A Lieb-Thirring inequality for Schrödinger operators with δ -potentials supported on a hyperplane

Peter Schlosser

Institute of Numerical Mathematics, TU Graz

April 26, 2017

LT-inequality for classical Potentials

For a regular potential $V: \mathbb{R}^d \to \mathbb{R}$, consider

Schrödinger operator

$$H_V = -\Delta + V$$

LT-inequality for classical Potentials

For a regular potential $V : \mathbb{R}^d \to \mathbb{R}$, consider

Schrödinger operator

$$H_V = -\Delta + V$$

Let $(E_i)_i$ be the negative eigenvalues of H_V , then

Lieb-Thirring Inequaltiy, 1976

$$\sum_{i} |E_{i}|^{\gamma} \leq c_{\gamma} \int_{\mathbb{R}^{d}} V_{-}^{\frac{d}{2} + \gamma} dx$$

for
$$\gamma > \frac{1}{2}$$
 if $d = 1$
 $\gamma > 0$ if $d \ge 2$

Also
$$\gamma=\frac{1}{2}$$
 if $d=1$ (Weidl 1996) $\gamma=0$ if $d\geq 3$ (Cwikel 1977, Lieb 1980, Rosenblum 1976)

Schrödinger operator with δ -potential

Let $\Sigma \subseteq \mathbb{R}^d$ a hypersurface and $\alpha : \Sigma \to \mathbb{R}$. Then consider

Schrödinger operator with δ -potential

$$-\Delta_{\alpha} = -\Delta + \alpha \delta_{\Sigma}$$

Schrödinger operator with δ -potential

Let $\Sigma \subseteq \mathbb{R}^d$ a hypersurface and $\alpha : \Sigma \to \mathbb{R}$. Then consider

Schrödinger operator with δ -potential

$$-\Delta_{\alpha} = -\Delta + \alpha \delta_{\Sigma}$$

defined by the bilinear form

$$a_{\alpha}(f,g) = \langle \nabla f, \nabla g \rangle_{L^{2}(\mathbb{R}^{d})} - \int_{\Sigma} \alpha f|_{\Sigma} \bar{g}|_{\Sigma} d\sigma$$

Goal: For $\gamma > 0$ (maybe $\gamma \ge 0$) an inequality of the form

$$\sum_{i} |E_{i}|^{\gamma} \leq c_{\gamma} \int_{\Sigma} \alpha_{-}^{\frac{d}{2} + \gamma} d\sigma$$

with $(E_i)_i$ the negative eigenvalues of $-\Delta_{\alpha}$.

Weyl-function and number of eigenvalues

For λ < 0, the Weyl-function looks like

$$M_{\lambda}f(x) = \int_{\Sigma} G_{\lambda}(x-y)f(y)d\sigma(y) : L^{2}(\Sigma) \to L^{2}(\Sigma)$$

with $G_{\lambda}: \mathbb{R}^d \to \mathbb{C}$, the integral kernel of the resolvent of the laplacian.

Weyl-function and number of eigenvalues

For λ < 0, the Weyl-function looks like

$$M_{\lambda}f(x) = \int_{\Sigma} G_{\lambda}(x-y)f(y)d\sigma(y) : L^{2}(\Sigma) \to L^{2}(\Sigma)$$

with $G_{\lambda}: \mathbb{R}^d \to \mathbb{C}$, the integral kernel of the resolvent of the laplacian.

Consider now the number of eigenvalues

- $N_{\varepsilon} =$ number of eigenvalues of $-\Delta_{\alpha}$ smaller than $(-\varepsilon)$.
- B_{ε} = number of eigenvalues of $\alpha M_{-\varepsilon}$ larger than 1.

Birman-Schwinger principle

$$N_{\varepsilon} = B_{\varepsilon}$$

Birman-Schwinger bound

Brasche, Exner, Kuperin, Seba, 1994

$$N_{\varepsilon} \leq \left(\sup_{x \in \mathbb{R}^{d}} \int_{\Sigma} G_{-\varepsilon}(x - y)^{q} |\alpha(y)| d\sigma(y)\right)^{\frac{1}{q-1}} \int_{\Sigma} \alpha_{-} d\sigma$$

$$N_{0} \leq \left(\sup_{x \in \mathbb{R}^{d}} \int_{\Sigma} G_{0}(x - y)^{q} |\alpha(y)| d\sigma(y)\right)^{\frac{1}{q-1}} \int_{\Sigma} \alpha_{-} d\sigma$$

for any $q \in (1, 2]$.

Birman-Schwinger bound

Brasche, Exner, Kuperin, Seba, 1994

$$N_{\varepsilon} \leq \left(\sup_{x \in \mathbb{R}^{d}} \int_{\Sigma} G_{-\varepsilon}(x - y)^{q} |\alpha(y)| d\sigma(y)\right)^{\frac{1}{q-1}} \int_{\Sigma} \alpha_{-} d\sigma$$

$$N_{0} \leq \left(\sup_{x \in \mathbb{R}^{d}} \int_{\Sigma} G_{0}(x - y)^{q} |\alpha(y)| d\sigma(y)\right)^{\frac{1}{q-1}} \int_{\Sigma} \alpha_{-} d\sigma$$

for any $q \in (1,2]$.

$$\sum_{i} |E_{i}|^{\gamma} \leq c_{\gamma} \int_{\Sigma} \alpha_{-}^{\frac{d}{2} + \gamma} d\sigma$$

with $(E_i)_i$ the negative eigenvalues of $-\Delta_{\alpha}$.

The way to the inequality is mainly splitted into three steps

$$\sum_{i} |E_{i}|^{\gamma} \stackrel{\text{(1)}}{\longleftrightarrow} N_{\varepsilon} \stackrel{\text{(2)}}{\longleftrightarrow} B_{\varepsilon} \stackrel{\text{(3)}}{\longleftrightarrow} \int_{\Sigma} |\alpha|^{\frac{d}{2} + \gamma} d\sigma$$

The way to the inequality is mainly splitted into three steps

$$\sum_{i} |E_{i}|^{\gamma} \xrightarrow{(1)} N_{\varepsilon} \xrightarrow{(2)} B_{\varepsilon} \xrightarrow{(3)} \int_{\Sigma} |\alpha|^{\frac{d}{2} + \gamma} d\sigma$$

(1)
$$\sum_{i} |E_{i}|^{\gamma} = \gamma \int_{0}^{\infty} \varepsilon^{\gamma - 1} N_{\varepsilon} d\varepsilon$$
 easy

The way to the inequality is mainly splitted into three steps

$$\sum_{i} |E_{i}|^{\gamma} \xrightarrow{(1)} N_{\varepsilon} \xrightarrow{(2)} B_{\varepsilon} \xrightarrow{(3)} \int_{\Sigma} |\alpha|^{\frac{d}{2} + \gamma} d\sigma$$

(1)
$$\sum_{i} |E_{i}|^{\gamma} = \gamma \int_{0}^{\infty} \varepsilon^{\gamma - 1} N_{\varepsilon} d\varepsilon$$
 easy

(2)
$$N_{\varepsilon} = B_{\varepsilon}$$

Birman-Schwinger principle

The way to the inequality is mainly splitted into three steps

$$\sum_{i} |E_{i}|^{\gamma} \xrightarrow{\text{(1)}} N_{\varepsilon} \xrightarrow{\text{(2)}} B_{\varepsilon} \xrightarrow{\text{(3)}} \int_{\Sigma} |\alpha|^{\frac{d}{2} + \gamma} d\sigma$$

(1)
$$\sum_{i} |E_{i}|^{\gamma} = \gamma \int_{0}^{\infty} \varepsilon^{\gamma - 1} N_{\varepsilon} d\varepsilon$$
 easy

(2)
$$N_{\varepsilon} = B_{\varepsilon}$$

(3)
$$B_{\varepsilon} \leq \operatorname{tr}(\alpha^{\eta} M_{-\varepsilon}^{\eta})$$

for some specific $\eta \geq 1$.

Birman-Schwinger principle difficult

Weyl-function

$$M_{-\varepsilon}f(x) = \int_{\Sigma} G_{-\varepsilon}(x-y)f(y)d\sigma(y)$$

Weyl-function

$$M_{-\varepsilon}f(x) = \int_{\Sigma} G_{-\varepsilon}(x-y)f(y)d\sigma(y)$$

Power of Weyl-function

$$M_{-\varepsilon}^{\eta}f(x)\stackrel{?}{=}\int_{\Sigma}G_{-\varepsilon}^{(\eta)}(x-y)f(y)d\sigma(y)$$

For some integral kernel $G_{-\varepsilon}^{(\eta)}$ depending on ε and η .

Weyl-function

$$M_{-\varepsilon}f(x) = \int_{\Sigma} G_{-\varepsilon}(x-y)f(y)d\sigma(y)$$

Power of Weyl-function

$$M_{-\varepsilon}^{\eta}f(x)\stackrel{?}{=}\int_{\Sigma}G_{-\varepsilon}^{(\eta)}(x-y)f(y)d\sigma(y)$$

For some integral kernel $G_{-\varepsilon}^{(\eta)}$ depending on ε and η .

Needed property

$$G_{-\varepsilon}^{(\eta)}(0)\stackrel{?}{=} \mathcal{O}(\varepsilon^{\frac{d}{2}-\eta})$$

Special case: Hyperplane

Consider the

Hyperplane

$$\Sigma = \{ x \in \mathbb{R}^d \mid x_d = 0 \}$$

Special case: Hyperplane

Consider the

Hyperplane

$$\Sigma = \{ x \in \mathbb{R}^d \mid x_d = 0 \}$$

and the

Interaction strength

$$\alpha(\mathbf{x}) = \alpha_0 + \alpha_1(\mathbf{x})$$

with $\alpha_0 < 0$ constant and supp(α_1) compact.

Special case: Hyperplane

Consider the

Hyperplane

$$\Sigma = \{ x \in \mathbb{R}^d \mid x_d = 0 \}$$

and the

Interaction strength

$$\alpha(\mathbf{X}) = \alpha_0 + \alpha_1(\mathbf{X})$$

with $\alpha_0 < 0$ constant and supp(α_1) compact.

$$-\Delta_{\alpha} = -\Delta + \underbrace{(\alpha_0 + \alpha_1)\delta_{\Sigma}}_{\text{not compact}}$$

New Weyl-function

$$-\Delta_{\alpha} = (-\Delta + \alpha_0 \delta_{\Sigma}) + \underbrace{\alpha_1 \delta_{\Sigma}}_{\text{compact}}$$

New Weyl-function

$$-\Delta_{\alpha} = (-\Delta + \alpha_0 \delta_{\Sigma}) + \underbrace{\alpha_1 \delta_{\Sigma}}_{\text{compact}}$$

New Boundary triplet

$$\Gamma_0' = \Gamma_0 + \alpha_0 \Gamma_1$$

and

$$\Gamma_1' = \Gamma_1$$

is a boundary triplet of $-\Delta + \alpha_0 \delta_{\Sigma}$

New Weyl-function

$$-\Delta_{\alpha} = (-\Delta + \alpha_0 \delta_{\Sigma}) + \underbrace{\alpha_1 \delta_{\Sigma}}_{\text{compact}}$$

New Boundary triplet

$$\Gamma_0' = \Gamma_0 + \alpha_0 \Gamma_1$$

and

$$\Gamma_1' = \Gamma_1$$

is a boundary triplet of $-\Delta + \alpha_0 \delta_{\Sigma}$

Weyl-function

$$M'_{\lambda} = M_{\lambda} (1 + \alpha_0 M_{\lambda})^{-1} = \frac{1}{2} \left((-\Delta_{d-1} - \lambda)^{\frac{1}{2}} + \frac{\alpha_0}{2} \right)^{-1}$$

Using Fourier transformation to calculate powers of $M'_{-\varepsilon}$.

$$\Rightarrow M_{-\varepsilon}^{\prime\eta} = \frac{1}{2^{\eta}} \left((-\Delta_{d-1} + \varepsilon)^{\frac{1}{2}} + \frac{\alpha_0}{2} \right)^{-\eta}$$

Using Fourier transformation to calculate powers of $M'_{-\varepsilon}$.

$$\Rightarrow M_{-\varepsilon}^{\prime\eta} = \frac{1}{2^{\eta}} \left((-\Delta_{d-1} + \varepsilon)^{\frac{1}{2}} + \frac{\alpha_0}{2} \right)^{-\eta}$$
$$\Rightarrow FM_{-\varepsilon}^{\prime\eta} F^{-1} = \frac{1}{2^{\eta}} \left((|k|^2 + \varepsilon)^{\frac{1}{2}} + \frac{\alpha_0}{2} \right)^{-\eta}$$

Using Fourier transformation to calculate powers of $M'_{-\varepsilon}$.

$$\Rightarrow M_{-\varepsilon}^{\prime\eta} = \frac{1}{2^{\eta}} \left((-\Delta_{d-1} + \varepsilon)^{\frac{1}{2}} + \frac{\alpha_0}{2} \right)^{-\eta}$$

$$\Rightarrow FM_{-\varepsilon}^{\prime\eta} F^{-1} = \frac{1}{2^{\eta}} \left((|k|^2 + \varepsilon)^{\frac{1}{2}} + \frac{\alpha_0}{2} \right)^{-\eta}$$

$$\Rightarrow M_{-\varepsilon}^{\prime\eta} f(x) = \int_{\mathbb{R}^{d-1}} G_{-\varepsilon}^{\prime(\eta)} (x - y) f(y) dy$$

Using Fourier transformation to calculate powers of $M'_{-\varepsilon}$.

$$\Rightarrow M_{-\varepsilon}^{\prime\eta} = \frac{1}{2^{\eta}} \left((-\Delta_{d-1} + \varepsilon)^{\frac{1}{2}} + \frac{\alpha_0}{2} \right)^{-\eta}$$

$$\Rightarrow FM_{-\varepsilon}^{\prime\eta} F^{-1} = \frac{1}{2^{\eta}} \left((|k|^2 + \varepsilon)^{\frac{1}{2}} + \frac{\alpha_0}{2} \right)^{-\eta}$$

$$\Rightarrow M_{-\varepsilon}^{\prime\eta} f(x) = \int_{\mathbb{R}^{d-1}} G_{-\varepsilon}^{\prime(\eta)} (x - y) f(y) dy$$

with

Integral kernel of Weyl-function

$$G_{-\varepsilon}^{\prime(\eta)}(x)=rac{1}{2^{\eta}(2\pi)^{d-1}}\int\limits_{\mathbb{R}^{d-1}}rac{1}{\left((|k|^2+arepsilon)^{rac{1}{2}}+rac{lpha_0}{2}
ight)^{\eta}}e^{ikx}dk$$

Lieb-Thirring inequality for Hyperplane

For $\varepsilon > \frac{\alpha_0^2}{4}$ we get as before

$$\textit{\textbf{B}}_{\varepsilon} \leq \text{tr}(\alpha_{1}^{\eta}\textit{\textbf{M}}_{-\varepsilon}^{\prime\eta}) = \textit{\textbf{G}}_{-\varepsilon}^{\prime(\eta)}(0) \int_{\mathbb{R}^{d-1}} |\alpha_{1}|^{\eta} \textit{\textbf{d}} \sigma$$

with

$$G_{-\varepsilon}^{\prime(\eta)}(0) = rac{1}{2^{\eta}(2\pi)^{d-1}}\int\limits_{\mathbb{R}^{d-1}}rac{1}{\left((|k|^2+arepsilon)^{rac{1}{2}}+rac{lpha_0}{2}
ight)^{\eta}}dk$$

Open question

What is $G_{-\varepsilon}^{(\eta)}$ for general Σ ?