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A hybrid space-time finite element method for
parabolic evolution equations

Michael Reichelt and Olaf Steinbach

Abstract In this note we formulate and analyze a hybrid space-time finite element
method for the numerical solution of parabolic evolution equation. We combine
the more standard variational formulation in Bochner spaces, and a more recent
formulation in anisotropic Sobolev spaces using a modified Hilbert transformation.
The Galerkin discretization then results in symmetric and positive definite stiffness
matrices for both the temporal and spatial derivatives, and a remainder which is in
general non-symmetric, but non-negative. We present related error estimates a series
of different numerical examples which confirm the theoretical findings.

1 Introduction

Space-time finite element methods, e.g., [1, 6, 8, 11], are well established for the
numerical solution of time-dependent partial differential equations. In the case of
parabolic evolution equations, the space-time variational formulation is usually con-
sidered in Bochner spaces, and the stability and error analysis is based on a discrete
inf-sup stability condition. As an alternative, one may consider the variational for-
mulation in anisotropic Sobolev spaces, see, e.g., [5, 9], and using either the standard
or a modified Hilbert transformation, the related bilinear form turns out to be elliptic
in suitable spaces. While in the Bochner space setting the space-time finite element
discretization of the spatial part results in a symmetric and positive definite stiffness
matrix, the discretization of the first order time derivative becomes symmetric and
positive definite when using the modified Hilbert transformation [9]. In this note
we propose and analyze a hybrid formulation of both approaches which results in
symmetric and positive definite stiffness matrices for both the temporal and spatial

Michael Reichelt, Olaf Steinbach
Institute of Applied Mathematics, TU Graz, Steyrergasse 30, 8010 Graz, Austria
e-mail: michael.reichelt@tugraz.at, o.steinbach@tugraz.at

1



2 Michael Reichelt and Olaf Steinbach

differential operators, and a non-negative remainder. Numerical results for all three
formulations are given to confirm the theoretical findings.

2 Space-time variational formulations

As a model problem for a parabolic evolution equation, we consider the Dirichlet
boundary value problem for the heat equation,

∂tu − ∆xu = f in Q := Ω × (0,T), u = 0 on Σ := ∂Ω × (0,T), u(0) = 0 in Ω, (1)

where Ω ⊂ Rn, n = 1,2,3, is a bounded Lipschitz domain. The abstract space-time
variational formulation of (1) reads to find u ∈ X such that

b(u, v) :=
∫ T

0

∫
Ω

[
∂tu v + ∇xu · ∇xv

]
dx dt =

∫ T

0

∫
Ω

f v dx dt (2)

is satisfied for all v ∈ Y , where X andY are appropriate Hilbert spaces to be fixed. As
in [8] we can consider the Bochner spaces X = L2(0,T ; H1

0 (Ω)) ∩ H1
0,(0,T ; H−1(Ω))

and Y = L2(0,T ; H1
0 (Ω)) with the associated norms

‖v‖Y = ‖∇xv‖L2(Q), ‖u‖X =
√
‖u‖2Y + ‖∂tu‖

2
Y∗, ‖∂tu‖Y∗ = ‖wu ‖Y ,

where wu ∈ Y is the unique solution of the variational formulation∫ T

0

∫
Ω

∇xwu · ∇xv dx dt = 〈∂tu, v〉Q for all v ∈ Y . (3)

In this case, unique solvability of (2) is based on the inf-sup stability condition, see
[8, Theorem 2.1], and [3] for an improved estimate,

‖u‖X ≤ sup
0,v∈Y

b(u, v)
‖v‖Y

for all u ∈ X . (4)

For the Galerkin discretization of the variational formulation (2) we introduce a
conforming space-time finite element space Xh = span{ϕk}Mk=1 ⊂ X of piecewise
(multi-)linear and continuous basis functions ϕk which are defined with respect to
some admissible decomposition of Q into shape-regular simplicial or tensor-product
finite elements q` of local mesh size h` . As in [8], chosingYh = Xh , we then consider
the space-time Galerkin variational formulation to find u1

h
∈ Xh such that∫ T

0

∫
Ω

[
∂tu1

h vh + ∇xu1
h · ∇xvh

]
dx dt =

∫ T

0

∫
Ω

f vh dx dt for all vh ∈ Xh . (5)
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The stability and error analysis of (5) is based on a discrete inf-sup stability condition
with respect to a discrete norm,

‖u‖X ,h =

√
‖u‖2Y + ‖wu,h ‖

2
Y ≤

√
‖u‖2Y + ‖wu ‖

2
Y = ‖u‖X,

where wu,h ∈ Yh is the unique solution of the Galerkin variational formulation∫ T

0

∫
Ω

∇xwu,h · ∇xvh dx dt = 〈∂tu, vh〉Q for all vh ∈ Yh .

With this, and assuming u ∈ Hs(Q) for some s ∈ [1,2], we are able to derive an
error estimate for the spatial part ‖∇x(u − u1

h
)‖L2(Q), see [8, Corollary 3.4], but

the error for the temporal part is only measured in the discrete norm, which in
general is not equivalent to the full norm. Due to the anisotropy in the temporal and
spatial derivatives in the heat equation, and due to the maximal parabolic regularity
u ∈ H2,1(Q) for the solution of the heat equation with f ∈ L2(Q), one can also derive
linear convergence in the energy norm in this case [2], when assuming a space-time
tensor product discretization, see also [7].

As an alternative to the Bochner space setting as described above, and as in [9], we
may also consider the variational formulation (2) in the anisotropic Sobolev spaces
X = H1,1/2

0;0, (Q) := L2(0,T ; H1
0 (Ω)) ∩ H1/2

0, (0,T ; L2(Ω)), and Y = H1,1/2
0;,0 (Q). Unique

solvability of (2) is now based on the inf-sup stability condition [9, Corollary 3.3]

1
2
‖u‖

H
1,1/2
0;0, (Q)

≤ sup
0,v∈H1,1/2

0;,0 (Q)

〈∂tu, v〉Q + 〈∇xu,∇xv〉L2(Q)

‖v‖
H

1,1/2
0;,0 (Q)

, u ∈ H1,1/2
0;0, (Q).

When using the finite element space Xh = span{ϕk}Mk=1 ⊂ X as in the first approach,
and using the modified Hilbert transformationHT : H1,1/2

0;0, (Q) → H1,1/2
0;,0 (Q), see [9],

this results in a space-time Galerkin–Bubnov variational formulation to find u2
h
∈ Xh

such that

〈∂tu2
h,HT vh〉L2(Q) + 〈∇xu2

h,∇xHT vh〉L2(Q) = 〈 f ,HT vh〉Q for all vh ∈ Xh . (6)

While stability of the space-time finite element scheme (6) follows for any choice
of the conforming finite element space Xh ⊂ X , related error estimates are given
in [9] only in the case of a space-time tensor product discretization. This is due to
the fact that 〈∂tu,HTu〉Q defines a norm in H1/2

0, (Q), but the non-negative spatial
part 〈∇xu,HT∇xu〉Q ≥ 0 does not define a norm in L2(0,T ; H1

0 (Ω)). However, when
assuming sufficient regularity for the solution, e.g., u ∈ H2(Q), we can conclude
optimal convergence on tensor product meshes, see [9, Theorem 3.4].
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3 A hybrid space-time finite element method

The aimof this section is the formulation and numerical analysis of a space-time finite
element method which ensures the control of both temporal and spatial derivatives,
which is not restricted to space-time tensor product meshes, but also allows the
use of adaptive decompositions into simplicial elements. In some sense, this is the
counter part of the approach in [5] where the classical Hilbert transformation was
used with respect to the infinite time interval [0,∞). Here we assume u ∈ Hs(Q) for
some s ∈ [1,2] only, and we will not consider the regularity in anisotropic Sobolev
spaces. We start to consider the variational formulation (2) in the Bochner spaces
X = L2(0,T ; H1

0 (Ω))∩H1
0,(0,T ; H−1(Ω)) andY = L2(0,T ; H1

0 (Ω)). As before we use
Xh = span{ϕk}Mk=1 ⊂ X , but we now define Yh = span{ϕk +HTϕk}

M
k=1 ⊂ Y which

covers neither zero initial nor terminal conditions. Hence, ϕk +HTϕk ∈ H1,1/2
0;, (Q)

only. In particular for s ∈ [0, 1
2 ), the spaces H1,s

0;0,(Q), H1,s
0;,0(Q), and H1,s

0;, (Q) coincide.
Now we consider the variational formulation to find uh ∈ Xh such that

〈∂tuh, vh +HT vh〉L2(Q) + 〈∇xuh,∇x(vh +HT vh)〉L2(Q) = 〈 f , vh +HT vh〉Q (7)

is satisfied for all vh ∈ Xh . In fact, the variational formulation (7) is the sum of the
variational formulations (5) and (6). Since each of these variational formulations is
uniquely solvable, unique solvability of (7) follows.

Theorem 1 The bilinear form

bhybrid(uh, vh) := 〈∂tuh, vh +HT vh〉L2(Q) + 〈∇xuh,∇x(vh +HT vh)〉L2(Q)

is elliptic, satisfying

bhybrid(vh, vh) ≥ ‖vh ‖
2
H

1,1/2
0;0, (Q)

for all vh ∈ Xh ⊂ H1,1/2
0;0, (Q). (8)

Proof For uh = vh ∈ Xh we have

bhybrid(vh, vh) = 〈∂t vh, vh +HT vh〉L2(Q) + 〈∇xvh,∇x(vh +HT vh)〉L2(Q)

=
1
2

∫ T

0

d
dt

∫
Ω

[vh(x, t)]2 dx dt + 〈∂t vh,HT vh〉L2(Q)

+〈∇xvh,∇xvh〉L2(Q) + 〈∇xvh,HT∇xvh〉L2(Q)

≥ ‖vh ‖
2
H

1/2
0;0, (Q)

+ ‖∇xvh ‖
2
L2(Q)

= ‖vh ‖
2
H

1,1/2
0;0, (Q)

,

i.e., the assertion. �

For any φ ∈ H1,1/2
0;0, (Q) we define the Galerkin projection φh = Ghφ ∈ Xh as unique

solution of the variational formulation

bhybrid(φh, vh) = bhybrid(φ, vh) for all vh ∈ Xh . (9)
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Lemma 1 The Galerkin projection Gh : H1,1/2+ε
0;0, (Q) → Xh ⊂ H1,1/2

0;0, (Q) is bounded
for all ε ∈ (0, 1

2 ], satisfying

‖Ghφ‖H1,1/2
0;0, (Q)

≤ 2 ‖φ‖
H

1,1/2+ε
0;0, (Q)

for all φ ∈ H1,1/2+ε
0;0, (Q). (10)

Proof With the ellipticity estimate (8), using duality for φh +HT φh < H1,1/2
0;,0 (Q),

Hölders inequality, and

H1/2
0, (0,T ; L2(Ω)) ⊂ H1/2−ε

0, (0,T ; L2(Ω)) = H1/2−ε
,0 (0,T ; L2(Ω)),

we conclude, for φh = Ghφ,

‖φh ‖
2
H

1,1/2
0;0, (Q)

≤ bhybrid(φh, φh) = bhybrid(φ, φh)

= 〈∂tφ, φh +HT φh〉Q + 〈∇xφ,∇x(φh +HT φh)〉L2(Q)

≤ ‖∂tφ‖[H1/2−ε
,0 (0,T ;L2(Ω))]∗

‖φh +HT φh ‖H1/2−ε
,0 (0,T ;L2(Ω))

+ ‖∇xφ‖L2(Q)‖∇x(φh +HT φh)‖L2(Q)

≤ 2
[
‖φ‖

H
1/2+ε
0, (0,T ;L2(Ω))

‖φh ‖H1/2−ε
,0 (0,T ;L2(Ω))

+ ‖∇xφ‖L2(Q)‖∇xφh ‖L2(Q)

]
≤ 2

√
‖φ‖2

H
1/2+ε
0, (0,T ;L2(Ω))

+ ‖∇xφ‖
2
L2(Q)

√
‖φh ‖

2
H

1/2−ε
,0 (0,T ;L2(Ω))

+ ‖∇xφh ‖
2
L2(Q)

≤ 2 ‖φ‖
H

1,1/2+ε
0;0, (Q)

‖φh ‖H1,1/2
0;0, (Q)

,

i.e., the assertion. �

With the projection property vh = Ghvh for all vh ∈ Xh and (10) we further conclude
Cea’s lemma,

‖u − uh ‖H1,1/2
0;0, (Q)

= ‖u − Ghu‖
H

1,1/2
0;0, (Q)

= ‖u − vh + Ghvh − Ghu‖
H

1,1/2
0;0, (Q)

≤ ‖u − vh ‖H1,1/2
0;0, (Q)

+ ‖Gh(vh − u)‖
H

1,1/2
0;0, (Q)

≤ ‖u − vh ‖H1,1/2
0;0, (Q)

+ 2 ‖u − vh ‖H1,1/2+ε (Q)

≤ 3 ‖u − vh ‖H1,1/2+ε (Q) for all vh ∈ Xh . (11)

When combining (11) with the approximation property of piecewise (multi-)linear
basis functions in H1(Q) we can formulate the main result of this paper.

Theorem 2 Let u ∈ H1,1/2
0;0, (Q) ∩ Hs(Q) for some s ∈ [1,2] be the unique solution of

(1), and let uh ∈ Xh be the unique solution of the hybrid variational formulation (7).
Then there holds the error estimate

‖u − uh ‖H1,1/2
0;0, (Q)

≤ c hs−1 |u|H s (Q). (12)

Proof The assertion follows from (11),
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‖u − uh ‖H1,1/2
0;0, (Q)

≤ 3 inf
vh ∈Xh

‖u − vh ‖H1,1/2+ε
0;0, (Q)

≤ 3 inf
vh ∈Xh

‖u − vh ‖H1,1
0;0, (Q)

,

and the approximation property of Xh in H1(Q). �

In the case of tensor-product finite element spaces it is possible to improve the error
estimate (12) when using suitable projection operators with respect to spatial and
temporal components separately. This also allows to consider less regular solutions
u ∈ H2,1(Q) when assuming f ∈ L2(Q) and convex spatial domains Ω, which then
requires the parabolic scaling ht = h2

x for the temporal and spatial mesh sizes ht and
hx , respectively. For a more detailed discussion, we refer to [2], and [7].

4 Numerical results

The variational formulation (5) in the Bochner space setting is equivalent to a linear
system of algebraic equations,

[Ãh + Kh]u1 = f 1, (13)

where

Kh[ j, k] =
∫
Q

∇xϕk · ∇xϕj dx dt, Ãh[ j, k] =
∫
Q

∂tϕk ϕj dx dt,

for k, j = 1, . . . ,M , and f 1
j = 〈 f , ϕj〉Q. Note that the stiffness matrix Kh is symmetric

and positive definite, and Ã is non-symmetric, and non-negative. In contrast, the
variational formulation (6) in the anisotropic Sobolev space results in the linear
system

[Ah + K̃h]u2 = f 2, (14)

where

Ah[ j, k] =
∫
Q

∂tϕk HTϕj dx dt, K̃h[ j, k] =
∫
Q

∇xϕk · ∇xHTϕj dx dt,

for k, j = 1, . . . ,M , and f 2
j = 〈 f ,HTϕj〉Q. Now the stiffness matrix Ah is symmetric

and positive definite, and K̃h is non-sysmmetric, and non-negative. The hybrid space-
time variational formulation (7) then results in the linear system

[Ah + Kh + Ãh + K̃h]u = f 1 + f 2 =: f , (15)

where Ah+Kh is symmetric and positive definite, and Ãh+ K̃h is non-symmetric, but
non-negative. Note that the representation (15) holds true for discretizations using
either simplicial or tensor-productmeshes. To simplify the implementation [10] of the
modified Hilbert transformationHT , at this time we only consider the discretization



A hybrid space-time finite element method for parabolic evolution equations 7

using space-time tensor-product meshes with nx quadrilaterals in space, and nt
elements in time. Recall that Xh is the space-time finite element space of multilinear
and continuous basis functions. In the case of space-time tensor product meshes it is
also possible to construct efficient direct solvers for the solution of the linear system
(15), see [4].

In what follows we will consider numerical examples for a regular solution
u1 ∈ H2(Q) as used in [1], a solution u2 with a singularity in space, and u3 with a
singularity in time,

u1(x, t) = sin(10πt) sin(πx1) sin(πx2),

u2(x, t) = t3/2 (x1(1 − x1))
3/2 sin(πx2),

u3(x, t) = t2/3 sin(πx1) sin(πx2).

In all cases we consider Ω = (0,1)2 and T = 1, i.e., Q = (0,1)3. The observed errors
‖∇x(ui −ui,h)‖L2(Q) as well as the experimental order of convergence (eoc) are listed
in Tables 1, 2, and 3, respectively. The respective L2 errors ‖ui − ui,h ‖L2(Q) only
slightly differ for the different formulations, and hence are only presented for the
hybrid formulation in Table 4, where we see a breakdown of the convergence order
for the two singular solutions. In Table 5 it is visible that in the case of the temporal
singularity the optimal order of convergence can be retrieved by using parabolic
scaling, i.e. nt = n2

x .

Table 1 Convergence of the finite element method for the regular solution u1(x, t) in the modified
Hilbert transform, the Bochner, and the hybrid setting.

DoF ‖∇x (u1 − u
H
1,h ) ‖L2(Q) eoc ‖∇x (u1 − u

B
1,h ) ‖L2(Q) eoc ‖∇x (u1 − u

hyb
1,h ) ‖L2(Q) eoc

44 1.57 · 100 1.57 · 100 1.57 · 100

189 7.85 · 10−1 1.00 7.40 · 10−1 1.09 7.62 · 10−1 1.04
1025 3.63 · 10−1 1.11 3.59 · 10−1 1.04 3.62 · 10−1 1.07
6561 1.79 · 10−1 1.02 1.78 · 10−1 1.01 1.79 · 10−1 1.02
46529 8.91 · 10−2 1.00 8.91 · 10−2 1.00 8.91 · 10−2 1.00
349569 4.45 · 10−2 1.00 4.45 · 10−2 1.00 4.45 · 10−2 1.00

Acknowledgements This work has been supported by the Austrian Science Fund (FWF) under the
Grant Collaborative Research Center TRR361/F90: Computational Electric Machine Laboratory.
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