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Fast Summation Methods

Fast multipole methods: Rokhlin 1985;

Panel clustering: Hackbusch/Nowak 1989;

Mosaic-skeleton methods: Tyrtyshnikov 1996;

Hierarchical matrices: Hackbusch 2000 and Hackbusch/Khoromskij 2001.
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Main idea: Approximation errors can be tolerated as long their size is of the order of
discretization error.
Aim: Solution of linear systems with complexity O(n log∗ n).
Here: Emphasis is laid on algorithmic aspects; approximation theory is neglected.
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Low-Rank Matrices

Let m, n ∈ N and A ∈ Cm×n be a matrix. The rank of A is the dimension of its range

rank A := dim {Ax ∈ Cm, x ∈ Cn} .

Theorem

Let m, n, k ∈ N. Then it holds that

(a) rank A ≤ min{m, n} for all A ∈ Cm×n

(b) rank(AB) ≤ min{rank A, rank B} for all A ∈ Cm×p and all B ∈ Cp×n

(c) rank(A + B) ≤ rank A + rank B for all A,B ∈ Cm×n

We denote the set of matrices A ∈ Cm×n having at most k linearly independent rows or
columns by

Cm×n
k :=

˘
A ∈ Cm×n : rank A ≤ k

¯
.

NOTE:

Cm×n
k is not a linear space. The rank of the sum of two rank-k matrices is in general

only bounded by 2k.

The rank of each sub-block of A ∈ Cm×n
k is bounded by k.
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Efficient representation

Since among the n columns of A ∈ Cm×n
k only k are sufficient to represent the whole

matrix by linear combination, the entrywise representation of A contains redundancies
which can be removed by changing to another kind of representation.

Theorem

A matrix A ∈ Cm×n belongs to Cm×n
k if and only if there are matrices U ∈ Cm×k and

V ∈ Cn×k such that
A = UV H . (1)

The representation (1) of matrices from Cm×n
k is called outer-product form. If ui , vi ,

i = 1, . . . , k, denote the columns of U and V , respectively, then (1) can be equivalently
written as

A =
kX

i=1

uiv
H
i .

Hence, instead of storing the m · n entries of A ∈ Cm×n
k , we can equally store the vectors

ui , vi , i = 1, . . . , k, which require k(m + n) units of storage.
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In addition to reducing the storage requirements, the outer-product form (1) also
facilitates matrix-vector multiplications:

Ax = UV Hx = U(V Hx),

i.e, instead of computing the update y := y + Ax in the usual (entrywise) way, A can
alternatively be multiplied by x using the following two-step procedure:

(a) define z := V Hx ∈ Ck

(b) compute y := y + Uz .

Hence, instead of 2m · n arithmetic operations which are required in the entrywise
representation, the outer-product form amounts to 2k(m + n)− k operations.
Assume for a moment that m = n.

Outer-product form replaces one dimension in the complexity of matrices from Cm×n
k

by 2k, i.e., instead of m · n = m2 we have k(m + n) = 2km

this representation is not advantageous for large k.

By the following definition we characterize matrices for which the outer-product form is
advantageous compared with the entrywise representation.
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Definition

A matrix A ∈ Cm×n
k is called a matrix of low rank if

k(m + n) < m · n.

Besides arithmetic operations also the norm of a matrix is often required. The Frobenius
norm

‖A‖F :=
√

traceAHA =

 
mX

i=1

nX
j=1

|aij |2
!1/2

of A ∈ Cm×n
k can be computed with 2k2(m + n) operations since

‖UV H‖2
F =

kX
i,j=1

(uH
i uj)(v

H
i vj). (2)

Similarly, the spectral norm

‖A‖2 :=
p
ρ(AHA) =

p
ρ(VUHUV H) =

p
ρ(UHUV HV ),

where ρ(A) denotes the spectral radius of A, can be evaluated with O(k2(m + n))
arithmetic operations.
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Sometimes it is useful that U and V have orthonormal columns; i.e., it holds that
UHU = Ik = V HV . In this case we have to introduce an additional diagonal coefficient
matrix Σ = diag(σ1, . . . , σk) ∈ Rk×k and replace (1) by the singular value
decomposition

A = UΣV H =
kX

i=1

σiuiv
H
i . (3)

If the representation (3) with matrices U, V having orthonormal columns is employed,
the computation of the Frobenius norm simplifies to

‖UΣV H‖F = ‖Σ‖F =

vuut kX
i=1

σ2
i ,

which requires only O(k) operations. Since the spectral norm is unitarily invariant, too,
we have

‖UΣV H‖2 = ‖Σ‖2 = σ1,

where we assume that the singular values σi , i = 1, . . . , k, of A are non-increasingly
ordered; i.e., it holds that σ1 ≥ σ2 ≥ . . . ≥ σk .
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Adding and multiplying low-rank matrices

We consider the multiplication of low-rank matrices A ∈ Cm×p
kA

and B ∈ Cp×n
kB

in
outer-product representation

A = UAV H
A and B = UBV H

B .

The rank of the product AB is bounded by min{kA, kB}. Hence, the outer-product form
will be advantageous for the product AB as well. There are two possibilities for
computing AB = UV H :

(a) U := UA(V H
A UB) and V := VB using 2kAkB(m + p)− kB(m + kA) operations

(b) U := UA and V := VB(UH
B VA) using 2kAkB(p + n)− kA(n + kB) operations.

Depending on the quantities kA, kB , m, and n, either representation should be chosen.

If exactly one of the matrices A or B is stored entrywise, say B, we have the following
outer-product representation of AB = UV H , where U := UA ∈ Cm×kA and
V := BHVA ∈ Cn×kA . This requires kA(2p − 1)n operations.
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If A and B are to be added, the sum A + B will have the following outer-product
representation

A + B = UV H

with U := [UA,UB ] ∈ Cm×k and V := [VA,VB ] ∈ Cn×k , which guarantees that

rank(A + B) ≤ kA + kB =: k. (4)

Hence, apart from the reorganization of the data structure, no numerical operations are
required for adding two matrices in outer-product form.
A lower bound than (4) for the rank of A + B cannot be found for general low-rank
matrices. Hence, the rank of A + B will be considerably larger than the ranks of A and B
although A + B might be close to a matrix of a much smaller rank.
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Approximation by low-rank matrices

Although matrices usually have full rank, they can often be approximated by matrices
having a much lower rank. The following theorem states that the closest matrix in Cm×n

k

to a given matrix from Cm×n, m ≥ n, can be obtained from the singular value
decomposition (SVD) A = UΣV H with UHU = In = V HV and a diagonal matrix
Σ ∈ Rn×n with entries σ1 ≥ . . . ≥ σn ≥ 0. Interestingly, this result is valid for any
unitarily invariant norm.

Theorem

Let the SVD A = UΣV H of A ∈ Cm×n, m ≥ n, be given. Then for k ∈ N satisfying
k ≤ n it holds that

min
M∈Cm×n

k

‖A−M‖ = ‖A− Ak‖ = ‖Σ− Σk‖, (5)

where Ak := UΣkV
H ∈ Cm×n

k and Σk := diag(σ1, . . . , σk , 0, . . . , 0) ∈ Rn×n.

Note that the approximant UΣkV
H has the representation (3). If the outer-product

representation is preferred, either U or V has to be multiplied by Σk .
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If the spectral norm ‖ · ‖2 is used in the previous theorem, then

‖A− Ak‖2 = σk+1.

In the case of the Frobenius norm one has instead

‖A− Ak‖2
F =

nX
`=k+1

σ2
` .

The information about the error ‖A− Ak‖ = ‖Σ− Σk‖ can also be used in the opposite
way. If on the other hand a relative accuracy ε > 0 of the approximant Ak is prescribed,
i.e.,

‖A− Ak‖2 < ε‖A‖2,

then due to (5) the required rank k(ε) is given by

k(ε) := min{k ∈ N : σk+1 < εσ1}.

In order to find the optimum approximant Ak , it remains to compute the singular value
decomposition, which requires O(mn2) operations for general matrices A ∈ Cm×n, m ≥ n.
If the given matrix A has low rank, then its SVD can be computed with significantly less
operations.
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Singular value decomposition of low-rank matrices
For matrices A = UV H ∈ Cm×n

k it is possible to compute an SVD with complexity
O(k2(m + n)).
Assume we have computed the QR decompositions

U = QURU and V = QV RV

of U ∈ Cm×k and V ∈ Cn×k , respectively. Note that this can be done with 4k2(m + n)
operations. The outer-product of the two k × k upper triangular matrices RU and RV is
then decomposed using the SVD of RURH

V :

RURH
V = ÛΣ̂V̂ H .

Computing RURH
V needs k2(k + 1) operations and the cost of the SVD amount to 21k3

operations. Since QU Û and QV V̂ both are unitary,

A = UV H = (QU Û)Σ̂(QV V̂ )H

is an SVD of A. The number of arithmetic operations of the SVD of a rank-k matrix sum
up to

QR decomposition of U and V 4k2(m + n)
Computing RURH

V k2(k + 1)
SVD of RURH

V 21k3

Computing QU Û and QV V̂ k(2k − 1)(m + n)

∼ 6k2(m + n) + 22k3

operations.
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Approximate addition of low-rank matrices

When computing the sum of two low-rank matrices, we have to deal with the problem
that Cm×n

k is not a linear space. The sum A + B of two matrices from Cm×n
k might,

however, be close to a matrix of a much smaller rank. In this case the sum of two
low-rank matrices can be truncated to rank k using the SVD of low-rank matrices from
the last section. This truncation will be referred to as the rounded addition.

Theorem

Let A ∈ Cm×n
kA

, B ∈ Cm×n
kB

, and k ∈ N with k ≤ kA + kB . Then a matrix S ∈ Cm×n
k

satisfying
‖A + B − S‖ = min

M∈Cm×n
k

‖A + B −M‖

with respect to any unitarily invariant norm ‖ · ‖ can be computed with
6(kA + kB)2(m + n) + 22(kA + kB)3 operations.

In some applications it may also occur that the sum of several low-rank matrices
Ai ∈ Cm×n

ki
, i = 1, . . . , `, has to be rounded. In this case, the complexity analysis reveals

a factor (
P`

i=1 ki )
2 in front of m + n. In order to avoid this, we gradually compute the

rounded sum pairwise.
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Exploiting the SVD for the rounded addition

The rounded addition is the most time-consuming part in the arithmetic of hierarchical
matrices. The numerical effort can be reduced if the SVD representation is used for
instance. Assume that

A = UAΣAV H
A and B = UBΣBV H

B ,

where UA,VA,UB , and VB have orthonormal columns and ΣA ∈ RkA×kA and
ΣB ∈ RkB×kB are diagonal matrices. Then

A + B = [UA,UB ]

»
ΣA

ΣB

–
[VA,VB ]H .

Assume that kA ≥ kB . In order to reestablish a representation of type (3), we have to
orthogonalize the columns of the matrices [UA,UB ] and [VA,VB ]. Let
XU := UH

A UB ∈ CkA×kB and YU := UB − UAXU ∈ Cm×kB . Furthermore, let QURU = YU ,
QU ∈ Cm×kB , be a QR decomposition of YU . Then

[UA,UB ] =
ˆ
UA,QU

˜ »I XU

RU

–
is a QR decomposition of [UA,UB ].
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Similarly,

[VA,VB ] =
ˆ
VA,QV

˜ »I XV

RV

–
is a QR decomposition of [VA,VB ], where XV := V H

A VB ∈ CkA×kB and QV RV = YV is a
QR decomposition of YV := VB − VAXV ∈ Cn×kB . We obtain

A + B = [UA,QU ]

»
ΣA + XUΣBXH

V XUΣBRH
V

RUΣBXH
V RUΣBRH

V

–
[VA,QV ]H .

From this point on one proceeds in the same way as for the SVD of low-rank matrices.
For the complexity analysis we concentrate on those terms which depend on m. The
orthogonalization of [UA,UB ] using the previous method requires

Computing XU 2kAkBm
Computing YU (kA + 1)kBm
Decomposing YU 4k2

Bm
(3kA + 4kB + 1)kBm

operations while the orthogonalization of [UA,UB ] using the QR decomposition needs
4(kA + kB)2m operations.
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If k := kA = kB , then the proposed variant requires (7k + 1)km operations, while 16k2m
operations are needed to decompose [UA,UB ].

m × n kA kB time old time new gain
200× 100 8 5 5.23s 4.78s 9%
300× 200 10 7 12.57s 8.51s 32%
400× 200 11 8 16.05s 9.92s 38%
600× 300 12 9 30.05s 15.94s 47%
800× 400 13 10 45.97s 23.82s 48%

The presented CPU times are the times for 10 000 additions with accuracy ε = 110−2.
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Agglomerating low-rank blocks

We will come across the problem of unifying neighboring blocks to a single one for the
purpose of saving memory. This operation will be referred to as agglomeration. Assume
a 2× 2 block matrix »

A1 A2

A3 A4

–
≈ UV H

consisting of four low-rank matrices Ai = UiV
H
i , i = 1, . . . , 4, each having rank at most k

is to be approximated by a single matrix A = UV H ∈ Cm×n
k . Since»

A1 A2

A3 A4

–
=

»
A1

–
+

»
A2

–
+

»
A3

–
+

»
A4

–
,

this problem may be regarded as a rounded addition of four low-rank matrices. Therefore,
a best approximation in Cm×n

k can be computed using the SVD of low-rank matrices.
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Compared with the rounded addition of general low-rank matrices, the presence of zeros
should be taken into account. Since»

A1 A2

A3 A4

–
= ÛV̂ H ,

where

Û :=

»
U1 U2

U3 U4

–
and V̂ :=

»
V1 V3

V2 V4

–
,

it is enough to compute QR decompositions of [U1,U2], [U3,U4], [V1,V3], and [V2,V4].
The number of arithmetic operations can be estimated as

Computing the QR decompositions 2 · 7k2(m + n)
Computing RÛRH

V̂
7k(2k)2

Computing the SVD of RÛRH
V̂

21(4k)3

Building the unitary factors 4k2(m + n)

∼ 18k2(m + n) + 1372k3

The amount of operations can be reduced if each of the matrices [A1,A2] and [A3,A4] is
agglomerated before agglomerating the results.
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Degenerate Kernels
Typically, only sub-blocks of A ∈ CI×J , I = {1, . . . ,m} and J := {1, . . . , n}, can be
approximated by low-rank matrices.

COMMON: the ith component of a vector x ∈ CI is denoted by xi

GENERALIZATION: If t ⊂ I , then xt ∈ Ct denotes the restriction of x to the indices
in t. Consequently, Ats or Ab denotes the restriction of a given matrix A ∈ Cm×n to
the indices in b := t × s, where t ⊂ I and s ⊂ J.

In this part we consider matrices A ∈ RI×J with blocks Ats of the form

Ats = Λ1,tAΛ∗2,s ,

which arise from the discretization of integral operators

(Av)(y) =

Z
Ω

κ(x , y)v(x) dµx , y ∈ Ω.

Here, Ω ⊂ Rd denotes the domain of integration and µ is an associated measure. If Ω is
a (d − 1)-dimensional manifold in Rd for instance, then µ denotes the surface measure.
Furthermore,

(Λ1,t f )i =

Z
Ω

f (x)ψi (x) dµx , (Λ2,s f )j =

Z
Ω

f (x)ϕj(x) dµx

and Λ∗2,s : Rs → L2(Γ) is the adjoint of Λ2,s : L2(Γ) → Rs defined by

(Λ∗2,sz , f )L2(Γ) = zT (Λ2,s f ) for all z ∈ Rs , f ∈ L2(Γ).
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Each set of rows t ⊂ I and each set of columns s ⊂ J is connected with subdomains

Yt :=
[
i∈t

Yi and Xs =
[
j∈s

Xj

which are the union of supports Yi ⊂ Ω and Xj ⊂ Ω of finite element basis functions ψi ,
ϕj defined on the computational domain Ω.

Assume that the kernel function κ is degenerate on Yt × Xs . Later on, we will find
conditions on t and s for this assumption to hold.

Definition

Let D1,D2 ⊂ Rd be two domains. A kernel function κ : D1 × D2 → R is called
degenerate if k ∈ N and functions u` : D1 → R and v` : D2 → R, ` = 1, . . . , k, exist
such that

κ(x , y) =
kX

`=1

u`(x)v`(y), x ∈ D1, y ∈ D2.

The number k is called degree of degeneracy.
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The rank of Ats is bounded by k. To see this, let

a` = Λ1,tv` ∈ Rt and b` = Λ2,su` ∈ Rs , ` = 1, . . . , k.

For z ∈ Rs we have
bT

` z = (u`,Λ
∗
2,sz)L2(Xs ).

Since for y ∈ Yt

(AΛ∗2,sz)(y) =

Z
Xs

κ(x , y)(Λ∗2,sz)(x) dµx =

Z
Xs

kX
`=1

u`(x)v`(y)(Λ∗2,sz)(x) dµx

=
kX

`=1

v`(y)

Z
Xs

u`(x)(Λ∗2,sz)(x) dµx =
kX

`=1

v`(y)bT
` z ,

we obtain for the sub-block Ats of A

Ats = Λ1,tAΛ∗2,s = Λ1,t

kX
`=1

v`b
T
` =

X
`=1

(Λ1,tv`)b
T
` =

kX
`=1

a`b
T
` .

Therefore, degenerate kernels lead to low-rank matrices if t and s are large enough
compared with k; i.e., if k(|t|+ |s|) < |t||s|.
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Asymptotically smooth kernels
If A is an elliptic operator, then its kernel function κ is asymptotically smooth.

Definition

A function κ : Ω× Rd → R satisfying κ(x , ·) ∈ C∞(Rd \ {x}) for all x ∈ Ω is called
asymptotically smooth in Ω with respect to y if constants c and γ can be found such
that for all x ∈ Ω and all α ∈ Nd

0

|∂α
y κ(x , y)| ≤ cp!γpr−p sup

z∈Br (y)

|κ(x , z)| for all y ∈ Rd \ {x},

where r = |x − y |/2 and p = |α|.

Let κ : D1 × D2 → R be analytic with respect to its second argument y and let ξD2

denote the Chebyshev center of D2. Then κ has a Taylor expansion

κ(x , y) =
X
|α|<p

1

α!
∂α

y κ(x , ξD2)(y − ξD2)
α + Rp(x , y),

where

Rp(x , y) :=
X
|α|≥p

1

α!
∂α

y κ(x , ξD2)(y − ξD2)
α

denotes the remainder of the expansion, which converges to zero for p →∞. The rate of
convergence can however be arbitrarily bad.
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Note that

Tp[κ](x , y) :=
X
|α|<p

1

α!
∂α

y κ(x , ξD2)(y − ξD2)
α

is a degenerate kernel approximation. Since Tp[κ](x , ·) ∈ Πd
p−1, the degree of degeneracy

is the dimension of the space of d-variate polynomials of order at most p − 1

k = dim Πd
p−1 ≤ pd .

The importance of asymptotic smoothness is that it leads to exponential convergence of
the Taylor series if D1 and D2 are far enough away from each other. For the following
lemma we assume that

η dist(ξD2 ,D1) ≥ ρD2 , (6)

where η > 0 and ξD2 is the Chebyshev center of D2 ⊂ Rd , i.e., the center of the ball with
minimum radius ρD2 containing D2.

Lemma

Assume that (6) holds with η > 0 satisfying 2γ
√

dη < 1. If κ is asymptotically smooth
on the convex set D2 with respect to y, then with r := |x − ξD2 |/2 for all x ∈ D1 and
y ∈ D2 it holds that

|κ(x , y)− Tp[κ](x , y)| ≤ (2γ
√

dη)p

1− 2γ
√

dη
sup

z∈Br (ξD2
)

|κ(x , z)|.
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Proof. For the remainder Rp it holds that

|Rp(x , y)| ≤
X
|α|≥p

1

α!
|∂α

y κ(x , ξD2)||(y − ξD2)
α|

≤ c sup
z∈Br (ξD2

)

|κ(x , z)|
X
|α|≥p

(2γ)|α||α|!
α!|x − ξD2 ||α|

|(y − ξD2)
α|

= c sup
z∈Br (ξD2

)

|κ(x , z)|
∞X

`=p

„
2γ

|x − ξD2 |

«` X
|α|=`

 
`

α

!
|(y − ξD2)

α|

≤ c sup
z∈Br (ξD2

)

|κ(x , z)|
∞X

`=p

„
2γ
√

d
|y − ξD2 |
|x − ξD2 |

«`

≤ c sup
z∈Br (ξD2

)

|κ(x , z)|
∞X

`=p

(2γ
√

dη)`

≤ c
(2γ

√
dη)p

1− 2γ
√

dη
sup

z∈Br (ξD2
)

|κ(x , z)|

due to
P
|α|=`

`
`
α

´
|ξα| = (

Pd
i=1 |ξi |)

` ≤ d`/2|ξ|` for all ξ ∈ Rd .
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The previous lemma shows that the Taylor expansion of asymptotically smooth kernels
converges exponentially with convergence rate 2γ

√
dη < 1. Thus, p ∼ | log ε| is required

to achieve a given approximation accuracy ε > 0. For the degree k of degeneracy of
Tp[κ] it follows that

k ∼ pd ∼ | log ε|d .

Note that if κ is asymptotically smooth only with respect to the first argument x , then
ρD2 has to be replaced by ρD1 in (6). If κ is asymptotically smooth with respect to both
variables, then the symmetric condition

min{ρD1 , ρD2} ≤ η dist(D1,D2) (7)

is sufficient.

In order to be able to approximate the block Ats , we have to satisfy the last condition for
D1 = Yt and D2 = Xs . A block t × s will therefore be called admissible if the condition

min{diam Yt , diam Xs} ≤ η dist(Yt ,Xs) (8)

is satisfied.
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Matrix partitioning

When constructing partitions, we have to account for two contrary aims.

partition has to be fine enough such that most of the blocks can be successfully
approximated;

the number of blocks must be as small as possible in order to be able to guarantee
efficient arithmetic operations.

Finding an optimal partition is a difficult task since the set of all possible partitions is too
large to be searched for. Instead of searching for the best partition, we will therefore
construct partitions which are quasi-optimal in the sense that they can be computed with
almost linear costs and allow approximants of logarithmic-linear complexity.
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Note that at least for the diagonal entries (i , i), i ∈ I , both conditions (8) will always be
violated. In order to guarantee that Ab, (i , i) ∈ b, has low rank, the dimensions of Ab

therefore have to be small.
This leads to the following definition.

Definition

A partition P is called admissible if each block t × s ∈ P is either admissible or small;
i.e., the cardinalities |t| and |s| of t and s satisfy min{|t|, |s|} ≤ nmin with a given
minimal dimension nmin ∈ N.
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Tensor vs. hierarchical partitions
In this section we assume that I = J. For the comparison of tensor and hierarchical
partitions we will investigate the memory consumption and the number of arithmetic
operations required to multiply such matrices by a vector if

(a) each diagonal block is stored as a dense matrix;

(b) all other blocks t× s are assumed to be admissible and are stored as rank-1 matrices.

Let us first consider the case of tensor partitions

P = PI × PI = {tk × t` : tk , t` ∈ PI} ,

where PI := {tk , k = 1, . . . , p} is a partition of the index set I ; i.e.,

I =

p[
k=1

tk and tk ∩ t` = ∅ for k 6= `.
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Storing A requires
Pp

k=1 |tk |
2 units of storage for the diagonal and

X
k 6=`

|tk |+ |t`| = 2

pX
k=1

pX
`=1
6̀=k

|tk | = 2(p − 1)

pX
k=1

|tk | = 2(p − 1)n

units for the off-diagonal blocks. Due to the Cauchy-Schwarz inequality

n2 =

 
pX

k=1

|tk |

!2

≤ p

pX
k=1

|tk |2,

at least n2/p + 2(p − 1)n units of storage are necessary to hold A. The minimum of the
last expression is attained for p =

p
n/2 resulting in a minimum amount of storage of

order n3/2. Hence, the required amount of storage resulting from tensor product
partitions is not competitive.
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Let us now check whether a hierarchical partition leads to almost linear complexity. We
restrict ourselves to the case n = 2p for some p ∈ N.
Assume that t has already been generated from I after ` subdivisions. Subdividing
t = {i1, . . . , i2p−`} into two parts

t1 = {i1, . . . , i2p−`−1} and t2 = {i2p−`−1+1, . . . , i2p−`}

of equal size, we obtain a 2× 2 block partition of Att ∈ Rt×t :

Att =

»
At1t1 At1t2

At2t1 At2t2

–
, (9)

where Ati tj ∈ Rti×tj , i , j = 1, 2. The diagonal blocks At1t1 and At2t2 are subdivided in the
same way as Att ; i.e., its off-diagonal blocks are again restricted to rank-1 matrices while
its diagonal blocks are subdivided and so on.

Figure: Partition for p = 4
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Let Nst
p denote the amount of storage which is required to hold such a matrix. Since the

off-diagonal blocks in level p require 4 · 2p−1 = 2p+1 units of storage, we find the recursive
relation Nst

p = 2Nst
p−1 + 2p+1 with Nst

0 = 1. Resolving this recursion, we obtain that

Nst
p = (2p + 1)2p = 2n log2 n + n.

Using the blocking (9), the matrix-vector product with x ∈ C I can be computed
recursively by

Attxt =

»
At1t1xt1 + At1t2xt2

At2t1xt1 + At2t2xt2

–
, where xt =

»
xt1

xt2

–
and xt1 ∈ Ct1 , xt2 ∈ Ct2 .

Hence, for Ax we need the results of the products At1t1xt1 and At2t2xt2 , which have half
the size. For the number NMV

p of operations it holds that

NMV
p = 2NMV

p−1 + 2p+2 − 2.

Multiplying the rank-1 matrices At1t2 and At2t1 by xt2 and xt1 and adding the results each
requires 4 · 2p−1 − 1 operations. With NMV

0 = 2 we obtain

NMV
p = p2p+2 + 2 = 4n log2 n + 2.
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Cluster trees
The presented partition is too special since non-admissible blocks can only appear on the
diagonal. In the following it will be described how hierarchical partitions can be
constructed for arbitrary admissibility conditions.
In order to partition the set of matrix indices I × J hierarchically into sub-blocks, we first
need a rule to subdivide the index sets I and J. This leads to the so-called cluster tree
(cf. [7]), which contains a hierarchy of partitions.

Definition

A tree TI = (V ,E) with vertices V and edges E is called a cluster tree for a set I ⊂ N if
the following conditions hold

(a) I is the root of TI ;

(b) ∅ 6= t =
S

t′∈S(t) t′ for all t ∈ V ;

(c) the degree deg t := |S(t)| ≥ 2 of each vertex t ∈ V \ L(TI ) is bounded from below.

Here, the set of sons S(t) := {t′ ∈ V : (t, t′) ∈ E} of t ∈ V is pairwise disjoint and
L(TI ) := {t ∈ V : S(t) = ∅} denotes the set of leaves of TI .

Condition (b) implies that t ⊂ I for all t ∈ TI and that each level

T
(`)
I := {t ∈ TI : level t = `}

of TI contains a partition of I .
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In the sequel we will identify the set of vertices V with the cluster tree TI . The purpose
of S is to generate subdomains of minimal diameter.

2nd level 3rd level 4th level

Figure: Three levels in a cluster tree.

For practical purposes it is useful to work with clusters having a minimal size of nmin > 1
rather than subdividing the clusters until only one index is left.
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Since the number of leaves |L(TI )| is bounded by |I |/nmin provided |t| ≥ nmin for all
t ∈ TI , the following estimate shows that the complexity of storing a cluster tree is still
linear. The proof uses the property that each subtree of TI is a cluster tree.

Lemma

Let q := mint∈TI \L(TI ) deg t ≥ 2. Then for the number of vertices in TI it holds that

|TI | ≤
q|L(TI )| − 1

q − 1
≤ 2|L(TI )| − 1. (10)

Proof. We cut down the tree T vertex by vertex starting from the leaves of T \ L(T ) in
k steps until only the root is left. Let T` denote the tree after ` steps and q` the degree
of the `th vertex. Then |T`+1| = |T`| − q` and |L(T`+1)| = |L(T`)| − q` + 1. After k
steps |Tk | = 1 = |L(Tk)|, where

|Tk | = |T | −
k−1X
`=1

q` and |L(Tk)| = |L(T )| −
k−1X
`=1

(q` − 1).

Hence, |T | = |L(T )|+ k − 1 and from qk ≥ q it follows that k(q − 1) ≤ |L(T )|+ q − 2.
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The number of vertices in TI is always linear. In order to guarantee a logarithmic depth
of TI we have to ensure that each subdivision by S produces clusters of comparable
cardinality.

Definition

A tree TI is called balanced if

R := min
t∈TI \L(TI )

{|t1|/|t2|, t1, t2 ∈ S(t)}

is bounded independently of |I | by a positive constant from below.

Figure: A balanced and an unbalanced tree.

By L(TI ) := maxt∈TI level t + 1 we denote the depth of the cluster tree TI . The depth of
balanced cluster trees depends logarithmically on |I |.
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Lemma

Let TI be a balanced cluster tree. Then for the depth of TI it holds that

L(TI ) ≤ log1+R(|I |/nmin) + 1 ∼ log |I | (11)

and |t| ≤ |I |(1 + R)−`, where ` denotes the level of t ∈ TI .

Proof. For t ∈ TI \ L(TI ) and t′ ∈ S(t) we observe that

|t|
|t′| =

|t′|+
P

t′ 6=s∈S(t) |s|
|t′| = 1 +

X
t′ 6=s∈S(t)

|s|
|t′| ≥ 1 + (|S(t)| − 1)R ≥ 1 + R.

Let e1, . . . , eL−1 be a sequence of edges from the root v1 := I to a deepest vertex vL in
TI . Furthermore, let v2, . . . , vL−1 be the intermediate vertices. Then from

(1 + R)|v`+1| ≤ |v`|, ` = 1, . . . , L− 1,

we obtain that
(1 + R)L−1|vL| ≤ |I |,

which gives (L− 1) log(1 + R) ≤ log(|I |/|vL|) ≤ log(|I |/nmin).
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The following lemma will be helpful for many of the complexity estimates.

Lemma

Let TI be a cluster tree for I , thenX
t∈TI

|t| ≤ L(TI )|I | and
X
t∈TI

|t| log |t| ≤ L(TI )|I | log |I |. (12)

Proof. Each of the L(TI ) levels in TI is made of disjoint subsets of I . The second
estimate follows from log |t| ≤ log |I | for t ∈ TI .

For each vertex t in TI its indices have to be stored. It is desirable that clusters are
contiguous. For this purpose, the set I should be reordered. If t is to be subdivided into
t1 and t2, we rearrange the indices in t so that max t1 ≤ min t2. This can be done during
the construction of TI . In this case, a cluster t can be represented by its minimal and
maximal index. With this simplification, TI requires |TI | ∼ |I | units of storage even for
unbalanced trees. The permutation requires additional |I | units of storage. Note that due
to the hierarchical character of cluster trees, this reordering does not change the
previously generated clusters.
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Construction of cluster trees

In this section we will concentrate on how a cluster tree TI is constructed from an index
set I ⊂ N such that the diameters of Xt are as small as possible.
We assume that Xi , i ∈ I , are quasi-uniform, i.e., there is a constant cU > 0 such that

max
i∈I

µ(Xi ) ≤ cU min
i∈I

µ(Xi ).

The expression µ(M) denotes the m-dimensional measure of an m-dimensional manifold
M ⊂ Rd . We assume that the computational domain Ω is an m-dimensional manifold,
i.e., there is a constant cΩ > 0 such that for all z ∈ Ω

µ(Ω ∩ Br (z)) ≤ cΩrm for all r > 0. (13)

In addition, we assume that only a bounded number of sets Xi overlap; i.e., there is
ν ∈ N such that

|{i ∈ I : ∃j ∈ J such that int Xi ∩ int Xj 6= ∅}| ≤ ν. (14)

The above assumptions are in accordance with usual applications such as finite element
discretizations.
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We use a clustering strategy which is based on the principal component analysis (PCA).
In order to be able to apply it, we select arbitrary but fixed points zi ∈ Xi , i = 1, . . . , n,
e.g., the centroid of Xi if Xi is polygonal.
A cluster t ⊂ I is subdivided by the hypersurface through the centroid

mt :=

P
i∈t µ(Xi )ziP
i∈t µ(Xi )

of t with normal wt , where wt is the main direction of t.

Definition

A vector w ∈ Rd , ‖w‖2 = 1, satisfyingX
i∈t

|wT (zi −mt)|2 = max
‖v‖2=1

X
i∈t

|vT (zi −mt)|2

is called main direction of the cluster t.

Figure: PCA subdivision.
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Note that with the symmetric positive semidefinite covariance matrix

Ct :=
X
i∈t

(zi −mt)(zi −mt)
T ∈ Rd×d

it holds thatX
i∈t

|vT (zi −mt)|2 =
X
i∈t

vT (zi −mt)(zi −mt)
T v = vTCtv for all v ∈ Rd .

Hence, by the variational representation of eigenvalues

max
‖v‖2=1

X
i∈t

|vT (zi −mt)|2 = max
‖v‖2=1

vTCtv = λmax(Ct)

one observes that the maximum is attained for the eigenvector corresponding to the
largest eigenvalue λmax of Ct .
Using wt , one possibility is to define the sons S(t) = {t1, t2} of t by

t1 = {i ∈ t : wT
t (zi −mt) > 0}

and t2 := t \ t1. This subdivision generates geometrically balanced cluster trees in the
sense that there are constants cg , cG > 0 such that for each level ` = 0, . . . , L(TI )− 1

(diam Xt)
m ≤ cg2

−` and µ(Xt) ≥ 2−`/cG for all t ∈ T
(`)
I . (15)
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The following lemma shows that geometrically balanced cluster trees are balanced for
quasi-uniform grids.

Lemma

Assume that Xi , i ∈ I , are quasi-uniform. Then a geometrically balanced cluster tree is
balanced.

Proof. Let t1, t2 ∈ T
(`)
I be two clusters from the same level ` of TI . From (14), (13), and

(15) we see that

|t1|min
i∈t1

µ(Xi ) ≤
X
i∈t1

µ(Xi ) ≤ νµ(Xt1) ≤ νcΩ(diam Xt1)
m ≤ νcΩcg2

−`.

The last estimate together with

|t2|max
i∈t2

µ(Xi ) ≥
X
i∈t2

µ(Xi ) ≥ µ(Xt2) ≥ 2−`/cG

leads to
|t1|
|t2|

≤ νcΩcgcG
maxi∈t2 µ(Xi )

mini∈t1 µ(Xi )
≤ νcΩcgcGcU ,

which proves the assertion.

Since subdividing t ⊂ I requires O(|t|) operations for geometrically balanced clustering,
we can see that constructing TI takes L(TI )|I | operations.
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Block Cluster Trees

Since our aim is to find an admissible partition of I × J, we consider cluster trees TI×J

for I × J, which will be referred to as block cluster trees.
Let TI and TJ be cluster trees for I and J with corresponding mappings SI and SJ . We
will consider block cluster trees TI×J which are defined by the following mapping SI×J :

SI×J(t × s) =

(
∅, if t × s is admissible or SI (t) = ∅ or SJ(s) = ∅,
SI (t)× SJ(s), else.

The depth L(TI×J) of the tree TI×J is obviously bounded by the minimum of the depths
of the generating cluster trees TI and TJ ; i.e.,

L(TI×J) ≤ min{L(TI ), L(TJ)}.

The leaves of TI×J constitute an admissible partition P := L(TI×J).
Usually, a block cluster is built from binary cluster trees; i.e., deg t = 2 for
t ∈ TI \ L(TI ). In this case, TI×J is a quadtree. Note that each block t × s ∈ TI×J

consists of clusters t ∈ TI and s ∈ TJ of the same level from their respective cluster tree.
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The sparsity constant
A measure for the complexity of a partition is the so-called sparsity constant; cf. [4]. The
“sparsity” is the maximum number of blocks in the partition that are associated with a
given row or column cluster.

Definition

Let TI and TJ be cluster trees for the index sets I and J and let TI×J be a block cluster
tree for I × J. For a cluster t ∈ TI we denote the maximum number of blocks
t × s ∈ TI×J by

c r
sp(TI×J , t) := | {s ⊂ J : t × s ∈ TI×J} |.

Similarly, for a given cluster s ∈ TJ

cc
sp(TI×J , s) := | {t ⊂ I : t × s ∈ TI×J} |

stands for the maximum number of blocks t × s ∈ TI×J . The sparsity constant csp of a
block cluster tree TI×J is then defined as

csp(TI×J) := max


max
t∈TI

c r
sp(TI×J , t),max

s∈TJ

cc
sp(TI×J , s)

ff
.

Lemma

Assume that TI and TJ are geometrically balanced, i.e., (15) is satisfied. Then
csp(TI×J) ≤ 2νcΩcgcG (2 + 1/η)m holds.
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Proof. Let t ∈ T
(`)
I with an associated point zt ∈ Xt . The estimates (14) and (15)

guarantee that each neighborhood

Nρ := {s ∈ T
(`)
J : max

x∈Xs

|x − zt | ≤ ρ}, ρ > 0,

of t contains at most νcGcΩ2`ρm clusters s from the same level ` in TJ . This follows from

|Nρ|2−`/cG ≤
X
s∈Nρ

µ(Xs) ≤ νµ(XNρ) ≤ νcΩρ
m. (16)

Let s ∈ TJ such that t × s ∈ TI×J . Furthermore, let t∗ and s∗ be the father clusters of t
and s, respectively. Assume that maxx∈Xs |x − zt | ≥ ρ0, where

ρ0 := min{diam Xt∗ , diam Xs∗}/η + diam Xt∗ + diam Xs∗

≤ (cg2
−(`−1))1/m(2 + 1/η).

Then
dist(Xt∗ ,Xs∗) ≥ max

x∈Xs

|x − zt | − diam Xt∗ − diam Xs∗

≥ min{diam Xt∗ , diam Xs∗}/η
implies that t∗ × s∗ is admissible. Thus, TI×J cannot contain t × s, which is a
contradiction. It follows that maxx∈Xs |x − zt | < ρ0 ≤ (cg2

−(`−1))1/m(2 + 1/η). From
(16) we obtain that

c r
sp = |{s ∈ TJ : t × s ∈ P}| ≤ 2νcΩcgcG (2 + 1/η)m.

Interchanging the roles of t and s, one shows that cc
sp is bounded by the same constant.
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Many algorithms in the context of hierarchical matrices can be applied blockwise. In this
case, the cost of the algorithm is the sum over the costs of each block. Assume that on
each block the costs are bounded by a constant c > 0. ThenX

t×s∈TI×J

c ≤ c
X
t∈TI

| {s ⊂ J : t × s ∈ TI×J} | ≤ cc r
sp|TI | ≤ ccsp|TI |. (17)

By interchanging the roles of t and s, we also obtain
P

t×s∈TI×J
c ≤ ccsp|TJ |.

If the cost of the algorithm on each block t × s ∈ P is bounded by c(|t|+ |s|), then the
overall cost can be estimated asX

t×s∈TI×J

c(|t|+ |s|) = c
X
t∈T ′

I

X
{s∈TJ :t×s∈TI×J}

|t|+ c
X
s∈T ′

J

X
{t∈TI :t×s∈TI×J}

|s| (18a)

≤ ccsp

0@X
t∈T ′

I

|t|+
X
s∈T ′

J

|s|

1A ≤ ccspL(TI×J)[|I |+ |J|] (18b)

≤ ccsp[L(TI )|I |+ L(TJ)|J|] (18c)

due to (12). Here, T ′
I and T ′

J denote the subtrees of TI and TJ , respectively, which are
actually used to construct TI×J ; i.e.,

T ′
I := {t ∈ TI : there is t′ ⊂ t and s ′ ∈ TJ such that t′ × s ′ ∈ TI×J}.

Bebendorf, Mario (Univ. Leipzig) Kompaktkurs lineare GS und H-Matrizen 24.–27. April 2006 45 / 89



Lemma

Let TI and TJ be cluster trees for the index sets I and J, respectively. For the number of
blocks in a partition L(TI×J) and for the number of vertices in TI×J it holds that

|L(TI×J)| ≤ |TI×J | ≤ 2csp min {|L(TI )|, |L(TJ)|)} .

If |t| ≥ nmin for all t ∈ TI ∪ TJ , then |TI×J | ≤ 2csp min {|I |, |J|} /nmin.

Proof. Estimate (17) applied to |TI×J | =
P

t×s∈TI×J
1 gives |TI×J | ≤ csp min{|TI |, |TJ |}.

Equation (10) states that |TI | ≤ 2|L(TI )| and |TJ | ≤ 2|L(TJ)|.

Lemma

Let TI and TJ be balanced cluster trees. Taking into account requirement (b) on the
admissibility condition, the number of operations for constructing the block cluster tree is
of the order csp[|I | log |I |+ |J| log |J|].

Proof. Use (18) and (11).

The time required to compute an admissible matrix partition can be neglected compared
with the rest of the computation.
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The Set of Hierarchical Matrices

Definition

The set of hierarchical matrices on the block cluster tree TI×J with admissible partition
P := L(TI×J) and blockwise rank k is defined as

H(TI×J , k) =
n

A ∈ CI×J : rank Ab ≤ k for all admissible b = t × s ∈ P
o
.

For the sake of brevity, elements from H(TI×J , k) will be called H-matrices.

Remark

For an efficient treatment of admissible blocks the outer-product representation should be
used. Additionally, it is advisable not to use the maximum rank k but the actual rank of
the respective block as the number of rows and columns. Storing non-admissible blocks
entrywise will increase the efficiency.
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We have already seen that the storage requirements for an admissible block
b = t × s ∈ L(TI×J) of A ∈ H(TI×J , k) are

Nst(Ab) = k(|t|+ |s|).

A non-admissible block Ab, b ∈ P, is stored entrywise and thus requires |t||s| units of
storage. Since min{|t|, |s|} ≤ nmin we have

|t||s| = min{|t|, |s|}max{|t|, |s|} ≤ nmin(|t|+ |s|). (19)

Hence, for storing Ab, b ∈ P, at most max{k, nmin}(|t|+ |s|) units of storage are
required. Using (18), we obtain the following theorem.

Theorem

Let csp be the sparsity constant of the partition P. The storage requirements Nst for
A ∈ H(TI×J , k) are bounded by

Nst(A) ≤ csp max{k, nmin}[L(TI )|I |+ L(TJ)|J|].

If TI and TJ are balanced cluster trees, we have

Nst(A) ∼ max{k, nmin}[|I | log |I |+ |J| log |J|].
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Sparse H-matrices

Although H-matrices are primarily aiming at dense matrices, sparse matrices A which
vanish on admissible blocks are also in H(TI×I , nmin). Since the size of one of the clusters
corresponding to non-admissible blocks is less than or equal to nmin, the rank of each
block Ab does not exceed nmin.
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The following lemma shows that the storage requirements are actually linear.

Lemma

Storing FE matrices A as an H-matrix requires O(n) units of storage.
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Proof. Since A vanishes on admissible blocks, we only have to estimate the number of
non-admissible blocks. Let t ∈ T

(`)
I be a cluster from the `th level of TI . The number of

elements of the set

N(t) :=
n

s ∈ T
(`)
J : η dist(Xt ,Xs) ≤ min{diam Xt , diam Xs}

o
is bounded by a constant since due to (15)

|N(t)|2−`/cG ≤
X

s∈N(t)

µ(Xs) ≤ νµ(XN(t))

≤ νcΩ(diam Xt + η−1 min{diam Xt , diam Xs})d

= νcΩ(1 + 1/η)dcg2
−`

gives |N(t)| ≤ νcgcGcΩ(1 + 1/η)d . Since there are only |TI | ∼ |I | cluster t ∈ TI , we
obtain the desired result.
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Matrix-Vector Multiplication
Multiplying an H-matrix A ∈ H(TI×J , k) or its Hermitian transpose AH by a vector x can
be done blockwise:

Ax =
X

t×s∈P

Atsxs and AHx =
X

t×s∈P

(Ats)
Hxt .

Since each admissible block t × s has the outer product representation Ats = UV H ,
U ∈ Ct×k , V ∈ Cs×k , at most 2k(|t|+ |s|) operations are required to compute the
matrix-vector products Atsxs = UV Hxs and (Ats)

Hxt = VUHxt . If t × s is non-admissible,
then Ats is stored entrywise and min{|t|, |s|} ≤ nmin. As in (19) we see that in this case
2|t||s| ≤ 2nmin(|t|+ |s|) arithmetic operations are required.

Theorem

For the number of operations NMV required for one matrix-vector multiplication Ax of
A ∈ H(TI×J , k) by a vector x ∈ CJ it holds that

NMV(A) ≤ 2csp max{k, nmin}[L(TI )|I |+ L(TJ)|J|].

If TI and TJ are balanced cluster trees, we have

NMV(A) ∼ max{k, nmin}[|I | log |I |+ |J| log |J|].

Hence, H-matrices are well suited for iterative schemes such as Krylov subspace methods
which the matrix enters only through the matrix-vector product.
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Blockwise and global norms
From the analysis we will usually obtain estimates on each of the blocks b of a partition
P. However, such estimates are finally required for the whole matrix. If we are interested
in the Frobenius norm, blockwise estimates directly translate to global estimates using

‖A‖2
F =

X
b∈P

‖Ab‖2
F .

For the spectral norm the situation is a bit more difficult. We can however exploit the
structure of the partition P together with the following lemma.

Lemma

Consider the following r × r block matrix

A =

264A11 . . . A1r

...
...

Ar1 . . . Arr

375
with Aij ∈ Cmi×nj , i , j = 1, . . . , r . Then it holds that

max
i,j=1,...,r

‖Aij‖2 ≤ ‖A‖2 ≤

 
max

i=1,...,r

rX
j=1

‖Aij‖2

!1/2 
max

j=1,...,r

rX
i=1

‖Aij‖2

!1/2

.
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Theorem

Let P be the leaves of a block cluster tree TI×J . Then for A,B ∈ H(TI×J , k) it holds
that

(a) maxb∈P ‖Ab‖2 ≤ ‖A‖2 ≤ cspL(TI×J)maxb∈P ‖Ab‖2

(b) ‖A‖2 ≤ cspL(TI×J)‖B‖2 provided maxb∈P ‖Ab‖2 ≤ maxb∈P ‖Bb‖2.

Proof. Let A` denote the part of A which corresponds to the blocks of P from the `th
level of TI×J ; i.e.,

(A`)b =

(
Ab, b ∈ T

(`)
I×J ∩ P,

0, else.

Since A` has tensor structure with at most csp per block row or block column, the last
lemma gives ‖A`‖2 ≤ csp max

b∈T
(`)
I×J

∩P
‖Ab‖2, such that

‖A‖2 ≤
L(TI×J )X

`=1

‖A`−1‖2 ≤ csp

L(TI×J )X
`=1

max
b∈T

(`−1)
I×J

∩P

‖Ab‖ ≤ cspL(TI×J)max
b∈P

‖Ab‖2.

The estimate
max
b∈P

‖Ab‖2 ≤ max
b∈P

‖Bb‖2 ≤ ‖B‖2

gives the second part of the assertion.
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Adding H-Matrices
Since H(TI×J , k) is not a linear space, we have to approximate the sum A + B by a
matrix S ∈ H(TI×J , k) if we want to avoid that the rank and hence the complexity grows
with each addition.

use rounded addition on each admissible block;

on non-admissible block, the usual addition is employed.

Since the rounded addition gives a blockwise best approximation, S is a best
approximation in the Frobenius norm

‖A + B − S‖F ≤ ‖A + B −M‖F for all M ∈ H(TI×J , k).

Using the last theorem, this estimate for the spectral norm reads

‖A + B − S‖2 ≤ cspL(TI×J)‖A + B −M‖2 for all M ∈ H(TI×J , k).

The following bound on the number of arithmetic operations results from the complexity
of the rounded addition, (17), and (18).

Theorem

Let A,B ∈ H(TI×J , k). A matrix S ∈ H(TI×J , k) satisfying the above error estimates
can be computed with at most

13cspk
2[L(TI )|I |+ L(TJ)|J|] + 176cspk

3 min{|TI |, |TJ |}

arithmetic operations.
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Preserving Positivity

If the smallest eigenvalue is close to the origin compared with the rounding accuracy, it
may happen that the rounded result becomes indefinite although it should be positive
definite in exact arithmetic.
Assume that Â ∈ CI×I is the Hermitian positive definite result of an exact addition of
two matrices from H(TI×I , k) and let A ∈ H(TI×I , k) be its H-matrix approximant. For
a moment we assume that Â and A differ only on a single off-diagonal block t × s ∈ P.
Then an error matrix EFH , E ∈ Ct×k , F ∈ Cs×k , satisfying

max{‖E‖2, ‖F‖2} ≤
√
ε

is associated with t × s; i.e.,
Ats = Âts − EFH .

Due to symmetry, FEH is the error matrix on block s × t.
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We modify the approximant A in such a manner that the new approximant Ã can be
guaranteed to be positive definite. This is done by adding EEH to Att and FFH to Ass

such that»
Ãtt Ãts

ÃH
ts Ãss

–
:=

»
Att Ats

AH
ts Ass

–
+

»
EEH

FFH

–
=

»
Âtt Âts

ÂH
ts Âss

–
+

»
EEH −EFH

−FEH FFH

–
.

Since »
EEH −EFH

−FEH FFH

–
=

»
−E
F

– »
−E
F

–H

is positive semi-definite, the eigenvalues of Ã are not smaller than those of Â. Therefore,
Ã is Hermitian positive definite and

‖
»
Ãtt Ãts

ÃH
ts Ãss

–
−
»
Âtt Âts

ÂH
ts Âss

–
‖2 = ‖

»
EEH −EFH

−FEH FFH

–
‖2 ≤ ‖E‖2

2 + ‖F‖2
2 ≤ 2ε.
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Note that adding EEH to Att and FFH to Ass leads to a rounding error which in turn has
to be added to the diagonal sub-blocks of t × t and s × s in order to preserve positivity.
For this purpose, we add a positive semi-definite matrix. Let t1 and t2 be the sons of t
and let s1 and s2 be the sons of s. If we define

˜̃Att := Ãtt +

»
−Et1

Et2

– »
−Et1

Et2

–H

= Att + 2

»
Et1E

H
t1 0

0 Et2E
H
t2

–
,

the problem of adding EEH to Att is reduced to adding 2Et1E
H
t1 to At1t1 and 2Et2E

H
t2 to

At2t2 . Applying this idea recursively, adding EEH to Att can finally be done by adding a
multiple of Et′E

H
t′ to the dense matrix block At′t′ for each leaf t′ in TI from the set of

descendants of t.
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We obtain the following two algorithms addsym stab and addsym diag.

procedure addsym stab(t, s, U, V , var A)
if t × s is non-admissible then

add UV H to Ats without approximation;
else

add UV H to Ats using the rounded addition;
denote by EFH the rounding error;
addsym diag(t, E , A);
addsym diag(s, F , A);

endif

The first adds a matrix of low rank UV H to an off-diagonal block t × s while the latter
adds EEH to the diagonal block t × t. Note that we assume that an Hermitian matrix is
represented by its upper triangular part only.

procedure addsym diag(t, E , var A)
if t × t is a leaf then

add EEH to Att without approximation;
else

addsym diag(t1,
√

2Et1 , A);

addsym diag(t2,
√

2Et2 , A);
endif
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Theorem

Let A,B be Hermitian and let λi , i ∈ I , denote the eigenvalues of A + B. Assume that
SH ∈ H(TI×I , k) has precision ε. Using the stabilized rounded addition on each block
leads to a matrix S̃H ∈ H(TI×I , k) with eigenvalues λ̃i ≥ λi , i ∈ I , satisfying

‖A + B − S̃H‖2 ∼ L(TI )|I |ε.

At most (max{k2, nmin}+ nmink)L(TI )|I | operations are needed to construct S̃H.
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Multiplying H-Matrices
Let A ∈ H(TI×J , kA) and B ∈ H(TJ×K , kB) be two hierarchical matrices. We compute
an approximation C of the product in H(TI×K , k̃).
Assume that A and B are subdivided according to their block cluster trees TI×J and
TJ×K :

A =

»
A11 A12

A21 A22

–
, B =

»
B11 B12

B21 B22

–
.

Then AB has the following block structure

AB =

»
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

–
.

Assume that the products AikBkj , i , j , k = 1, 2, each of which has half the size of AB,
have been computed.

Round the sums Ai1B1j + Ai2B2j to rank-k̃ matrices Rij ;

if C has a 2× 2 block structure in TI×K , then Cij := Cij + Rij , i , j = 1, 2.

else: agglomerate »
R11 R12

R21 R22

–
to a single rank-k̃ matrix and add it to C .

The complexity of this multiplication was shown to be of the order k2L2(TI )|I |+ k3|I | for
I = J.
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Hierarchical Inversion
Assume that a block Att is subdivided into sub-blocks in the following way:

Att =

»
At1t1 At1t2

At2t1 At2t2

–
,

where t1 and t2 denote the sons of t in TI . For the exact inverse of Att it holds

A−1
tt =

»
A−1

t1t1
+ A−1

t1t1
At1t2S

−1At2t1A
−1
t1t1

−A−1
t1t1

At1t2S
−1

−S−1At2t1A
−1
t1t1

S−1

–
,

where S denotes the Schur complement S := At2t2 − At2t1A
−1
t1t1

At1t2 of At1t1 in A. Let
T ∈ H(TI×I , k) which together with C is initialized to zero.

procedure invertH(t, A, varC)

if t ∈ L(TI ) then Ctt := A−1
tt is the usual inverse

else
invertH(t1, A, C)
Tt1t2 = Tt1t2 − Ct1t1At1t2
Tt2t1 = Tt2t1 − At2t1Ct1t1
At2t2 = At2t2 + At2t1Tt1t2
invertH(t2, A, C)
Ct1t2 = Ct1t2 + Tt1t2Ct2t2
Ct2t1 = Ct2t1 + Ct2t2Tt2t1
Ct1t1 = Ct1t1 + Tt1t2Ct2t1

The complexity of the computation of the H-inverse is determined by the cost of the
H-matrix multiplication.
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Hierarchical LU Decomposition

Although the hierarchical inversion has almost linear complexity, the following hierarchical
LU decomposition provides a significantly more efficient alternative. .
To define the H-LU decomposition, we exploit the hierarchical block structure of a block
Att , t ∈ TI \ L(TI ):

Att =

»
At1t1 At1t2

At2t1 At2t2

–
=

»
Lt1t1

Lt2t1 Lt2t2

– »
Ut1t1 Ut1t2

Ut2t2

–
,

where t1, t2 ∈ TI denote the sons of t in TI . Hence, the LU decomposition of a block Att

is reduced to the following four problems on the sons of t × t:

(a) Compute Lt1t1 and Ut1t1 from the LU decomposition Lt1t1Ut1t1 = At1t1 ;

(b) Compute Ut1t2 from Lt1t1Ut1t2 = At1t2 ;

(c) Compute Lt2t1 from Lt2t1Ut1t1 = At2t1 ;

(d) Compute Lt2t2 and Ut2t2 from the LU decomposition Lt2t2Ut2t2 = At2t2 − Lt2t1Ut1t2 .

If a block t × t ∈ L(TI×I ) is a leaf, the usual pivoted LU decomposition is employed. For
(a) and (d) two LU decompositions of half the size have to be computed.
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In order to solve (b), i.e., solve a problem of the structure LttBts = Ats for Bts , where Ltt

is a lower triangular matrix and t × s ∈ TI×I , we use a recursive block forward
substitution: If the block t × s is not a leaf in TI×I , from the subdivision of the blocks
Ats , Bts and Ltt into their sub-blocks»

Lt1t1

Lt2t1 Lt2t2

– »
Bt1s1 Bt1s2

Bt2s1 Bt2s2

–
=

»
At1s1 At1s2

At2s1 At2s2

–
one observes that Bts can be found from the following equations

Lt1t1Bt1s1 = At1s1

Lt1t1Bt1s2 = At1s2

Lt2t2Bt2s1 = At2s1 − Lt2t1Bt1s1

Lt2t2Bt2s2 = At2s2 − Lt2t1Bt1s2 ,

which are again of type (b). If on the other hand t × s is a leaf, the usual forward
substitution is applied. Similarly, one can solve (c) by recursive block backward
substitution.
The complexity of the above recursions is determined by the complexity of the
hierarchical matrix multiplication, which can be estimated as O(k2|I | log2 |I |) for two
matrices from H(TI×I , k).
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In the case of positive definite matrices A it is possible to define an H-version of the
Cholesky decomposition of a block Att , t ∈ TI \ L(TI ):

Att =

»
At1t1 At1t2

AH
t1t2 At2t2

–
=

»
Lt1t1

Lt2t1 Lt2t2

– »
Lt1t1

Lt2t1 Lt2t2

–H

.

This factorization is recursively computed by

Lt1t1L
H
t1t1 = At1t1

Lt1t1L
H
t2t1 = At1t2

Lt2t2L
H
t2t2 = At2t2 − Lt2t1L

H
t2t1

using the usual Cholesky decomposition on the leaves of TI×I . The second equation
Lt1t1L

H
t2t1 = At1t2 is solved for Lt2t1 in a similar way as Ut1t2 has previously been obtained

in the LU decomposition.
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Once A has been decomposed, the solution of Ax = b can be found by forward/backward
substitution: LHy = b and UHx = y . Since LH and UH are H-matrices, yt ,
t ∈ TI \ L(TI ), can be computed recursively by solving the following systems for yt1 and
yt2

Lt1t1yt1 = bt1 and Lt2t2yt2 = bt2 − Lt2t1yt1 .

If t ∈ L(TI ) is a leaf, a usual triangular solver is used. The backward substitution can be
done analogously. These substitutions are exact and their complexity is determined by
the complexity of the hierarchical matrix-vector multiplication, which is O(k|I | log |I |) for
multiplying an H(TI×I , k)-matrix by a vector.

NOTE:

We have assumed that the blockwise rank k required for a given approximation
accuracy stays bounded during the computation;

For elliptic problems the required rank can be proved to depend logarithmically on n
and on the accuracy ε.
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Adaptive Cross Approximation (Computation of Approximants for BEM)

We assume that a partition has been generated. Blocks b ∈ P which do not satisfy (7)
are generated and stored without approximation. All other blocks b ∈ P satisfy (7) and
can be treated independently from each other. Therefore, in the rest of this section we
focus on a single block of a discrete integral operator

Ats = Λ1,tAΛ∗2,s

which is identified with A ∈ Rm×n.
The idea of the algorithm is as follows. Starting from R0 := A, find a nonzero pivot in
Rk , say (ik , jk), and subtract a scaled outer product of the ikth row and the jkth column:

Rk+1 := Rk − [(Rk)ik jk ]
−1(Rk)1:m,jk (Rk)ik ,1:n, (20)

where we use the notations (Rk)i,1:n and (Rk)1:m,j for the ith row and the jth column of
Rk , respectively. It will turn out that jk should be chosen the maximum element in
modulus of the ikth row; i.e.,

|(Rk−1)ik jk | = max
j=1,...,n

|(Rk−1)ik j |.

The choice of ik is a bit more delicate.
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Example

We apply two steps of equation (20) to the following matrix R0. The bold entries are the
chosen pivots.

R0 =

26664
0.431 0.354 0.582 0.417 0.455
0.491 0.396 0.674 0.449 0.427
0.446 0.358 0.583 0.413 0.441
0.380 0.328 0.557 0.372 0.349
0.412 0.340 0.516 0.375 0.370

37775 i1=1
j1=3
−→

1

0.582

26664
0.582
0.674
0.583
0.557
0.516

37775
26664

0.431
0.354
0.582
0.417
0.455

37775
T

,

R1 =

26664
0 0 0 0 0

−0.008 −0.014 0 −0.033 −0.100
0.014 0.003 0 −0.004 −0.014
−0.032 −0.011 0 −0.026 −0.087
0.029 0.025 0 0.005 −0.034

37775 i2=2
j2=5
−→

1

−0.1

26664
0

−0.100
−0.014
−0.087
−0.034

37775
26664
−0.008
−0.014

0
−0.033
−0.100

37775
T

,

R2 =

26664
0 0 0 0 0
0 0 0 0 0

0.016 0.005 0 0.000 0
−0.02 0.001 0 0.002 0
0.032 0.030 0 0.017 0

37775 i3=3
j3=1
−→

1

0.016

26664
0
0

0.016
−0.02
0.032

37775
26664

0.016
0.005

0
0.000

0

37775
T

Apparently, the size of the entries decreases from step to step.
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Since in the kth step only the entries in the jkth column and the ikth row of Rk are used
to compute Rk+1, there is no need to build the whole matrix Rk .

Let k = 1; Z = ∅;
repeat

find ik as described later on
ṽk := aik ,1:n

for ` = 1, . . . , k − 1 do ṽk := ṽk − (u`)ik v`

Z := Z ∪ {ik}
if ṽk does not vanish then

jk := argmaxj=1,...,n|(ṽk )j |; vk := (ṽk )−1
jk

ṽk

uk := a1:m,jk
for ` = 1, . . . , k − 1 do uk := uk − (v`)jk u`.
k := k + 1

until the stopping criterion (21) is fulfilled or Z = {1, . . . , m}

The matrix Sk :=
Pk

`=1 u`v
T
` will be used as an approximation of A = Sk + Rk .

Obviously, the rank of Sk is bounded by k.
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Let ε > 0 be given. The following condition on k

‖uk+1‖2 ‖vk+1‖2 ≤
ε(1− η)

1 + ε
‖Sk‖F (21)

can be used as a stopping criterion. Assume that ‖Rk+1‖F ≤ η‖Rk‖F with η from (7),
then

‖Rk‖F ≤ ‖Rk+1‖F + ‖uk+1v
T
k+1‖F ≤ η‖Rk‖F + ‖uk+1‖2 ‖vk+1‖2.

Hence,

‖Rk‖F ≤
1

1− η
‖uk+1‖2 ‖vk+1‖2 ≤

ε

1 + ε
‖Sk‖F ≤

ε

1 + ε
(‖A‖F + ‖Rk‖F ).

From the last estimate we obtain ‖Rk‖F ≤ ε‖A‖F ; i.e., condition (21) guarantees a
relative approximation error ε.
Due to (2), the Frobenius norm of Sk can be computed with O(k2(m + n)) complexity.
Therefore, the amount of numerical work required by Algorithm 7.1 is of the order
|Z |2(m + n), which leads to an overall logarithmic-linear complexity due to (18).

Remark

If the costs for generating the matrix entries dominate the algebraic transformations of
Algorithm 7.1, then its complexity scales like |Z |(m + n).
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What remains is to estimate the remainder Rk . For this purpose, the entries of Rk will be
estimated by the approximation error

FΞ
ts := max

j∈s
inf

p∈span Ξ
‖AΛ∗2,j − p‖∞,Yt

in an arbitrary system of functions Ξ := {ξ1, . . . , ξk′} with ξ1 = 1. Note that AΛ∗2,j is an
asymptotically smooth function since supp Λ∗2,j = Xj .
For the linear operators Λ1,i , i = 1, . . . , k ′, corresponding to the first k ′ rows in A we
assume that

det [Λ1,iξj ]i,j=1,...,k′ 6= 0,

which can be guaranteed by the choice of pivoting rows ik .

Theorem

Then for i = 1, . . . ,m and j = 1, . . . , n it holds that

|(Rk)ij | ≤ c(1 + ‖IΞ
k′‖)(1 + 2k)‖ψi‖L1FΞ

ts . (22)
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The similarity of ACA and the LU factorization can be seen from the following
representation

Rk = (I − γkRk−1eke
T
k )Rk−1 = LkRk−1

with the m ×m matrix Lk defined by

Lk =

26666666666664

1
. . .

1
0

− (Rk−1)k+1,k

(Rk−1)kk
1

...
. . .

− (Rk−1)mk

(Rk−1)kk
1

37777777777775
,

which differs from a Gauß matrix only in the position (k, k). It is known that during the
LU decomposition the so-called growth of entries may happen. Note that this is reflected
by the factor 2k in (22). However, this growth is also known to be rarely observable in
practice.
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Numerical Example

In order to show that a thorough implementation of ACA can handle nonsmooth
geometries, we consider the Dirichlet boundary value problem

−∆u = 0 in Ω, u = g on Γ.

Boundary integral equation for the unknown t := ∂νu:

Vt = (
1

2
I +K)g with Vu(y) =

1

4π

Z
Γ

u(x)

|x − y | dsx

and Ku(y) = 1
4π

R
Γ
u(x)∂νx

1
|x−y| dsx . A Galerkin

discretization with piecewise linears ϕj and piecewise
constants ψi leads to

Vx = b, b = (
1

2
M + K)g̃ ,

where for i = 1, . . . , n′ and j = 1, . . . , n

Vij = (Vψj , ψi )L2(Γ), Kij = (Kϕj , ψi )L2(Γ), and Mij = (ϕj , ψi )L2(Γ).

Furthermore, g̃ ∈ Rn is the vector minimizing ‖g −
Pn

j=1 g̃jϕj‖L2(Γ). The solution x

defines an approximation th :=
Pn′

i=1 xiψi of t.
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Since V is coercive, its Galerkin stiffness matrix V is symmetric positive definite. Hence,
in contrast to the H-matrix approximant KH to K , we may generate only the upper
triangular part of the approximant VH to V .

n = 28 968 n = 115 872
η time MB ratio time MB ratio

0.8 316s 259 8.1% 1 567s 1 264 2.5%
1.0 253s 204 6.4% 1 251s 995 1.9%
1.2 217s 173 5.4% 1 208s 967 1.9%
1.4 208s 162 5.1% 2 812s 2 513 4.9%

Table: Approximation results for V and ε = 110−4.

n = 28 968 n = 115 872
η time MB ratio time MB ratio

0.8 2 334s 543 17.4% 11 651s 2 789 5.5%
1.0 1 943s 443 14.2% 9 517s 2 264 4.4%
1.2 1 711s 386 12.3% 8 788s 2 119 4.2%
1.4 2 001s 475 15.2% 21 260s 6 222 12.2%

Table: Approximation results for K and ε = 110−4.

For the computation of the singular integrals we have used O. Steinbach’s semi-analytic
quadrature routines OSTBEM.
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Helmholtz’ equation
Boundary integral formulations can be derived and are particularly useful for Helmholtz’
equation

−∆u − ω2u = 0 in Ωc ,

u = 1 on ∂Ω,

where Ω ⊂ Rd is a bounded domain and Ωc = Rd \ Ω.
The mesh size h has to be chosen such that ωh is constant when discretizing ∂Ω. As a
consequence, k ∼ h−1 ∼ n1/(d−1) and methods based on low-rank approximants will not
be able to achieve logarithmic-linear complexity for large ω. In the next table we compare
the required rank for a prescribed accuracy ε = 110−4 of ACA applied to an admissible
sub-block with the low-rank approximant resulting from the SVD for increasing wave
numbers ω.

SVD ACA
ω matrix size k time k time
20 8× 16 8 0.00s 8 0.00s
25 15× 31 10 0.00s 13 0.00s
50 125× 250 19 0.05s 26 0.00s

100 1000× 2000 37 32.51s 42 0.05s
200 8000× 16000 – – 84 2.13s
400 64000× 128000 – – 175 100.82s
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Using Hierarchical Matrices for Preconditioning

Consider a sequence of linear systems

Anxn = bn, n →∞, (23)

where each An ∈ Cn×n is invertible.

convergence of Krylov subspace methods is determined by the distribution of
eigenvalues of An;

eigenvalues determined by mapping properties of the underlying differential or
integral operator A;

a large condition number can arise even for small n.

Therefore, if (23) is to be solved iteratively, one has to incorporate a preconditioner.

IDEA:

generate preconditioners C from low-accuracy approximations of the inverse of A:
C ≈ A−1;

Usually more efficient: approximate LU decomposition C = (LHUH)−1.

How much accuracy is required for preconditioning ?

Bebendorf, Mario (Univ. Leipzig) Kompaktkurs lineare GS und H-Matrizen 24.–27. April 2006 75 / 89



Hermitian positive definite coefficient matrices

Use preconditioned conjugate gradient method (PCG) to solve Hermitian positive definite
systems.
The condition

‖I − AHC‖2 ≤ ε < 1, (24)

in which ε does not depend on n, leads to an well-conditioned matrix AHC .
The following lemma provides an estimate on the precision ε of the preconditioner.

Lemma

Assume that (24) holds. Then

cond2(AHC) = ‖AHC‖2‖(AHC)−1‖2 ≤
1 + ε

1− ε
.

Proof. The assertion follows from the triangle inequality

‖AHC‖2 ≤ ‖I‖2 + ‖I − AHC‖2 ≤ 1 + ε

and from the Neumann series

‖(AHC)−1‖2 ≤
∞X

k=0

‖I − AHC‖k
2 =

1

1− ε
.
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The choice ε = 0.5, for instance, guarantees that cond2(AHC) ≤ 3.
→ problem independent convergence rates.
In order to be able to apply PCG, C additionally needs to be Hermitian positive definite.
It is interesting to see that this is already guaranteed by condition (24).

Lemma

Assume that AH is Hermitian positive definite. Then any Hermitian matrix C satisfying
(24) is positive definite, too.

Proof. According to the assumptions, the square root A
1/2
H of AH is defined. Since AHC

is similar to the Hermitian matrix A
1/2
H CA

1/2
H , the eigenvalues of AHC are real. Moreover,

for the smallest eigenvalue of A
1/2
H CA

1/2
H it follows that

λmin(A
1/2
H CA

1/2
H ) = λmin(AHC) ≥ 1− ε.

Let x 6= 0 and y = A
−1/2
H x . Then y 6= 0 and we have

xHCx = yHA
1/2
H CA

1/2
H y ≥ (1− ε)‖y‖2

2 > 0,

which proves that C is positive definite.
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From the approximation by H-matrices usually error estimates of the form

‖AH − C−1‖2 ≤ ε‖AH‖2 or ‖A−1
H − C‖2 ≤ ε‖A−1

H ‖2 (25)

instead of (24) are satisfied.

Lemma

Assume that (25) holds with ε > 0 such that ε cond2(AH) < 1. Then

cond2(AHC) ≤ 1 + ε cond2(AH)

1− ε cond2(AH)
.

Proof. Assume first that ‖AH − C−1‖2 ≤ ε‖AH‖2. Since

‖I − (AHC)−1‖2 = ‖(AH − C−1)A−1
H ‖2 ≤ ε ‖AH‖2‖A−1

H ‖2 = ε cond2(AH),

one can apply the proof of the second last lemma with AHC replaced by (AHC)−1.
If ‖A−1

H − C‖2 ≤ ε‖A−1
H ‖2, then

‖I − AHC‖2 = ‖AH(A−1
H − C)‖2 ≤ ε ‖AH‖2‖A−1

H ‖2 = ε cond2(AH)

gives the assertion.
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The stronger condition ε cond2(AH) < 1 implies that ε→ 0 if AH is not well-conditioned.
This will NOT destroy the almost linear complexity since it will be seen that the
complexity of the H-matrix approximation depends logarithmically on the accuracy ε.

In the non-Hermitian case, not the spectral condition number of the coefficient matrix but
the distance of a cluster of eigenvalues to the origin usually determines the convergence
rate of appropriate Krylov subspace methods such as GMRes, BiCGStab, and MinRes.
For the convergence of GMRes, for instance, the numerical range

F (AHC) :=
n

xHAHCx : x ∈ Cn, ‖x‖2 = 1
o

of AHC is of particular importance. It is known that

‖b − AHxk‖2 ≤ 2

„
r

|z |

«k

‖b‖2

provided F (AHC) ⊂ Br (z), where Br (z) denotes the closed disc around z with radius r .
Condition (24) implies that F (AHC) ⊂ Bε(1), which follows from

|xHAHCx − 1| = |xH(AHC − I )x | ≤ ‖I − AHC‖2 ≤ ε for all x ∈ Cn, ‖x‖2 = 1.

Therefore, (24) also leads to a problem-independent convergence

‖b − AHxk‖2 ≤ 2εk‖b‖2

of GMRes.
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Industrial Applications

In the following numerical results we will use

C := U−1
H L−1

H

as an explicit preconditioner.
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Figure: Low-precision Cholesky decomposition.

If AH is Hermitian positive definite, C := L−T
H L−1

H is used as a preconditioner.
The ability to compute preconditioners from the matrix approximant AH in a black-box
way is one of the advantages of H-matrices over fast multipole methods.
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The first example is the boundary integral equation

1

2
u(y) +

Z
Γ

u(x)
(νx , y − x)

|x − y |3 dsx =

Z
Γ

∂νx u(x)

|x − y | dsx , y ∈ Γ,

with given Neumann boundary condition ∂νu = g on the surface Γ. The dimension of the
coefficient matrix A arising from a collocation method is n = 3760. Since the kernel of A
is one-dimensional (the surface is simply connected), the extended system»

A v
wT 0

– »
x
λ

–
=

»
b
0

–
(26)

with v 6∈ Im A and w ∈ Ker A, which is uniquely solvable, has to be considered instead.
Note that (26) arises from adding the auxiliary condition x ⊥ Ker A by Lagrangian
multipliers.

Figure: Device with electric potential (by courtesy of ABB Schweiz AG).
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In the following table we compare the results obtained by fast methods and a standard
solution strategy; i.e., A is built without approximation and the augmented system (26) is
solved using Gaussian elimination. For the kernel vectors we have used
v = w = (1, . . . , 1)T .

storage CPU time
matrix precond. matrix precond. solution

standard 108 MB 575.6s 1108.4s
Mbit 42 MB 149.1s 1273.2s
ACA 26 MB 12 MB 55.7s 1.7s 1.3s

In the row “Mbit”, the results using an implementation of the fast multipole method can
be found.
The preconditioner was computed from the approximant AH of A with precision δ = 0.1.
Although the double-layer potential operator is asymptotically well conditioned, the
augmented coefficient matrix is ill-conditioned even for small problem sizes. This is due
to the geometry and its discretization with strongly non-uniform triangles.
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Mixed boundary value problems

We consider the following device, which is connected to an electric source of opposite
voltages on the dark parts of the left picture.

The discrete single-layer potential operator V and the discrete hypersingular operator D
are symmetric positive definite matrices. Hence, the coefficient matrix

A :=

»
−V K
KT D

–
is symmetric and non-singular since the Schur complement S := D + KTV−1K of −V in
A is symmetric positive definite.
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We employ the preconditioner

C := Û−1

»
L−T

1

L−T
2

–
, where Û :=

»
I −L−T

1 X
I

–
and L1 and L2 denote lower triangular H-matrices such that

‖I − (L1L
T
1 )−1V ‖2 < δ, ‖I − (L2L

T
2 )−1D‖2 < δ,

and X is an H-matrix satisfying ‖K − L1X‖2 < δ.
Note that L2 is defined to be the approximate Cholesky factor of D but not of D + XTX ;
i.e., instead of approximating the original coefficient matrix A, CTC approximates the
matrix »

−V K
KT D − KTV−1K

–−1

.

Theorem

The eigenvalues of CTAC are contained in

[−1− cδ,−1 + cδ] ∪ [γ−1
3 (1− cδ), 1 + cδ],

where c := 4(cK + 2)max{‖V−1‖2, ‖D−1‖2}max{1, δ(cK + 2)‖V−1‖2}+ 1.
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Since CTAC is symmetric indefinite, we employ MinRes for the iterative solution of the
preconditioned linear system. For the kth residual vector rk it holds that

‖rk‖ ≤ 2

 p
(a− ρ)(b + ρ)−

p
(a + ρ)(b − ρ)p

(a− ρ)(b + ρ) +
p

(a + ρ)(b − ρ)

!k/2

‖r0‖, k = 1, 2, . . . ,

where the spectrum is assume to be enclosed in positive and negative intervals
[−a− ρ,−a + ρ] ∪ [b − ρ, b + ρ]. In order to obtain a convergence rate which is
independent of the discretization, we therefore have to guarantee that cδ < 1

2
.

n = 5154 n = 20 735
precond. solution precond. solution

δ time MB #It time δ time MB #It time
510−2 1.9s 6.7 11 0.5s 510−3 22.5s 35.6 9 3.0s
110−1 1.5s 5.6 17 0.6s 110−2 17.7s 34.7 13 4.1s
210−1 1.1s 4.5 23 0.8s 510−2 13.3s 30.5 24 5.9s
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Mixed BVPs with vanishing Dirichlet part
The coarsest discretization of the following surface contains only 4 Dirichlet triangles. If
the Dirichlet part would vanish completely, then the hypersingular operator would not be
coercive at all.

After generating the approximant with accuracy ε = 110−6, we recompress a copy of the
coefficient matrix to a blockwise relative accuracy δ. The hierarchical Cholesky
decomposition fails to compute unless we use a stabilized variant which is based on the
stabilization technique.

n = 3128 n = 12 520
precond. solution precond. solution

δ time MB #It time δ time MB #It time
110−3 2.1s 9.3 55 1.4s 210−4 18.5s 36.0 50 4.8s
210−3 1.8s 8.5 69 1.7s 510−4 16.4s 32.8 71 7.2s
510−3 1.5s 7.5 84 2.1s 110−3 14.1s 30.1 96 8.9s

Iterating without any preconditioner does not converge at all.
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Application to Finite Element Methods
In part we will apply H-matrices to the finite element discretization of elliptic boundary
value problems

Lu = f in Ω,

u = g on ∂Ω

with bounded Lipschitz domains Ω ⊂ Rd , where L is a general uniformly elliptic second
order partial differential operator in divergence form

Lu = −div[C∇u + γu] + β · ∇u + δu

with coefficients cij , βi , γi , δ ∈ L∞(Ω), i , j = 1, . . . , d . The ellipticity of L is expressed by
the assumption that for almost all x ∈ Ω

0 < λL ≤ λ(x) ≤ ΛL

for all eigenvalues λ(x) of the symmetric matrix C(x) ∈ Rd×d with entries cij .

Theorem

Assume that any Schur complement S(b), b ∈ P admissible, of a matrix A can be
approximated by a matrix of rank k with accuracy ε such that k ∼ (log n)α| log ε|β ,
α, β > 0. Then there are lower and upper triangular matrices LH,UH ∈ H(TI×I , k

′) with

k ′ ∼ (log n)α
h
| log ε|+ (log n)2 + (log n)(log ρncond2(A))

iβ

such that ‖A− LHUH‖2 ≤ ε.
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Comparison with multigrid methods
In the following example we demonstrate that varying coefficients really have an impact
on the convergence properties of multigrid. We investigate the Dirichlet boundary value
problem

−divα(x)∇u = 1 in Ω,

u = 0 on ∂Ω,

on the unit square Ω = (0, 1)× (0, 1), where the coefficient α is defined by

α(x) =

(
a, x ∈ ( 1

8
, 1

4
)× ( 1

8
, 1

4
),

1, else.

Figure: the coefficient α and the coarsest grid T0.

We use piecewise linear ansatz functions and apply the geometric multigrid procedure to
a hierarchy of nested grids T`, ` = 4, 5, 6, 7.
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The convergence rates of the V - and the W -cycle using two Gauss-Seidel steps for pre-
and postsmoothing, respectively, are shown in the following table.

q (V -cycle) q (W -cycle) q (HPCG)
a 4 5 6 7 4 5 6 7 6 7

100 0.110 0.122 0.129 0.131 0.089 0.092 0.087 0.078 0.45 0.49
102 0.798 0.802 0.804 0.805 0.664 0.464 0.234 0.098 0.44 0.49
104 0.998 0.998 0.998 0.998 0.996 0.991 0.983 0.967 0.45 0.49
106 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.43 0.50

Table: Convergence rates q of multigrid and HPCG.

For large a, the convergence of both the V - and the W -cycle slows down significantly,
while HPCG still gives reasonable convergence rates.
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