Chapter 2

Conservation and Balance Equations

In this chapter we consider some applications of Reynold’s transport theorem, Theorem 1.1.

For a balance equation of the general type

p u(t,y)dy = f(t,y)dy
w(t) w(t)

we find from (1.12)

[ [+ divuteypie | ay = [

for all control volumina w(t) C §2(t). Hence, for continuous integrands,

5 y) +divyu(t, y)u(t,y)] = f(ty) fory € Q)

follows.

2.1 Conservation of Volume

For an arbitrary domain w(t) we define the volume

Vw(t) = / dy7
w(t)

and the conservation of volume states
Vw(t) = Vw(to) for all t > to,

1.e.

_Vw(t) — dy = 0.

| f(t,y)dy

(2.1)

(2.2)
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When comparing this with (2.1), this corresponds to u(t,y) = 1 and f(t,y) = 0, and
therefore we obtain from (2.2) the partial differential equation

divyo(t,y) = 0 fory € Q(t), (2.3)

which describes incompressible materials or fluids. The conservation of volume also implies

/ dy:/ J(t)da::/ dx
w(t) w(to) w(to)

for all t > t,, and for all controll volumina w(ty), and therefore
J(t)=1 forallt >t (2.4)

follows.

2.2 Conservation of Mass

The mass of material with mass density o(t,y) in an arbitrary domain w(t) is given by

My = /( | o(t,y)dy.
w(t

The conservation of mass states
Mw(t) = Mw(to) for all t > tg,
1.e.
d d

My = — ty)dy = 0.
M = - w(t)@(,y) y =0

When comparing this with (2.1) this corresponds to u(t,y) = o(t,y) and f(¢,y) = 0, and
therefore we obtain from (2.2) the continuity equation

%g(t, y) +divy[o(t,y)v(t,y)] = 0 fory € Q(t). (2.5)

By using (1.6) we further obtain
0 ) 0 i
&Q(t’ y) +divyo(t, y)v(t,y)] = &Q(t’ y)+ Vyo(t,y) -v(t,y) + o(t,y) divyo(t, y)
d .
= Ee(t, y) + o(t,y) divyv(t, y).

Hence we can write the continuity equation (2.5) as

EQ(t, y) + o(t,y)divyu(t,y) = 0 fory € Q(1). (2.6)
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In particular for incompressible materials we have div,v(t,y) = 0 and therefore

Colty) =0 fory=plta), wen

follows.
The conservation of mass also implies

,Y)dy = ,o(t,x)) J(t)de = 0, ) dx
/M’(t y) dy / olt, o(t,2)) J(1) /w(to)@u )

w(to)

for all w(ty) C 2, and therefore

oo(x) == o(to, @) = o(t, (t,x)) J(t) forx € . (2.7)

2.3 An Auxiliary Result

Next we consider the application of Reynolds transport theorem, the conservation of mass
(2.5) and (1.6) to compute, for a scalar function f(¢,y) : R x R — R,

a .
i eewsaay = [ [Senu)0.0)«dv ot vy iy

- /. .00 (Gottw) + v ott ote. )
+o(t,y) <%f(t, y) +v(t,y) V,f(t, y))} dy
- /w . o(t, y) (% [t y) +v(t,y) - Vyf(t, y)) dy

d
- / 20 G y)y

ie.,

olt,y) f(t,y) dy = / olt.y) L £t ) dy. (2.8)

dt J ) w(t) dt

2.4 Balance of Linear Momentum

The postulate of balance of linear momentum is the statement that the rate of change of
linear momentum of a fixed mass of a body is equal to the sum of the forces acting on the
body, i.e. for : =1,...,n we have

d
N / Q(tvy)vi(tvy) dy = / Q(tvy)fi(tvy) dy + / ti(t’yvn) dSya
dt Jo(r) w(t)

Ow(t)
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where t(t,y,n) is the Cauchy stress vector for y € Ow(t), and m is the exterior normal
vector on the boundary of the test volumen w(t). Note that there holds

The application of Reynold’s transport theorem (Theorem 1.1) gives, by using (2.8),

d

d
E o) Q(ta y)avz(ta y) dy>

Wmmmwwz/’

w(t)

and we obtain
d
/[wmﬂww—wmmw*mzf by dsy. (210
w(t) dt duw(t)

In what follows we aim to rewrite the integral balance (2.10) in form of a partial differential
equation. For this we have to transform the surface integral into a domain integral, for
which we introduce a reformulation of the Cauchy stress vector ¢(t,y, n) first.

Lemma 2.1 The Cauchy stress vector t(t,y,m) can be written as
t(t,y,n)=T(ymn (2.11)
where T'(t,y) is the Cauchy stress tensor.

Proof: We consider the two—dimensional case first. Let w(t) be some test volumen with
boundary dw(t). Let y, € dw be arbitrary but fixed. We assume, without loss of generality,
that we can write the exterior normal vector ng in y, as

Ny = n1e1 +ngey, nq >0, no >0,

where the e, &k = 1,2, are the Euclidean unit vectors in R?, see Fig. 2.1. We define a
triangle T'(y,) via its nodal points

P(]:y07 Plzyo_aela Oé>0, P2:yo_5627 B>07

such that —ny is the exterior normal vector of the edge Ey(P1, Ps), while e; is the exterior
normal vector of the edge E;(Ps,vy,), and ey is the exterior normal vector of the edge
Es(y,, P1), respectively, see Fig. 2.1.

Note that we have

0= (P2 — Pl,no) = (0461 — 562,71161 —+ n2€2) = Qan; — Bn2 .

Due to ny > 0 we have
n
B=a—. (2.12)
U
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Mo

P,

Figure 2.1: Local coordinate system in y, € dw(t).

For the control volumen 7'(y,) the balance of linear momentum (2.10) gives, for i = 1,2,
d
T(Y,) 0T (Yo)

_ / bi(t, Yy —mo) dsy + / Lt y, ) dsy + / Lty €3) dsy
Eo El

Es

When applying the mean value theorem to all integrals this gives

. d ~ ~ -
0.5)50(0.9) ~ o0 D) | aven (Tl
= tl(tv §07 —?'L()) ‘E0| + tl(tv §17 61) ‘E1| + tl(tv §27 62) ‘E2|7
where y € T(y,) and y,, € Ey, k = 0,1,2, are appropriately chosen. By using
1
[Bol = v+ 5% |Ea| =5, |Ea|=a, area(T(y,))= ;a6
we further conclude
. d ~ ~ |1
= tz(tv §07 —’I'L(]) V Oé2 + B2 + tl(tu gla 61) B + tl(tu §27 62) Q.

By using (2.12) we obtain

. d . N |1
o(t, y)—vi(t,y) — o(t, ) fi(t,9)| san,
dt 2
=t;(t, Yo, —m0) +ti(t, Y1, €1) ni + (L, Yo, €2) na.

In the limiting case @ — 0 we therefore conclude

ti(t, Yy, —m0) + ti(t, Yy, e1) n1 + ti(t, yo, €2) ng = 0,
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from which
tz(tv yOv nO) = tl(tv yOv 61) ni + tl(tu y07 62) ng
- El (ta yO)nl + irz’2 (ta yO)n2
with
Ti(t,yy) =ti(t,yg, e1), Tialt,yy) = ti(t, Yy, €2)
follows.

In the three—dimensional case we proceed in the same way. For an arbitrary but fixed
Yo € Ow(t) we use the Euclidean unit vectors ey, k = 1,2, 3, to write the exterior normal
vector mg in y, as
Ny = N1€1 + Ngaes + Nzes,

where we assume
ny >0 fork=1,23.

Note that such a configuration is always possible due to appropriately chosen coordinate
transformations to define w(t). We define a tetrahedron T'(y,) via its nodal points

Py=vy,, P =y,—ae, a>0, Py=y,—pBe, (>0, Ps=1y,—ves, ~v>0,

such that —nyg is the normal vector of the face Fy(Py, Py, P3), while e; are the normal
vectors of the faces Fi.({ Py, Py, Py, P3}\Py) for k = 1,2, 3, see also Fig. 2.1.
For the control volumen w(t) = T'(y,) we then have (2.10), i.e. fori=1,...,3

d
[ |etwguta - sewicw|a = [ ueunis,
T(Yo) T (Y,)
3
-2 / t.y,ex) dsy + / ity o) dsy
k=1 Fo

When applying the mean value theorem to all integrals this gives

(0.5) ot (D) vl (Tla0) = 213

[Q(t, ﬂ)di

3
= Z ti(t, Yy, er) area(Fy) + t;(t, yy, —no) area(Fp),
k=1

where y,, € Fy, and y € T'(y,) are appropriately chosen. The normal vector —ng of Fy can
be computed from

B axb
7 la x b
where
« «
a:P3—P1: 0 s b:P2_P1: _B
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Hence we obtain

B B (a x b, ey)
ng = (n07ek) = |a » b|
1.e.
By
nk|a’><b|:(bxa>ek): ary , €k )
af

and therefore
nilax bl = By, mnglaxbl =ay, nglaxbl = af

follows. Note that

area(Fy) = Sla x b| = /[P + [aaP + (o

and hence we conclude

1 1
area(Fy) = 557 =5m la x b| = n; area(Fp),
1
area(ly) = 57 = 5N la x b| = ng area([y),
1 1
area(F3) = 5@5 = 5ns la x b| = ngarea(Fy).
Now we can write (2.13) as
_[d . 1 vol(T(y) < N ~
t _it> _ita N tzta ) tlta y .
o(t.9) | 5r0t9) — 0. 3)| S0 = S e+ 40—

k=1

Recall that |
vol(T'(y,)) = 59

Hence, when considering the scaling
a=ha, B=hB, ~=Hh,

we find

wlTlw) 1, &P
area(Fp) 3 \/[B\ﬁ]? + [@7]2 + [aBP

Note that all normal vectors remain the same for A — 0. In the limit we therefore obtain

— 0 ash—0.

3

Z tz(ta Yy, ek)nk + tz(t> Y, —’I’L()) =0
k=1
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which is equivalent to, for ¢ =1, 2, 3,

3 3
7y7n0 Ztl 7y7ek ng = Zﬂk(tay)nk
k=1

=1

with
Ek(t>y) = ti(t>y>ek) for Zak = 1>2a3-

Now, using the representation (2.11) we can write the integral balance of linear momentum
(2.10) as, for i = 1,2, 3,

d
/w@ [Q(t )dt vi(t,y) — (t,y)fi(t,y)] dy = /Mt) t:(t, Y, M) dsy
B /t?w(t ZTZ] t.y) " dsy

0
= —T;(t,y)dy.
/w(t) ; dy; ’

Since this holds for all test volumina w(t), we conclude, for continuous functions, the
Cauchy equilibrium equations

o19) St y) = ot W) H09) + Y A Ty(ty) Tori=1n  (214)
— Oy,
1.e. d
ot y) vty y) = ot y) f(t,y) + div, T(t, y). (2.15)

2.5 Balance of Angular Momentum

To derive symmetry relations of the Cauchy stress tensor T'(¢,y) as defined in (2.11) we
will consider the balance of angular momentum which is the statement that the rate of
change of angular momentum of a fixed material region arises from the combined torques
on the body. In the absence of body couples, the integral form of the balance of angular
momentum can be written as

d

— y X ot,y)v(t,y)dy = / y x o(t,y) f(t,y)dy +/ y X t(t,y,n)dsy. (2.16)
dt J ) w(t) Bw(t)

The integral on the left-hand side is the angular momentum of the material body at time
t. The integrals on the right-hand side are the resultant torques due to body and surfaces
forces, respectively.
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Lemma 2.2 For the Cauchy stress tensor as defined in (2.11) there hold the symmetry
relations

Ty(t,y) = Tos(t,y), Tis(t,y) =Tu(t,y), Tu(t,y) =Tt y).
Proof: We first note that

y < [o(t, y)v(t, y)] = ot y)ly x v(t, y)],
hence we obtain, by using (2.8),

d d
— [y x o(t,y)v(t,y)dy = — o(t,y)[ly x v(t,y)| dy
dt w(t) dt w(t)
d
- / olt, ) [y x v(t, )] dy.
w(t) dt

With the product rule

i[y xv(t,y)] =v(t,y) x v(t,y) +y x iv(t,y) =y X iv(t,y)

dt dt dt
we further conclude
d d
— y x ot,y)v(t,y)dy = y x o(t,y)—v(t,y) dy.
dt w(t) w(t) dt

Then the balance of angular momentum reads

d
[ yoten) (Goww = sew)ay = [ yxrtyms,

By using (2.11) we can write the surface integral as

/ Y x t(t,y,n)dsy = / y < [T(t,y)n]dsy
Ow(t) Ow(t)

3 ¢ )
> (veTsr(t, y) — ysTon(t, y) | e
=1 L |
3 _
= / Yo lysTie(t, y) — o Tae(t, y) | ne | dsy
Ow(t) k;l ) -
> (nTor(t, y) — yoTie(t, y) | ne

szsk(t> ’y) - y3T2k(ta y)

e

Il

—
=

NER
&

ysTw(t,y) — nTae(t, y) dy

o
Bl

NE
e

[y

/u(t)

w ||

|

lezk(t> ’y) - y2le(ta y)

a~
I
—
(o))
<
>



28 2. Conservation and Balance Equations

To(t,y) — Tas(t, y) + o Z —T3k — Y3 Z —T2k

= /( | Tis(t,y) — Tt y) + ys Z a—TIk(t7 Y) — Z 8—%T3k(t7 y) | dy
w(t k=1

3
0
To(t,y) — Tia(t.y) + w1 Z —T%( ) -y Y gy Le(t:9)
=1

Tso(t,y) — Tos(t,y) 5.9
= / Tws(t,y) — Ta(t,y) | dy + / yx |y 5o L(t y) dy.
wt) \ Ty (t,y) — Tia(t,y) w(t) =1 Yk i=1,2,3

Hence we have

/w(t)“@(t >(§t (ty) - f(t y))dy _

Tso(t,y) — Tos(t, y) 5.9
= / Tis(t,y) —Ta(t,y) | dy +/ Y X E —Ti(t,y) dy
t wi(t oy

) TZl(tv y) - le(t> ’y) ®

from which we conclude, by using (2.14),

Ts(t,y) — Ta(t,y) |dy =0

/ T32(t7 y) - T23 (tv y)
wO \ Ty (t,y) — Tia(t,y)

for all control volumina w(t), i.e. there hold the symmetry relations

T32(t7 y) = T23(t7 y)v T13(t7 y) = T31 (tv y)7 T21 (t7 y) = T12(t7 y)

2.6 Equilibrium Equations in Reference Coordinates

Next we will rewrite the Cauchy equilibrium equations (2.14) in terms of the reference
coordinates € ). By introducing vectors T; e R", 1 =1,...,n, i.e.,

Ti(t,y) = (sz(t,y)y :

Jj=1

we can rewrite the equilibrium equations (2.14) as

o(t, )i (t,y) = o(t,y)fi(t,y) + div,T;(t,y) fori=1,...,n.
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Now, with (1.10) and (1.9) we have

1
div,Ti(t,y) = ——= div, |detF F~'T;(t,y)| =

detF lemPi(tuw) )

detF
where
P(t,x) = detF F~'T;(t, p(t,x)).

With the inverse matrix
11 a2 13
-1
F~ = Q21 A2z (23 )

a31 Q32 as3

we can write

P, = detFF'T;

a1 a1z ai3 T
= detF | ay ax az T;
as; asy as3 T;
a1 Ty + apTip + a13133 Py
= detF | anTiy +apln+axTs | = P2 |,
az1Ti1 + azTio + aszTis Pi3

and hence we obtain

Pll P12 P13
P = P21 P22 P23
P31 P32 P33

a1 T + aiTio + a13Tis  anTor + araThs + aisTas a1 Ts1 + a1z + ai31is3
= detF | aoThi + apTis + axsTiz anTo + axnTh + aslss  axTs + axlsze + axslss
as1Thi + azeTio + assThis  aziTo1 + aseTho + agsTos  asiTs1 + azaTze + assTiss

Ty T Ti3 a1 G21 asy
= detF | Ty Ty T3 a1z Gz A32
T31 T3 T33 a3 «a23 0433
= detFTF~ ",
ie.
P(t,x) = JO)T(t,p(t,x)) F~" (2.17)

defines the first Piola transformation. Hence we have

J(t)g(ta So(ta w))%vi(t> Qo(ta w)) = J(t)g(ta So(ta iB))f,(t, Qo(ta CIZ)) + diV:cPi(ta CIZ),

and with (2.7) this gives

Qo(w)%vi(t, p(t,x)) = oo(x) fi(t, p(t,x)) + div, P;(t,x), i=1,...,n.
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When using the displacement (1.3) we further compute

ifv(t,y) = d—2y(t) = d—280(t733) = d_z[m +ul(t, z)] = 5_;2

dt ITE ITE ITE u(t, z),

and with B
filt,x) = filt, o(t, )

we conclude
pe

gt ®) = oo(@) filt, ) + divy Pi(t,@), i=1,...,n.

o0 (T)

Therefore we can rewrite the equilibrium equations (2.15) in Lagrange coordinates as

& u(t,x) = oo(x) f(t,x) + div, P(t, x). (2.18)

Qo(flf)ﬁ

Although the Cauchy stress tensor T'(t,y) is symmetric, see Lemma 2.2, the first Piola
transformation P(t, ) as defined in (2.17) is in general not symmetric. Hence we introduce
the second Piola transformation

S(t,x):=F'P=JtF'T(t et x) F". (2.19)

It remains to find suitable representations of the Cauchy stress tensor T, the first Piola
transform P, and the second Piola transform ¥, respectively.



