Technische Numerik

1. Betrachtet werde das lineare Gleichungssystem

$$\begin{pmatrix} 1+\varepsilon & 1-\varepsilon \\ 1-\varepsilon & 1+\varepsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

in Abhängigkeit eines kleinen Parameters $\varepsilon > 0$.

a) Man berechne die spektrale Konditionszahl

$$\kappa_2(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$$

der Systemmatrix A.

- **b)** Mittels des Gaußschen Eliminationsverfahrens bestimme man eine allgemeine Lösungsformel des linearen Gleichungssystems.
- c) Für $\varepsilon = 10^{-4}$ und a = b = 2 bestimme man die (exakte) Lösung des linearen Gleichungssystems.it Wie ändert sich diese für a = 2 und b = 2.1?
- d) Bei Verwendung einer dreiziffrigen Gleitkommaarithmetik wird die Summe $1 + \varepsilon$ für $\varepsilon = 10^{-4}$ mit 1 identifiziert. Wie ändern sich dann die Lösungen für a = b = 2 bzw. a = 2 und b = 2.1?
- 2. Wie lauten die Lagrange-Polynome 2. Ordnung zu den Stützstellen

$$x_0 = 0, \quad x_1 = 1, \quad x_2 = 2.$$

Bezüglich dieser Stützstellen bestimme man das quadratische Interpolationspolynom der Funktion

$$f(x) = x^3.$$

3. Die Funktion $y = f(x) = \cos(2\pi x) + 4\sin(2\pi x)$ besitzt auf dem Intervall $\left[\frac{1}{4}, \frac{1}{2}\right]$ eine eindeutig bestimmte Umkehrfunktion x = g(y) (Warum?). Man bestimme das Interpolationspolynom $g_2(y)$ von g unter Verwendung der Stützstellen $y_i = f(x_i)$ mit $x_0 = \frac{1}{4}$, $x_1 = \frac{1}{3}$ und $x_2 = \frac{1}{2}$.