Technische Numerik

- 13. Gegeben sei die Funktion $f(x) = x^2$ für $x \in [0,1]$. Für die Stützstellen $x_0 = 0$ und $x_1 = 1$ bestimme man die linear Interpolierende $I_h f$ sowie die lineare L_2 Projektion $Q_h f$ und berechne die Fehler in der L_2 Norm.
- 14. Gegeben sei die Matrix

$$A_{m} = \begin{pmatrix} 2 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 1 & \cdots & 1 \\ \vdots & & \ddots & & \vdots \\ 1 & \cdots & 1 & 2 & 1 \\ 1 & \cdots & 1 & 1 & 2 \end{pmatrix} \in \mathbb{R}^{m \times m}, \ m \ge 2.$$

Man bestimme alle Eigenwerte von A_m .

Hinweis: Man betrachte die Eigenwertgleichung $A_m \underline{x} = \lambda \underline{x}$, und schreibe A_m als Störung der Einheitsmatrix. Welche Eigenschaft der Eigenvektoren folgt aus der Symmetrie von A_m ?

15. Gegeben sei

$$u(x) = \left\{ \begin{array}{ll} 1 & \quad & \text{für } x \in [0, \frac{1}{2}), \\ 0 & \quad & \text{für } x \in [\frac{1}{2}, 1]. \end{array} \right.$$

Für welche $s \in (0,1)$ existiert das Integral

$$\int_0^1 \int_0^1 \frac{[u(x) - u(y)]^2}{|x - y|^{1+2s}} \, dx \, dy ?$$