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On the initial higher-order pressure convergence in

equal-order finite element discretizations of the

Stokes system

Douglas R. Q. Pacheco1, Olaf Steinbach

Institute of Applied Mathematics, Graz University of Technology, Graz, Austria

Abstract

The finite element discretization of pressure and velocity in incompressible flow systems
can be done through either stable spaces or stabilized pairs. When using stabilized for-
mulations with lowest-order piecewise linear spaces, the classical theory guarantees only
linear convergence in L2 for the pressure approximation, although a higher order is often
observed – but seldom discussed – in numerical practice. Such experimental observations
may, in the absence of a sound a priori error analysis, mislead the selection of discretiza-
tion spaces in practical applications. Therefore, we present herein a numerical analysis
demonstrating that an initial higher-order pressure convergence may in fact occur under
certain conditions. Moreover, our numerical experiments clearly indicate that whether
and for how long this behaviour holds is a problem-dependent matter. Our findings con-
firm that an optimal pressure convergence can in general not be expected when using
unbalanced velocity-pressure discretizations.

1. Introduction

The Stokes system of incompressible creeping flows is a mixed problem having a scalar

pressure p and a velocity vector u as primal unknowns. The stability and convergence of

finite element discretisations for this saddle-point problem are subject to the well-known

Babuška–Brezzi theory [1, 2], which is violated for instance when both u and p are approx-

imated using the same polynomial degree. Unique solvability can be attained by using

either stable pairs such as in Taylor–Hood [3] and MINI [4] elements, or stabilized equal-

order discretisations. The main weakness of equal-order (as well as of MINI) elements is

the suboptimal pressure convergence resulting from the unbalanced approximation prop-

erties of the velocity and pressure spaces [5]. When using piecewise linear elements, for

example, the standard theory only guarantees first-order convergence for the pressure in

L2 [6], which is one order lower than the corresponding best approximation error estimate.

Nevertheless, the order observed in numerical experiments [7, 8, 9, 10, 11, 12, 13, 14, 15]

is often higher than one even for very fine meshes, which usually goes undiscussed or at

least unexplained.
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Around a decade ago, Eichel et al. [12] proved a half-an-order-higher pressure con-

vergence for low-order elements in problems with very smooth solutions and uniform,

orthogonal meshes. To the best of our knowledge, however, there is currently no avail-

able analysis on a possible higher-order pressure convergence for equal-order elements of

arbitrary degree and for more general meshes. In fact, Cioncolini and Boffi [14] have very

recently carried out an empirical numerical investigation on unstructured meshes to assess

whether the assumptions in [12] might have been too strict. Despite providing insightful

numerical evidence on the performance of the MINI element, the results in [14] do not

allow a definitive conclusion regarding this apparent “superconvergence”: in most cases a

3/2 slope was indeed verified, while in some examples there was an apparent degradation

of this higher slope at finer levels.

In this context, we present new theoretical and numerical results on the pressure

convergence of unbalanced discretisations of the Stokes system. Our theory includes

equal-order pressure stabilization methods, as well as the MINI element. Developed by

Arnold et al. [4], the MINI element provides one of the simplest inf-sup stable spaces for

incompressible flow problems and consists of enriching a piecewise linear velocity space

with bubble functions. For the Stokes system, the bubble degrees of freedom can be

completely decoupled from the first-order part of the velocity, which results in a lowest-

order discretisation with a simple matrix added to the pressure-pressure block (cf. [16]).

This means that the Stokes system discretised with MINI elements can be considered as

either a stable or a low-order stabilized formulation. For this reason, we include herein

both MINI and equal-order elements under the umbrella of pressure-stabilized methods.

Using a Schur complement formulation we show, under standard mesh regularity as-

sumptions, that an initial higher-order pressure convergence may take place depending on

certain problem- and discretisation-dependent constants, similarly as observed in bound-

ary element methods [17] when using equal-order elements approximating the Cauchy data

on the boundary. In comparison to the existing theory [12], ours requires less regularity

on the (exact) velocity, allows unstructured meshes and accommodates higher-order ele-

ments. Finally, we provide numerical examples demonstrating that our estimate is sharp:

indeed such a superconvergence cannot be expected to hold undefinitely, eventually break-

ing down in most cases – even for structured, uniformly refined meshes.

2. The Stokes system

As a model problem we consider the Dirichlet boundary value problem for the Stokes

system

−∆u +∇p = f in Ω , divu = 0 in Ω , u = 0 on Γ , (1)
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where Ω ⊂ Rn, n = 2, 3, is a connected, bounded domain with Lipschitz boundary Γ = ∂Ω.

The standard varational formulation of (1) is to find (u, p) ∈ H1
0(Ω)× L2(Ω) such that∫

Ω

∇u : ∇v dx−
∫

Ω

p divv dx =

∫
Ω

f · v dx ,∫
Ω

divu q dx+

∫
Ω

p dx

∫
Ω

q dx = 0

(2)

is satisfied for all (v, q) ∈ H1
0(Ω)× L2(Ω), which ensures the scaling condition∫

Ω

p dx = 0

for any solution of (2). When using the Riesz representation we can define linear bounded

operators A : H1
0(Ω)→ H−1(Ω) and B : L2(Ω)→ H−1(Ω), i.e.,

〈Au,v〉Ω :=

∫
Ω

∇u : ∇v dx for all u,v ∈ H1
0(Ω)

〈Bp,v〉Ω :=

∫
Ω

p divv dx for all v ∈ H1
0(Ω), p ∈ L2(Ω).

We also define

〈Lp, q〉Ω :=

∫
Ω

p dx

∫
Ω

q dx for all p, q ∈ L2(Ω).

Hence we can write the variational formulation (2) in operator form as(
A −B
B′ L

)(
u

p

)
=

(
f

0

)
. (3)

Note that we have

〈Av,v〉Ω =
n∑
i=1

‖∇vi‖2
L2(Ω) = ‖v‖2

H1
0(Ω), 〈Au,v〉Ω ≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω)

for all u,v ∈ H1
0(Ω), and

〈Bp,v〉Ω ≤ ‖p‖L2(Ω)‖∇v‖L2(Ω) for all p ∈ L2(Ω), v ∈ H1
0(Ω).

Alternatively, we can consider a perturbed system by adding to L a stabilization operator

to result in an invertible pressure-pressure operator D. This is the basis for stabilized

formulations, where consistency terms can also be added to the right-hand side in (3) and

to the pressure-velocity block B′. In this setting, the system takes the more general form(
A −B
C D

)(
u

p

)
=

(
f

g

)
, (4)
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with D non-negative and C bounded:

‖Cv‖L2(Ω) ≤ cC2 ‖v‖H1
0(Ω) for all v ∈ H1

0(Ω).

Since A is invertible, we can solve the first equation in (4) to get the Schur complement

system

Sp := (CA−1B +D)p = g − CA−1f =: f. (5)

In other words, we have the variational formulation to find p ∈ L2(Ω) such that

〈Sp, q〉L2(Ω) = 〈f, q〉L2(Ω) for all q ∈ L2(Ω). (6)

From the properties of A, B, C and D, at the continuous level we immediately get that

the operator S : L2(Ω)→ L2(Ω) is bounded and elliptic, that is,

〈Sq, q〉L2(Ω) ≥ cS1 ‖q‖2
L2(Ω) and ‖Sq‖L2(Ω) ≤ cS2 ‖q‖L2(Ω) for all q ∈ L2(Ω).

Therefore, we conclude unique solvability of the variational problem (6), which will be

the basis for deriving our theory.

3. Finite element error analysis

Let us assume a shape-regular triangulation of the domain Ω into simplicial elements

ΩT , and two finite element spaces Πh × Xh ⊂ L2(Ω) × H1
0(Ω) for the discretization of

pressure and velocity. We denote by hT := n
√
|ΩT | the size of ΩT , and by h := max{hT }

the global mesh size. For a conforming finite element space Πh = Sνh(Ω) of piecewise

polynomial basis functions of degree ν, we consider the Galerkin formulation to find

ph ∈ Πh such that

〈Sph, qh〉L2(Ω) = 〈f, qh〉L2(Ω) for all qh ∈ Πh .

Using standard arguments we arrive at Cea’s lemma

‖p− ph‖L2(Ω) ≤
cS2
cS1

inf
qh∈Πh

‖p− qh‖L2(Ω) ,

and from the approximation property of Πh we finally conclude the error estimate

‖p− ph‖L2(Ω) ≤ c1 h
ν+1 |p|Hν+1(Ω) (7)

when assuming p ∈ Hν+1(Ω).

Since the composed operator S = CA−1B + D in general does not allow a direct

evaluation, we construct a suitable approximation by defining, for any p ∈ L2(Ω), a
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vector w = A−1Bp ∈ H1
0(Ω), which is the unique solution of the variational formulation

〈Aw,v〉Ω = 〈p,Bv〉Ω for all v ∈ H1
0(Ω).

Let Xh := [Sµh (Ω)∩H1
0 (Ω)]n be a second finite element space of polynomial basis functions

with degree µ, for which we consider the Galerkin formulation to find wh ∈ Xh such that

〈Awh,vh〉Ω = 〈p,Bvh〉Ω for all vh ∈ Xh.

From the ellipticity of A and the boundedness of B we have

‖wh‖2
H1

0(Ω) = 〈Awh,wh〉Ω = 〈p,Bwh〉Ω ≤ ‖p‖L2(Ω)‖wh‖H1
0(Ω) ,

that is,

‖wh‖H1
0(Ω) ≤ ‖p‖L2(Ω) .

Moreover, using standard arguments, we obtain the a priori error estimate

‖w −wh‖H1
0(Ω) ≤ inf

vh∈Xh
‖w − vh‖H1

0(Ω) ≤ c2 h
µ |w|Hµ+1(Ω)

when assuming w ∈ Hµ+1(Ω). Instead of

Sp = CA−1Bp+Dp = Cw +Dp ,

we now define the approximate operator

S̃p := Cwh +Dp , (8)

where we have

‖Sp− S̃p‖L2(Ω) = ‖C(w −wh)‖L2(Ω) ≤ cC2 ‖w −wh‖H1
0(Ω) ≤ c3 h

µ |w|Hµ+1(Ω) .

Moreover, S̃ : L2(Ω)→ L2(Ω) is bounded:

‖S̃p‖L2(Ω) = ‖Cwh +Dp‖L2(Ω) ≤ cC2 ‖wh‖H1
0(Ω) + cD2 ‖p‖L2(Ω) ≤

(
cC2 + cD2

)
‖p‖L2(Ω) .

Let us assume that S̃ is elliptic in Πh, i.e.,

〈S̃qh, qh〉L2(Ω) ≥ cS̃ ‖qh‖
2
L2(Ω) for all qh ∈ Πh ,

which is satisfied when using either inf-sup stable finite elements or appropriate stabiliza-

tion operators. Then, we consider the perturbed variational formulation to find p̃h ∈ Πh
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such that

〈S̃p̃h, qh〉L2(Ω) = 〈f, qh〉L2(Ω) for all qh ∈ Πh. (9)

We now recall the well-known Strang lemma.

Theorem 3.1. Let S̃ be the approximate Schur complement operator as defined in (8),
and p̃h the corresponding pressure approximation from (9). Then, under the assumptions
of (7) and, additionally, the ellipticity of S̃, there holds the error estimate

‖p− p̃h‖L2(Ω) ≤ αhν+1 |p|Hν+1(Ω) + β hµ |w|Hµ+1(Ω) , (10)

with α and β independent of h.

Proof. From the triangle inequality and the error estimate (7) we have

‖p− p̃h‖L2(Ω) ≤ ‖p− ph‖L2(Ω) + ‖ph − p̃h‖L2(Ω) ≤ c1 h
ν+1 |p|Hν+1(Ω) + ‖ph − p̃h‖L2(Ω) .

From the ellipticity of S̃ in Πh we conclude

cS̃ ‖ph − p̃h‖
2
L2(Ω) ≤ 〈S̃(ph − p̃h), ph − p̃h〉Ω

= 〈(S̃ − S)ph, ph − p̃h〉Ω
≤ ‖(S̃ − S)ph‖L2(Ω)‖ph − p̃h‖L2(Ω) ,

that is,

cS̃‖ph − p̃h‖L2(Ω) ≤ ‖(S̃ − S)ph‖L2(Ω)

≤ ‖(S̃ − S)(ph − p)‖L2(Ω) + ‖(S̃ − S)p‖L2(Ω)

≤
(
cC2 + cD2 + cS2

)
‖ph − p‖L2(Ω) + ‖(S̃ − S)p‖L2(Ω)

≤
(
cC2 + cD2 + cS2

)
c1 h

ν+1 |p|Hν+1(Ω) + c3 h
µ |w|Hµ+1(Ω) ,

or

cS̃‖ph − p̃h‖L2(Ω) ≤ c4c1h
ν+1|p|Hν+1(Ω) + c3h

µ |w|Hµ+1(Ω) , (11)

which concludes the proof with α = (1 + c4/cS̃)c1 and β = c3/cS̃ .

The error estimate (10) implies the choice µ = ν + 1 to ensure an optimal order of

convergence. On the other hand, the choice of equal-order elements, i.e., µ = ν, will

asymptotically not result in an improved order of convergence. However, we are now in a

position to show an initial higher-order convergence for the pressure approximation under

certain conditions. From the triangle and Young’s inequalities and the estimate (7), we
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get

1

2
‖p− p̃h‖2

L2(Ω) ≤ ‖p− ph‖2
L2(Ω) + ‖ph − p̃h‖2

L2(Ω) ≤
(
c1h

ν+1|p|Hν+1(Ω)

)2
+ ‖ph − p̃h‖2

L2(Ω) .

(12)

As in the previous proof we have

cS̃ ‖ph − p̃h‖
2
L2(Ω) ≤ ‖(S̃ − S)ph‖L2(Ω)‖ph − p̃h‖L2(Ω)

and

‖(S̃ − S)ph‖L2(Ω) ≤ c1c4h
ν+1|p|Hν+1(Ω) + c3h

ν |w|Hν+1(Ω)

for µ = ν. We also have

‖ph − p̃h‖L2(Ω) ≤ ‖ph − p‖L2(Ω) + ‖p− p̃h‖L2(Ω) ≤ c1 h
ν+1 |p|Hν+1(Ω) + ‖p− p̃h‖L2(Ω) ,

so that

‖ph − p̃h‖2
L2(Ω)

≤
[
c4c1

cS̃
hν+1|p|Hν+1(Ω) +

c3

cS̃
hν |w|Hν+1(Ω)

] [
c1h

ν+1|p|Hν+1(Ω) + ‖p− p̃h‖L2(Ω)

]
=
c4

cS̃

(
c1h

ν+1|p|Hν+1(Ω)

)2
+
c3c1

cS̃
h2ν+1|p|Hν+1(Ω)|w|Hν+1(Ω) +[

c4c1

cS̃
hν+1|p|Hν+1(Ω) +

c3

cS̃
hν |w|Hν+1(Ω)

]
‖p− p̃h‖L2(Ω) .

Thus, due to (12) we get

1

2
‖p− p̃h‖2

L2(Ω) ≤
(

1 +
c4

cS̃

)(
c1h

ν+1|p|Hν+1(Ω)

)2
+
c3c1

cS̃
h2ν+1|p|Hν+1(Ω)|w|Hν+1(Ω) +[

c4c1

cS̃
hν+1|p|Hν+1(Ω) +

c3

cS̃
hν |w|Hν+1(Ω)

]
‖p− p̃h‖L2(Ω) .

Let us write

|w|Hν+1(Ω) = |A−1Bp|Hν+1(Ω) ≤ cA,B‖p‖Hν+1(Ω) .

So, as long as
‖p‖Hν+1(Ω)

cS̃

(
c4c1h

ν+1 + cA,Bc3h
ν
)
≤ 1

2
γ ‖p− p̃h‖L2(Ω) (13)

is satisfied for some γ < 1, we get

1− γ
2
‖p− p̃h‖2

L2(Ω) ≤
(

1 +
c4

cS̃

)(
c1h

ν+1|p|Hν+1(Ω)

)2
+
c3c1cA,B
cS̃

(
hν+ 1

2 |p|Hν+1(Ω)

)2

,
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so that we can finally conclude

‖p− p̃h‖L2(Ω) ≤
(
cIh

ν+1 + cIIh
ν+ 1

2

)
|p|Hν+1(Ω) . (14)

This estimate provides an explanation for the higher (than one) order often observed for

the pressure convergence in numerical practice, see e.g. Refs. [7, 8, 9, 10, 11, 12, 13, 14, 15].

Although most assumptions made towards proving (14) are rather standard, this is not

the case for condition (13). In fact, how can we interpret such a condition?

For small h, the expression on the left-hand side of (13) behaves (on a logarithmic

scale) as a line with slope ν. If the right-hand side ‖p − p̃h‖ is assumed to be of order

ν + 1/2 for some range of h, we see that even if condition (13) is satisfied initially, the

two lines (left- and right-hand side) will eventually intersect as h decreases, and thus (13)

will no longer hold. This is why estimate (14) shows only a possible initial higher-order

convergence. As an alternative scenario, the curve with the higher slope may already

start below the other curve, so that (13) will not hold even for the coarsest possible h, see

Figure 1 for a graphical illustration. Besides, due to the several constants in (13), whether

and for how long this higher-order convergence holds may depend on various factors such

as the problem (domain and solution) and the discretisation. Also for this reason, the

higher slope might not break down at all within a practical range of mesh sizes.

Figure 1: Illustration of two possible scenarios for assumption (13), with LHS and RHS respectively
denoting the left- and (hypothetically higher-order) right-hand sides of the inequality.

4. Pressure-based stabilization methods

As realization of the perturbed (stabilized) system (4), we now give three popular ex-

amples of pressure-stabilization methods, which we will also use in the numerical experi-

ments. For simplicity of presentation, we will consider purely pressure-based stabilization,

i.e., when C = B′ and g = 0 in (4). The pressure-pressure operator D can be expressed

through

〈Dp, q〉Ω :=

∫
Ω

p dx

∫
Ω

q dx+ s(p, q) for all p, q ∈ L2(Ω) ,
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where s(·, ·) is a stabilizing bilinear form. The first and probably simplest stabilization

method ever conceived is the pressure Poisson equation (PPE) by Brezzi and Pitkäranta

[18], in which

s(ph, qh) = α
∑
T

h2
T

∫
ΩT

∇ph · ∇qh dx , (15)

with the optimal parameter α = 1/12 for linear elements [5]. Another classical example

is the polynomial pressure projection (PPP) method by Dohrmann and Bochev [9]:

s(ph, qh) =

∫
Ω

(ph − πν−1ph) (qh − πν−1qh) dx , (16)

in which πν−1 is an operator projecting ph ∈ Sνh(Ω) locally onto a space with reduced

polynomial degree ν − 1 (refer to [9] for implementation details).

A slightly more complicated case is that of the MINI element, in which Πh = S1
h(Ω)

and Xh is constructed by enriching a first-order velocity space X1
h := [S1

h(Ω) ∩H1
0(Ω)]

n

with a space Xb
h of standard bubble functions, for stabilization. The discretization of the

variational problem (4) leads to a linear algebraic system(
Ah −Bh

B>h Lh

)(
uh

ph

)
=

(
fh

0

)
, (17)

with subscript h used for indicating the discrete counterparts of the respective opera-

tors/quantities in the infinite-dimensional case (4). It is simple to show that the spaces

X1
h(Ω) and Xb

h(Ω) are A-orthogonal, i.e.,

〈Av1
h,v

b
h〉Ω = 0 for all (v1

h,v
b
h) ∈ X1

h(Ω)×Xb
h(Ω).

Thus, by splitting uh = u1
h + ubh, we get the system A1
h 0 −B1

h

0 Abh −Bb
h

[B1
h]
> [

Bb
h

]>
Lh


 u1

h

ubh
ph

 =

 f 1
h

f bh

0

 ,

which can be rewritten as(
A1
h −B1

h

[B1
h]
>

Dh

)(
u1
h

ph

)
=

(
f 1
h

gh

)
,

with Dh := Lh + [Bb
h]
>[Abh]

−1Bb
h and gh := [Bb

h]
>[Abh]

−1f bh. That is, the bubble degrees of

freedom can be easily eliminated (as Abh is diagonal), so that we are effectively left with

an equal-order formulation with the stabilizing term [Bb
h]
>[Abh]

−1Bb
h (see [16] for further

details). Although we shall stick to these three methods in our numerical examples, most

9



popular pressure stabilization methods fit into the theory presented in Section 3.

5. Numerical examples

We now present a series of numerical examples in order to verify our error analysis.

Relative pressure errors will be measured as

epL2(Ω) :=
‖p− ph‖L2(Ω)

‖p‖L2(Ω)

. (18)

When having (u, p) ∈ H3(Ω) × H2(Ω), Eichel et al. [12] proved a O(h3/2) pressure con-

vergence in L2(Ω) for first-order elements in uniform triangular meshes diagonally re-

fined from a tensor-product mesh. Hence, we aim to verify here what may happen in a

more general setup. For this, we consider first-order discretizations of problems having

(u, p) ∈ H2(Ω) × H2(Ω) but u /∈ H3(Ω), which fits our theory but not the existing one

[12]. For the refinement studies we have Ω = (0, 1)2, starting from the mesh depicted in

Figure 2 and then applying several levels of standard red uniform refinement. The linear

algebraic system is solved directly to avoid the influence of iterative solver tolerances.

Figure 2: Non-orthogonal grid with four triangles.

The first example has an exact solution:

u =

(
0

(sin 2πx+ | sin 2πx|) sin 2πx

)
, p = 4π cos 4πx sin 4πy ,

where the second-order gradient of the velocity field has a discontinuity at x = 1/2 due

to the discontinuous right-hand side vector

f =

(
−16π2 sin 4πx sin 4πy

8π2 cos 4πx [2 cos 4πy − 1 + sign(1/2− x)]

)
.

10



Table 1: Stokes flow with non-homogeneous boundary conditions: relative pressure error and estimated
order of convergence (eoc) for different stabilization methods. The uniform refinement study starts from

a coarse, non-orthogonal grid (cf. Figure 2).

PPP PPE MINI
Number of elements epL2(Ω) eoc epL2(Ω) eoc epL2(Ω) eoc

4 2.17e-0 1.50e-0 3.65e-0
16 1.17e-0 0.89 1.08e-0 0.47 1.36e-0 1.42
64 9.70e-1 0.27 9.84e-1 0.13 9.43e-1 0.53
256 2.56e-1 1.92 4.42e-1 1.15 2.37e-1 1.99

1,024 7.54e-2 1.76 1.35e-1 1.71 8.53e-2 1.47
4,096 2.36e-2 1.68 3.95e-2 1.77 2.90e-2 1.56
16,384 7.67e-3 1.62 1.19e-2 1.73 9.86e-3 1.55
65,536 2.48e-3 1.63 3.62e-3 1.72 3.35e-3 1.55
262,144 8.75e-4 1.50 1.19e-3 1.61 1.19e-3 1.49

1,048,576 3.17e-4 1.46 4.00e-4 1.57 4.31e-4 1.47
4,194,304 1.29e-4 1.30 1.52e-4 1.39 1.66e-4 1.38
8,388,608 5.50e-5 1.23 6.09e-5 1.32 6.65e-5 1.32
33,554,432 2.54e-5 1.11 2.87e-5 1.08 2.86e-5 1.21

We solve the problem using three different stabilization methods, as described in

Section 4. The results of the refinement study, displayed in Table 1 , confirm our a

priori estimates: for each of the three methods, a slope between 1.5 and 2 holds for

several levels, but after nine or ten levels of refinement the convergence starts slowing

down towards a linear behaviour. For comparison, we present in Table 2 the velocity

convergence in the H1(Ω) semi-norm, showing that the predicted first order is already

reached around the sixth level of refinement.

Then, to illustrate the problem-dependent nature of the initial higher-order pressure

convergence, we consider a problem with different solution. In the same unit square as

before, with homogeneous Dirichlet boundary conditions and discontinuous forcing term

f =

(
6x

0

)
+ χ(x)

(
π(2x− 1)(8π2x4 − 8π2x3 + 2π2x2 − 40x2 + 16x− 1) sin 2πy

(240x2 − 144x+ 18) sin2 πy + 2π2(20x4 − 24x3 + 9x2 − x) cos 2πy

)
,

we get the analytical solution

u = χ(x)

(
(4x5 − 6x4 + 3x3 − x2

2
)π sin 2πy

(x− 20x4 + 24x3 − 9x2) sin2 πy

)
, p = 3x2 − 1, χ(x) := 1 + sign

(
1

2
− x
)
,

again with u ∈ H2(Ω)\H3(Ω). We first perform a refinement study starting from the same

non-orthogonal grid shown in Figure 2. The results, depicted in Table 3, highlight the

dependence of the initial higher-order behaviour upon the chosen stabilization method:

the PPE and PPP methods display higher orders for a few levels (breaking down sooner

than in the previous example), while for the MINI elements the 1.5 slope is never reached.
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Table 2: Stokes flow with non-homogeneous boundary conditions: relative velocity error and estimated
order of convergence (eoc) for different stabilization methods. The uniform refinement study starts from

a coarse, non-orthogonal grid (cf. Figure 2).

PPP PPE MINI
Number of elements euH1(Ω) eoc euH1(Ω) eoc euH1(Ω) eoc

4 3.15e-1 3.66e-1 3.65e-0
16 2.67e-1 0.24 2.59e-1 0.50 1.36e-0 0.21
64 1.77e-1 0.59 1.79e-1 0.53 9.43e-1 0.67
256 9.27e-2 0.93 1.02e-1 0.80 2.37e-1 0.92

1,024 4.46e-2 1.05 4.70e-2 1.12 8.53e-2 1.03
4,096 2.20e-2 1.02 2.24e-2 1.07 2.90e-2 1.02
16,384 1.09e-2 1.00 1.10e-2 1.02 9.86e-3 1.00
65,536 5.46e-3 1.00 5.47e-3 1.01 3.35e-3 1.00
262,144 2.73e-3 1.00 2.73e-3 1.00 1.19e-3 1.00

1,048,576 1.36e-3 1.00 1.37e-3 1.00 4.31e-4 1.00
4,194,304 6.83e-4 1.00 6.83e-4 1.00 1.66e-4 1.00
8,388,608 3.41e-4 1.00 3.41e-4 1.00 6.65e-5 1.00
33,554,432 1.71e-4 1.00 1.71e-4 1.00 2.86e-5 1.00

Table 3: Stokes flow with homogeneous boundary conditions: relative pressure error and estimated
order of convergence (eoc) for different stabilization methods. The uniform refinement study starts from

a coarse, non-orthogonal grid (cf. Figure 2).

PPP PPE MINI
Number of elements epL2(Ω) eoc epL2(Ω) eoc epL2(Ω) eoc

4 5.93e-1 7.84e-1 2.74e-1
16 2.69e-1 1.15 4.44e-1 0.82 1.63e-1 0.75
64 9.43e-2 1.50 1.67e-1 1.41 4.43e-2 1.88
256 3.46e-2 1.45 5.84e-2 1.52 2.94e-2 0.59

1,024 1.14e-3 1.60 1.93e-2 1.60 1.08e-2 1.44
4,096 4.12e-3 1.47 6.48e-3 1.57 4.57e-3 1.24
16,384 1.43e-3 1.53 2.17e-3 1.58 1.74e-3 1.39
65,536 5.69e-4 1.33 7.78e-4 1.48 6.78e-4 1.36
262,144 2.30e-4 1.31 2.92e-4 1.42 2.71e-4 1.32

1,048,576 1.04e-4 1.14 1.20e-4 1.27 1.15e-4 1.23
4,194,304 4.82e-5 1.11 5.26e-5 1.20 5.16e-5 1.16
8,388,608 2.34e-5 1.04 2.45e-5 1.10 2.42e-5 1.09
33,554,432 1.14e-5 1.03 1.17e-5 1.06 1.17e-5 1.05
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Table 4: Stokes flow with homogeneous boundary conditions: relative pressure error and estimated
order of convergence (eoc) for different stabilization methods. The uniform refinement study starts from

a coarse, orthogonal grid with four triangles.

PPP PPE MINI
Number of elements epL2(Ω) eoc epL2(Ω) eoc epL2(Ω) eoc

4 5.45e-1 7.68e-1 3.44e-1
16 2.43e-1 1.16 4.29e-1 0.84 1.13e-1 1.61
64 9.34e-2 1.38 1.64e-1 1.38 4.80e-2 1.24
256 3.29e-2 1.50 5.69e-2 1.53 2.16e-2 1.15

1,024 1.12e-3 1.55 1.88e-2 1.59 9.70e-3 1.16
4,096 3.78e-3 1.57 6.14e-3 1.62 3.86e-3 1.33
16,384 1.27e-3 1.57 2.00e-3 1.62 1.46e-3 1.40
65,536 4.34e-4 1.55 6.66e-4 1.58 5.34e-4 1.45
262,144 1.50e-4 1.53 2.25e-4 1.57 1.92e-4 1.47

1,048,576 5.21e-5 1.52 7.71e-5 1.54 6.87e-5 1.48
4,194,304 1.82e-5 1.51 2.67e-5 1.53 2.44e-5 1.49
8,388,608 6.41e-5 1.51 9.34e-6 1.52 8.66e-5 1.50
33,554,432 2.26e-6 1.50 3.28e-6 1.51 3.06e-6 1.50

Finally, we perform a refinement study with orthogonal grids: the initial mesh is similar

to the one in Figure 2, but with the inner node now centralized at (x, y) = (1/2, 1/2). The

results are very interesting: this time, the higher-order convergence does not break down

within the present range of h, and in fact the MINI elements only reach the 1.5 slope at

the finest levels. Whether the convergence would eventually become linear at finer levels

cannot be predicted from our theory.

6. Conclusions

In this work, we have presented a numerical analysis on the pressure convergence of

some classical finite element discretizations of the Stokes system. Although it is widely

known that optimal convergence can be attained by going one degree higher in the ve-

locity discretization, very little has been published to date on the pressure convergence

of unbalanced pairs such as in MINI or equal-order elements. Thus, our main goal has

been to answer a rather old question surrounding finite-element-based incompressible flow

approximations: do we really lose one full order in the pressure convergence by not using

balanced, Taylor–Hood-like pairs? By considering the pressure Schur complement formu-

lation arising after eliminating the velocity, we have been able to show that, depending

on certain constants, the pressure may in fact converge one or half an order faster than

predicted by standard mixed finite element theory – but not necessarily for long. We can

thus speak of a conditional and initial higher-order pressure convergence in unbalanced

approximations. Taking stabilized first-order elements as a model discretization, our nu-

merical examples confirm these results: a higher slope than one may indeed occur, but

whether and for how long depends on the exact solution, the triangulation, the stabiliza-
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tion method, among other factors. In some cases the higher slope may not break down

even after several levels of refinement, but our numerical counter-examples clearly confirm

that this cannot be expected in general. Although we have considered the Stokes system

as a model setting, we expect similar results to hold for Navier–Stokes flows. We hope

and expect that our investigation can bring some clarity into the selection of finite ele-

ment spaces for incompressible flow simulations, an important part of conceptual software

design.
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