichlet data g1 and g2.
Both methods perform similarly when it comes to error convergence. However, in order to
obtain a valid error estimator, the LSBEM approach requires solving for a mixed boundary
element method with m = 2, increasing the computational complexity at each refinement.
On the other hand, the SteZan method has limited applicability: it is restricted to direct
formulations and requires an implementation or approximation of the adjoint double layer
and hypersingular operators.

4.4 Stability Constant

Finally, we compare the theoretical stability constant, as proposed in Theorem 3.2, with
the actual discrete inf-sup constant, computed using the method introduced in, e.g., [27,
Rem. 3.159]. For notational convenience let us denote the theoretical stability constant by

γn := 2 sin

(
π

2(2n+ 1)

)(
1

2
− 1

m

)
.

The computation of the discrete inf-sup constant requires the usage of a mass matrix with
respect to the [H1

,0(Σ)]′-inner product, the implementation of this matrix is based on the
theory presented in Section 4.2. The results for the stable (m = 3) standard formulation
(4.2) and the energetic BEM formulation (4.3) without nesting (m = 1) are given in Fig. 10.
There we see that the proposed stability constant has the same asymptotic behaviour as
the actual discrete inf-sup constant. In the case of energetic BEM, which is stable for
m = 1, we observe that the stability constant coincides with c̃S(n), as defined in Theorem
2.3. On each time-slice the coarse mesh consists of 32 uniform elements.
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Figure 10: Comparison between γn and c̃S(n), and the discrete inf-sup constant for formu-
lations (4.2) with m = 3 and (4.3) with m = 1, on different amount of time-slices.

5 Conclusions

In this paper we have formulated and analyzed a least squares approach for first kind
boundary integral equations for the Dirichlet problem for the wave equation. We have
established stability of a related boundary element method, from which we can derive a
priori error estimates. Moreover, the approximation of the adjoint variable can be used as
an error indicator to drive an adaptive algorithm. Numerical results, also for less regular
Dirichlet data, confirm the theoretical findings.

It is more or less obvious that this approach can be applied as well to problems with
different boundary conditions, and to other boundary integral equations also including the
double layer operator and its adjoint, and the hypersingular boundary integral operator
for the wave equation. A possible extension to systems such as in elastodynamics will also
follow the lines as given for the scalar wave equation. More challenging is the construction
of efficient solution methods for the resulting linear systems of algebraic equations, and the
construction of appropriate preconditioners. The implementation of the proposed approach
to solve problems in higher space dimensions is ongoing work, but the numerical analysis
can not be done in such an explicit way as it is possible in one dimension.
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