
Chapter 2

Conservation and Balance Equations

In this chapter we consider some applications of Reynold’s transport theorem, Theorem 1.1.
For a balance equation of the general type

d

dt

∫

ω(t)

u(t,y) dy =

∫

ω(t)

f(t,y) dy (2.1)

we find from (1.12)

∫

ω(t)

[
∂

∂t
u(t,y) + divy[u(t,y)v(t,y)]

]
dy =

∫

ω(t)

f(t,y) dy

for all control volumina ω(t) ⊂ Ω(t). Hence, for continuous integrands,

∂

∂t
u(t,y) + divy[u(t,y)v(t,y)] = f(t,y) for y ∈ Ω(t) (2.2)

follows.

2.1 Conservation of Volume

For an arbitrary domain ω(t) we define the volume

Vω(t) :=

∫

ω(t)

dy,

and the conservation of volume states

Vω(t) = Vω(t0) for all t > t0,

i.e.
d

dt
Vω(t) =

d

dt

∫

ω(t)

dy = 0.
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When comparing this with (2.1), this corresponds to u(t,y) = 1 and f(t,y) = 0, and
therefore we obtain from (2.2) the partial differential equation

divyv(t,y) = 0 for y ∈ Ω(t), (2.3)

which describes incompressible materials or fluids. The conservation of volume also implies
∫

ω(t)

dy =

∫

ω(t0)

J(t) dx =

∫

ω(t0)

dx

for all t > t0, and for all controll volumina ω(t0), and therefore

J(t) = 1 for all t > t0 (2.4)

follows.

2.2 Conservation of Mass

The mass of material with mass density ̺(t,y) in an arbitrary domain ω(t) is given by

Mω(t) :=

∫

ω(t)

̺(t,y) dy .

The conservation of mass states

Mω(t) = Mω(t0) for all t > t0,

i.e.
d

dt
Mω(t) =

d

dt

∫

ω(t)

̺(t,y) dy = 0 .

When comparing this with (2.1) this corresponds to u(t,y) = ̺(t,y) and f(t,y) = 0, and
therefore we obtain from (2.2) the continuity equation

∂

∂t
̺(t,y) + divy[̺(t,y)v(t,y)] = 0 for y ∈ Ω(t). (2.5)

By using (1.6) we further obtain

∂

∂t
̺(t,y) + divy[̺(t,y)v(t,y)] =

∂

∂t
̺(t,y) +∇y̺(t,y) · v(t,y) + ̺(t,y) divyv(t,y)

=
d

dt
̺(t,y) + ̺(t,y) divyv(t,y).

Hence we can write the continuity equation (2.5) as

d

dt
̺(t,y) + ̺(t,y) divyv(t,y) = 0 for y ∈ Ω(t). (2.6)
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In particular for incompressible materials we have divyv(t,y) = 0 and therefore

d

dt
̺(t,y) = 0 for y = ϕ(t,x), x ∈ Ω,

follows.
The conservation of mass also implies

∫

ω(t)

̺(t,y) dy =

∫

ω(t0)

̺(t,ϕ(t,x)) J(t) dx =

∫

ω(t0)

̺(t0,x) dx

for all ω(t0) ⊂ Ω, and therefore

̺0(x) := ̺(t0,x) = ̺(t,ϕ(t,x)) J(t) for x ∈ Ω. (2.7)

2.3 An Auxiliary Result

Next we consider the application of Reynolds transport theorem, the conservation of mass
(2.5) and (1.6) to compute, for a scalar function f(t,y) : R× R

n → R,

d

dt

∫

ω(t)

̺(t,y)f(t,y) dy =

∫

ω(t)

[
∂

∂t
(̺(t,y)f(t,y)) + divy(̺(t,y)f(t,y)v(t,y))

]
dy

=

∫

ω(t)

[
f(t,y)

(
∂

∂t
̺(t,y) + divy(̺(t,y)v(t,y))

)

+̺(t,y)

(
∂

∂t
f(t,y) + v(t,y) · ∇yf(t,y)

)]
dy

=

∫

ω(t)

̺(t,y)

(
∂

∂t
f(t,y) + v(t,y) · ∇yf(t,y)

)
dy

=

∫

ω(t)

̺(t,y)
d

dt
f(t,y)dy.

i.e.,
d

dt

∫

ω(t)

̺(t,y)f(t,y) dy =

∫

ω(t)

̺(t,y)
d

dt
f(t,y) dy. (2.8)

2.4 Balance of Linear Momentum

The postulate of balance of linear momentum is the statement that the rate of change of
linear momentum of a fixed mass of a body is equal to the sum of the forces acting on the
body, i.e. for i = 1, . . . , n we have

d

dt

∫

ω(t)

̺(t,y)vi(t,y) dy =

∫

ω(t)

̺(t,y)fi(t,y) dy +

∫

∂ω(t)

ti(t,y,n) dsy ,
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where t(t,y,n) is the Cauchy stress vector for y ∈ ∂ω(t), and n is the exterior normal
vector on the boundary of the test volumen ω(t). Note that there holds

t(t,y,−n) = −t(t,y,n). (2.9)

The application of Reynold’s transport theorem (Theorem 1.1) gives, by using (2.8),

d

dt

∫

ω(t)

̺(t,y)vi(t,y) dy =

∫

ω(t)

̺(t,y)
d

dt
vi(t,y) dy,

and we obtain
∫

ω(t)

[
̺(t,y)

d

dt
vi(t,y)− ̺(t,y)fi(t,y)

]
dy =

∫

∂ω(t)

ti(t,y,n) dsy. (2.10)

In what follows we aim to rewrite the integral balance (2.10) in form of a partial differential
equation. For this we have to transform the surface integral into a domain integral, for
which we introduce a reformulation of the Cauchy stress vector t(t,y,n) first.

Lemma 2.1 The Cauchy stress vector t(t,y,n) can be written as

t(t,y,n) = T (t,y)n (2.11)

where T (t,y) is the Cauchy stress tensor.

Proof: We consider the two–dimensional case first. Let ω(t) be some test volumen with
boundary ∂ω(t). Let y0 ∈ ∂ω be arbitrary but fixed. We assume, without loss of generality,
that we can write the exterior normal vector n0 in y0 as

n0 = n1e1 + n2e2, n1 > 0, n2 > 0,

where the ek, k = 1, 2, are the Euclidean unit vectors in R
2, see Fig. 2.1. We define a

triangle T (y0) via its nodal points

P 0 = y0, P 1 = y0 − αe1, α > 0, P 2 = y0 − βe2, β > 0,

such that −n0 is the exterior normal vector of the edge E0(P 1,P 2), while e1 is the exterior
normal vector of the edge E1(P 2,y0), and e2 is the exterior normal vector of the edge
E2(y0,P 1), respectively, see Fig. 2.1.
Note that we have

0 = (P 2 − P 1,n0) = (αe1 − βe2, n1e1 + n2e2) = αn1 − βn2 .

Due to n2 > 0 we have

β = α
n1

n2

. (2.12)
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Figure 2.1: Local coordinate system in y0 ∈ ∂ω(t).

For the control volumen T (y0) the balance of linear momentum (2.10) gives, for i = 1, 2,

∫

T (y
0
)

[
̺(t,y)

d

dt
vi(t,y)− ̺(t,y)fi(t,y)

]
dy =

∫

∂T (y
0
)

ti(t,y,n) dsy

=

∫

E0

ti(t,y,−n0) dsy +

∫

E1

ti(t,y, e1) dsy +

∫

E2

ti(t,y, e2) dsy .

When applying the mean value theorem to all integrals this gives
[
̺(t, ỹ)

d

dt
vi(t, ỹ)− ̺(t, ỹ)fi(t, ỹ)

]
area (T (y0))

= ti(t, ỹ0,−n0) |E0|+ ti(t, ỹ1, e1) |E1|+ ti(t, ỹ2, e2) |E2|,

where ỹ ∈ T (y0) and ỹk ∈ Ek, k = 0, 1, 2, are appropriately chosen. By using

|E0| =
√

α2 + β2, |E1| = β, |E2| = α, area (T (y0)) =
1

2
αβ

we further conclude
[
̺(t, ỹ)

d

dt
vi(t, ỹ)− ̺(t, ỹ)fi(t, ỹ)

]
1

2
αβ

= ti(t, ỹ0,−n0)
√
α2 + β2 + ti(t, ỹ1, e1) β + ti(t, ỹ2, e2)α.

By using (2.12) we obtain
[
̺(t, ỹ)

d

dt
vi(t, ỹ)− ̺(t, ỹ)fi(t, ỹ)

]
1

2
α n1

= ti(t, ỹ0,−n0) + ti(t, ỹ1, e1)n1 + ti(t, ỹ2, e2)n2.

In the limiting case α → 0 we therefore conclude

ti(t,y0,−n0) + ti(t,y0, e1)n1 + ti(t,y0, e2)n2 = 0,
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from which

ti(t,y0,n0) = ti(t,y0, e1)n1 + ti(t,y0, e2)n2

= Ti1(t,y0)n1 + Ti2(t,y0)n2

with
Ti1(t,y0) = ti(t,y0, e1), Ti2(t,y0) = ti(t,y0, e2)

follows.
In the three–dimensional case we proceed in the same way. For an arbitrary but fixed

y0 ∈ ∂ω(t) we use the Euclidean unit vectors ek, k = 1, 2, 3, to write the exterior normal
vector n0 in y0 as

n0 = n1e1 + n2e2 + n3e3,

where we assume
nk > 0 for k = 1, 2, 3.

Note that such a configuration is always possible due to appropriately chosen coordinate
transformations to define ω(t). We define a tetrahedron T (y0) via its nodal points

P 0 = y0, P 1 = y0−αe1, α > 0, P 2 = y0−βe2, β > 0, P 3 = y0− γe3, γ > 0,

such that −n0 is the normal vector of the face F0(P 1,P 2,P 3), while ek are the normal
vectors of the faces Fk({P 0,P 1,P 2,P 3}\P k) for k = 1, 2, 3, see also Fig. 2.1.

For the control volumen ω(t) = T (y0) we then have (2.10), i.e. for i = 1, . . . , 3
∫

T (y
0
)

[
̺(t,y)

d

dt
vi(t,y)− ̺(t,y)fi(t,y)

]
dy =

∫

∂T (y
0
)

ti(t,y,ny) dsy

=

3∑

k=1

∫

Fk

ti(t,y, ek) dsy +

∫

F0

ti(t,y,−n0) dsy .

When applying the mean value theorem to all integrals this gives
[
̺(t, ỹ)

d

dt
vi(t, ỹ)− ̺(t, ỹ)fi(t, ỹ)

]
vol(T (y0)) = (2.13)

=

3∑

k=1

ti(t, ỹk, ek) area(Fk) + ti(t, ỹ0,−n0) area(F0),

where ỹk ∈ Fk and ỹ ∈ T (y0) are appropriately chosen. The normal vector −n0 of F0 can
be computed from

−n0 =
a× b

|a× b|

where

a = P 3 −P 1 =




α

0
−γ


 , b = P 2 − P 1 =




α

−β

0


 .
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Hence we obtain

nk = (n0, ek) = −
(a× b, ek)

|a× b|

i.e.

nk |a× b| = (b× a, ek) =






βγ

αγ

αβ


 , ek


 ,

and therefore

n1 |a× b| = βγ, n2 |a× b| = αγ, n3 |a× b| = αβ

follows. Note that

area(F0) =
1

2
|a× b| =

1

2

√
[βγ]2 + [αγ]2 + [αβ]2,

and hence we conclude

area(F1) =
1

2
βγ =

1

2
n1 |a× b| = n1 area(F0),

area(F2) =
1

2
αγ =

1

2
n2 |a× b| = n2 area(F0),

area(F3) =
1

2
αβ =

1

2
n3 |a× b| = n3 area(F0).

Now we can write (2.13) as

̺(t, ỹ)

[
d

dt
vi(t, ỹ)− fi(t, ỹ)

]
vol(T (y0))

area(F0)
=

3∑

k=1

ti(t, ỹk, ek)nk + ti(t, ỹ0,−n0) .

Recall that

vol(T (y0)) =
1

6
αβγ.

Hence, when considering the scaling

α = hα̂, β = hβ̂, γ = hγ̂,

we find
vol(T (y0))

area(F0)
=

1

3
h

α̂ β̂ γ̂√
[β̂ γ̂]2 + [α̂ γ̂]2 + [α̂ β̂]2

→ 0 as h → 0 .

Note that all normal vectors remain the same for h → 0. In the limit we therefore obtain

3∑

k=1

ti(t,y, ek)nk + ti(t,y,−n0) = 0
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which is equivalent to, for i = 1, 2, 3,

ti(t,y,n0) =

3∑

k=1

ti(t,y, ek)nk =

3∑

k=1

Tik(t,y)nk

with
Tik(t,y) = ti(t,y, ek) for i, k = 1, 2, 3.

Now, using the representation (2.11) we can write the integral balance of linear momentum
(2.10) as, for i = 1, 2, 3,

∫

ω(t)

[
̺(t,y)

d

dt
vi(t,y)− ̺(t,y)fi(t,y)

]
dy =

∫

∂ω(t)

ti(t,y,n) dsy

=
∫

∂ω(t)

n∑

j=1

Tij(t,y)nj dsy

=

∫

ω(t)

n∑

j=1

∂

∂yj
Tij(t,y) dy .

Since this holds for all test volumina ω(t), we conclude, for continuous functions, the
Cauchy equilibrium equations

̺(t,y)
d

dt
vi(t,y) = ̺(t,y)fi(t,y) +

n∑

j=1

∂

∂yj
Tij(t,y) for i = 1, . . . , n, (2.14)

i.e.

̺(t,y)
d

dt
v(t,y) = ̺(t,y)f(t,y) + divy T (t,y). (2.15)

2.5 Balance of Angular Momentum

To derive symmetry relations of the Cauchy stress tensor T (t,y) as defined in (2.11) we
will consider the balance of angular momentum which is the statement that the rate of
change of angular momentum of a fixed material region arises from the combined torques
on the body. In the absence of body couples, the integral form of the balance of angular
momentum can be written as

d

dt

∫

ω(t)

y × ̺(t,y)v(t,y)dy =

∫

ω(t)

y × ̺(t,y)f(t,y)dy +

∫

∂ω(t)

y × t(t,y,n)dsy. (2.16)

The integral on the left–hand side is the angular momentum of the material body at time
t. The integrals on the right–hand side are the resultant torques due to body and surfaces
forces, respectively.
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Lemma 2.2 For the Cauchy stress tensor as defined in (2.11) there hold the symmetry

relations

T32(t,y) = T23(t,y), T13(t,y) = T31(t,y), T21(t,y) = T12(t,y).

Proof: We first note that

y × [̺(t,y)v(t,y)] = ̺(t,y)[y × v(t,y)],

hence we obtain, by using (2.8),

d

dt

∫

ω(t)

[y × ̺(t,y)v(t,y)] dy =
d

dt

∫

ω(t)

̺(t,y)[y × v(t,y)] dy

=

∫

ω(t)

̺(t,y)
d

dt
[y × v(t,y)] dy .

With the product rule

d

dt
[y × v(t,y)] = v(t,y)× v(t,y) + y ×

d

dt
v(t,y) = y ×

d

dt
v(t,y)

we further conclude

d

dt

∫

ω(t)

y × ̺(t,y)v(t,y) dy =

∫

ω(t)

y × ̺(t,y)
d

dt
v(t,y) dy.

Then the balance of angular momentum reads
∫

ω(t)

y × ̺(t,y)

(
d

dt
v(t,y)− f (t,y)

)
dy =

∫

∂ω(t)

y × t(t,y,n) dsy.

By using (2.11) we can write the surface integral as
∫

∂ω(t)

y × t(t,y,n)dsy =

∫

∂ω(t)

y × [T (t,y)n] dsy

=

∫

∂ω(t)




3∑
k=1

[
y2T3k(t,y)− y3T2k(t,y)

]
nk

3∑
k=1

[
y3T1k(t,y)− y1T3k(t,y)

]
nk

3∑
k=1

[
y1T2k(t,y)− y2T1k(t,y)

]
nk




dsy

=

∫

ω(t)




3∑

k=1

∂

∂yk

[
y2T3k(t,y)− y3T2k(t,y)

]

3∑

k=1

∂

∂yk

[
y3T1k(t,y)− y1T3k(t,y)

]

3∑

k=1

∂

∂yk

[
y1T2k(t,y)− y2T1k(t,y)

]




dy
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=

∫

ω(t)




T32(t,y)− T23(t,y) + y2

3∑

k=1

∂

∂yk
T3k(t,y)− y3

3∑

k=1

∂

∂yk
T2k(t,y)

T13(t,y)− T31(t,y) + y3

3∑

k=1

∂

∂yk
T1k(t,y)− y1

3∑

k=1

∂

∂yk
T3k(t,y)

T21(t,y)− T12(t,y) + y1

3∑

k=1

∂

∂yk
T2k(t,y)− y2

3∑

k=1

∂

∂yk
T1k(t,y)




dy

=

∫

ω(t)




T32(t,y)− T23(t,y)
T13(t,y)− T31(t,y)
T21(t,y)− T12(t,y)


 dy +

∫

ω(t)

y ×

(
3∑

k=1

∂

∂yk
Tik(t,y)

)

i=1,2,3

dy.

Hence we have
∫

ω(t)

y × ̺(t,y)

(
d

dt
v(t,y)− f (t,y)

)
dy =

=

∫

ω(t)




T32(t,y)− T23(t,y)
T13(t,y)− T31(t,y)
T21(t,y)− T12(t,y)


 dy +

∫

ω(t)

y ×

(
3∑

k=1

∂

∂yk
Tik(t,y)

)

i=1,2,3

dy

from which we conclude, by using (2.14),

∫

ω(t)




T32(t,y)− T23(t,y)
T13(t,y)− T31(t,y)
T21(t,y)− T12(t,y)


 dy = 0

for all control volumina ω(t), i.e. there hold the symmetry relations

T32(t,y) = T23(t,y), T13(t,y) = T31(t,y), T21(t,y) = T12(t,y).

2.6 Equilibrium Equations in Reference Coordinates

Next we will rewrite the Cauchy equilibrium equations (2.14) in terms of the reference
coordinates x ∈ Ω. By introducing vectors T i ∈ R

n, i = 1, . . . , n, i.e.,

T i(t,y) =
(
Tij(t,y)

)n
j=1

,

we can rewrite the equilibrium equations (2.14) as

̺(t,y)
d

dt
vi(t,y) = ̺(t,y)fi(t,y) + divyT i(t,y) for i = 1, . . . , n.
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Now, with (1.10) and (1.9) we have

divyT i(t,y) =
1

detF
divx

[
detF F −1T i(t,y)

]
=

1

detF
divxP i(t,x) ,

where
P i(t,x) = detF F−1T i(t,ϕ(t,x)).

With the inverse matrix

F−1 =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 ,

we can write

P i = detF F−1T i

= detF




a11 a12 a13
a21 a22 a23
a31 a32 a33






Ti1

Ti2

Ti3




= detF




a11Ti1 + a12Ti2 + a13Ti3

a21Ti1 + a22Ti2 + a23Ti3

a31Ti1 + a32Ti2 + a33Ti3


 =




Pi1

Pi2

Pi3


 ,

and hence we obtain

P =




P11 P12 P13

P21 P22 P23

P31 P32 P33




= detF




a11T11 + a12T12 + a13T13 a11T21 + a12T22 + a13T23 a11T31 + a12T32 + a13T33

a21T11 + a22T12 + a23T13 a21T21 + a22T22 + a23T23 a21T31 + a22T32 + a23T33

a31T11 + a32T12 + a33T13 a31T21 + a32T22 + a33T23 a31T31 + a32T32 + a33T33




= detF




T11 T12 T13

T21 T22 T23

T31 T32 T33






a11 a21 a31
a12 a22 a32
a13 a23 a33




= detF T F−⊤,

i.e.
P (t, x) := J(t)T (t,ϕ(t,x))F−⊤ (2.17)

defines the first Piola transformation. Hence we have

J(t)̺(t,ϕ(t,x))
d

dt
vi(t,ϕ(t,x)) = J(t)̺(t,ϕ(t,x))fi(t,ϕ(t,x)) + divxP i(t,x),

and with (2.7) this gives

̺0(x)
d

dt
vi(t,ϕ(t,x)) = ̺0(x)fi(t,ϕ(t,x)) + divxP i(t,x), i = 1, . . . , n.
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When using the displacement (1.3) we further compute

d

dt
v(t,y) =

d2

dt2
y(t) =

d2

dt2
ϕ(t,x) =

d2

dt2
[x+ u(t,x)] =

d2

dt2
u(t,x),

and with
f̃i(t, x) := fi(t,ϕ(t,x))

we conclude

̺0(x)
d2

dt2
ui(t,x) = ̺0(x)f̃i(t,x) + divxP i(t,x), i = 1, . . . , n.

Therefore we can rewrite the equilibrium equations (2.15) in Lagrange coordinates as

̺0(x)
d2

dt2
u(t,x) = ̺0(x)f̃(t,x) + divxP (t,x). (2.18)

Although the Cauchy stress tensor T (t,y) is symmetric, see Lemma 2.2, the first Piola
transformation P (t,x) as defined in (2.17) is in general not symmetric. Hence we introduce
the second Piola transformation

Σ(t,x) := F−1P = J(t)F−1T (t,ϕ(t,x))F−⊤ . (2.19)

It remains to find suitable representations of the Cauchy stress tensor T , the first Piola
transform P , and the second Piola transform Σ, respectively.


