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Time Schedule

Thursday, April 11, 2013

12:30 Registration

12:50 Opening

13:00 Andreas Schröder hp-adaptive FEM with biorthogonal basis functions for
elliptic obstacle problems

13:20 Michael Feischl Adaptive FEM with optimal convergence rates for a cer-
tain class of non-symmetric problems

13:40 Lukas Einkemmer A discontinuous Galerkin discretization for the Vlasov-
Poisson equations

14:00 Martin Neumüller Analysis of a two grid space-time solver
14:20 Monika Wolfmayr Robust Multilevel Preconditioning for Heterogeneous

Reaction-Diffusion Problems

14:40 Coffee Break

15:10 Thomas Glatz The Inverse Source Problem for the Helmholtz Equation
and Photoacoustic Tomography

15:30 Hermann Mena On the Numerical Solution of Large-Scale Riccati Equa-
tions

15:50 Gerhard Unger Boundary element methods for acoustic resonance prob-
lems

16:10 Othmar Koch An Approximate Eigensolver for Self-Consistent Field
Calculations

16:30 Coffee Break

17:00 Thomas Führer Stability of FEM-BEM couplings for nonlinear elasticity
problems

17:20 Manfred Liebmann Solving the Time-Dependent Schrödinger Equation on
CPU and GPU Clusters

17:40 Harald Hofstätter A Perl program for the symbolic manipulation of flows of
differential equations and its application to the analysis
of defect-based error estimators for splitting methods

19:00 Dinner
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Friday, April 12, 2013

8:30 Nadir Bayramov Finite element methods for transient convection-
diffusion equations with small diffusion

8:50 Markus Faustmann H-matrix approximability of inverse FEM matrices for
various boundary conditions

9:10 Christoph Augustin Strongly scalable numerical methods to simulate cardio-
vascluar tissues

9:30 Elias Karabelas Hybrid cG/dG Finite Element Methods for Solving
Semilinear Parabolic Equations

9:50 Antti Hannukainen Two-scale homogenization of the eddy-current problem
in laminated media

10:10 Coffee Break

10:40 Wolfgang Krendl An Efficient Robust Solver for Optimal Control Prob-
lems for the Stokes Equations in the Time-Harmonic
Case

11:00 Gerhard Kitzler A High Order Discontinuous Galerkin Method for the
Boltzmann equation

11:20 Petra Csomós Exponential integrators for shallow water equations
11:40 Erika Hausenblas A perturbation result for quasi-linear stochastic differ-

ential equations in UMD Banach spaces
12:00 Monika Dörfler Numerical aspects of audio processing

12:20 Lunch Break

14:00 Hans G. Feichtinger Numerical Questions in Time-frequency Analysis
14:20 Winfried Auzinger Local error structures of higher-order exponential split-

ting schemes
14:40 Marcus Page A general integrator for the Landau-Lifshitz-Gilbert

equation
15:00 Arno Kimeswenger Boundary control of exterior boundary value problems
15:20 Boris Vexler New regularity results and improved error estimates for

optimal control problems with state constraints

15:40 Closing
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Abstracts in Chronological Order



hp-adaptive FEM with biorthogonal basis functions for
elliptic obstacle problems

Andreas Schröder1, Lothar Banz2

1 University of Salzburg
2 Leibniz University Hanover

The talk presents an hp-adaptive mixed finite element discretiziation for a non-symmetric
elliptic obstacle problem where the dual space is discretized via biorthogonal basis func-
tions. The resulting algebraic system only includes box constraints and componentwise
complementarity conditions. This special structure is exploited to apply efficient semi-
smooth Newton methods using a penalized Fischer-Burmeister NCP-function in each
component. Adaptivity is accomplished via a posteriori error control which is also in-
troduced. Several numerical experiments confirm the applicability of the hp-adaptive
scheme.
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Adaptive FEM with optimal convergence rates for a
certain class of non-symmetric problems

Michael Feischl, Thomas Führer, Dirk Praetorius

Vienna University of Technology

In this talk based on the recent preprint [2], we analyze adaptive mesh-refining algo-
rithms for conforming finite element discretizations of second-order partial differential
equations, i.e.

Lu(x) := −divA(x)∇u(x) + b(x) · ∇u(x) + c(x)u(x) = f(x) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω

posed on a Lipschitz domain Ω. For a given mesh T`, we allow continuous T`-piecewise
polynomials of arbitrary, but fixed polynomial order with homogeneous boundary con-
ditions Sp0 (T`) as ansatz functions. The adaptivity is driven by the standard residual
error estimator ρ`. We prove convergence even with quasi-optimal algebraic convergence
rates. This means that if, given an optimal sequence of meshes T̃` with corresponding
error estimators ρ̃`, a convergence rate of s > 0 is possible, i.e.

ρ̃` ≤ C̃(#T̃` −#T̃0)−s for all ` ∈ N,

then the adaptive Algorithm generates meshes T` with corresponding error estimators
ρ` and Galerkin approximations U`, which reveal the same rate of convergence, i.e.

C−1
rel ||∇(u− U`)||L2(Ω) ≤ ρ` ≤ C(#T` −#T0)−s for all ` ∈ N.

The advantages over the state of the art [1] read as follows: Unlike prior works for linear
non-symmetric operators, our analysis avoids the artificial quasi-symmetry assumption
divb = 0 as well as the interior node property for the refinement. Moreover, the dif-
ferential operator L has to satisfy a Gårding inequality only. If L is uniformly elliptic,
no additional assumption on the initial mesh is posed. Finally, our analysis also covers
certain nonlinear problems and proves quasi-optimal convergence rates.

References

[1] J. M. Cascón, R. H. Nochetto: Quasi-optimal cardinality of AFEM driven by non-
residual estimators, IMA J. Numer. Anal. 32 (2012), 1–29.

[2] M. Feischl, T. Führer, D. Praetorius: Adaptive FEM with optimal convergence rates
for a certain class of non-symmetric and possibly non-linear problems, submitted to
SIAM J. Numer. Anal. (2012).
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A discontinuous Galerkin discretization for the
Vlasov–Poisson equations

Lukas Einkemmer1, Alexander Ostermann1

1 University of Innsbruck

A rigorous convergence analysis of the Strang splitting algorithm with a discontinuous
Galerkin approximation in space for the Vlasov–Poisson equations is provided. It is
shown that under suitable assumptions the error is of order O (τ 2 + hq + hq/τ), where τ
is the size of a time step, h is the cell size, and q the order of the discontinuous Galerkin
approximation. In order to investigate the recurrence phenomena for approximations of
higher order in space as well as to confirm the stability properties of the method investi-
gated a number of numerical simulations will be shown (including Landau damping and
the Molenkamp–Crowley test).
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Analysis of a two grid space-time solver

Martin Neumüller1, Martin J. Gander2, Olaf Steinbach1

1 Graz University of Technology
2 Université de Genéve

For evolution equations we present a space-time method based on Discontinuous Galerkin
finite elements. Space-time methods have advantages when we have to deal with moving
domains and if we need to do local refinement in the space-time domain. For this method
we present a multigrid approach based on space-time slaps. This method allows the use
of parallel solution algorithms. In particular it is possible to solve parallel in time and
space. Numerical examples will be given which show the performance of this space–time
multigrid approach.
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Robust Multilevel Preconditioning
for Heterogeneous Reaction-Diffusion Problems

Monika Wolfmayr1, Johannes Kraus2

1 Doctoral Program "Computational Mathematics", Johannes Kepler University Linz
2 Johann Radon Institute for Computational and Applied Mathematics,

Johannes Kepler University Linz

This work [2] is devoted to the analysis for constructing robust algebraic multilevel pre-
conditioners for heterogeneous reaction-diffusion problems. We discretize these problems
by the finite element method leading to a weighted sum of stiffness and mass matrices.
The weighting parameters are often only constant on the subdomains corresponding to
the elements of the coarsest mesh partitioning. In order to solve such problems we con-
sider the algebraic multilevel iteration (AMLI) method. The main contribution of this
work [2] is to give a rigorous proof that the AMLI method yields a robust and fast solver
of optimal complexity for this class of problems. Moreover, we present a time-periodic
parabolic optimal control problem as motivation and as a practical example for the rel-
evance of constructing robust AMLI preconditioners for system matrices which are a
weighted sum of stiffness and mass matrices. The multiharmonic finite element analysis
of such time-periodic parabolic optimal control problems can be found in [3] including
an existence and uniqueness proof as well as an estimate for the discretization error. In
order to solve the optimal control problem, we state its optimality system and discretize
it by the multiharmonic finite element method leading to a system of linear algebraic
equations which decouples into smaller systems. In [1], we construct preconditioners
for these systems which yield robust and fast convergence rates for the preconditioned
minimal residual method. All systems can be solved totally in parallel. We present
the results for practically implementing the preconditioners by the AMLI method in [2],
which finally leads to a robust and fast solver of optimal complexity.
The research has been supported by the Doctoral Program "Computational Mathe-

matics: Numerical Analysis and Symbolic Computation" under the grant W1214, project
DK4, the Johannes Kepler University of Linz and the Federal State of Upper Austria.

References

[1] M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, W. Zulehner: A Finite
Element Solver for a Multiharmonic Parabolic Optimal Control Problem. Comput.
Math. Appl. 65(3), 2013, 469-486.

[2] J. Kraus, M. Wolfmayr: Robust Multilevel Preconditioning for Heterogeneous
Reaction-Diffusion Problems . Johannes Kepler University Linz, 2013, in preparation.

[3] U. Langer, M. Wolfmayr: Multiharmonic Finite Element Analysis of a Time-Periodic
Parabolic Optimal Control Problem. Johannes Kepler University Linz, Doctoral Pro-
gram "Computational Mathematics", 2013, DK-Report No. 2013-01.
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The Inverse Source Problem for the Helmholtz
Equation and Photoacoustic Tomography

Thomas Glatz1, Otmar Scherzer1, Roland Griesmaier2, Martin Hanke3

1 University of Vienna
2 University of Leipzig
3 University of Mainz

This talk discusses the use of photoacoustic imaging methods for solving inverse problems
for the Helmholtz equation. The fundamental difference between these two problems is
that in the prior the whole frequency spectrum of the wave is available, while in the latter
one has to work using only single frequency information. The relation between these
two fields is established by narrow-band photoacoustics, where one takes into account
limited frequency response of the transducers. Here we reanalyze the effect of a narrow-
band recording detector analytically (see also [2, 3]). Additionally, we treat the limit
case, assuming to measure just at a single frequency. We present a frequency extension
of this data set that leads to a mollified reconstruction, containing valuable information
about the support of the source.
On the other hand, the frequency restriction in Photoacoustics corresponds to the near
field inverse source problem for the Helmholtz equation, in the sense that we don’t
make use of the (very common) far field approximation. Moreover, we investigate the
connection to [1], were similar Fourier data extensions are used for solving the far field
problem.

References

[1] R. Griesmaier, T. Raasch, M. Hanke, Inverse source problems for the Helmholtz
equation and the windowed Fourier transform. SIAM J. Sci. Comput., 34 (2012),
A1544–A1562.

[2] M. Haltmeier, A mollification approach for inverting the spherical mean Radon trans-
form. SIAM J. Appl. Math., 71 (2011), 1637–1652.

[3] M. Haltmeier and G. Zangerl, Spatial resolution in photoacoustic tomography: effects
of detector size and detector bandwidth. Inverse Problems, 26 (2010), 125002.
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On the Numerical Solution of Large-Scale Riccati
Equations

Hermann Mena1

1 Universität Innsbruck

The numerical treatment of linear quadratic regulator/gaussian design problems for
parabolic partial differential equations requires solving large-scale Riccati equations.
Typically the coefficient matrices of the resulting equations have a given structure,
[1](e.g. sparse, symmetric, low rank . . . ). We develop efficient numerical methods ca-
pable of exploiting this structure and discuss their implementation. The methods are
based on a low-rank approximation of the solution and a matrix-valued implementation
of the usual ODE methods [2].

References

[1] P. Benner, J.R. Li, T. Penzl: Numerical Solution of Large Lyapunov equations, Ric-
cati Equations, and Linear-Quadratic Control Problems. Numerical Linear Algebra
with Applications, Vol. 15, No. 9 (2008), pp. 755-777.

[2] P. Benner, H. Mena: Numerical solution of the Infinite-Dimensional LQR-Problem
and the associated Differential Riccati Equations. MPI Magdeburg Preprint,
MPIMD/12-13 (2012),
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Krylov Subspace Recycling for Families of Shifted
Linear Systems

Kirk M. Soodhalter1, Daniel B. Szyld2 and Fei Xue 3

1 Johannes Kepler University, Linz
2 Temple University, Philadelphia, 3 University of Louisiana, Lafayette

We address the solution of a sequence of families of linear systems. For the ith family,
there is a base coefficient matrix Ai, and the coefficient matrices for all systems in the
ith family differ from Ai by a multiple of the identity, i.e.,

Aixi = bi and (Ai + σ
(`)
i I)x

(`)
i = bi for ` = 1 . . . Li,

where Li is the number of shifts at step i. This is an important problem arising in
various applications. We extend the method of subspace recycling to solve this problem
by introducing a GMRES with subspace recycling scheme for families of shifted systems.
This new method solves the base system using GMRES with subspace recycling while
constructing approximate corrections to the solutions of the shifted systems at each
cycle. These corrections improve the solutions of the shifted system at little additional
cost. At convergence of the base system solution, GMRES with subspace recycling
is applied to further improve the solutions of the shifted systems to tolerance. We
present analysis of this method and numerical results involving systems arising in lattice
quantum chromodynamics.
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Boundary element methods for acoustic resonance
problems

Gerhard Unger1

1 TU Graz

We characterize acoustic resonances as eigenvalues of boundary integral operator eigen-
value problems and apply boundary element methods for their numerical approximation.
Eigenvalue problem formulations for resonance problems which are based on standard
boundary integral equations exhibit additional eigenvalues which are not resonances but
eigenvalues of a related "interior" eigenvalue problem [1]. In practical computations
it is for some typical applications hard to extract the resonances when using standard
boundary integral formulations. In this talk we present regularized combined boundary
integral formulations which only exhibit resonances as eigenvalues. We provide a nu-
merical analysis of the boundary element approximations of these eigenvalue problem
formulations and give numerical examples.

References

[1] O. Steinbach, G. Unger: Convergence analysis of a Galerkin boundary element
method for the Dirichlet Laplacian eigenvalue problem. SIAM J. Numer. Anal., 50
(2012), 710-728.
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An Approximate Eigensolver for Self-Consistent Field
Calculations

Othmar Koch1, Harald Hofstätter2

1 Vienna University of Technology
2 Vienna University of Technology

We discuss an approximate solution method for the generalized eigenvalue problems
arising for instance in the context of electronic structure computations based on density
functional theory. The solution method is demonstrated to excel as compared to estab-
lished solvers in both computational effort and scaling for parallelization. Furthermore,
we estimate the error resulting from our proposed subspace method starting from the
initial approximations for instance provided in the course of the self-consistent field it-
eration, showing that in general the approximation quality is improved by our method
to yield sufficiently accurate eigenvalues.
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Stability of FEM-BEM couplings for nonlinear
elasticity problems

Thomas Führer, Michael Feischl, Michael Karkulik, Dirk Praetorius

Vienna University of Technology

We consider a transmission problem in elasticity with a nonlinear material behavior in
the bounded interior domain, which can be rewritten by means of the symmetric cou-
pling as well as non-symmetric coupling methods, such as the Johnson-Nédélec coupling.
Problems arise when trying to prove solvability of the Galerkin discretization, because
the space of rigid body motions is contained in the kernel of the Lamé operator.
In this talk, which is based on the recent preprint [3], we present how to extend the

ideas of implicit stabilization, developed for Laplace-type transmission problems in [1],
to elasticity problems. We introduce modified equations which are fully equivalent (at
the continuous as well as at the discrete level) to the original formulations. Solvability
of the discrete modified problems, however, hinges on a condition on the discretization
space, which states that the space is rich enough to tackle the rigid body motions. We
prove that this condition is satisfied for regular triangulations, if the boundary element
space contains the piecewise constants.
Our analysis extends the works [2, 4, 5, 6]. Unlike [2], we avoid any assumption on the

mesh-size. Unlike [4], we avoid the use of an interior Dirichlet boundary. Unlike [6], we
avoid any pre- and postprocessing steps as well as the numerical solution of additional
boundary value problems.

References

[1] M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. Melenk, D. Praetorius: Clas-
sical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity.
Comput. Mech., (2012).

[2] C. Carstensen, S. A. Funken, E. P. Stephan: On the adaptive coupling of FEM and
BEM in 2d-elasticity. Numer. Math., 77 (2012), 187–221.

[3] M. Feischl, T. Führer, M. Karkulik, D. Praetorius: Stability of symmetric and non-
symmetric FEM-BEM couplings in nonlinear elasticty. ASC Report 52, TU Wien
(2012).

[4] G. Gatica, G. C. Hsiao, F. J. Sayas: Relaxing the hypotheses of Bielak-MacCamy’s
BEM-FEM coupling. Numer. Math., 120 (2012), 465–487.

[5] G. Of, O. Steinbach: Is the one-equation coupling of finite and boundary element
methods always stable? Berichte aus dem Institut für Numerische Mathematik, TU
Graz, 6 (2011).

[6] O. Steinbach: On the stability of the non-symmetric bem/fem coupling in linear
elasticity. Comput. Mech., (2012).
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Solving the Time-Dependent Schrödinger Equation on
CPU and GPU Clusters

Manfred Liebmann1

1 Karl–Franzens–Universität Graz

We investigate efficient approximation schemes for solving the Schrödinger equation for
time-dependent Hamiltonians on CPU and GPU clusters with applications in optimal
control theory.
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A Perl program for the symbolic manipulation of flows
of differential equations and its application to the

analysis of defect-based error estimators for splitting
methods

Harald Hofstätter1

1 Vienna University of Technology

For the proof of the asymptotical correctness of certain defect-based a posteriori local
error estimators for splitting methods, suitable (integral) representations of local error
expansions have to be derived, from which the order of the local error can directly be
inferred. In the linear case this is achieved by tedious but relatively straightforward
manipulations of operator exponentials. In the nonlinear case, however, to obtain these
local error representaions explicitly, complicated expressions involving nonlinear flows
of differential equations and higher-order Frechet derivatives of such flows have to be
handled. Performing these tedious and error prone calculations manually very quickly
becomes unreasonable or even impossible. We describe an especially tailored tool for
performing such manipulations symbolically, whose development was strongly facilitated
by employing the object-orientedness and the superior string and hash manipulation
features of the Perl programming language.
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Finite element methods for transient
convection-diffusion equations with small diffusion

Nadir Bayramov1, Johannes Kraus1

1 RICAM, Linz

Transient convection-diffusion or convection-diffusion-reaction equations, with in gen-
eral small or anisotropic diffusion, are considered. A specific exponential fitting scheme,
resulting from finite element approximation, is applied to obtain a stable monotone
method for these equations. Error estimates are dicussed for this method and a com-
parison to the more commonly known SUPG method is drawn. Numerical results are
presented (for both methods) including the case of highly anisotropic diffusion tensor.

References

[1] J. Xu, L. Zikatanov, A monotone finite element scheme for convection-diffusion equa-
tions, Mathematics of Computation, Volume 68, 228 (1999), pp. 1429–1446.

[2] N. Bayramov, J. Kraus, On the robust solution of convection-diffusion equation cou-
pled with Stokes equation (in preparation)
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H-matrix approximability of inverse FEM matrices for
various boundary conditions

Markus Faustmann, Jens Markus Melenk, Dirk Praetorius

Institute for Analysis and Scientific Computing, TU Vienna

The inverse of the finite element (FEM) stiffness matrix corresponding to the Dirich-
let problem for elliptic operators with bounded coefficients can be approximated in the
data-sparse format of H-matrices with an error that decays exponentially in the block
rank employed. This was observed numerically in the PhD thesis of Grasedyck and
mathematically shown by Bebendorf & Hackbusch for Dirichlet problems. Such a re-
sult is of practical interest, since it provides the mathematical basis to apply H-matrix
techniques for black-box preconditioning in iterative solvers.
Possibly due to the method of proof, the existing mathematical analysis has focused

on Dirichlet problems. In [1, 2], a new avenue is pursued that permits more general
settings. For a BEM setting, for example, [2] shows that the inverses of first kind BEM
matrices can be approximated at an exponential rate in the (local) block rank. In this
talk, we illustrate that the Dirichlet boundary conditions are not essential and present
a corresponding exponential approximability result for the inverses of FEM stiffness
matrices arising in problems with Neumann or mixed boundary conditions.
A main point of our analysis compared to previous approaches in literature is that

we directly work in a fully discrete setting and therefore avoid an additional projection
error. Moreover, we do not need an a priori coupling of the block rank and the mesh
width.

References

[1] M. Faustmann, J. M. Melenk, D. Praetorius: A new proof for existence of H-matrix
approximants to the inverse of FEM matrices: the Dirichlet problem for the Lapla-
cian, ASC Report 51/2012.

[2] M. Faustmann, J. M. Melenk, D. Praetorius: Existence of H-matrix approximants
to the inverse of BEM matrices, work in progress.
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Strongly scalable numerical methods to simulate
cardiovascluar tissues

Christoph Augustin1, Olaf Steinbach2, Gernot Plank1

1 Medical University of Graz
2 Graz University of Technology

Anatomically realistic and biophysically detailed multiscale computer models of cardio-
vascular tissues like the heart or arterial vessels are playing an increasingly important
role in advancing our understanding of integrated cardiac function in health and disease.
However, such detailed multiphysics simulations are computationally vastly demanding.
While current trends in high performance computing (HPC) hardware promise to alle-
viate this problem, exploiting the potential of such architectures remains challenging.
Strongly scalable algorithms are necessitated to achieve a sufficient reduction in execu-
tion time by engaging a large number of cores. This imposes many constraints on design
and implementation of solver codes.

We discuss two different parallel approaches, the finite element tearing and inter-
connecting (FETI) method and a proper domain decomposition algebraic multigrid, to
solve the non-linear elasticity problems arising from the simulation of the mechanical
behavior of cardiovascular tissues. Scalability results for these mechanical simulations
will be presented. We will also show first results of weakly and strongly coupled electro-
mechanical problems and discuss challenges that need to address with regard to highly
scalable parallel implementations.
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Hybrid cG/dG Finite Element Methods for Solving
Semilinear Parabolic Equations

Elias Karabelas1, Olaf Steinbach1

1Graz University of Technology

In this talk we discuss hybrid cG/dG finite element methods which are continuous in
space and discontinuous in time for the solution of semilinear parabolic partial differential
equations. We present a stability and error analysis and we give some numerical results.
This cG/dG approach allows rather general discretizations in space and time as well as
adaptive refinement strategies. One application in mind is the simulation of the cardiac
bidomain equations.
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Two-scale homogenization of the eddy-current problem
in laminated media

Antti Hannukainen1, Karl Hollaus2, Joachim Schöberl2

1 Aalto University
2 TU Vienna

To reduce losses, critical electrical machine parts are constructed by laminating thin
insulator coated iron sheets together. Since iron and insulator have very different elec-
tromagnetic properties, the permeability µ and the conductivity σ oscillate rapidly in
the laminated parts. This oscillating behavior leads to difficulties in the numerical sim-
ulation of eddy current losses occurring in the machine.
In time-harmonic analysis, the eddy current losses are computed by solving the eddy

current problem: find the vector potential A such that

iωσA+∇× µ−1∇× A = J and ∇ · A = 0, (1)

inside the machine. Solving this problem in the laminated region with sufficient accuracy
requires the use of finite element mesh finer than the thickness of the individual sheets.
As laminations are very thin compared to the size of the machine, this requirement leads
to unrealistically fine discretizations and too high computational costs.
A simple and often used engineering strategy for avoiding numerical problems in the

laminated parts is to assume that the laminate is non-conducting perpendicular to the
sheets and to use an effective permittivity. These assumptions eliminate the oscillations
of µ and σ that cause difficulties for numerical schemes. However, this comes at the
price of neglecting all current loops perpendicular to the laminated sheets. Due to this,
the losses computed using such strategy cannot accurately approximate the real losses.
In this talk, we consider using two-scale homogenization to model the laminated parts.

Homogenization allows the losses to be accurately computed using a coarse computa-
tional grid with a reasonable computational cost. We will present the derivation of the
homogenized problem and numerically study the error induced in the homogenization
procedure. This talk is a continuation of our earlier work on the topic, see [1, 2].

References

[1] K. Hollaus and J. Schöberl. Homogenization of the Eddy Current Problem in 2D, In
Proceedings of the 14th International IGTE Symposium on Numerical Field Calcu-
lation in Electrical Engineering (2010), 154–159.

[2] K. Hollaus and J. Schöberl. A Linear FEM Benchmark for the Homogenization of
the Eddy Currents in Laminated Media in 3D, to appear in IFAC (2013).
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An Efficient Robust Solver for Optimal Control
Problems for the Stokes Equations in the

Time-Harmonic Case

Wolfgang Krendl1, Valeria Simoncini2, Walter Zuhlehner1

1Johannes Kepler University
2 Università di Bologna

In this talk we will construct a robust solver for the optimal control problem for the
Stokes equation, in the time-harmonic case. The discretization of the corresponding
optimality system leads to a large and sparse 8x8 block matrix in saddle point form.
We use an iterative solver, more precisely, we apply the MINRES method. To gurantee
efficiency, we constructed a preconditioner for the MINRES-method, which is robust
with respect to the mesh size, the frequency ω and the control parameter α. Numerical
examples are given which illustrate the theoretical results.
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A High Order Discontinuous Galerkin Method for the
Boltzmann equation

Gerhard Kitzler1, Joachim Schöberl2

1 Vienna UT
2 Vienna UT

The Boltzmann equation is a statistical model for gases. Its solution function f(t, x, v) is
usually called density distribution function and describes the average number of particles
having a position close to x, and a velocity close to v at time t. Boltzmanns equation
governs the time evolution of this distribution function:

∂f

∂t
+ divx(v f) = Q(f) (1)

The collision operator on the right hand side (1) describes the effect of binary collisions
within the particles. It is local in time and position but global in velocity.
For a discretication in the momentum domain, the solution f is expanded as

fM = e
−
|v−V (x,t)|2
T (x,t)

n∑
m=0

cm Lm(v−V (x,t)√
T (x,t)

), (2)

with multivariate Lagrange polynomials Lm, in Gauss Hermite collocation points. V
and T are the macroscopic unknown quantities velocity and temperature of the gas.
In the space domain we use a high order discontinuous galerkin method with natural
upwind fluxes for discretization.
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Exponential integrators for shallow water equations

Petra Csomós1, Alexander Ostermann1

1 University of Innsbruck

Shallow water equations not only play an important role in hydrodynamic simulations,
but also their numerical treatment can be successfully investigated. In the present
talk we study the application of exponential integrators for three dimensional inviscid
shallow water equations with rotation terms. First, we discuss the derivation and the
linearisation of these equations. Then we show how to formulate them as an abstract
semilinear problem for which the numerical solution can be obtained by exponential
integrators. We study the convergence of the exponential Euler method in this case
and discuss the benefits of using higher order methods. We also present some numerical
experiments.
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A perturbation result for quasi-linear stochastic
differential equations in UMD Banach spaces

Erika Hausenblas1, Sonja Cox2

1 Montanuniversity Leoben, Austria
2 ETH-Zürich, Switzerland

In a joint work with Cox (see [1, 2]) we have shown a perturbation result with respect
to a stochastic evolution equation. To be more precise, we consider the effect of per-
turbations of A on the solution to the following quasi-linear parabolic stochastic partial
differential equation:{

dU(t) = AU(t) dt+ F (t, U(t)) dt+G(t, U(t)) dWH(t), t > 0;
U(0) = x0.

(1)

Here A is the generator of an analytic C0-semigroup on a umd Banach space X with type
τ , G : [0, T ]×X → L(H,XA

θG
) and F : [0, T ]×X → XA

θF
for some θG > −1

2
, θF > −3

2
+ 1

τ
.

We assume F and G to satisfy certain global Lipschitz and linear growth conditions.
The spaces XA

θF
and XA

θG
are certain interpolation, resp. extrapolation spaces.

Let A0 denote the perturbed operator and U0 the solution to (1) with A substituted
by A0. We provide estimates for ‖U −U0‖Lp(Ω;C([0,T ];X)) in terms of Dδ(A,A0) := ‖R(λ :
A) − R(λ : A0)‖L(XA

δ−1,X). Here δ ∈ [0, 1] is assumed to satisfy 0 ≤ δ < min{3
2
− 1

τ
+

θF ,
1
2
− 1

p
+ θG}.

With the help of this result, we prove almost sure uniform convergence rates for space
approximations of semi-linear stochastic evolution equations with multiplicative noise
in Banach spaces. The space approximations we consider are spectral Galerkin and
finite elements, but can also be applied to wavelets in Besov spaces. A more theoretical
application is the Yosida approximation, to which the result can be applied as well.
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Numerical aspects of audio processing

Monika Dörfler1

1 University of Vienna

Sound signals play a central role in human life and the manner sound is perceived is
highly sophisticated, complex and context-dependent. Since the amount of sound data
that are automatically stored, searched and processed, grows dramatically, there is also
a growing need for understanding the inherent structures of sound and their implications
for human listeners.
Ideally, an analysis tool should be able to render a representation that allows for

visual display reflecting a user’s acoustical impression; such a representation turns out
to be beneficial for processing in the sense of perceptual results. Often, this kind of
representation can be achieved by applying adaptive time-frequency representations.
These representations are intuitively appealing, but often computationally inefficient.
In this talk we will describe the design of adaptive representations based on frame

theory and we will present a framework which allows for FFT-based analysis and FFT-
based perfect or approximate reconstruction. Examples for this kind of framework can
be found in [1].

References

[1] N. Holighaus, M. Dörfler, G. Velasco, and T. Grill. A framework for invertible,
real-time constant-Q transforms. IEEE Transactions on Audio, Speech and
Language Processing, to appear, 2012.

26



Numerical Questions in Time-frequency Analysis

Hans G. Feichtinger

1 University of Vienna

By now Gabor analysis is a mature subfield of time-frequency analysis. It is well under-
stood that for any lattice Λ in the TF-plane the corresponding Gabor family (π(λ)g) is
a Gabor frame with good properties if the Gabor atom g is a nice function, because the
commutation properties of the frame operator S imply that also the dual atom g̃ has
good properties.

Parallel with an improved understanding of the functional analytic properties of these
non-orthogonal expansions (which in addition have some built in redundancy, but also
robustness) there are more and more efficient methods which allow to provide in a fast
way the minimal norm coefficients for a given signal in an efficient way.

We plan to provide some insight into the questions, methods and algorithms arising
in this context. The demonstrations are all performed in a MATLAB environment.
Corresponding MATLAB files can be found on the NuHAG web-page (www.nuhag.eu),
including the LTFAT toolbox (Linear Time-Frequency Toolbox), developed by Peter
Soendergaard (presently at ARI = Acoustic Research Institute, OEAW, Vienna).

27



Local error structures of higher-order exponential
splitting schemes

Winfried Auzinger1, Othmar Koch1, Mechthild Thalhammer2

1 Vienna University of Technology
2 University of Innsbruck

A multistage (s-stage) splitting approximation step applied to a linear evolution equation
d
dt
u = Hu = Au+Bu has the general form

S(t)u = etBs etAs · · · etB1 etA1u ≈ et(A+B)u, (1)

where t is the time step, Aj = ajA, Bj = bjB, and aj, bj are real or complex coefficients
to be chosen in a way such that a certain approximation order is realized.
A systematic way of studying the error structure of splitting schemes is based on an

integral representation for the local error in terms of the defect

D(t)u =
d

dt
S(t)u−HS(t)u. (2)

This way of representing the error differs from existing approaches which are more or
less based on BCH or related formulas. We give an exposition of this approach and
discuss order conditions, the combinatorical structure of the defect, and the design and
analysis of a posteriori error estimators which are obtained by approximating the local
error by a computable defect-based estimate.
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A general integrator for the Landau-Lifshitz-Gilbert
equation

Marcus Page1, Dirk Praetorius1, L’ubomir Baňas 2

1 Vienna University of Technology
2 Heriot-Watt University

The understanding of magnetization dynamics, especially on a microscale, is of utter
relevance, for example in the development of magnetic sensors, recording heads, and
magneto-resistive storage devices. In the literature, it is well-accepted that dynamic
micromagnetic phenomena are modeled best by the Landau-Lifshitz-Gilbert equation
(LLG) which describes the behaviour of the magnetization under the influence of some
effective field that may consist of several contributions such as the microcrystalline
anisotropy or the demagnetization field. Numerical challenges for the time integration
arise from strong nonlinearities, a non-convex modulus constraint and possible non-local
field contributions.

Recently there has been a huge progress in the mathematical literature for weak solvers
to LLG. In [Alouges, (2008)], the author introduced an integrator that requires to solve
only one linear system per timestep and still guarantees unconditional convergence to-
wards a weak solution of LLG. While this work was done for an effective field with
exchange energy only, in [Alouges (2011)] and [Goldenits (2012)], the analysis was
extended to cover a more general, however, linear effective field.

In our contribution, we extend the above approach to show the full potential of this
solver. By exploiting an abstract framework, we can cover general field contributions that
might be nonlinear, non-local, and/or time-dependent. Applications include multiscale
modeling, coupling of LLG to the full Maxwell’s equations, or even to the conservation
of momentum equation to include magnetostrictive effects. Even in this general setting,
we can still prove unconditional convergence while sustaining very little computational
effort.
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Boundary control of exterior boundary value problems

Arno Kimeswenger1, Olaf Steinbach1

1 Graz University of Technology

In this presentation we discuss boundary control problems subject to second order partial
differential equations in unbounded exterior domains. Examples involve the Laplace
and Helmholtz equations. Since the control is considered in H

1
2 (Γ) the regularisation is

realised by the exterior Steklov-Poincaré operator. For the numerical approximation we
consider a symmetric Galerkin boundary element method and we apply a semi-smooth
Newton method in the case of box constraints. Some numerical examples are given.
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New regularity results and improved error estimates
for optimal control problems with state constraints

Boris Vexler1, Eduardo Casas2, Mariano Mateos2

1 Technische Universität München
2Universidad de Cantabria

In this talk we consider optimal control problems governed by an elliptic equation and
subject to pointwise state constraints. The analysis as well as the numerical analysis of
such problems is difficult due to the lack of regularity of the Lagrange multiplier as well
as of the adjoint state. We provide a new regularity result for the adjoint state, which
allows to improve the a priori error estimates for the finite element discretization of the
problem.
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