

Exercise 25

Let $A = A^* \in \mathcal{L}(\mathcal{H})$ and let $E : \Sigma \to \mathcal{L}(\mathcal{H})$ be the spectral measure associated to A. Moreover, let $B \in \Sigma$ and set $\mathcal{H}_B := \operatorname{ran} E_B$. Show that the following statements hold:

- (i) $A\mathcal{H}_B \subset \mathcal{H}_B, \, \mathcal{H}_B^{\perp} = \operatorname{ran} E_{\mathbb{R}\setminus B} \text{ and } A\mathcal{H}_B^{\perp} \subset \mathcal{H}_B^{\perp}.$
- (ii) $A_B := A \upharpoonright \mathcal{H}_B$ is bounded and self-adjoint in \mathcal{H}_B .¹
- (iii) $(\sigma(A) \cap B^{\circ}) \subset \sigma(A_B) \subset (\sigma(A) \cap \overline{B})$, where B° is the interior part of B.

HINT FOR (iii): How does the spectral measure associated to A_B look like?

Exercise 26

For an operator $A = A^* \in \mathcal{L}(\mathcal{H})$ in a Hilbert space \mathcal{H} with spectral measure $B \mapsto E_B$ its *compression*² A_B to ran E_B is well-defined for each Borel set $B \subseteq \mathbb{R}$, cf. exercise 25. Find examples such that

- (i) $\partial B \subseteq \sigma(A_B)$ and
- (ii) $\partial B \cap \sigma(A_B) = \emptyset$.

HINT: Multiplication operators in $L^2(\mathbb{R})$ can do the job.

Exercise 27

Let E be a spectral measure in the Hilbert space \mathcal{H} .

- (i) Let $x \in \mathcal{H}$ be fixed. Show that the map $\Sigma \ni B \to (E_B x, x) \in \mathbb{R}$ is a measure.
- (ii) Assume that E has compact support and that $A = A^* \in \mathcal{L}(\mathcal{H})$ is the self adjoint operator associated to E. Show that for any bounded and measurable function f the following formula holds:

$$\int_{\mathbb{R}} |f(\lambda)|^2 d(E(\lambda)x, x) = \|f(A)x\|^2.$$

Exercise 28

Let A and V be linear operators in the Hilbert space \mathcal{H} . Show that V is A-bounded if and only if dom $A \subset \operatorname{dom} V$ and there exist $\alpha, \beta \geq 0$ such that

$$\|Vx\|^{2} \le \alpha \|x\|^{2} + \beta \|Ax\|^{2}$$

holds for all $x \in \text{dom } A$. Moreover, prove that the infimum over all $\sqrt{\beta}$, such that there exists an α so that the above inequality holds, coincides with the A-bound of V.

¹The inner product in $\mathcal{H}_B := \operatorname{ran} E_B$ is simply the restriction of the inner product in \mathcal{H} to \mathcal{H}_B .

²This means, the operator A is restricted and its restriction is understood as an operator in the smaller space ran E_B .

Exercise 29

Consider in ℓ^2 the operator A given by

$$A(x_n)_{n \in \mathbb{N}} = (nx_n)_{n \in \mathbb{N}}, \quad \operatorname{dom} A = \{(x_n)_{n \in \mathbb{N}} \in \ell^2 : (nx_n)_{n \in \mathbb{N}} \in \ell^2\}.$$

Then $A = A^*$, cf. exercise 13. Consider in ℓ^2 the operator

$$V(x_n)_{n\in\mathbb{N}} = (\sqrt{n}x_n)_{n\in\mathbb{N}}, \quad \mathrm{dom}\, V = \{(x_n)_{n\in\mathbb{N}} : (\sqrt{n}x_n)_{n\in\mathbb{N}} \in \ell^2\}.$$

Use the Kato-Rellich theorem to show that A + V is self adjoint.

Exercise 30

Prove or disprove the following statements.

- (i) If A is self adjoint in the Hilbert space \mathcal{H} and V is symmetric and A-bounded with A-bound one, then A + V is self adjoint.
- (ii) If A is self adjoint in \mathcal{H} , V symmetric und $\overline{A+V} = (A+V)^*$ holds, then V is A-bounded.³

³Here the reverse statement of the Kato-Rellich theorem is investigated.