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Time Schedule

Thursday, May 9, 2019

12:00 Registration

12:30 Michael Feischl Multi-Index Finite Element Method
12:50 Joscha Gedicke Robust adaptive hp discontinuous Galerkin finite ele-

ment methods for the Helmholtz equation
13:10 Gerhard Unger Boundary element methods for the modal approxima-

tion of plasmonic transmission problems
13:30 Stefan Takacs Multigrid solvers for isogeometric multi-patch discretiza-

tions coupled by discontinuous Galerkin approaches
13:50 Maximilian

Bernkopf
Optimal convergence rates in L2 for a first order system
least squares finite element method

14:10 Marco Zank Realisation of a Galerkin-Bubnov FEM for the Heat
Equation

14:30 Coffee Break

15:00 Walter Zulehner A unified approach for mixed formulations of elliptic
problems with application to models in structural me-
chanics

15:20 Lukas Kogler An Algebraic Multigrid Method for Linear Elasticity
15:40 Patrick Bammer Error Estimates for hp-FEM in Elastoplasticity
16:00 Douglas Pacheco Pressure Poisson equation for the Stokes system: An

ultra-weak formulation
16:20 Jana Fuchsberger Simulating a Heart Valve using a Varying Permeability

Approach

16:40 Coffee Break

17:00 Mirko Residori A new splitting approach for dispersive problems on un-
bounded domains

17:20 Eric Setterqvist Taut Strings and Total Variation Denoising on Graphs
17:40 Carl-Martin Pfeiler Dörfler marking with minimal cardinality is a linear

complexity problem
18:00 Jarle Sogn Initial source recovery of the wave equation given inter-

nal boundary measurements
18:20 Manfred Liebmann Reinforcement Learning for Hybrid Electric Vehicle

Drivetrain System Controllers

19:00 Dinner at Gösser Bräu (Neutorgasse 48)
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Friday, May 10, 2019

8:30 Matthias Taus Fast solvers for time-harmonic wave propagation in a
parallel computational environment

8:50 Paul Stocker Tent pitching and a Trefftz-DG method for the acoustic
wave equation

9:10 Sjoerd Geevers Doubling the convergence rate by pre- and post-
processing the finite element approximation for linear
wave problems

9:30 Michael Neunteufel The Hellan–Herrmann–Johnson Method for Nonlinear
Shells

9:50 Alexander Pichler A virtual element method for the miscible displacement
problem

10:10 Christof Haubner A Priori Error Estimates for the Optimal Control of a
Simplified Signorini Problem

10:30 Coffee Break

11:00 Julia I.M. Hauser Variational Formulations for Maxwell’s Equations
11:20 Victor A.

Kovtunenko
Numerical Identification of Inhomogeneities by Inverse
Scattering Using Topological Optimality Condition

11:40 Raphael
Watschinger

Fast Directional Matrix-Vector Multiplications - Algo-
rithm and Parameter Study

12:00 Tobias Danczul A Reduced Basis Method for Fractional Diffusion Oper-
ators

12:20 Markus Faustmann Optimal adaptivity and preconditioning for the frac-
tional Laplacian

12:40 Clemens Hofreither Fast Solvers for Isogeometric Analysis based on Alter-
nating Linear Schemes for Tucker Tensors

13:00 Closing
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Abstracts in Chronological Order



Multi-Index Finite Element Method

Michael Feischl1, Josef Dick2 and Christoph Schwab3

1 TU Wien
2 UNSW Sydney
3 ETH Zürich

We show rigorous error and cost estimates for a multi-index MC method which in-
cludes the finite-element approximation, the approximation of the random field, and the
Monte-Carlo quadrature error. This improves the cost estimates compared to multi-level
algorithms for similar problems and mathematically underpins the outstanding practi-
cal performance of multi-index algorithms for partial differential equations with random
coefficients.
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Robust adaptive hp discontinuous Galerkin finite
element methods for the Helmholtz equation

Joscha Gedicke1, Scott Congreve2, Ilaria Perugia1

1 Faculty of Mathematics, University of Vienna, Vienna, Austria
2 Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

This talk presents an hp a posteriori error analysis for the 2D Helmholtz equation that
is robust in the polynomial degree p and the wave number k. For the discretization, we
consider a discontinuous Galerkin formulation that is unconditionally well posed. The
a posteriori error analysis is based on the technique of equilibrated fluxes applied to a
shifted Poisson problem, with the error due to the nonconformity of the discretization
controlled by a potential reconstruction. We prove that the error estimator is both
reliable and efficient, under the condition that the initial mesh size and polynomial
degree is chosen such that the discontinuous Galerkin formulation converges, i.e., it is
out of the regime of pollution. We confirm the efficiency of an hp-adaptive refinement
strategy based on the presented robust a posteriori error estimator via several numerical
examples.

References

[1] S. Congreve, J. Gedicke, and I. Perugia. Robust adaptive hp discontinuous Galerkin
finite element methods for the Helmholtz equation. SIAM J. Sci. Comput., accepted,
2019.
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Boundary element methods for the modal
approximation of plasmonic transmission problems

Gerhard Unger1, Ulrich Hohenester2, Andreas Trügler2

1 TU Graz
2 University of Graz

Light causes on the surface of metallic nanoparticles coherent charge oscillations, so-
called surface plasmons. These are responsible that metallic nanoparticles have special
optical properties which can hardly be achieved by other optical materials. The in-
teraction of light with metallic nanoparticles is modeled as a transmission problem for
Maxwell’s equations. The concept of resonances and modes for the description of surface
plasmons has recently received great interest, both in the context of efficient simulations
as well as for an intuitive interpretation in physical terms. While resonance modes have
been successfully employed for geometries whose optical response is governed by a few
modes only, the resonance mode description exhibits considerable difficulties for larger
nanoparticles with their richer mode spectra. In this talk we analyze the problem using a
boundary element method approach and identify the fixed link between the electric and
magnetic components in the modal expansion of the optical response as the main source
for this shortcoming. We suggest a novel modal approximation scheme that allows in
principle to overcome this problem by proposing separate coefficients of the the electric
and magnetic components of the modal expansion.

References

[1] U. Hohenester, A. Trügler, G. Unger: Novel Modal Approximation Scheme for Plas-
monic Transmission Problems. Phys. Rev. Lett. 121 (2018), 246802.
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Multigrid solvers for isogeometric
multi-patch discretizations coupled by
discontinuous Galerkin approaches

Stefan Takacs

Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Austrian Academy of Sciences, Austria

Isogeometric Analysis is a spline-based discretization for partial differential equations
(PDEs) which allows to archive convergence rates of a high-order discretization for costs
(in terms of the number of unknowns) of a low-order method. The spline-based dis-
cretization is first constructed on some simple parameter domain, like the unit square
and then mapped to the domain of interest using a global geometry parameterization.
More complicated domains are typically decomposed into subdomains, usually called
patches, where each of them is parameterized separately. The patches can be cou-
pled in a strong sense or using discontinuous Galerkin approaches. The latter allows
non-matching discretizations on the interfaces and extends easier to high-order PDEs.
The focus of the talk is set on the solution of the resulting systems with multigrid
solvers. In principle, standard Jacobi or Gauss-Seidel smoothers can be applied also in
the framework of isogeometric analysis, however their convergence behavior deteriorates
significantly if the spline degree is increased. So, we introduce alternative approaches
and compare them with the standard Jacobi or Gauss-Seidel smoothers and discuss their
advantages and disadvantages. We will see numerous numerical experiments and discuss
what can be explained by the convergence theory.
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Optimal convergence rates in L2 for a first order
system least squares finite element method

Maximilian Bernkopf, Jens Markus Melenk

TU Wien

We consider a Poisson-like second order model problem written as a system of first
order equations. For the discretization an HHH(Ω, div) ×H1(Ω)-conforming least squares
formulation is employed. A least squares formulation has the major advantage that
regardless of the original formulation the linear system resulting from a least squares
type discretization is always positive semi-definite, making it easier to solve. Even
though our model problem in its standard H1(Ω) formulation is coercive our methods
and lines of proof can most certainly be applied to other problems as well, see [2, 3]
for an application to the Helmholtz equation. A major drawback of a least squares
formulation is that the energy norm is somewhat intractable. Deducing error estimates
in other norms, e.g., the L2(Ω) norm of the scalar variable, is more difficult. Numerical
examples in our previous work [2] suggested convergence rates previous results did not
cover. Closing this gap in the literature will be the main focus of the talk. To that
end we showcase a duality argument in order to derive L2 error estimates of the scalar
variable, which was the best available estimate in the literature. We then perform a more
detailed analysis of the corresponding error terms. This analysis then leads to improved
convergence rates of the method. The above procedure can then be applied to more
complicated boundary conditions, for which an analogous result is a nontrivial task. As
a tool, which is of independent interest, we developHHH(Ω, div)-conforming approximation
operators satisfying certain orthogonality relations. For the analysis, a crucial tool are
recently developed projection based commuting diagram operators, see [4].

References

[1] M. Bernkopf and J.M. Melenk, Optimal convergence rates in L2 for a first order
system least squares finite element method, in preparation

[2] M. Bernkopf and J.M. Melenk, Analysis of the hp-version of a first order system least
squares method for the Helmholtz equation, arXiv:1808.07825

[3] H. Chen and W. Qiu A first order system least squares method for the Helmholtz
equation, Journal of Computational and Applied Mathematics 309 (2017), pp. 145–
162.

[4] J.M. Melenk and C. Rojik, On commuting p-version projection-based interpolation
on tetrahedra, arXiv:1802.00197
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Realisation of a Galerkin-Bubnov FEM
for the Heat Equation

Marco Zank

University of Vienna

For the discretisation of time-dependent partial differential equations, the standard ap-
proaches are explicit or implicit time stepping schemes together with finite element
methods in space. An alternative approach is the usage of space-time methods, where
the space-time domain is discretised and the resulting global linear system is solved at
once. In this talk, the model problem is the heat equation. First, a space-time vari-
ational formulation in anisotropic Sobolev spaces for the heat equation is discussed,
where a linear isometry HT is used such that ansatz and test spaces are equal, see [1, 2]
for details. A conforming discretisation of this space-time variational formulation in
anisotropic Sobolev spaces leads to a Galerkin-Bubnov finite element method, which is
unconditionally stable, i.e. no CFL condition is required. However, for the implemen-
tation of this method, the realisation of the linear isometry HT is crucial. The main
part of this talk investigates possible ways of doing this realisation for piecewise linear,
globally continuous ansatz and test functions. In the last part of the talk, numerical
examples are shown and discussed.

References

[1] O. Steinbach and M. Zank: Coercive space-time finite element methods for initial
boundary value problems, Submitted, 2018.

[2] M. Zank: Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differen-
tial Equations, PhD thesis, TU Graz, 2019.
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A unified approach for mixed formulations of elliptic
problems with application to models in structural

mechanics

Walter Zulehner1, Dirk Pauly2

1 Johannes Kepler University Linz
2 University Duisburg-Essen

A general and rather flexible approach will be presented how to derive mixed variational
formulations of elliptic problems. The approach is based on the concept of densely de-
fined linear operators and their adjoints, rather than on the well-known technique of
integration by parts, which is typically used for the construction of mixed variational
formulations otherwise. The construction of the mixed formulation starts with the pri-
mal variational formulation rather than the strong (or classical) form of the problem.
This allows to address the relation between the primal and the mixed problem quite
thoroughly.
As a particular application of the approach, the Reissner-Mindlin plate bending model

is discussed, for which a decomposition of the problem into three simpler second-order
problems is shown.
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An Algebraic Multigrid Method for Linear Elasticity

Lukas Kogler, Joachim Schöberl

TU Wien

In this talk we present a new variation of Smoothed Aggregation AMG for linearized
elasticity. The method directly incorporates rigid body modes into the coarse spaces,
which feature both translational and rotational degrees of freedom. Coarsening and
smoothing are both based on a replacement matrix which induces an equivalent norm
to the energy norm. It is, however, of a simpler structure than the system matrix, as
it only consists of edge contributions which are computed from element matrices during
the assembly loop and can be kept unassembled. This gives us a simple way to smooth
out coarse basis functions while preserving rigid body modes.
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Error Estimates for hp-FEM in Elastoplasticity

Patrick Bammer, Lothar Banz, Andreas Schröder

University of Salzburg

In this talk we consider a variational inequality formulation as well as a equivalent
mixed variational formulation for a model problem in elastoplasticity with linear kine-
matic hardening and present hp-discretizations for both formulations. We prove that the
discrete variational inequality formulation is equivalent to the discrete mixed formulation
and show the unique existence of discrete solutions. The main focus is on the derivation
of a-priori error estimates and reliable and efficient a-posteriori error estimates.
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Pressure Poisson equation for the Stokes system:
An ultra-weak formulation

Douglas R. Q. Pacheco, Olaf Steinbach

Institute of Applied Mathematics, Graz University of Technology

For the standard variational formulation of the Stokes system, we consider the pres-
sure Poisson equation by choosing gradient fields as appropriate test functions. This
results in an ultra-weak variational problem to find the pressure in L2, which allows
the use of a piece-wise constant approximation for the pressure. In this case, the test
functions must be of second order to guarantee conformity and stability. We derive the
ultra-weak formulation and present several applications of this approach which can be
used for pressure retrieval from measured velocities, stabilization of lowest-order finite
element approximations for the Stokes system, and the analysis and simulation of Stokes
eigenvalue problems.
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Simulating a Heart Valve using a Varying
Permeability Approach

Jana Fuchsberger1, Gundolf Haase1, Elias Karabelas2, Gernot Plank2

1 University Graz
2 Medical University Graz

Models of total heart function include computational fluid dynamics models of blood
flow. The effect of heart valves upon flow patterns can be taken into account by a
fictitious domain approach in combination with the Navier-Stokes-Brinkman equations.
The motion of the valve is represented by means of a spatio-temporal varying perme-

ability function while the underlying mesh remains unchanged.
We present first proof-of-concept simulations of blood flow in the left ventricle and

aorta to demonstrate feasibility.
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A new splitting approach for dispersive problems
on unbounded domains

Mirko Residori, L. Einkemmer, A. Ostermann

University of Innsbruck

We propose a new numerical method for solving the linearized Korteweg–de Vries (KdV)
equation

ut + g(x)ux + uxxx = 0, (t, x) ∈ [0, T ]× R (1)

with initial data u(0, x) = u0(x). In order to perform numerical simulations, we truncate
the unbounded domain R to a finite computational domain [a, b], a < b. Boundary
conditions must be imposed on a, b. We employ the so called transparent boundary
conditions. These conditions allow us to compute numerical solutions that approximate
the solution over the unbounded domain R restricted to the interval [a, b]. We follow
a splitting strategy in order to solve separately the advective and the dispersive part
of equation (1). For this purpose, we employ a Lie–Trotter splitting. We then take
advantage of the employed Lie–Trotter splitting by carrying out the spatial discretization
by a pseudo-spectral approach, as it has been done for the pure dispersive equation in [1].
This approach gives us a very accurate spatial numerical solution using a modest number
of grid points.

References

[1] C. Zheng, X. Wen, and H. Han: Numerical solution to a linearized KdV equation on
unbounded domain. Numerical Methods for Partial Differential Equations, 24 (2008),
383–399.
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Taut Strings and Total Variation Denoising on Graphs

Eric Setterqvist1, Clemens Kirisits1, Otmar Scherzer1,2

1 Faculty of Mathematics, University of Vienna, Austria
2 Johann Radon Institute for Computational and Applied Mathematics (RICAM),

Austrian Academy of Sciences, Linz, Austria

For one-dimensional discrete signals, it is known that total variation flow, total variation
regularization and the taut string algorithm are equivalent filters. A notable feature of
the filtered signal, inherited from the taut string algorithm, is that it simultaneously
minimizes a large number of convex functionals in a certain neighbourhood of the data.
In this talk we address the question to what extent this situation can be carried over
to a more general setting. We consider data given on the vertices of a finite oriented
graph and total variation defined as J(f) =

∑
i,j |f(vi) − f(vj)| for adjacent vertices

vi and vj. It turns out that the minimizer of the corresponding Rudin-Osher-Fatemi
(ROF) model on the graph may be viewed as the outcome of a generalized taut string
algorithm. In particular, the minimizer has the same universal minimality property as
in the one-dimensional setting. However, this property is lost if J is replaced by discrete
isotropic total variation. Next, we show that, in contrast to the one-dimensional setting,
the minimizer of the ROF model and the solution to the gradient flow for J do not
coincide in general.
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Dörfler marking with minimal cardinality
is a linear complexity problem

Carl-Martin Pfeiler and Dirk Praetorius

TU Wien

Adaptive finite element methods (AFEM) iterate the procedure Solve-Estimate-Mark-
Refine to generate a sequence of locally refined meshes (T`)`∈N0 , where the degrees of
freedom are chosen more carefully than for uniform mesh refinement: First, the discrete
solution is computed on the given mesh T`. Then, local refinement indicators (η`(T ))T∈T`
are computed. Based on these indicators a subset M` ⊆ T` is marked for refinement.
Finally, (at least) the marked elements are refined to obtain an improved mesh T`+1.
In his seminal work [1], Dörfler proposes a marking criterion, which allows to prove

linear convergence of the energy error for each iteration of the AFEM algorithm. This
marking criterion is commonly known as Dörfler marking : Given η`(T ) for all T ∈ T`
and a marking parameter 0 < θ ≤ 1, construct a setM` ⊆ T` such that

θ
∑
T∈T`

η`(T )2 ≤
∑

T∈M`

η`(T )2 .

Later it was shown in [2] that the Dörfler marking criterion is not only sufficient to
prove linear convergence, but even in some sense necessary.
Clearly, one aims for a subsetM` ⊆ T` containing as few elements as possible, which

satisfies the Dörfler marking criterion. In the best case, the set M` ⊆ T` has minimal
cardinality, i.e.,

#M` = min{#N : N ⊆ T` satisfies the Dörfler marking criterion} .
Dörfler [1] notes that sorting the refinement indicators would be sufficient to find such a
set of minimal cardinality. Since sorting an array of length N requires O(N logN) op-
erations, while Solve, Estimate and Refine are (in principle) of linear cost, he, however,
notes that sorting should be avoided. Stevenson [2] proposes a linear complexity algo-
rithm to find a set of minimal cardinality up to some absolute factor 2, which satisfies
the marking criterion.
In our talk, we propose a new algorithm for finding a set with minimal cardinality

satisfying the Dörfler marking criterion. We show that this new algorithm terminates
after at most O(N) operations. In particular, Dörfler marking with minimal cardinality
is a linear complexity problem.

References

[1] W. Dörfler: A convergent adaptive algorithm for Poisson’s equation. SIAM Journal
on Numerical Analysis, 33(3) (1996), 1106-1429.

[2] R. Stevenson: Optimality of a standard adaptive finite element method. Foundations
of Computational Mathematics, 7(2) (2007), 245-269.
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Initial source recovery of the wave equation given
internal boundary measurements

Jarle Sogn1, Alexander Beigl2, Otmar Scherzer2, Walter Zulehner1

1 Johannes Kepler University Linz
2 University of Vienna

We consider an optimization problem in function spaces with a hyperbolic partial differ-
ential equation as constraint with application Photoacoustic Tomography. Our goal is
to identify the state variable at the initial time given some data on an internal bound-
ary. We derive the KKT-system and show that the problem is well-posed, moreover,
the involved constants are independent of the regularization parameter. This leads to
robust preconditioning. A stable discretization technique is introduced, however, at the
price of introducing a stabilization parameter. Finally, numerical result are shown
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Reinforcement Learning for Hybrid Electric Vehicle
Drivetrain System Controllers

Manfred Liebmann, Huan Chen

Institute for Mathematics and Scientific Computing
University of Graz

The aim of the research project is to use state of the art machine learning techniques,
specifically reinforcement learning [1], to implement system controllers for hybrid electric
vehicle (HEV) drivetrains.

Reinforcement learning offers a very flexible framework to solve optimal control prob-
lems, where the system controller is identified as the agent and the hybrid electric vehicle
drivetrain as the environment. The research is geared towards the identification of suit-
able and efficient reinforcement learning algorithms to handle the hybrid electric vehicle
drivetrain based on industry standard simulation software tools.

Figure 1: The agent-environment feedback loop.

Reinforcement learning algorithms also allow very flexible definitions of reward func-
tions to specify the goal of the optimization and enable different profiles for example for
fuel economy, performance, emissions, or drivability for the system controller to optimize.

References

[1] Sutton, R. and Barto, A. Reinforcement Learning : An Introduction. (2018). MIT
Press, Cambridge, Mass.
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Fast solvers for time-harmonic wave propagation
in a parallel computational environment

Matthias Taus1,4, Leonardo Zepeda-Núñez2, Russell J. Hewett3, Laurent Demanet4

1 Technische Universität Wien, Austria
2 Lawrence Berkley National Laboratory, USA

3 Virginia Polytechnic Institute and State University, USA
4 Massachusetts Institute of Technology, USA

In many science and engineering applications, solving time-harmonic high-frequency
wave propagation problems quickly and accurately is of paramount importance. For ex-
ample, in geophysics, particularly in oil exploration, such problems can be the forward
problem in an iterative process for solving the inverse problem of subsurface inversion.
It is important to solve these wave propagation problems accurately in order to effi-
ciently obtain meaningful solutions of the inverse problems: low order forward modeling
can hinder convergence. Additionally, due to the volume of data and the iterative na-
ture of most optimization algorithms, the forward problem must be solved many times.
Therefore, a fast solver is necessary to make solving the inverse problem feasible. For
time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is
historically challenging.
Recently, there have been many advances in the development of fast solvers for such
problems, including methods which have linear complexity with respect to the number of
degrees of freedom. While most methods scale optimally only in the context of low-order
discretizations and smooth wave speed distributions, the method of polarized traces has
been shown to retain optimal scaling for high-order discretizations, such as hybridizable
discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous)
wave speeds. The resulting fast and accurate solver is consequently highly attractive for
geophysical applications. To date, this method relies on a layered domain decomposition
together with a preconditioner applied in a sweeping fashion, which has limited straight-
forward parallelization.
In this work, we introduce a new solution strategy based on a checkerboard domain de-
composition. This allows us to exploit more parallel structure than previous fast solvers
while preserving all of the advantages. We introduce the strategy and provide numerical
examples that show that independently of the frequency ω the Helmholtz equation can
be solved in O((N/p) logN) complexity where N is the number of degrees of freedom
and p the number of processors used in the parallel computational environment. Our
numerical examples include several different wave speed distributions, mainly motivated
by geophysical applications.
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Tent pitching and a Trefftz-DG method for the
acoustic wave equation

Ilaria Perugia1, Joachim Schöberl2, Paul Stocker1, Christoph Wintersteiger2

1 Faculty of Mathematics, University of Vienna, Vienna, Austria
2 Institute for Analysis and Scientific Computing, Vienna University of Technology,

Vienna, Austria

We present a space-time Trefftz discontinuous Galerkin (DG) method for the approxi-
mation of the acoustic wave equation on space-time tent-pitched meshes. Tent-pitching
is a front-advancing mesh technique that allows to completely localize the solution of the
discrete system. Trefftz basis functions are local solutions to the wave equation, that al-
low to simply advance the solution from the bottom to the top of each tent-element. The
method has been implemented in NGSolve, solving the space-time elements in parallel.
Insights into the implementation details are given, including the case of propagation in
heterogeneous media.

References

[1] A. Moiola, and I. Perugia, A space–time Trefftz discontinuous Galerkin method for
the acoustic wave equation in first-order formulation. Numer. Math. 138, 2 (2018),
389-435

[2] J. Gopalakrishnan, J. Schöberl, and C. Wintersteiger, Mapped tent pitching
schemes for hyperbolic systems, SIAM J. Sci. Comput., 39(6), (2016), B1043–B1063
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Doubling the convergence rate by pre- and
post-processing the finite element approximation for

linear wave problems

Sjoerd Geevers

University of Vienna

A novel pre- and post-processing algorithm is presented that can double the convergence
rate of finite element approximations for linear wave problems. In particular, it can be
shown that a q-step pre- and post-processing algorithm can improve the convergence rate
of the finite element approximation from order p + 1 to order p + 1 + q in the L2-norm
and from order p to order p+ q in the energy norm, in both cases up to a maximum of
order 2p, with p the polynomial degree of the finite element space. The q-step pre- and
post-processing algorithms only need to be applied once and require solving at most q
linear systems of equations.
The biggest advantage of the proposed method compared to other post-processing

methods is that it does not suffer from convergence rate loss when using unstructured
meshes. Other advantages are that this new pre- and post-processing method is straight-
forward to implement, incorporates boundary conditions naturally, and does not lose
accuracy near boundaries or strong inhomogeneities in the domain. Numerical examples
illustrate the improved accuracy and higher convergence rates when using this method.
In particular, they confirm that 2p-order convergence rates in the energy norm are
obtained, even when using unstructured meshes or when solving problems involving
heterogeneous domains and curved boundaries.
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The Hellan–Herrmann–Johnson Method
for Nonlinear Shells

Michael Neunteufel, Joachim Schöberl

TU Vienna

Finding appropriate discretizations for nonlinear shells is still a challenging problem. For
Kirchhoff plates the Hellan–Herrmann–Johnson method introduces a moment tensor for
computing the fourth order equation as a mixed method [1].

In this talk we present a generalization of these methods to nonlinear shells, where
we allow large strains and rotations. We may assume the Kirchhoff–Love hypothesis
to neglect shearing terms and focus on the bending energy, which is defined as the
difference between the curvatures of the deformed and undeformed configuration of the
shell. Therefore, we introduce the moment tensor σ ∈ H(divdiv) [2] as the difference
between these curvatures. With these elements, also non-smooth surfaces with kinks
can be handled directly without rewriting terms.

The method is implemented in NGS-Py, which is based on the finite element library
Netgen/NGSolve (www.ngsolve.org). Finally, we present numerical results.

References

[1] M. Comodi: The Hellan–Herrmann–Johnson method: some new error estimates and
postprocessing. Math. Comp., 52 (1989) pp. 17-29.

[2] A. Pechstein and J. Schöberl: The TDNNS method for Reissner-Mindlin plates. J.
Numer. Math., (2017) 137, pp. 713-740.
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A virtual element method for the miscible
displacement problem

Lourenço Beirão da Veiga1, Alexander Pichler2, Giuseppe Vacca1

1 Università di Milano-Bicocca
2 University of Vienna

The miscible displacement of one incompressible flow by another in a porous medium
can be described by a nonlinear coupling of an elliptic equation for the pressure with
a parabolic one for the concentration of one of the fluids. Since the pressure appears
in the concentration equation only through its velocity field, a mixed method can be
chosen to approximate both pressure and velocity simultaneously, whereas a standard
Galerkin method can be applied for the concentration, see e.g. [1, 2] for finite element
methods.
In this talk, we discuss an extension of this approach to the recently introduced virtual

element framework [3]. By an implicit definition of the local basis functions and suitable
projectors onto polynomial spaces, this methodology allows the use of general polygonal
meshes, leading to a series of advantages for diffusion problems. Among them are an
easier handling of complex domain and geometry data as in reservoir simulations (in-
cluding the presence of cracks), an automatic use of nonconforming grids, more efficient
and easier adaptivity, a higher robustness to mesh deformation, etc.
Both theoretical and numerical results are presented.

References

[1] Douglas, J.Jr., Ewing, R.E., and Wheeler, M.F.: The approximation of the pressure
by a mixed method in the simulation of miscible displacement. RAIRO. Analyse
numérique, vol.17, no.1 (1983), p.17–33.

[2] Hu, H., Fu, Y., and Zhou, J.: Numerical solution of a miscible displacement problem
with dispersion term using a two-grid mixed finite element approach. J. Numer.
Algor., doi: https://doi.org/10.1007/s11075-018-0575-2, 2018.

[3] Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., and Russo,
A. Basic principles of virtual element methods. Mathematical Models and Methods
in Applied Sciences, vol.23, no.1 (2013), p.191–214.
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A Priori Error Estimates for the Optimal Control
of a Simplified Signorini Problem

Christof Haubner

Universität der Bundeswehr München

In the context of distributed control we consider a simplified Signorini problem, an
elliptic variational inequality of first kind with unilateral constraints on the boundary.
The state is discretized using linear finite elements while a variational discretization is
applied to the control. We derive a priori error estimates for the control and state based
on strong stationarity and a quadratic growth condition. The convergence rates depend
on H1 and L2 error estimates of the simplified Signorini problem. Furthermore, we
discuss under what conditions we can expect quadratic growth. Numerical experiments
are presented that confirm our results.
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Variational Formulations for Maxwell’s Equations

Julia I.M. Hauser, Olaf Steinbach

Graz University of Technology

Maxwell’s equations are the groundwork for electromagnetism. Because of their impor-
tance there are several approaches to solve them. For most people the time dependence
and especially the time derivative pose the biggest problem. There are some, who
eliminate the time derivative by using finite differences. However this method will be
stretched to it’s limits when it comes to time dependent domains. Another approach is
inspired by physics and uses the fact that electromagnetic fields behave like waves. In
these methods the time dependencies of the solution is more or less known and only the
space dependencies are computed. In contrast to these works we will consider Maxwell’s
equations as a whole. We want to extent the known theory of space-time methods for
the wave equation to Maxwell’s equations. For that we will look at the differential equa-
tions in a 4D space-time setting. Although it is not obvious why one should use such
space-time methods since they usually are involve with more computational effort, we
want to quickly give an idea why space-time methods are interesting before we explain
them in more detail.
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Numerical Identification of Inhomogeneities by Inverse
Scattering Using Topological Optimality Condition

Victor A. Kovtunenko1,2

1 Institute of Analysis and Number Theory, Graz University of Technology, NAWI
Graz, 8010 Graz, Austria, victor.kovtunenko@uni-graz.at

2 Lavrent’ev Institute of Hydrodynamics, Siberian Division of the Russian Academy of
Sciences, 630090 Novosibirsk, Russia

The inverse scattering problem modeled by the Helmholtz equation is considered within
the topology optimization framework. Varying the complex-valued refractive index we
derive a zero-order necessary optimality condition in minimizing the least square misfit
cost functional. The topology asymptotic expansion of the optimality condition leads to
an imaging operator used to identify the center of unknown inhomogeneity.

Our algorithm realizes the Vainikko fast solver for formulation of the scattering prob-
lem in the form of a weakly singular integral equation of Lippmann–Schwinger. The
numerical tests show high precision and stability in the reconstruction both in two and
three dimensions. We present numerical examples indicating what happens in cases
when our theory does not apply, e.g. in the case of multiple objects or absorption.

The work is supported by the Austrian Science Fund (FWF) project P26147-N26:
PION, the RFBR and JSPS research project 19-51-50004.
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Fast Directional Matrix-Vector Multiplications -
Algorithm and Parameter Study

Raphael Watschinger, Günther Of

TU Graz

We consider a matrix A ∈ CN×N with entries

A[j, k] = f(xj, yk) =
exp(iκ|xj − yk|)

4π|xj − yk|
, j, k ∈ {1, ..., N},

where {xj}Nj=1, {yk}Nk=1 ⊂ R3, f is the 3D Helmholtz kernel and κ > 0 the wave number.
Corresponding matrix-vector multiplications have a complexity of order O(N2) and are
therefore prohibitive for large N . Standard matrix approximation schemes can be used
to overcome this problem in low frequency regimes, but are inefficient in high frequency
regimes.
We consider an approximation of the matrix A based on a clustering strategy and

a directional approximation of the Helmholtz kernel. This approximation allows to
construct an algorithm for fast matrix-vector multiplications, which has a complexity of
order O(N log(N)) in all frequency regimes under suitable assumptions on N , κ and the
distribution of points {xj}Nj=1 and {yk}Nk=1. The effective runtime and accuracy of the
algorithm is influenced by the choice of two parameters. We conduct a parameter study
to investigate this influence and summarize our observations in a parameter selection
strategy.

References

[1] S. Börm. Directional H2-matrix compression for high-frequency problems. Numer.
Linear. Algebra. Appl., 24(6):e2112, 2017.

[2] S. Börm and J. M. Melenk. Approximation of the high-frequency Helmholtz kernel
by nested directional interpolation: error analysis. Numer. Math., 137(1):1–34, 2017.

[3] M. Messner, M. Schanz, and E. Darve. Fast directional multilevel summation for
oscillatory kernels based on Chebyshev interpolation. J. Comput. Phys., 231(4):1175–
1196, 2012.

[4] R. Watschinger. A directional approximation of the helmholtz kernel and its applica-
tion to fast matrix-vector multiplications. Master’s thesis, Institut für Angewandte
Mathematik, Technische Universität Graz, 2019.

28



A Reduced Basis Method
for Fractional Diffusion Operators

Tobias Danczul, Joachim Schöberl

TU Vienna

Throughout the last two decades, there has been a growing body of literature that high-
lights the importance of fractional differential operators in modern science. The design
of both efficient and accurate approximations is challenging. By means of a reduced basis
method, we aim to address each of these difficulties. The desired operator is projected
to a low dimensional space Vr, where the fractional power can be directly evaluated via
the small eigensystem. The projection relies on several independent standard Poisson
problems, whose decoupled structure is amenable to parallel computations. The optimal
choice of Vr is provided by the so-called Zolotarëv points, for which we prove exponential
convergence rates. Numerical experiments evaluating the operator confirm the analysis
and demonstrate the efficacy of our algorithm.
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Optimal adaptivity and preconditioning
for the fractional Laplacian

Markus Faustmann, Jens Markus Melenk, Maryam Parvizi, Dirk Praetorius

TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

We present novel inverse estimates for the integral fractional Laplacian. More precisely,
we show that a weighted L2-norm, where the weight is a power of the local mesh-
width, of the fractional Laplacian can be bounded by the energy norm. Generalizing the
arguments used in the boundary element method, [1], the non-local operator is split into
a localized near-field and a smoother far-field part, which is treated using the so-called
Caffarelli-Silvestre extension problem and interior regularity estimates.

Weighted L2-norms appear naturally in the context of a-posteriori error estimation
in adaptive methods. As the classical weighted residual error estimator is not well-
defined for fractional powers larger than 3/4, we propose a different, reliable weighted
error estimator to cover this open case. Using our inverse estimate, we prove optimal
convergence rates of an adaptive algorithm steered by the classical and modified weighted
residual error estimator with the axiomatic approach of [2].

As a second application of the inverse inequalities, we obtain that an additive Schwarz
preconditioner of BPX-type for the fractional Laplacian on locally refined meshes leads
to condition numbers that are uniformly bounded in the refinement level.
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Fast Solvers for Isogeometric Analysis based on
Alternating Linear Schemes for Tucker Tensors

Clemens Hofreither

Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Austrian Academy of Sciences

In this talk, we consider the construction of fast and memory-efficient solvers for tensor
product Isogeometric Analysis by means of low-rank approximation. In particular, we
consider the approximation of the solution fields by means of Tucker tensors and then
propose an iterative method for the approximation of the solution based on a so-called
Alternating Linear Scheme. The idea is to reduce the nonlinear best tensor approxi-
mation problem in the energy norm to a series of linear approximation steps for the
individual factors of the Tucker tensor. We study several numerical examples in 2D and
3D where the proposed solution method exhibits very robust performance in both the
spline degree and the geometry mapping.
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