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LT-inequality for classical Potentials

For a regular potential V : R — R, consider

Schrédinger operator

HV:_A+V
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LT-inequality for classical Potentials

For a regular potential V : R — R, consider

Schrédinger operator

HV:_A+V

Let (E;); be the negative eigenvalues of Hy, then

Lieb-Thirring Inequaltiy, 1976

d
SIEI < ¢y fga V2 ax
)

fory>1 if d=1
>0 if d>2

Alsoy =1 if d=1 (Weidl 1996)
~=0 if d> 3 (Cwikel 1977, Lieb 1980, Rosenblum 1976)
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Schrodinger operator with 6-potential

Let ¥ C R a hypersurface and « : ¥ — R. Then consider

Schrédinger operator with §-potential
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Schrodinger operator with 6-potential

Let ¥ C R a hypersurface and « : ¥ — R. Then consider

Schrédinger operator with §-potential

defined by the bilinear form

aa(fa g) = <Vf, vg>L2(IR"') - f):a f|>: Q‘Z do J

Goal: For v > 0 (maybe v > 0) an inequaltiy of the form

d
SIEP < ¢ fa2do J
1

with (E;); the negative eigenvalues of —A,,.
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Weyl-function and number of eigenvalues

For A < 0, the Weyl-function looks like

MyF(x) = / Ga(x — Y)H(y)do(y) : L2(5) — L3(5)

with Gy : R — C, the integral kernel of the resolvent of the
laplacian.
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Weyl-function and number of eigenvalues

For A < 0, the Weyl-function looks like

M) = [ Galx = YfY)doy) : L3(E) - ()
>
with Gy : R — C, the integral kernel of the resolvent of the

laplacian.

Consider now the number of eigenvalues

e N. = number of eigenvalues of —A, smaller than (—¢).
e B. = number of eigenvalues of aM__ larger than 1.

Birman-Schwinger principle
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Birman-Schwinger bound
Brasche, Exner, Kuperin, Seba, 1994

1

N. < <SU|O Jy Ge(x - }/)"Ia(}’)lda(}/)> N Jya-do

XERY

1

No < (sup J; Go(x — y)q!a(y)lda(y)> - Jra-do

XERI

forany g € (1,2].
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Birman-Schwinger bound
Brasche, Exner, Kuperin, Seba, 1994

1

N. < <SU|O Jy Ge(x - }/)qla(}’)lda(}/)> N Jya-do

XERY

1

No < (sup J; Go(x — y)q!a(y)lda(y)> - Jra-do

XERI

forany g € (1,2].

d
SIE[ < ¢ fya2"do J
I

with (E;); the negative eigenvalues of —A,,.
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Way to achieve this

The way to the inequality is mainly splitted into three steps

SIEN A N 2 L [ ot

i T
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(1) SIE =~ )y 'N. de easy
i
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The way to the inequality is mainly splitted into three steps

SIEN A N 2 L [ ot

i T

(1) SIE =~ )y 'N. de easy
i

(2) N. =B Birman-Schwinger principle
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Way to achieve this

The way to the inequality is mainly splitted into three steps

SIEN A N 2 L [ ot

i T

(1) SIE =~ )y 'N. de easy
i

(2) N. =B Birman-Schwinger principle
(3) B. <tr(a™™,) difficult

for some specific n > 1.
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Powers of the Weyl-function

M_.f(x) = . G_-(x = y)f(y)do(y)
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Powers of the Weyl-function

M_.f(x) = . G_-(x = y)f(y)do(y)

Power of Weyl-function
M?1(x) £ [ G(x = y)i(y)do(y)

For some integral kernel G(,’Q depending on ¢ and 7.
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Powers of the Weyl-function

M_cf(x) = [. G-<(x — y)f(y)do(y)

Power of Weyl-function
M?_f(x) = [ G")(x - y)f(y)da(y)

For some integral kernel G(”) depending on ¢ and 7.

Needed property

?

G"(0) £ O(277)

—&
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Special case: Hyperplane

Consider the

Hyperplane
Y={x€eRY|xg=0}
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Special case: Hyperplane

Consider the
Hyperplane

Y={x€eRY|xg=0}

and the
Interaction strength
a(x) = ag + aq(x)

with ap < 0 constant and supp(«4) compact.

Peter Schlosser Lieb-Thirring inequality for §-potentials on a hyperplane 8/12



Special case: Hyperplane

Consider the
Hyperplane

Y={x€eRY|xg=0}

and the
Interaction strength
a(x) = ag + aq(x)

with ap < 0 constant and supp(«4) compact.

A, =—-A+ (Oéo + oy )(5):
—_——

not compact
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New Weyl-function

~—~—

compact
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New Weyl-function

~—~—

compact

New Boundary triplet
r6 =1To+ agl1 and F’1 =T

is a boundary triplet of —A + agds
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New Weyl-function

~—~—

compact

New Boundary triplet
r6 =1To+ agl1 and F’1 =T

is a boundary triplet of —A + agds

M, = Ma(1+aoMy) ™ = 3 ((=Bq- = A)
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Powers of the Weyl-function

Using Fourier transformation to calculate powers of M’ _.

-n
= M/—na = 2177 ((_Ad—1 + 8)% + %)
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Powers of the Weyl-function

Using Fourier transformation to calculate powers of M’ _.

o\
= /\/,/_77E = 217] ((—Ad_1 + €)§ + 7())

1 e\
= FMPF = 3 (kP + o)t + %)
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Powers of the Weyl-function

Using Fourier transformation to calculate powers of M’ _.

:>M/_775:2i(( Ay 1+€)2+a°> o
=AMLt = 3 (KP4t + %)
= MF(x) = [ras G (x — y)f(y)dy
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Powers of the Weyl-function

Using Fourier transformation to calculate powers of M’ _.

:>M/_775:2i(( Ay 1+€)2+a°> o
=AMLt = 3 (KP4t + %)
= MF(x) = [ras G (x — y)f(y)dy

with

Integral kernel of Weyl-function

(1) () — 1 1 ikx
Gfs (X) = 21(2r)d-1 f ((k|2+5);-|—°f20)ne dk
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Lieb-Thirring inequality for Hyperplane

2
For e > 52 we get as before

B. < (i) = G2(0) [ Jar'do
»

—&

with

dk

1 1
G'_(Z)(O) = 2n(27)d-1 / <(|k]2 +€)% N %>n

RdI—1
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What is G(_”g for general & ?
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