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Program

Thursday, September 30, 2010
15.00–16.20 Coffee
16.20–16.30 Opening
16.30–17.00 S. Hardesty (Houston)

Optimization of shell structure acoustics
17.00–17.30 T. Betcke (Reading)

Coercivity and numerical range of boundary integral operators
17.30–18.00 D. Lukas (Ostrava)

Optimal TBETI for multi–body contact problems
18.00–18.30 G. Unger (Linz)

A boundary element method for Laplacian eigenvalue problems
18.30 Dinner

Friday, October 1, 2010
9.00–9.30 E. P. Stephan (Hannover)

Fast solvers for the hp–version boundary element method and
applications in electromagnetics

9.30–10.00 L. Weggler (Saarbrücken)
Stabilized boundary element formulation for Maxwell

10.00–10.30 S. Engleder (Graz)
Boundary element methods for low–frequency Maxwell problems

10.30–11.00 Coffee
11.00–11.30 C. Hofreither (Linz)

L2 error estimates for a BEM–based FEM
11.30–12.00 S. Weisser (Saarbrücken)

Adaptive BEM based FEM on general polygonal meshes and
residual error estimators

12.00–12.30 M. Feischl (Wien)
Convergence of some adaptive FEM–BEM coupling

12.30 Lunch
15.00–15.30 S. Kurz (Tampere)

Differential forms and boundary integral equations
15.30–16.00 M. Fleck (Saarbrücken)

Discrete electromagnetism of higher polynomial degree
16.00–16.30 Coffee
16.30–17.00 M. Betcke (London)

Image reconstruction for real time cone beam CT
17.00–17.30 S. Ferraz–Leite (Wien)

A quadratic minimization problem in thin–film micromagnetics:
non–local, non–linear, and infinite dimensional

17.30–18.00 M. Windisch (Graz)
BETI methods for scattering problems

18.00–18.30 C. Jerez–Hanckes (Zürich)
Multiple traces boundary integral formulations for Helmholtz
transmission problems

18.30 Dinner
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Saturday, October 2, 2010
9.00–9.30 M. Schanz (Graz)

Time domain BEM: Brief overview and trends
9.30–10.00 L. Banjai (Leipzig)

Runge–Kutta convolution quadrature: New convergence results
and applications to acoustic scattering

10.00–10.30 V. Gruhne (Leipzig)
Approximation of convolution weights for 2D and dissipative
wave equation

10.30–11.00 Coffee
11.00–11.30 J. Zechner (Graz)

Application of hierarchical matrices to a BEM plasticity algoritm
in tunneling

11.30–12.00 Ma. Messner (Graz)
A fast directional multilevel summation method for oscillatory kernels
based on Chebyshev interpolation and adaptive cross approximation

12.00–12.30 P. Urthaler (Graz)
Comparison of boundary element methods for magnetostatic field
problems

12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Sunday, October 3, 2010
9.00–9.30 M. Karkulik (Wien)

Application of interpolation theory to adaptive 3D–BEM
9.30–10.00 L. Raguin (Zürich)

Spectral Galerkin method for surface integral equations on
nanoparticles in three dimensions

10.00–10.30 Coffee
10.30–11.00 G. Karlis, L. Malinowski (Graz)

Iterative coupling of DEM–BEM regions with an overlapping
FEM zone

11.00–11.30 O. Steinbach (Graz)
Variational inequalities and boundary element methods

11.30 Closing
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Runga-Kutta convolution quadrature: New convergence results and

applications to acoustic scattering

L. Banjai

MPI Leipzig, Germany

It is well-known that order reduction can occur when discretizing stiff differenti-
al systems by Runge-Kutta methods. This phenomenon for parabolic systems and
corresponding sectorial convolution quadratures has been analysed by Lubich &
Ostermann in 1993. We extend these results to the hyperbolic case, that is to ope-
rators whose Laplace transform is bounded polynomially in the right half complex
plane.
Recently a need to refine the analysis for operators that are differently bounded in
sectors of the right half-plane than in the whole half-plane, has been recognised in
relation to applications coming from acoustics and electromagnetism. We present a
different type of analysis for this class of problems and obtain a refined result that
has some surprising consequences. Numerical experiments and applications coming
from solving time-domain boundary integral equations of acoustic scattering will
also be presented.
This is a joint work with Christian Lubich (Universität Tübingen) and Jens Markus
Melenk (TU Wien).
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Image Reconstruction for Real Time Cone Beam CT

M. M. Betcke

University College London, UK

In the quest of engineering a real time tomograph, the mechanical motion of the
gantry was identified as a main bottle neck in increasing speed of measurements
acquisition in state of the art cone beam scanners. Therefore in the new genera-
tion of the cone beam systems the mechanically rotating gantry was replaced by
a stationary ring of sources, which can by quickly switched on and off by the on
board electronics, and multiple stationary rings of detectors. To accommodate the
stationary ring of sources in the design, it was necessary to divert from the 4th
generation CT geometry. The resulting new geometry requires new different recon-
struction algorithms than those devised for the standard cone beam CT. In this
contribution we present a new family of methods, multi-sheet rebinning methods,
generalising the rebinning methods to the new scanner geometry.
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Coercivity and numerical range of boundary integral operators

T. Betcke

University of Reading, UK

Coercivity is an important concept for proving existence and uniqueness of solutions
to variational problems in Hilbert spaces. But, while the existence of coercivity esti-
mates is well known for many variational problems arising from partial differential
equations, it is still an open problem in the context of boundary integral operators
arising from acoustic scattering problems, where rigorous coercivity results have so
far only been established for combined integral operators on the unit circle and
sphere.
One way to interpret coercivity is by considering the numerical range of the operator.
The numerical range is a well established tool in spectral theory and algorithms exist
to approximate the numerical range of finite dimensional matrices. We can therefore
use Galerkin projections of the boundary integral operators to approximate the
numerical range of the original operator.
By computing the numerical range of the combined integral operator in acoustic
scattering for exterior soundsoft scattering for several interesting convex, noncon-
vex, smooth and polygonal domains, we numerically study coercivity estimates for
varying wavenumbers. Surprisingly, it turns out that for many domains a coerci-
vity result seems to hold independently of the wavenumber or with only a mild
wavenumber dependence on it. Also, there are very interesting connections to the
nonnormality of the operator. In fact, using the example of a trapping domain we
demonstrate that the loss of coercivity does not seem predictable purely from spec-
tral information and that coercivity is strongly dependent on the distance to the
nearest exterior resonance.
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Boundary Element Methods for low-frequency Maxwell Problems

S. Engleder, O. Steinbach

TU Graz, Austria

In this talk we discuss boundary element formulations for the solution of boundary
value and transmission problems arising from applications in electromagnetism. In
particular we deal with applications in the low frequency range. We investigate the
properties of boundary integral operators when dealing with low frequencies and
present a new formulation, which is stable if we let the frequency tend to zero.
Furthermore we give numerical examples to illustrate the theoretic results.
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Convergence of Some Adaptive FEM–BEM Coupling

M. Feischl

TU Wien, Austria

We consider different FEM–BEM coupling methods for the numerical solution of
some interface problem for the 2D Laplacian. Based on stability results from [1]
and [2], we introduce some new a posteriori error estimators based on the (h-h/2)-
error estimation strategy. In particular, these include the approximation error for
the boundary data, which allows to work with discrete boundary integral operators
only. Using the concept of estimator reduction, we prove that the proposed adaptive
algorithm is convergent in the sense that it drives the underlying error estimator
to zero. Numerical experiments underline the effectivity of the considered adaptive
mesh-refinement and compare the (h-h/2)-approach with other adaptive strategies
proposed in e.g. [1] and [3].

References

[1] C. Carstensen, E. Stephan: Adaptive coupling of boundary elements and finite
elements. Math. Model. Anal. 29 (1995) 779–817.

[2] F.–J. Sayas: The validity of Johnson-Néd́lec’s BEM–FEM coupling on polygo-
nal interfaces. SIAM J. Numer. Anal. 47 (2009) 3451–3463.

[3] P. Mund, E. Stephan: An additive two–level method for the coupling of nonli-
near FEM–BEM equations. SIAM J. Numer. Anal. 36 (1999) 1001–1021.
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A quadratic minimization problem in thin-film micromagnetics:

non-local, non-linear, and infinite dimensional

S. Ferraz–Leite, J. M. Melenk, D. Praetorius

TU Wien, Austria

We consider the reduced model proposed in [3] which is consistent with the prior
works [1] and [4] and is valid for sufficiently large and thin ferromagnetic samples.
Let ω ⊆ R

2 denote a bounded Lipschitz domain with diameter ℓ ∼ 1. This domain
represents our ferromagnetic sample Ω = ω× (0, t), whose thickness t > 0 is neglec-
ted for simplicity. Here, we consider a uniaxial material with in-plane easy axis e1.
With an applied exterior field f : ω → R

2, we seek a minimizer m∗ of the reduced
energy

e(m) =
1

2

∫

R3

|∇u|2 dx +
q

2

∫

ω

m2
2 dx −

∫

ω

f · m dx (1)

under the convex side constraint |m| ≤ 1. The magnetostatic potential u : R
3 → R

is related to the magnetization via
∫

R3

∇u · ∇ϕ dx =

∫

ω

m · ∇ϕ(x, 0) dx for all ϕ ∈ D(R3). (2)

The representation of u as simple-layer potential of ∇ · m, allows to rewrite the
energy functional

e(m) = ‖∇ · m‖2
V + ‖m2‖

2
L2 − (f,m)L2 ,

with ‖ · ‖V denoting the non-local norm induced by the simple-layer potential as-
sociated with the Laplace operator in 3D. This observation leads to the choice of

a certain subspace of H1/2(div, ω) := {m ∈ L2(ω)2 | ∇ · m ∈ H̃−1/2(ω)} as ener-
gy space. Existence and uniqueness of a minimizer m∗ in our functional setting is
proven.
Based on some regularity results from [2], we propose a numerical discretization
strategy by use of lowest-order Raviart-Thomas finite elements. Furthermore, al-
gorithmic treatment of the side-constraint |m| ≤ 1 by use of a penalty method is
analyzed. Convergence of our numerical scheme is studied, and numerical examples
conclude the talk.

References

[1] P. Bryant, H. Suhl: Thin-film patterns in an external field. Appl. Phys. Lett.
54 (1989) 2224–2226.

[2] A. DeSimone, R. V. Kohn, S. Müller, F. Otto: A Reduced Theory for Thin-Film
Micromagnetics. Comm. Pure Appl. Math. LV (2002) 1408–1460.

[3] A. DeSimone, R. V. Kohn, S. Müller, F. Otto, R. Schäfer: Two-dimensional
modeling of soft ferromagnetic films. Proc. R. Soc. Lond. A 457 (2001) 2983–
2991.

[4] H. A. M. van den Berg: Self-consistent domain theory in soft-ferromagnetic
media. II. Basic domain structures in thin film objects. J. Appl. Phys. 60
(1986) 1104–1113.
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Discrete electromagnetism of higher polynomial degree

M. Fleck

Universität des Saarlandes, Germany

The basic principle of discrete electromagnetism (DEM) is to discretise the ope-
rators occuring in the differential form representation of a given PDE. While the
proper spaces for versions of higher polynimial degree are known, there are different
concepts for degrees of freedom and the corresponding shape forms. We compare two
dissimilar concepts and analyse the discrete electromagnetism using a hierarchical
set of higher order shape forms.
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Approximation of Convolution Weights for 2D and Dissipative Wave

Equation

V. Gruhne

MPI Leipzig, Germany

When solving hyperbolic partial differential equations in an exterior domain, first
notably the wave equation as it appears in the field of propagation and scattering of
acoustic or electromagnetic waves, it can be rewritten in a boundary integral equati-
on which we solve with the aid of boundary element method. Here, the convolution
quadrature approach of Lubich comes into play in order to discretize the integral in
time domain. It makes use of convolution weights which in general are only given
implicitly via a contour integral. If Huygens’ principle holds, the forward tail of the
convolution weights’ kernels can be replaced by zero, so-called cut off strategy, and
so storage and computational costs are reduced. In two space dimensions or when a
dissipative term is involved, this approach is not realizable anymore, since in these
cases Huygens’ principle is not valid.
In this talk we show, that, nevertheless, one can extend the idea of cutting off
to situations where Huygens’ principle is violated. We discuss the possibility of
approximating the convolution weight functions with the help of time domain’s
kernel function of the time-space boundary integral and use this result to justify
interpolation of the convolution weights. We verify this approach with a numerical
experiment.
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Optimization of Shell Structure Acoustics

S. Hardesty

Rice University, Houston, USA

It is natural to model shell structure acoustics by coupling shell equations with
boundary integral equations for the acoustics: the whole coupled three-dimensional
problem can be elegantly formulated on a two-dimensional reference domain, re-
moving the need for re-meshing during optimization so long as the design changes
are not too large. The boundary integral equations yield solutions exactly satisfying
the Sommerfeld radiation condition, without the need for artificial truncation of the
exterior domain, and lend themselves to point-measurement of the external field via
a representation formula.
While simpler structural acoustic optimization problems, e.g., the minimization
of measured noise at a particular frequency, may be solved with sensitivities and
a small shape parameter set, more interesting design problems may require large
shape parameter sets. This is due both to the difficulty involved in the a priori
choice of a smaller parameter set, and to the need to allow shape variations on a
scale near that of the underlying finite element mesh.
The use of adjoint equations allows the computation of derivatives with respect to
large parameter sets in shape optimization problems where the thickness and mid-
surface of the shell are computed so as to generate a radiated sound field subject to
broad-band design requirements. Numerical examples are presented.
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Multiple Traces Boundary Integral Formulation for Helmholtz

Transmission Problems

C. Jerez–Hanckes
ETH Zürich, Switzerland

We present a boundary integral formulation of the Helmholtz transmission problem
for composite scatterers (piecewise constant coefficients) that lends itself to ope-
rator preconditioning via Calderón projectors. The method relies on local traces
on subdomains and weak enforcement of transmission conditions. The variational
formulation is set in Cartesian products of standard Dirichlet and special Neumann
trace spaces, for which restriction and extension by zero operations are well defined.
In particular, the Neumann trace spaces over each subdomain boundary are built

as piecewise H̃−1/2-distributions over each associated interface. Through the use of
interior Calderón projectors, the problem is cast in variational Galerkin form with
a matrix operator whose diagonal is composed of block boundary integral opera-
tors. We show existence and uniqueness of solutions based on an extension of Lion’s
projection lemma for non-closed subspaces. Numerical experiments in 2-D validate
the method when compared to alternative approaches and show its amenability to
different types of preconditioning.
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L2 error estimates for a BEM–based FEM

C. Hofreither

Johannes Kepler Universität Linz, Austria

We present a non-standard finite element method based on element-local boundary
integral operators that permits polyhedral element shapes as well as meshes with
hanging nodes. The method employs elementwise PDE-harmonic trial functions
and can thus be interpreted as a local Trefftz method. We review results on error
estimates in the H1-norm. By passing from a non-conforming primal formulation to
a conforming mixed formulation incorporating both Dirichlet and Neumann traces
as unknowns, we are able to derive new L2 error estimates.
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Application of Interpolation Theory to Adaptive 3D-BEM

M. Karkulik, D. Praetorius

TU Wien, Austria

Recently, we proved in [1] the convergence of an adaptive boundary element method
for the Dirichlet problem in two dimensions. In our talk, we show how the analysis
therein can be extended to three dimensions. We first show how the K-Method of the
theory of interpolation spaces can be used to obtain approximation properties of a
certain class of quasi-interpolation operators in fractional order Sobolev spaces, even
for adaptively generated meshes. Then, we use this approach to show convergence
of a data-perturbed boundary element method for the Dirichlet problem in three
dimensions.

References

[1] M. Aurada, S. Ferraz–Leite, P. Goldenits, M. Karkulik, M. Mayr, D. Praeto-
rius: Convergence of adaptive BEM for some mixed boundary value problem.
ASC Report 12/2010, Institute for Analysis and Scientific Computing, Vienna
University of Technology, Wien, 2010.
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Iterative coupling of DEM–BEM regions with an overlapping FEM zone

G. Karlis, L. Malinowski, G. Beer, J. Rojek

TU Graz, Austria

One of the characteristics of the numerical simulation in geotechnical engineering
is that nonlinear/discontinuous behaviour is concentrated on small portions of the
total domain. It is not very efficient to use volume based methods for the analysis
of the whole domain. On the other hand a discretisation of this domain into di-
stinct elements is also inefficient because the zone of interest, where discontinuous
behaviour occurs, is quite small.
The aim of the current work is to develop a simulation methodology that allows
the solution of multiregion elastostatic problems using different numerical methods
(BEM/FEM/DEM), coupled iteratively.
During this talk an iterative algorithm for coupling two or more BEM subdomains
will be outlined and serve as a base for coupling static BEM with a dynamic DEM
code. To achieve this a FEM overlapping area has been adopted in order to simplify
the whole procedure.
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Differential Forms and Boundary Integral Equations

S. Kurz1, B. Auchmann2

1TU Tampere, Finland, 2CERN, Geneva, Switzerland

In recent years, a remarkable amount of papers has been published that treat con-
tinuous and discrete electromagnetics in terms of differential forms. However, most
of these papers focus on finite element and finite difference methods. There are only
a few contributions that deal with the boundary element method in this setting.
The aim of the present paper is to show how integral equations of the electromagne-
tic theory can be expressed in the language of differential forms. A generic second
order Helmholtz type problem is considered, in terms of differential forms, which is
defined on a sub-domain Ω of Euclidean space, with Lipschitz boundary Γ. The pro-
blem encompasses and generalizes the scalar and vector Helmholtz-type problems.
In fact, scalar fields and vector fields, both in the domain and on the boundary, are
obtained from differential forms by metric-induced translation isomorphisms. The
paper explains in each step how the general results in the differential-form frame-
work relate to their well-known scalar and vector counterparts, by means of the
translation isomorphisms.
As analytic framework, the Sobolev spaces H0,p(d, Ω) play a central role. They
contain square integrable differential p–forms whose exterior derivative is square
integrable, too. The related trace spaces and the Hodge duals of these spaces are
presented as well.
Starting from the fundamental solution of the scalar Helmholtz equation, a funda-
mental solution for the generic problem is constructed, in terms of a double form.
Sloppily speaking, double forms are forms in one space with coefficients that are
forms in another space. Green’s first and second identities can be stated for dif-
ferential forms. With the fundamental solution, a representation formula can be
derived. For p = 0 and p = 1, respectively, the translation isomorphisms recover the
Kirchhoff and Stratton-Chu representation formulas.
Single and double layer potentials can be identified, and their traces yield the Cal-
derón projector, which consists of single layer, double layer and hypersingular boun-
dary integral operators. The properties of these operators are studied in the Sobolev
space framework, and a variational formulation is examined.
Since differential forms possess discrete counterparts, the discrete differential forms,
such schemes lend themselves naturally to discretisation. Consequently, boundary
element techniques can be reinterpreted in terms of discrete differential forms. Some
examples are considered, to demonstrate the advantages of this viewpoint.
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Optimal TBETI for Multi–Body Contact Problems

Z. Dostal, T. Kozubek, M. Sadowska, D. Lukas

VSB TU Ostrava, Czech Republic

We consider a multi-body elastic contact problem with Tresca friction. The line-
ar elastic problem with mixed boundary conditions is formulated as a boundary
integral equation in terms of the Steklov-Poincare (SP) operator. We employ Ga-
lerkin boundary element discretization and the Total-BETI domain decomposition
approach, which leads to a minimization problem with both linear equality and in-
equality constaints and the objective functional involving a dissipative Tresca term.
Applying the duality concept we arrive at a saddle-point problem, where the linear
inequality constraints transfer to simple bound constraints and the nonlinear Tres-
ca friction term after a regularization translates to additional separable quadratic
constraints. When solving the problem in parallel, each slave-process is responsi-
ble for actions of its local SP operator and the pseudoinverse. We accelerate both
by the Adaptive Cross Approximation (ACA) technique, while the pseudoinverse
(Neumann-to-Dirichlet map) is replaced by iterative CG-solution for regularized
Neumann problem. The outer CG-iterations of the dual quadratic problem are pre-
conditioned by the projector to the rigid body modes. Finally, we give theoretical
results which guarantee numerical scalability of our algorithm and document per-
formance of the method on numerical results for real-life engineering benchmark
problems.
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A fast directional multilevel summation method for oscillatory kernels

based on Chebyshev interpolation and adaptive cross approximation

Ma. Messner1, E. Darve2

1TU Graz, Austria, 2Stanford University, USA

Many applications lead to large systems of linear equations with dense matrices.
Direct matrix-vector products become prohibitive, since the computational cost
increases quadratically with the size of the problem. By exploiting specific kernel
properties fast algorithms can be constructed.
A directional multilevel algorithm for translation-invariant oscillatory kernels of
the type K(x, y) = G(x−y) e

ık|x−y|, with G(x−y) being any smooth kernel, will be
presented. We will first present a general approach to build fast multipole methods
(FMM) based on Chebyshev interpolation and the adaptive cross approximation
(ACA) for smooth kernels. The Chebyshev interpolation is used to transfer infor-
mation up and down the levels of the FMM. The scheme is further accelerated by
compressing the information stored at Chebyshev interpolation points using ACA
and QR decompositions. This leads to a nearly optimal computational cost with a
small pre-processing time due to the low computational cost of ACA. This approach
is in particular faster than performing singular value decompositions.
This does not address the difficulties associated with the oscillatory nature of
K. For that purpose, we consider the following modification of the kernel Ku =
K(x, y) e−ıku·(x−y), where u is a unit vector. We proved that the kernel Ku can be
interpolated efficiently when x − y lies in a cone of direction u. This result is used
to construct an FMM for the kernel K.
Theoretical error bounds will be presented to control the error in the computation as
well as the computational cost of the method. The talk ends with the presentation
of 2D and 3D numerical convergence studies, and computational cost benchmarks.
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Spectral Galerkin Method for Surface Integral Equations on

Nanoparticles in Three Dimensions1

L. Raguin1, R. Vogelgesang2, C. Hafner1

1ETH Zürich, Switzerland
2Max–Planck–Institut für Festkörperforschung Stuttgart, Germany

The most adventurous scientists in experimental studies as well as the most ex-
perienced theoreticians in academic research have been intrigued and challenged
by optics for centuries. In this talk, the development of a new Spectral Galerkin
Method (SGM) for fast and accurate three-dimensional (3D) analysis of the optical
properties of nanoparticles illuminated by a light source, thereby bringing a new
discovery into today’s nanooptics, will be discussed.
An important problem arising in today’s nanooptics is to solve the Maxwell’s equati-
ons when all media are characterized by the frequency-dependent complex dielectric
permittivity and magnetic permeability [1]. One may reduce this problem to Surface
Integral Equations (SIEs) through the use of layer potentials [2] when the electric
and magnetic fields are expressed in terms of scalar and vector potentials [1]. These
SIEs feature singular integral kernels. It may give rise to ill-conditioned discrete
operators. We propose to overcome these difficulties by using a spectral discreti-
zation scheme, the analog of that already has proved its viability for the fast and
efficient numerical treatment of numerous 2D problems in nanooptical applications
[3]. First, with the surface parameterization we change the variables of integrati-
on converting SIEs to the ones over a unit sphere. Second, the Galerkin’s method
with spherical harmonics as the approximating functions is applied to these new
equations. Third, the integral kernels are regularized analytically. This step also
converts all equations to Fredholm integral equations of the second kind. Finally,
the Galerkin’s coefficients are calculated by fast transforms for spherical harmonic
expansions, leading to fast numerics in addition to high accuracy.
SGM leads to smaller linear system in comparison with classical BEM. The com-
plexity for 3D problems is of the same order as the one of classical FEM for 2D
problems. In the past such a global approximation procedures would be less flexible
or general than FEM and BEM because of the restriction to surfaces with known
parameterization [4]. However, due to recent progress in development of bijection

mappings for surfaces of nanoparticles on a sphere our SGM is applicable to study
all surfaces in nanooptical applications. In addition, contrary to the approach used
in [4], we propose to regularize integral operators by subtracting the layer potentials
on a unit sphere. Then, new regularization procedure takes into account the compli-
cate dispersive behavior of plasmonic materials at nanoscale making this approach
best suited for nanooptical applications.

References

[1] F. J. Garćıa de Abajo, A. Howie: Retarded field calculation of electron energy
loss in inhomogeneous dielectrics. Phys. Rev. B65 (2002) 115418.

1This work is supported financially by Swiss National Science Foundation project no. 200021-119976 ”Spectral
Galerkin Boundary Integral equation methods for plasmonic nanostructures”. Helpful advices of Prof. R. Hiptmair
and Prof. R. Vahldieck are gratefully acknowledged.
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[2] J.-C. Nédélec: Acoustic and electromagnetic equations: integral representati-
ons for harmonic problems. New York, Springer, 2001.
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Time domain BEM: Brief overview and trends

M. Schanz

TU Graz, Austria

Boundary element formulations in time domain are well established in the engi-
neering and the mathematical literature, for an overview see [2]. In principle three
types of formulations can be found:

• Direct in time domain with analytical integration of the time convolution

• Calculation in Laplace or Fourier domain with a subsequent numerical inverse
transformation

• Formulations based on the Convolution Quadrature Method (CQM)

The latter formulation goes back to [3,4] and can either be formulated as a true time
stepping method or, as proposed by [2], as a calculation of decoupled Laplace domain
problems with an inverse transformation. Opposite to the usual formulation in the
transformed domain, here, the time step size is the only parameter to be adjusted.
Hence, a physical interpretable parameter which follows the CFL-condition is used
and not some sophisticated parameters like in inverse Laplace transforms.
In the present talk, the above mentioned procedures are very briefly recalled at either
the example of elastodynamics or acoustics. Then the CQM based approached is
discussed in more detail and some examples are given. Finally, the way to introduce
fast BEM techniques is sketched.

References

[1] L. Banjai, S. Sauter: Rapid solution of the wave equation in unbounded do-
mains. SIAM J. Numer. Anal. 47 (2009) 227–249.

[2] M. Costabel: Time–dependent problems with the boundary integral equation
method. In: Encyclopedia of Computational Mechanics, volume 1, Fundamen-
tals (E. Stein, R. de Borst, T. J. R. Hughes eds.), John Wiley & Sons, New
York, Chichester, Weinheim, Chapter 25, 2005.

[3] C. Lubich: Convolution quadrature and discretized operational calculus. Part
I. Numer. Math. 52 (1988) 129–145.

[4] C. Lubich: Convolution quadrature and discretized operational calculus. Part
II. Numer. Math. 52 (1988) 413–425.
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Variational inequalities and boundary element methods

O. Steinbach

TU Graz, Austria

Variational inequalities to be considered in H1/2(Γ) result from different applica-
tions, e.g., boundary value problems with boundary conditions of Signorini type,
contact problems in elasticity, or from constrained optimal control problems. In this
talk will will discuss both the error analysis of the boundary element solution, and
iterative solution strategies.
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Fast solvers for the hp–version boundary element method and

applications in electromagnetics

E. P. Stephan

Leibniz Universität Hannover, Germany

We present new results from [1,2] on various Schwarz methods for the h and p
versions of the boundary element method applied to prototype first kind integral
equations on surfaces. When those integral equations (weakly/hypersingular) are
solved numerically by the Galerkin boundary element method, the resulting ma-
trices become ill-conditioned. Hence, for an efficient solution procedure appropriate
preconditioners are necessary to reduce the numbers of CG-iterations. In the p versi-
on where accuracy of the Galerkin solution is achieved by increasing the polynomial
degree the use of suitable Schwarz preconditioners (presented in the paper) leads
to only polylogarithmically growing condition numbers. For the h version where
accuracy is achieved by reducing the mesh size we present a multi-level additive
Schwarz method which is competitive with the multigrid method. Applications are
given in electromagnetics for solving the eddy current problem or the electrical field
integral equation using FEM and BEM.

References

[1] N. Heuer, F. Leydecker, E. P. Stephan: Iterative substructering method for
the p-version of the BEM on triangular meshes. Num. Meth. PDE 23 (2007)
879–903.

[2] M. Maischak, F. Leydecker, E. P. Stephan: Some Schwarz methods for integral
equations on surfaces – h and p versions. Computing and Visualization in
Science 8 (2005) 211–216.

24



A boundary element method for Laplacian eigenvalue problems

O. Steinbach1, G. Unger2

1TU Graz, Austria, 2RICAM Linz, Austria

For the solution of Laplacian eigenvalue problems we propose a boundary element
method which is used to solve equivalent nonlinear eigenvalue problems for related
boundary integral operators. The discretization of the boundary integral opera-
tor eigenvalue problems leads to algebraic nonlinear eigenvalue problems. We use
a recently proposed method [1] which reduces the algebraic nonlinear eigenvalue
problems to linear ones. The method is based on a contour integral representation
of the resolvent operator and it is suitable for the extraction of all eigenvalues in
predefined interval which is enclosed by the contour. The dimension of the resul-
ting linear eigenvalue problem corresponds to the number of eigenvalues which lie
inside the contour. The main numerical effort consists in the evaluation of the resol-
vent operator for the contour integral which requires the solution of several linear
systems. Compared with other methods for nonlinear eigenvalue problems no initi-
al approximations of the eigenvalues and eigenvectors are needed. First numerical
examples demonstrate the robustness of the method.
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Comparison of boundary element methods for magnetostatic field

problems

G. Of1, O. Steinbach1, P. Urthaler1, Z. Andjelic2

1TU Graz, Austria, 2ABB Switzerland

We consider transmission problems of the potential equation with piecewise constant
coefficients appearing in, e.g., the modelling of electric fields in dielectric media and
in scalar potential formulations in magnetostatics. We compare a class of global
indirect boundary integral formulations to a a domain decomposition approach to
solve these transmission problems by fast boundary element methods, e.g., the Fast
Multipole Method.
We discuss the pros and cons of the considered formulations and compare the per-
formance, the accuracy and the stability of the approaches for several numerical
examples of industrial applications.
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Stabilized Boundary Element Formulation for Maxwell

L. Weggler

Universität des Saarlandes, Germany

The solution of the harmonic Maxwell equations by a conventional variational for-
mulation (FEM or BEM) requires a different treatment when it comes to wave
numbers close to zero. In order to solve the so called low frequency problem one has
to stabilize the formulation by incorporating Gauß law. A theoretical and numerical
study of this subject is presented.
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Adaptive BEM based FEM on general polygonal meshes and residual

error estimators

S. Weißer

Universität des Saarlandes, Germany

We briefly introduce a special finite element method that solves the stationary iso-
tropic heat equation with Dirichlet boundary conditions on arbitrary polygonal and
polyhedral meshes. The method uses a space of locally harmonic ansatz functions
to approximate the solution of the boundary value problem. These ansatz functions
are constructed by means of boundary integral formulations. Due to this choice,
the proposed finite element method can be used on general polygonal non-conform
meshes. Hanging nodes are treated quite naturally and the material properties are
assumed to be constant on each element.
In a second step we focus on uniform and adaptive mesh refinement. One important
point is the treatment of these arbitrary elements. We propose a method to refine
polygonal bounded elements which are convex.
In order to do adaptive mesh refinement it is essential to look at a posteriori error
estimates. Standard methods are based on triangular or quadrilateral meshes. The
challenging part is to handle the arbitrary polygonal and polyhedral meshes. We
generalize the ideas of residual error estimators and use them in numerical examples.
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BETI methods for scattering problems

M. Windisch, O. Steinbach

TU Graz, Austria

In this talk we want to present basic ideas for a tearing and interconnecting approach
for acoustic and electromagnetic scattering, using boundary integral equations on
the local subdomains. The tearing and interconnecting approach is normally used
for partial differential equations which lead to elliptic bilinear forms. Nevertheless,
C. Farhat introduced the FETI also for the Helmholtz equation (using FEM instead
of BEM on the local subdomains), now called FETI-H. In this talk we describe, how
this approach can be used for acoustic and electromagnetic scattering problems in
combination with the boundary element method. Instead of standard transmission
boundary conditions of Dirichlet and Neumann type we may use Robin type in-
terface conditions, which result in a stable formulation which is robust to possible
spurious modes.
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Application of Hierarchical Matrices to a BEM Plasticity Algorithm in

Tunneling

J. Zechner, G. Beer

TU Graz, Austria

In the design process of tunnels the geotechnical engineer usually selects a suitable
alignment, decides how and in which sequence the excavation process is done and
which support measures such as rockbolts and shotcrete should be implemented.
For this purpose we propose the use of the Boundary Element Method (BEM).
A Collocation-BEM formulation in elasto-statics is used to simulate the surrounding
rock-mass of the tunnel and the tunnel support. Therefor, small strain plasticity is
considered and the evaluation of stresses in some regions of the domain is necessary.
The numerical complexity in terms of computation and storage for the additional
boundary integral equation is of O(n2) where n denotes the number of stress com-
putations. In terms of numerical efficiency compared to the Finite Element Method
the implementation is not competitive unless so-called “Fast Methods” are applied.
Hierarchical Matrices and Adaptive Cross Approximation are applied to the chosen
formulation. In this presentation intermediate results of the ongoing implementation
are shown.
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