Theorem 5.5 (Wüst). Let $\overline{A} = A^*$ in \mathcal{H} and let V be a symmetric operator in \mathcal{H} such that $\operatorname{dom} A \subset \operatorname{dom} V$. If there exists an $a \geq 0$ such that $||Vx|| \leq a||x|| + ||Ax||$ holds for all $x \in \operatorname{dom} A$, then A + V is essentially self adjoint.

Caution: The condition in Wüst's theorem is not equivalent to

IVX | Salx | + b | Ax |

Under the last condition, the statement of the theorem is not true in general!

Definition 5.6. A self adjoint operator A in \mathcal{H} is called *semibounded from below*, if there exists a $\gamma \in \mathbb{R}$ such that

"V is A-bounded with A-bound 1."

$$(Ax, x) \ge \gamma ||x||^2$$

holds for all $x \in \text{dom } A$. Each such γ is called *lower bound of A* and we write $A \ge \gamma$ in this case.

Lemma 5.7. Let A be a self adjoint operator in \mathcal{H} . Then $A \geq \gamma$ if and only if $\sigma(A) \subset [\gamma, \infty)$.

$$\frac{\operatorname{Proof}_{1}}{\operatorname{Pon}_{2}} = \operatorname{Pon}_{2} \times \operatorname{Edom}_{2} A$$

$$\frac{\operatorname{Poof}_{1}}{\operatorname{Pon}_{2}} \times \operatorname{Edom}_{2} A$$

$$\frac{\operatorname{Poof}_{1}}{\operatorname{Poof}_{2}} \times \operatorname{Poof}_{2} A$$

$$\frac{\operatorname{Poof}_{2}}{\operatorname{Poof}_{2}} \times \operatorname{Poof}_{2} A$$

$$\frac{\operatorname{Poof}_{2}}{\operatorname{Poof$$

Theorem 5.8. Let $A = A^*$ in \mathcal{H} be bounded from below, $A \geq \gamma_A$. Assume that V is a symmetric operator in \mathcal{H} that is A-bounded with A-bound less than one, i.e. there exist $a \geq 0$ and $b \in (0,1)$ such that

$$\|Vx\| \le a\|x\| + b\|Ax\|$$

holds for all
$$x \in \operatorname{dom} A$$
. Then $A + V$ is bounded from below and
$$\varsigma \cdot a \cdot b = \gamma_A - \max \left\{ \frac{a}{1-b}, a+b|\gamma_A| \right\}$$

is a lower bound for A + V.

Proof By Vato-Rellich ve know that A+V is self adjoint. Let of be defined as in the Keoram. By Lemma 5.7 it sufficient to show that (-00/4) C.P (A+V) For that we use hemma 5.3 and prove for LCB EXA that 1V(A-N-1) < 1 (4) To show (+) ue make first 1V(A-NXII Eal(A-NXII + b | A (A-NXII) for all + EM. as (A-N) + E dom A

=) (-00,0) C P(A+V) =) (-00,0) C P(A+V)

5.2 Compact and finite dimensional perturbations

Definition 5.9. Let $A = A^*$ in \mathcal{H} . The discrete spectrum of A is defined by

$$\sigma_d(A) := \{ \lambda \in \sigma_p(A) : \dim \ker(A - \lambda) < \infty \text{ and } \exists \varepsilon > 0 : (\lambda - \varepsilon, \lambda + \varepsilon) \cap \sigma(A) = \{\lambda\} \}.$$

The essential spectrum of A is

$$\sigma_{ess}(A) = \sigma(A) \setminus \sigma_d(A).$$

The discrete spectrum of A consists of all isolated eigenvalues with finite multiplicity and the essential spectrum of all eigenvalues with infinite multiplicity and all accumulation points of $\sigma(A)$. In particular, we have $\sigma_c(A) \subset \sigma_{ess}(A)$.

In the following we characterize points in the essential spectrum. For that we repeat two facts from basic functional analysis:

- (i) A sequence $(x_n) \subset \mathcal{H}$ is called weakly convergent to $x \in \mathcal{H}$ (notation: $x_n \to x$), if for all $y \in \mathcal{H}$ the relation $(x_n, y) \to (x, y)$ holds for $n \to \infty$. E.g. by the Bessel inequality each infinite orthonormal system converges weakly to zero.
- (ii) An operator $K \in \mathcal{L}(\mathcal{H})$ is called *compact* (notation $K \in \mathfrak{S}_{\infty}$), if it maps bounded sets onto relatively compact sets. This is equivalent to the fact that for any bounded sequence $(x_n) \subset \mathcal{H}$ there exists a subsequence (x_{n_k}) such that (Kx_{n_k}) is convergent in \mathcal{H} . Another equivalent condition is that $x_n \rightharpoonup x$ implies $Kx_n \to Kx$ in \mathcal{H} .

Recall that any operator with dim ran $K < \infty$ is compact. Moreover, if $K \in \mathfrak{S}_{\infty}$ and $A \in \mathcal{L}(\mathcal{H})$, then $AK \in \mathfrak{S}_{\infty}$ and $KA \in \mathfrak{S}_{\infty}$.

Proposition 5.10. Let $A = A^*$ in \mathcal{H} and let $\lambda \in \mathbb{R}$. Then the following is equivalent:

- (i) $\lambda \in \sigma_{ess}(A)$;
- (ii) $\exists (x_n) \subset \text{dom } A \text{ with } ||x_n|| = 1, x_n \rightharpoonup 0 \text{ and } (A \lambda)x_n \to 0 \text{ (such a sequence } (x_n) \text{ is called singular sequence)};$
- (iii) dim ran $E_{(\lambda-\varepsilon,\lambda+\varepsilon)} = \infty$ for all $\varepsilon > 0$.