Chapter 3

Constitutive Relations

In this chapter we derive and discuss constitutive relations for the Cauchy stress tensor T,
for the first Piola transform P, and for the second Piola transform 3, respectively. We
will consider two different approaches, modelling elastic and hyperelastic materials.

3.1 Elastic Materials

In what follows we assume that the Cauchy stress tensor T'(¢,y) is time independent, i.e.

T(ty) =T(y),

and that it is completely determined by the deformation gradient F' = D,p(t, ). In fact,
a material is called elastic, if there exists a response function for the Cauchy stress tensor
such that the constitutive equation

T(y) = R(z, F)

is satisfied. A material is called homogeneous if its response function is independent of the
particular material point x, i.e.

T(y) = R(F).

The constitutive equations must be independent from the observation, i.e. independent of
the particular choice of the coordinate system. Hence we formulate the principle of material
frame indifference: The constitutive laws governing the internal interactions between the
parts of a physical system should not depend on whatever external frame of reference is used
to describe them. In particular, if Q € R**3 is an orthogonal transformation satisfying

QR =Q'Q=1, detQ=1,
for the Cauchy stress vector we then have

t(Qy,Qn) = Qt(y,n).
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For the Cauchy stress tensor we then conclude

T(Qy)Qn = t(Qy,Qn) = Qt(y,n) = QT (y)n

for all n € R?, and therefore
T(Qy) = QT (y)Q'

follows. We finally restrict our considerations to isotropic materials where the material
behavior does not depend on the directions, i.e.

R(FQ) = R(F).

In the case of an elastic, homogeneous and isotropic material we are looking for a response
function R : R3*3 — R3*3 satisfying

R(F)=[R(F)]', R(QF)=QR(F)Q', R(FQ)=R(F) (3.1)

for all F € R3*3, and for all orthogonal transformations Q € R3*3. When considering an
ansatz by means of a power series one easily concludes the symmetric representation

a [FFT} ’ (3.2)

NE

R(F) =

b
Il
o

Although the ansatz
i k
=Y a|FTF|
k=0

is symmetric, due to
i a [ ] i a [FTQTQF} i a [FTF] — R(F),
k=0 k=0 k=0

we easily conclude, that the second requirement in (3.1) is violated. Hence we have to use
the symmetric representation (3.2). Next we will consider a reformulation of the infinite
power series (3.2) by means of a second order polynomial in FF.

The principal invariants of a matrix A € R3*3 are the coefficients ¢1(A), t2(A) and
t3(A) of the characteristic polynomial

det(A — AI) = =X + 1 (A)N? — (AN + 13(A).
If the eigenvalues of the matrix A are given as A;, Ao, and A3, we also have

det(A—=AI) = (A —=N(Aa = N(Ag—N)
=A%+ (A4 A2+ A3)A% — (Mg + AAz + Aads) A + A da)s,
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and therefore we conclude

U1 (A) = )\1 + )\2 + )\3,
L(A) = M2+ AMAz+ Aao)s,
Lg(A) = )\1)\2)\3.
On the other hand,
ap; — A 12 a3
det(A — )\I) = 921 99 — A as3
a3y a32 asz — A

= (a1 — A)(ag2 — N)(ass — A) + arzas3a31 + a13a91a32
—(an - )\)CL23CL32 - (CL22 - )\)CL13CL31 - (CL33 - )\)CL12CL21
= -\ 22 A
= =\ 4 (a11 + ax + azz)\° — (a11a22 + 11033 + A20a33 — G93G32 — A13A31 — Q12021 )
+a11022a33 4 Q12023031 + Q13021032 — A11023032 — Q22013031 — 433012021
implies
11(A) = a1+ an + as;
= tr(A),

12(A) = a11a2 + a11a33 + A200a33 — A23032 — Q13031 — Q12021

1 2 2 2 2
= 5 [(an + a9 + azs3)” — (ajg + a5y + az3 + 2a12a91 + 2613031 + 2a23a32)

1
= S |(ra)? - ur(a?)],
Ls(A) = (11022033 + A12G23G31 + Q13021032 — Q11023032 — A22A13A31 — A33A12021

= det(A).

We also recall the Cayley—Hamilton theorem, which states that a matrix satisfies its own
characteristic polynomial, i.e.

—A3 + L1<A)A2 - L2<A>A + L3<A)I = O,

in particular we have

AP = 11 (A)A% — 1,(A)A + 15(A)T.
Then,
Al = AA® = A[Ll(A)AhLQ(A)Aﬂg(A)I}
= 1(A)A® = 1,(A)A® +15(A)A
= 0(A)][1(A) A7~ (A)A + (AT ]~ 15(A) A% + 15(A)A

= ([n(A) — 12(4)) A% + (15(A) = 11(A)ia(A) ) A + (11(A)ss(A)) 1,
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and by induction we find
A" = g2((A)A® + g1 (L(A)A + qro(L(A))I, k> 0.
Hence we find the Rivlin—Ericksen representation theorem
R(F) = fo(u(B))I + f:(«(B))B + »(u(B)) B* (3-3)

where
B =FF' = [D,p(t,2)[D.p(t, )] (3.4)

is the left Cauchy—Green strain tensor, and the coefficients S (c(B)) are functions in the
invariants of B.
For the second Piola transformation (2.19) we now obtain

Y = detFF'TF '

= detFF'R(F)F'

— detF F! [ o(((B)I + B («(B))B + BQ(L(B))BQ] FT

= detF F~! [BO(L(B))I + B («(B))FF" + 62(L(B))FFTFFT} FT

= detF [Bo(«(B))F'"F~" + B1(u(B))I + B((B))F ' F]

— et [(uB)C ! + BB + f(1(B))C]
where

C =F'F = [D,p(t, )] [Dop(t, )] (3.5)
is the right Cauchy—-Green strain tensor. With
detF = detF", [detF]? = detF ' detF = detF'F = detC = 15(C)
and
((B)=uFF")=(F"F)=.C)
we find
S = Vis(C) [A((C)C + BUCNT + B((C))C] .
On the other hand, by using the Cayley—Hamilton theorem we have
—Cg + Ll(C>CQ — L2(C>C -+ Lg(C)I = 0,

and therefore

-1 _ 1 2
=5 [C —Ll(C’)C’+L2(C’)I]
Hence we obtain
S = Val(C) [W(C)C + AUENT + 4((C)C]
— Va0 [2EED (07 - w1 + u(O)T) + ALENT + AulC)C

= WUCNT +71((C)C +7((C))C*.
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By using (1.4) we further conclude

C = [Dup(t,®)] [Dup(t, x)]
= [I+ Dyu(t,=)]" I+ Du(t,x)]
= I+ [Dyu(t,x)] + [Du(t,x)]" + [Dyu(t, )] [Dou(t, x)].

By using the Green—St. Venant strain tensor
1 1
E = 5[C — 1] = 5 |[D.ult,o)] + Dot @) + [Doult,o)] [Dault @) (36)

we have
C=1+2E,

and therefore
Y = (eI +2ENT + v, ((I +2E))(I +2E) + v («(I +2E))(I + 2E)*

follows. The aim is to find, for small deformations, a linear relation between ¥ and E. In
particular we need to consider the principal invariants of C = I 4+ 2E. We first have

1(C)=uI+2E)=tr(I+2E)=3+2tr(E).
By using
tr(C?) = tr((I + 2E)*) = tr(I + 4E + 4E*) = 3+ 4trE + 4 trE®
we further conclude

1(C) = (tr C)? — trC”?

_(3 +2trE)* — (3+4trE + 4trE2)]

(9 L 1260E + 4(trE)? — (3 + 4trE + 4trE2)]

NN =N -

= 3+4trE + 2[(trE)? — trE?|
= 3+4trE+o(|| E|).

Moreover, with

tr(C*) = tr(I +2E)*
= tr(I +6E + 12E* + 8E")
3+6trE + 12trE* 4 8trE?
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we have

13(C) = detC = é [(trC)?’ — 3trCtrC? + 2trC'3]

[(3 +2trE)* — 3(3+ 2trE)(3 + 4trE + 4trE®) + 2(3 + 6 trE + 12trE” + 8trE3)}

D= =

[27 + 540 E + 36(trE)? + 8(trE)? + 6 + 12tE + 24trE2 + 16trE?

- (27 4 5440 E + 36trE? + 24(trE)? + 24trEtrE2>]
=1+ 2trE + 22(trE)? — 22trE* — 4trEtrE? + %(trE)B’ + gtrE?’
=1+4+2trE + o||E||) .
Hence we have, by a Taylor expansion, for ¢ = 0, 1, 2,
(€)= 7(u(C),12(C),13(C))
= (B +2trE, 3+ 4trE + o ||E||),1 + 2trE + o || E||))

0 0
8L1 8L2

+%%(37371) (2trE + o[ El]) + o([| E])
= 7(3,3,1) +7:(3,3, 1) trE + o(|| E||)-
Therefore,
X = %N +n(C) +2E) +12((C))(I +4E + 4E?)
= [50(3.3,1) +5(3,3,1) 0B + o( | B|))| T
+[11(3,3,1) +71(3,3,1) B + o | B | (L + 2B)
+[12(3,3.1) + 32(3,3, 1) WE + o | E|))|(I + 4E + 4E?)
- [%(3, 3,1) +71(3,3, 1) + 72(3, 3, 1)] I
+[F0(3,3,1) + 51(3,3,1) + 52(3,3, )| ()
+[221(3,3,1) + 41:(3,3,1)| E+o(| B

For a homogeneous, isotropic, and elastic material we therefore conclude a representation

of the form
YX=—pl+\rEI+2uE. (3.7)

In the natural state we have no stress when no strain is given, i.e. E = 0 implies ¥ = 0.
In fact, this implies p = 0 and therefore

Y =\rEI+2uE (3.8)



36 3. Constitutive Relations

follows. Since the strain tensor E is nonlinear, in the case of small deformations we consider
its linear part

e(u) = [[D u(t, z)] + [Dyult, w)]T], (3.9)

N)lH

i.e.
1[0 0
o) = § | pus(e) + ou(e)| i =123
i ]

When replacing in (3.8) the strain tensor E by the linearized strain tensor e, this gives
the linearized stress tensor

o(u)=Adivu I +2pe(u). (3.10)

Note that the linear stress—strain relation (3.10) is known as Hooke’s law, and A and p are
the Lamé parameters.

3.2 Conservation of Energy

The conservation of energy for a mechanical system states that the rate of change of the
total energy of the system is equal to the power input of the external forces, i.e.

Ow(t)

d

K(t) +U(t , ,y)-v(t,y)d Yy, n) - v(t,y) ds,. )
G0 uw] = [ o ey ety [y oy @1
Here,

K= [ et wlvtt.u)- v v)ldy (312

is the kinetic energy in the material region w(t), and the internal energy for the control
volumen w(t) is given by

Ut) = / eyt )y

where w(t, y) is the specific internal energy, i.e. the internal energy per unit mass.
The application of Reynold’s transport theorem (Theorem 1.1) for f(t,y) = [vi(¢,y)]?
gives
1d

2t | ot y)[ui(t,y)*dy = %/w(t) Q(t,y)%[vi(t,y)JZdy

d
= / o(t, y)vi(t,y)—vi(t,y) dy.
w(t) dt

By inserting the Cauchy equations of motion, see (2.14), this gives

1d ) 9
S di w(t)g(t,y)[vi(t,y)] dy—/w(t) (,y)[(,y filt,y) ga— ,y)] dy.
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Hence we conclude, by summing up, by applying integration by parts, and by using the
symmetry of the Cauchy stress tensor,

3 3

jth() = /w(t)g(t,y)f( ‘o(t,y dy+/ > D vilty) o Tt y)dy

w( 11]1

_ / olt,y) £(t.y) - v(t,y) dy

+ 23: 23: {a% [vi(t, y)T(t, y)] — Ty(t, y)aiyvi(ta y)} dy

J

- / olt,y) f(t,y)-v(t,y dy+/8 Y sz(tyy)ﬂj(tvy)njdsy

=1 j5=1

_/w ii%[ﬂj(t, y) + Tyt y)} 6‘3 i(t, y)dy

®) =1 j=1 J

:/ Q(t,y)f(t,y)-v(t,y)dy+/ t(t,y,n)-v(t,y)ds,

Aw(t)

Mw
g
o

_ / muwfmy»v@ywy+/ H(t,y,n) - o(t,y) ds,
w(t) Ow(t)

where

is the associated tensor product, and

(0) = 5 | 50 + 50w (3.13

is the linearized Green strain tensor. From the conservation of energy we therefore find

- /(t) T(t,y): e(v)dy.

On the other hand, the application of (2.8) gives

d d d
Ut = — ' ty)dy = ty)—w(t.y)d
dtu( ) pn /w(t) o(t,y)w(t,y)dy /w@) o( ,y)dtw( ,y) dy,
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and hence we conclude

d
/ ot ) Luty)dy= [ Tlty): elv)dy
w(t) dt wl(t)

for all test volumina w(t). In the case of continuous functions we finally obtain the energy

equation

oltsy) 0l y) = T(ty) - ew) = 3 S Ty(t.y) o ulty).

i=1 j=1

3.3 Hyperelastic Materials

By using the ansatz

we obtain, by applying the chain rule,

3

d d 0 d

i=1 j=1
From F = D,p(t,x) we further find

d d 0 0 d 0

] Oy, ji

- a%vi@, olt, @) = Z ivi@’ y%“"k“’ 2 =)

Hence we obtain

oty Futy) = o) YD SEWE)S Sy

i=1 j=1 k=1 Oy
3 3 3.9 P
— Q(t,y);; <le a}(ﬂi]’l/V(F)Fk]> 5 vi(t,y)
3 3
= Q(t7 y) Z Z Crlk(t y) Ul(tv y)7
=1 k=1 ayk
and therefore ,
Ekﬁ 7y - Q Fk])
i.e. 9 ( ) 9
Tt y) = olt, y)—W(F)FT = 2% 2y (pyFT
(1y) = elty) G W) FT = S8 W () F

(3.14)

(3.15)

(3.16)
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where we have used

0 0 0
W(F W(F W(F
0 0 0 0
—W(F) = W(F W(F W(F
0 0 0
W(F W(F W(F
From this we also find a representation for the first Piola transformation
0 _
and for the second Piola transformation (2.19)
0
S(t,x) = F'—W(F). 1
(t,) = oo(@) F - IW/(F) (3.15)
From the symmetry of the Cauchy stress tensor T' we have to ensure
iW(F) F'=F iW(F) ' (3.19)
OF - \OF ’ '
which implies restrictions on the choice of the energy function W (F'). In fact, we write
eo(x)W(F) = ¥(E), (3.20)
where .
E—|F F-1I

is the Green—St. Venant strain tensor.

Lemma 3.1 Assume

i\II(E) = i\II(E) : (3.21)
OE - \0E '
Then,
(@) S W(E) = F 2 w(E)
O oF )5
Proof: Let us consider the two—dimensional case n = 2 first, where we have
E = %[FTF - I}

“3((mm)(a a)-G1))
2 Fia o For Py 0 1
1 < FL+F; —1 FyuFip+ FyFy )

2\ Fi1Fiy + Fy Fy FL+F4 —1



40

With the chain rule we then conclude

0 0

3. Constitutive Relations

ul@) 5 W) = 52 W(E(F))
- 5 PV 55" s * o Plar + 7 g
— 8211 V(E)F), + %%W(E)Fm + % 6221\II(E)F12
_ agan(E)Fn n 8221\1/(15)52,
(@) 5o W(F) = 5 U(E(F))
= g VB G+ g D G+ eV SR ()
_ % aglzllf(E)FH + %%W(E)FH + 6222\II(E)F12
_ 8212\1/(15)1:’11 n 8222\1/(15)52,
(@) 57 W(F) = S W(E(F)
= g B G + g WG+ e VUG g () g
_ 8211 W(E)Fy + %%W(E)Fw n %%@(E)Fﬂ
= 8211\II(E)F21 + 8221\I/(E)F22,
(@) 57 W(F) = S W(E(F)
= g B GRS g W)
_ % aglzkll(E)Fm + %%@(E)Fm + agmxp(E)Fﬂ
= 8212\II(E)F21 + 8222\I/(E)F22,
i.e. we have
» Mznwm M}W(F) ) (F p) 8,%1\1!(15) 8%}@)
S WE) S W(F) Pa Fo )\ owm) Sw(E)



3.3. Hyperelastic Materials 41

For the Cauchy stress tensor we therefore find

oo(xz) O + 1 0 T
T aF IV FT = S Fop VB F

T(ty) =

which is symmetric if (3.21) is satisfied. For the first Piola transformation we then conclude

Pt,x)=Jt)T(t,y)F~ " = Fa% (E),

while for the second Piola transformation we finally obtain

S(t, ) = a%\II(E). (3.22)

The constitutive law (3.22) obviously depends on the particular definition of the potential
function ¥(FE). For a general linear material law we may consider a second order Taylor
expansion of V(E).

Example 3.1 A second order Taylor expansion of the potential function V(E) gives

i=1 j=1 i=1 j=1 k=1 ¢=1 B
For simplicity we assume
v(0) =0
and in the natural state we have
Y = 0 V(E) 0
%] aEU |E=0 —

Hence we have

9 3 3 e 3 3
Yij = EYo V(E) = ZZEH&E-@E V(E) g-0 = ZZCZ‘]‘MEM
i k=1 (=1 Ehaalis k=1 (=1
with
62
Cije V(E) E-0
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follows. The material law
3

Y= Z Z CijrePre

3
k=1 (=1

includes 3* = 81 material parameters Cijke, but due to

o 0

Cipg = ————V(E) g = ———
T OE;0 B (E)B=0 OEw0F;;

V(E) =0 = Chuj

we have some symmetry relations. Moreover, due to the symmetry relations 3;; = ¥;; and
Eye = Ey. we can use the Voigt notation

Z11 01111 C11122 C11133 C11112 01113 01123 Ell
Z22 C11122 C12222 C12233 C12212 02213 02223 E22
Z33 . Cl 133 C12233 C13333 C13312 03313 03323 E33
Z12 B C11112 C12212 C13312 C11212 01213 01223 E12
Z13 C11113 C12213 C13313 C11213 01313 01323 E13
Z23 C11123 C12223 C13323 C11223 01323 02323 E23

with 21 parameters to be chosen. In the most simple case we have

i A2 A A 0 0 0 Ey
IO A A2 A 0 0 0 Eoy
Sas | A A A+20 0 0 0 Fss
Yo | 0 0 0 2u 0 0 Fi |’
Y13 0 0 0 0 2u 0 Fis
Yos 0 0 0 0 0 2u Fos

and a linearization again gives Hooke’s law (3.10).

For the potential ¥(E) we may use a function in the invariants of E, i.e.

V(E) = V((E)) = U(1(E),1(E),3(E)) .
For the components of the second Piola stress tensor we then obtain from (3.22)

L0~ 0
Yij = 8E,~j\II(L(E)) => 8_%\II(L)8EU w(E).

k=1

Hence we need to compute the partial derivatives of the invariants ¢, (E), k = 1,2, 3.
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Lemma 3.2 The partial derivatives of the invariants u,(E), k = 1,2,3, are given as

0

8—EL1(E) = I,

0

a—ELQ(E) = tr (E)I—E,
9 ,
a—ELg(E) = detE E .

Proof: For the first invariant
1(E)=trE = FE + Fy» + Es3

we obtain

0 0

1 fore =y,
_Z L (E) =
a5, "B = 5,

0 fori#y,

B+ Ey + E33] = {

i.e. (3.23). For the second invariant

19(E) = FEy11Eyg + E11Es3 + EayFEsy — EasFEsy — Ei13E3 — E1aFg

we compute

a%LQ(E) = 8% Evi By + Ei1Es3 + EogFisg — Foszlizg — EhigEs) — EioFyy
FEoy + Es3 —FE9 —FE3
= —Elg E11 -+ E33 —E32 = tr (E) I — E,
—Fi3 —F3 Ey + By

i.e. (3.24). To prove (3.25), we first consider the case n = 2 where we have

Ell EIZ
E = , L3(E) = detE = E11E22 - E12E21 )
E21 E22

and therefore

0 Ey —FEoy
—det F =
OE " (—Em Ey )

follows. On the other hand we have

51 1 Ey  —Eny
n det F —E21 E11 .

Since F is symmetric, we finally conclude

) .

(3.23)
(3.24)

(3.25)
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Similarly, for n = 3 we have

0
or'*P)
0

== 8—E E11E22E33 + E12E23E31 + E13E32E21 - E11E23E32 - E22E13E31 - E33E12E21
E22E33 - E23E32 E23E31 - E33E21 E32E21 - E22E31

= E13E32 - E33E12 E11E33 - E13E31 E12E31 - E11E32
E12E23 - E22E13 E13E21 - E11E23 E11E22 - E12E21

=det EE™",

due to

1 E22E33 - E23E32 E32E13 - E33E12 E12E23 - E22E13
E_l = ﬁ E31E23 - E33E21 E11E33 - E13E31 E21E13 - E11E23
E21E32 - E22E31 E31E12 - E11E32 E11E22 - E12E21

Hence we obtain

5= 5 VBT + %%(E)) [(m«E) I- E] + 8%(13@(15)) det EE" .

Example 3.2 For the St. Venant-Kirchhoff material model we define

TU(E)) = 5+ 20) [0 (B)] — 2p015(E)

for which we compute

B = A+ 20 n(B), 5 BU(E) = 2 5 BG(E) = 0
Hence we obtain
s - 2oum)r+ Lium) [(u E)I- E}
&1 &2

= (\+20)u(E) I - 2| (tr E) T — E]

= A+t ET -2 [(trE)I—E}
— ArEI+2uE.

On the other hand, by using

WE)=trE, (E)= [(uE)?-m«E?}

N | —
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we also find the alternative representation
1
V((E)) = (A +2u) [n(B)] = 2p00(E)
1
= 5()\ +2u) [tr E]? — ,u[(tr E)? —tr EQ}

A
= 3 [tr E)> + ptr E* = U (E).

By using
1
C=I+2E, E-= 5[0—1}
and 1 1 ]
W(E)=trE = tr (5[(1 - 1]) = (0 =3) = 3(u(C) - 3)
as well as

1(E) = EyEs+ Fy1Es3 + FEygFsy — FogFEsy — Fi13FEs; — Fi9Fy

1 1 1
= Z(CH —1)(Cy — 1) + Z(CH —1)(Cs3 — 1) + 1(022 —1)(Cs3 — 1)
1

4

1
= 1 [(011022 —C1p —Cyu+ 1)+ (C11C53 — C1y — Cs3+ 1)

+(Cg2C35 — Cog — C33 + 1)}

1 1
Ca3C52 — 1013031 - 1012021

1
1 [023032 + C13C51 + 012021}
C11C5% + C11Cs3 + U053 — Cy3C55 — C13C5; — 012021]

! [3 —2(Cy1 + Coy + 033)}

N

_ 402<C)—2L1(C)+3]
we also have
VUE) = 5O+ 20 [0(B) — 2p15(E)
= L2 (C) ~ 3~ [a(C) ~ 20(C) +3
= 2 (0) 3P 4 [n(©) 3] L [m(e) 3]

The previous considerations motivate to write the potential function W(.(E)) in its general
form

V((E)) = ¥((C)) = D Y cp(u(C) = 3)(12(C) = 3)",

p=0 ¢=0
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with the Mooney—-Rivlin material model

(L(C)) = c10[ta (C) = 3] + cor[t2(C) — 3]

)

as simple example.
In general we may include the third invariant ¢3(C) as well, i.e. we can write

V((C) =YD D Gar(1(C) = 3)(12(C) = 3)(155(C) — 1)".

p=0 ¢=0 r=0

Then, by using
W(E) = W(y(FTF — I)) = W(3(C ~ I)) = §(C),

and by applying the chain rule,

0 =~ 0 1 0 0 10
%‘I’(C) = %‘I’(é(c —1I)) = a—E‘I’(E)\E:%(CJ)%E = 58—E\I](E)
we finally conclude
0 0 =
Y= a—E\I/(E) =2 %\I/(C) .

3.4 Incompressible Materials

In what follows our main interest is in the modelling of (almost) incompressible materials
with
J=det F=1.

In fact, we consider a decoupling of the deformation gradient F' into an isochoric, volume
preserving part F', and a volumetric, volume changing part. From the requirement det F' =
1 we conclude

F=(J7I)F.

For the right Cauchy—Green strain tensor we then obtain
C=F'F=JPFF=JPC, C=FF.

With this we define the potential

U(C)=U(J)+ ¥(C)

with the volumetric elastic response U(J), and the isochoric elastic response W(C). Then
we need to compute

=2 % [U(J) + E@] - 2U’(J)%J + Q%E(JWC) .
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Lemma 3.3 For the deformation gradient F we define J = detF and C = F' F. Then,

) 1,
sl = 5JC7

Proof: From
det C = det F'F = detF " detF = (det F)* = J2.

we first conclude

J=det F =VvdetC,

and by the chain rule we have

0 1 1 0 11 0

In the particular case n = 2 we have

<Cll 012
C121 022

C = ) , detC = C11Cy — C12091 ,

and therefore

0 Cop —Cy
—detC =
oC © < —C2 Ciy )

follows. On the other hand,

ol 1 ( Cy  —Ch )
a det C —021 011 .

Since C = F' F is symmetric, we finally conclude

9 _ -1 _ 121
%detC—detCC = J°C y
ie. 9 ]
v .t -1
aCJ 5 JC .
Similarly, for n = 3 we have
Cun Cr Cis
C=| Cou Cyn Coy
Cs1 Oz Css

and

detC = C(116(226133 + CY126(236(31 + CY136(216(32 - C(1161236132 - C(226(136131 - CY3361126(21 .
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Hence,

9 C1226133 - 023032 023031 - C1336121 C1216132 - C1226(31
%det C = C(136132 - CY33CYI2 CYIICYB3 - C(136(31 C(126(31 - C(116132
C(126123 - CY22CYI3 CY136121 - C(116(23 C(116(22 - C(126121

Again, by using

CY226(33 - C(236(32 C(326113 - CY33CYI2 CY126123 - C(226(13

1
Cc'= dotC CU31C03 — U33Cy1 C11C33 — C13C31 C9C13 — C11Co3
U103 — U3 U301 — C11C3 €110 — C12Cy
and the symmetry of C we conclude the assertion. [ ]
Recall that 5 5 5
v(C v(C v(C
50 Y(C) 55-v(C) aCn (€)
o _ - o -
—VU(C) = v v 1\
oC () 0C9; () 0C5 () 0C53 ()
v(C v(C v(C
ac, (C) 9Co (C) aC (€)
By the chain rule we then have
) &9 )
¥(C) = —U(C C
aC; (©) ;; OC 1t ( >acij H
5. 3. 5 P
- L@ 2 [,
i o 90k oCi [ ]
SN ] 2 9
= —U(C) |J 2P —~Chy— =T JC
©) {‘] ac; 37 acy ’4

Hence we conclude

I 5@ - 589 gE _25-n9
oc V@) = TEEN O =37 5e T
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We then conclude the constitutive relation

Y = 2U'(J)%J+2%$(JZ/3C)

— U JC 2 [%ﬁ@ - % <8i_$(6) : C) Cl} |

When introducing the hydrostatic pressure
p=U"(J),

we finally obtain

0 — = 1[0 <=
Y= Evo Eisc Evo =J C_l Eisc = 2J72/3 |:—_\I’ C)— - (—_\I’ C): C) C_1:| .
1+ ) l p ) 9C ( ) 3\ agC ( )

Example 3.3 For the volumetric elastic response we may consider one of the following
two choices:

UW) = kg =12 U'(0) = (I ~1), p=r(J 1)

0.

InJ InJ

1
= k—(In J)? "(J) = =
U(J) /<;2(nJ), U'(J)=k 7 P=h—

As example for the isochoric elastic response we consider the Neo—Hooke model
——  C, = ¢, — — —
¥(C) = é(Ll(C) —3) = 5(011 + Ca + Cs3 — 3))

for which we compute



