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Robin eigenvalue problem

Let Q C R be an open set with a sufficiently regular boundary. We consider the
eigenvalue problem :

(%7%)
Ay =— — | Y =Ey on Q,

=1 O}
o

o = v on 09,

where v is the outward unit normal of 0, v > 0 and E is a discrete eigenvalue.

2/25 Robin Laplacians on infinite sectors

2/



Robin eigenvalue problem

Let Q C RY be an open set with a sufficiently regular boundary. We consider the
eigenvalue problem :

(257)
Ay =— — | Y =Ey on Q,

=1 O}
o

o = v on 09,

where v is the outward unit normal of 0, v > 0 and E is a discrete eigenvalue.

More precisely, we study the spectral problem for the self-ajdoint operator Tq on
L2(Q) associated with the sesquilinear form :

(6, ) = /lew\2dx—7/m|¢|2dm b e HY(Q).
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Smooth domains

Main goal : Study of E,(Tg) as v — +oc.
- Change of variables : E,(Tg) = v*E(Tlq)-
- Link with the study of superconductors.

[Lacey-Ockendon-Sabina, 1998 ; Lou-Zhu,2004 ; Levitin-Parnovski 2008,
Bruneau-Popoff,2016;...]
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Smooth domains

Main goal : Study of E,(Tg) as v — +oc.
- Change of variables : E,(Tg) = v*E(Tlq)-
- Link with the study of superconductors.

[Lacey-Ockendon-Sabina, 1998 ; Lou-Zhu,2004 ; Levitin-Parnovski 2008,
Bruneau-Popoff,2016;...]

Theorem [Daners-Kennedy, 2010]
If 9Q is Ct, for each fixed n € N,

Er(T3) = —7* +o(¥?), ~— +oo.

Theorem [Exner-Minakov-Parnovski, 2014 ; Pankrashkin-Popoff, 2015]
If 9Q is C3, for each fixed n € N,

E(Tg) = o (d = 1) Hmax ()7 + O(’Yg): v — +00,

where Hpmax(€) is the maximum of the mean curvature of 9.

3/25 Robin Laplacians on infinite sectors

3/



What happens on non-smooth domains?

Theorem [Levitin-Parnovski, 2008 ; Bruneau-Popoff, 2016]

If Q is a "corner domain’ (Lipschitz, piecewise smooth boundary + little more),
E(Tg) = —Cy* +o(7?), 7 — +oo,

where C > 1 depends only on the tangent cones of 0L2.
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What happens on non-smooth domains?
Theorem [Levitin-Parnovski, 2008 ; Bruneau-Popoff, 2016]

If Q is a "corner domain’ (Lipschitz, piecewise smooth boundary + little more),
E(Tg) = —Cy* +0(7?), v — +oo,

where C > 1 depends only on the tangent cones of 0L2.

If Q C R? is a curvilinear polygon, can we obtain a more detailed eigenvalue
asymptotics ?

In this case, the tangent cones are the infinite sectors.
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What happens on non-smooth domains?
Theorem [Levitin-Parnovski, 2008 ; Bruneau-Popoff, 2016]

If Q is a "corner domain’ (Lipschitz, piecewise smooth boundary + little more),
E(Tg) = —Cy* +0(7?), v — +oo,

where C > 1 depends only on the tangent cones of 0L2.

If Q@ C R? is a curvilinear polygon, can we obtain a more detailed eigenvalue
asymptotics ?
In this case, the tangent cones are the infinite sectors.

Theorem [Pankrashkin,2013|

If Q C R? has a piecewise smooth boundary which admits non-convex corners
then,

El(Tg) = _72 — Kmax? + O('Vé)v vy — +00.

i.e : the non convex corners do not contribute in the asymptotics.

Role of convex corners ?
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Robin Laplacian on

infinite sectors

a € (0,7),

U, := {x cR?: larg (x1 + ix2)| < a}

o> <& = = E 9Dace
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Robin Laplacian on infinite sectors

a € (0,7),
. Uo = {x €R? : |arg (x1 + ixo)| < @} .

5 T2 = Robin Laplacian on L%(U,),
N v>0:

T)p = —Ayon Uy,

oy
5— 1/10n aUa
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Robin Laplacian on infinite sectors

a € (0,7),

o T2 = Robin Laplacian on L%(U,),
o v>0:

T)p = —Ayon Uy,

oy
E— 1/10n aUa

Behavior of the eigenvalues of T with respect to a7
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Robin Laplacian on infinite sectors

a € (0,7),

o T2 = Robin Laplacian on L%(U,),
< v>0:

T)p = —Ayon Uy,

oy
5— 1/10n 8Ua

Behavior of the eigenvalues of T with respect to a7

U, is invariant by dilations : E,(T7) = 72E,(T2). In the following : T} := T,.
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Some known results

Proposition [Levitin-Parnovski, 2008]

For all @ € (0,7), speCess( To) = [—1, +00).

o> <& = = E 9Dace
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Some known results
Proposition [Levitin-Parnovski, 2008]
For all @ € (0,7), speCess( To) = [—1, +00).
If o > g infspec(Ty) = —1 = spec(T,) =[-1, +0).
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Some known results
Proposition [Levitin-Parnovski, 2008]
For all @ € (0,7), speCess( To) = [—1, +00).
If o > g infspec(Ty) = —1 = spec(T,) =[-1, +0).

If o € (o,g),

E(T,)=— -1, ¢1,0(x1,%) = exp(—

sin?(a) <

X1

sin(a)

).
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Some known results

Proposition [Levitin-Parnovski, 2008]
For all @ € (0,7), speCess( To) = [—1, +00).

If o > g infspec(Ty) = —1 = spec(T,) =[-1, +0).

If o € (o,g),

1
E(Ty) = —— < —1,

(X1, x2) = exp(—
() P1,0(x1, %) p(

X1

sin(a)

).

Main questions for o € (0, g)
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Some known results

Proposition [Levitin-Parnovski, 2008]
For all @ € (0,7), speCess( To) = [—1, +00).

If o > g infspec(Ty) = —1 = spec(T,) =[-1, +0).

If o € (o,g),

1 X
Ei(Ta) = _sinz—m) < -1, @1a(x,x)=exp(— .

sin(a)

).

Main questions for o € (0, g)

e Is specgisc( 7)) finite or infinite ?
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<P1,a(X1, Xz) = eXP(—m
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Some known results

Proposition [Levitin-Parnovski, 2008]
For all @ € (0,7), speCess( To) = [—1, +00).

If o > g infspec(Ta) = —1 = spec(Ta) = [~1, +00).

If o € (0, g),

1

x1
—— < 1, a(X1, x2) = exp(————)-
sin?(a) P10, %) P( sm(a))

El(Ta) =

Main questions for a € (0, g)

e Is specyis.( 7)) finite or infinite ?

e What is the behavior (regularity, monotonicity) of the eigenvalues
with respect to o ?

e What is their behavior asaa — 07

e What are the properties of the associated eigenfunctions ?
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Finiteness of the spectrum and monotonicity
Theorem

The discrete spectrum of T, is finite for all « € (0, g)

o> <& = = E 9Dace
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Finiteness of the spectrum and monotonicity

Theorem

The discrete spectrum of T, is finite for all « € (0, g)

-The result fails in dimension 3 (cones can have infinite discrete spectrum).

-Proof based on the idea of A. Morame et F. Truc (2005) : reduction to a
one-dimensional Bargman-type estimate.
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Finiteness of the spectrum and monotonicity

Theorem }

The discrete spectrum of T, is finite for all « € (0, g)

-The result fails in dimension 3 (cones can have infinite discrete spectrum).

-Proof based on the idea of A. Morame et F. Truc (2005) : reduction to a
one-dimensional Bargman-type estimate.

Notation : Ny = #{ne N: E;(T,) < —1}.
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Finiteness of the spectrum and monotonicity

The discrete spectrum of T, is finite for all « € (0, g)

Theorem }

-The result fails in dimension 3 (cones can have infinite discrete spectrum).

-Proof based on the idea of A. Morame et F. Truc (2005) : reduction to a
one-dimensional Bargman-type estimate.

Notation : Ny = #{n e N: E;(T,) < —1}.

Proposition
e The eigenvalues of T, are non-decreasing and continuous with respect to a.
e (0,7/2) > a— N, is decreasing.
e Foralla >n/6, N, =1.
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Asymptotic behavior as the angle becomes small
Proposition

There exists x > 0 such that N, > x/a as a — 0. In particular,
N, — 400,

a — 0.

=] F = = E DAl
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Asymptotic behavior as the angle becomes small

Proposition

There exists x > 0 such that N, > x/a as a — 0. In particular,

N, — 400, a—0.

Theorem : First order asymptotics
For each n € N :

1
ETy)=——F7—— 1), .
(Ta) (2n—1)2a2+o() a—0
The constant can't be improve :
1 1
El(Ta) = _E - § + o(1),a — 0.
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|deas of the proof of the first order asymptotics

To avoid the singularity near the origin we introduce a dense subspace of H(U,) :

F = {u € C®(Uy,) | 3R1, R > 0: u=0 for |x| < Ry, and |x| > Rz}.

Polar coordinates :

U: [2(Uy, dx) — (V. drd6)

— , U r? u(rcos(0), rsin(9)),
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|deas of the proof of the first order asymptotics

To avoid the singularity near the origin we introduce a dense subspace of H(U,) :

F = {u € C®(Uy,) | 3R1, R > 0: u=0 for |x| < Ry, and |x| > Rz}.

Polar coordinates :

U: [2(Uy, dx) — (V. drd6)

— , U r? u(rcos(0), rsin(9)),

G:=UF)={ve C®V,)| 3R,R>0: u(r,d)=0forr <Ry and r > Ry}
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The unitarily equivalent operator is @, associated to
Ga(v,v) == to (U*(v),U*(v)), vEG,

where :

2
Ga(v, V) / lv,|> — 1|V| ——drdf

1 [0
+/ ﬁ{/ lvo|2d® — r|v(r,a)|? — r|v(r, —a)|2}dr.
R+ —«
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The unitarily equivalent operator is @, associated to

Qo (v, V) = ta U (V),U*(V)), veEG,

where :

1 2
(v,v) /|,|2 |V|dd0

1 «
+/ ﬁ{/ Ivo|?dO — r|v(r,a)|* — r|v(r, —a)Z}dr.
R+ —«

Robin Laplacian B, , acting on L?(—a,a), r € R, :

Ba,ru=—u" sur (—a, )
+u'(+a) = ru(+a).

First eigenvalue : Ej(a, r) associated to the eigenfunction ¢,.
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Reduction of the dimension : we apply g, on functions of the form

v(r,0) = f(r)da(r,0) :
aolvon) = { [ 1P = 3P = IFPar} + [ Ko()lF(e) e

‘
We define the operator H, acting on L?(R,) by

(Ha)(v) = (—j; NI 1) v(r), veCE(R,),

4r2  ar

and HZ° its Friedrichs extension. Then, specess(HS®°) = [0, +00) and its discrete

eigenvalues are :

1
En(a):fm, DGN
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Orthogonal projections :
Mv(r,0) = f(r)®a(r,0), f(r) ::/ v(r,0)®(r,0)do and

Pv(r,0) = v(r,8) — Nv(r,0).
For all a € (0,1) :

H 0 Mv H> 0 Mv
A2\ TH a(l—a?) _ * @
(1 a)I< 0 O>I(Pv) Mgoasz(o O)I(PV>+M,
M € R., T is the unitary operator satisfying Z(Mv, Pv) = (f, Pv).

We conclude with the min-max principle.
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Theorem : Complete asymptotic expansion
For each n € N, there exists \; , € R, j € NU {0}, such that for all N € NU {0} :

N
1 .
En(To) = 2 E Njne® +0(a?), a—0,
Jj=0

with )\07" = —ﬁ

Proof : standard perturbation theory, each eigenvalue is simple as @ — 0.
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Theorem : Complete asymptotic expansion
For each n € N, there exists \; , € R, j € NU {0}, such that for all N € NU {0} :

N
1 .
En(To) = 2 E Njne® +0(a?), a—0,
Jj=0

with )\07" = —ﬁ

Proof : standard perturbation theory, each eigenvalue is simple as @ — 0.

Theorem : An Agmon-type estimate for the eigenfunctions

Let E be a discrete eigenvalue of T, and V be an associated eigenfunction. Then,
for all e € (0,1),

/ (VY] + [VP?) 0-9V-1-Exl gy < 4 o0,

et
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Application to Robin Laplacians on polygons

V := {vertices of Q},

o> <& = = E 9Dace
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V := {vertices of Q},

a, = half aperture at v € V,

O «F = = T wace
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Application to Robin Laplacians on polygons

V := {vertices of Q},
/\ a, := half aperture at v € V,

y \ 7 := Robin Laplacian on L?(Q),
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Application to Robin Laplacians on polygons

- V .= {vertices of Q},
// \\ o, := half aperture at v € V,
y A 7 := Robin Laplacian on L?(),
/// \\7
SpecCess(QY) =0,
= specaise(Q7) = {(Ex(Q"))nen}
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Application to Robin Laplacians on polygons

A\ V .= {vertices of Q},
y N a, := half aperture at v € V,
y N Q" := Robin Laplacian on L%(Q),
J specess(Q7) = 0,
= specaisc( Q") = {(En(Q))nen}-

Behavior of E,(Q”) as v — +00?

Proposition [Levitin-Parnovski,2008 ; Bruneau-Popoff,2016]

2

E(@) = — g ———+0(1?), 7= +oo.
sin® (min, ey ay)
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Model operator

We define T the Laplacian acting on @@, L?(U,,) and defined by :

vey

T =P T

vey
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Model operator

We define T the Laplacian acting on @@, L?(U,,) and defined by :

vey

T =P T

vev
Then,
* spec(T%) = U, ey spec(Ta,),
® specess(TY) = [—1, +00),

o N®:=#{neN,E(T®) < -1} =) Na, < +o0,
vey

1

E(T®) = ——5——.
* &) sin?(minyey ay)
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Theorem

Asymptotics of the first eigenvalues of Q7

For all n < N9,

EA(Q") = Y2E(T®) + O(e™)

Yy — +o00.

o> <& = = E 9Dace
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Asymptotics of the first eigenvalues of Q7
Theorem
For all n < N9,

En(QW) = 'YzEn(T@) + O(e_c7), Yy — +o0.

Ideas of the proof [Bonnaillie-Noél-Dauge, 2006] :

- Construction of quasi-modes :

for v.eV, let ¢ be a normalized eigenfunction of T and x, a smooth
radial cut-off function such that supp x, C B(v, r). We define

Pn" =P X
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Asymptotics of the first eigenvalues of Q7
Theorem
For all n < N9,

En(QW) = ’YzEn(T@) + O(e_c7), Yy — +o0.

Ideas of the proof [Bonnaillie-Noél-Dauge, 2006] :

- Construction of quasi-modes :

for v€ V), let ¢ be a normalized eigenfunction of T and x, a smooth
radial cut-off function such that supp x, C B(v, r). We define

Pn" =P X

- ¢)Y € D(Q) and

19763 = PETa)I? _ -
P = 0, v oo
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Spectral theorem implies

dist(En(TJ,),spec(Q7)) = O(e™ ),
It's not enough...

Y — +00.

o> <& = = E 9Dace
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Spectral theorem implies
dist(En(T7,),spec(Q7)) = O(e™ "), v — +oo.

It's not enough...
Notations :

-Ni={\1 < Xy < ... < Ak} = eigenvalues of T® without multiplicity,
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Spectral theorem implies
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It's not enough...
Notations :

-Ni={\1 < Xy < ... < Ak} = eigenvalues of T® without multiplicity,
-Spi={(nv)iveV,1<n< Ny, E(T]) = A},
- k; = #8; = multiplicity of ;.
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Spectral theorem implies

dist(En(T7,),spec(Q7)) = O(e™ "), v — +oo.
It's not enough...
Notations :
-Ni={\1 < Xy < ... < Ak} = eigenvalues of T® without multiplicity,
-Spi={(nv)iveV,1<n< Ny, E(T]) = A},
- k; = #8; = multiplicity of ;.

Properties of quasi-modes
For ~y large enough,
o (67")

(”"’)EU,K:l s 1 linearly independent,
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Spectral theorem implies

dist(En(T7,),spec(Q7)) = O(e™ "), v — +oo.
It's not enough...
Notations :

-Ni={\1 < Xy < ... < Ak} = eigenvalues of T® without multiplicity,
-Spi={(nv)iveV,1<n< Ny, E(T]) = A},
- k; = #8; = multiplicity of ;.

Properties of quasi-modes
For ~y large enough,
- - .
o (&7 )(n’v)eUIK:1 s, is linearly independent,

o [ (67, 67") — En(T2)| < 7Cem,
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Spectral theorem implies

dist(En(T7,),spec(Q7)) = O(e™ "), v — +oo.
It's not enough...
Notations :

-Ni={\1 < Xy < ... < Ak} = eigenvalues of T® without multiplicity,
-Spi={(nv)iveV,1<n< Ny, E(T]) = A},
- k; = #8; = multiplicity of ;.

Properties of quasi-modes
For ~y large enough,
YV P A
o (47 )(”"’)EU,K:l s, s linearly independent,
o [ (67", 67") — Ea(T2,)| < vCee,
o [q7(¢]", 0] < yCem Y, i # .
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Spectral theorem implies

dist(En(T7,),spec(Q7)) = O(e™ "), v — +oo.
It's not enough...
Notations :

-Ni={\1 < Xy < ... < Ak} = eigenvalues of T® without multiplicity,
-Spi={(nv)iveV,1<n< Ny, E(T]) = A},
- k; = #8; = multiplicity of ;.

Properties of quasi-modes
For ~y large enough,
O (d):]hv)(n’v
o |g7(o)", 7)) — En(T] )| < vCe™ 7,
o [q7(¢]", 0] < yCem Y, i # .

)EUIK:1 s 1 linearly independent,

Proof : Localization property of )".
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Lemma
For all 1 </ < K and for v large enough,

En1+...+n/(Q’y) S 72)\I T C'yze_”,

Enytoirm1(Q7) > ¥ A1 — C.

Proof : Min-max principle + partition of unity.
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Lemma
For all 1 </ < K and for v large enough,
En1+...+n/(Q’y) S ’72)\I T C'y2e_c'7,
Euit4r+1(QY) = ¥ A1 — C.

Proof : Min-max principle + partition of unity.

Cluster of eigenvalues
For 1 < n < kg,

—Cy5 < En(QY) — v2EN(T®) < CyPe .

For k1 < n < N9,

—C<E(QY)— ’)/2E,,(T®) < C’)/Zefc'y.

It's not enough...
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Spectral approximation

Let A be a self-adjoint operator acting on a Hilbert space H and A € R. If there
exists 1, ..., ¥, € D(A) linearly independent and 7 > 0 such that

||(A7>‘)¢J|| §77H1/)J||7 J: 1&"'7"3
then,
dimRan Pa(A — Cn, A+ Cn) > n,

where Pa(a, b)= spectral projection of A on (a, b), C > 0 depends on the
Gramian matrix of (1;);.

In particular, if specess(A) N (A — Cn, A+ Cn) = 0, there exist at least n
eigenvalues in (A — cn, A + ¢n).
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Spectral approximation

Let A be a self-adjoint operator acting on a Hilbert space H and A € R. If there
exists 1, ..., ¥, € D(A) linearly independent and 7 > 0 such that

||(A7>‘)¢J|| §77H1/)J||7 J: 1&"'7"3

then,

dimRan Pa(A — Cn, A+ Cn) > n,
where Pa(a, b)= spectral projection of A on (a, b), C > 0 depends on the
Gramian matrix of (1;);.
In particular, if specess(A) N (A — Cn, A+ Cn) = 0, there exist at least n
eigenvalues in (A — cn, A + ¢n).
In our case :

- Specess(Q’y) - Q,
-n=0(e ).
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Work in progress

polynomials.

The asymptotics remains true for curvilinear polygons but the remainders are

O «F = = T wace
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Work in progress

The asymptotics remains true for curvilinear polygons but the remainders are
polynomials.

What are the differences ?

- Construction of test functions : ¢}V (x) := x7 ()Y o f,(x)), for x near v.
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Work in progress

The asymptotics remains true for curvilinear polygons but the remainders are
polynomials.

What are the differences?
- Construction of test functions : ¢}V (x) := x7 ()Y o f,(x)), for x near v.
- Pseudo quasi-modes only : ¢ ¢ D(Q) .
- Estimates on ¢ are polynomials because of the change of variables.

Important remark J

Proof = Epnei1 > —7% — KmaxY + O(fyg), v — 400.

What happens for Eye ;7
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Weyl asymptotics

We want to study N(Q", cy?) :=#{n € N, E,(Q") < ¢y?*} as v — +o0.
What are the interesting constants c € R?

21/25 Robin Laplacians on infinite sectors
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Weyl asymptotics

We want to study N(Q", cy?) :=#{n € N, E,(Q") < ¢y?*} as v — +o0.
What are the interesting constants c € R?

Theorem [Helffer-Kachmar-Raymond, 2017]

Let D C R? be an open, bounded connected set such that D is C* smooth, and
T7 be the Robin Laplacian acting on L?(D). Then, for all A € R,

Y—>+oo T

NTD P +xy) ~ ¥ [ &+ N)de

oD
and for all E € (—1,0), N(T2, E~?) I %’y\/E + 1, where 9D > s +— k(s)
¥ oo
is the curvature of 9D.

Remark. For E < —1, limy_, 1o N(T}, Ey?) = 0.
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Work in progress J

The Weyl formulae remain true for curvilinear polygons.

- There is no contribution of the vertices in the asymptotics.

- If Q is a polygon with straight edges,

i M@ )

=0.
y——+0o0 ﬁ

- Ideas of the proof :
Upper bound : partition of unity adapted to truncated sectors : the
truncated sectors do not contribute, the 'regular’ part gives the
asymptotics.
Lower bound : Dirichlet bracketing.
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What comes next ?

e Asymptotics of eigenvalues on circular cones as the angle goes to 07
e What happens for the next eigenvalues, i.e : for j € N,

Ene1;(Q7) o ?

e Can we adapt the proof in higher dimension ? Study of polyhedra?
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