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Introduction

Numerical formulation

Electrostatic field problems

Boundary element method

Indirect formulation based on charges

Galerkin method

Second order boundary elements

Iterative solver GMRES with Jacobi preconditioner

Fast multipole method
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Introduction

Direct BEM formulation
Electrostatics

Steady current flow fields

Green’s theorem
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Introduction

Indirect BEM formulation
Electrostatics

Magnetostatics

Charge densities
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Introduction

Initial situation
BEM with compressed matrix

Very high compression rates (90 % to 99 %)

Typical problem size: 10000 to 100000 unknowns

Typical memory requirements: 100 MByte to 1 GByte

Computing time for linear problems: up to a few hours

Computing time for nonlinear problems: up to a few days

Aim of parallelization
Reduction of computing time
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Vectorization

Properties
Parallel execution of multiple instructions on a single CPU

Hardware and compiler dependent

Recommended for dense data structures
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Vectorization

Multipole transformations

Classical multipole-to-local transformation

Dense transformation matrix

Processor optimized numerical libraries
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Vectorization

Multipole transformations

Modified multipole-to-local transformation

Sparse transformation matrices

O(L3)
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Vectorization

Summary
Fast for dense operations

Sparse operators are faster

Use all special properties of the operators

Reduce number of sub-operations
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Multithreading

Properties

Easy to implement

Only time consuming parts are 
parallelized

Dynamic load distribution 
during runtime

Shared memory access
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Multithreading

Multipole transformations

Operations of the octree cubes can be computed independent of 
each other
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Multiprocessing

Properties

Whole program runs in parallel

Deterministic algorithm for 
load distribution

Synchronization between 
processes
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Multithreading

Multipole transformations

Data transfer between processes is necessary
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Numerical examples

Hardware
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Numerical examples

Coated sphere

κ
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9892 second order quadrilateral elements

29680 unknowns

66 linear iteration steps

280 MByte

Homogeneous mesh
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Numerical examples

Coated sphere
Potential at a radial line
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Numerical examples

Coated sphere
Computing times

67 % (38 % OpenMP, 
47 % MPI)38 %Reduction

1268 s2387 s3851 sSolution linear 
equation system

50 %Reduction
14662931 sMatrix assembly

2*221Threads
211Processes

OpenMP + MPIOpenMPSerial
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Numerical examples

Gas insulated high voltage system
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Numerical examples

Gas insulated high voltage system
9529 second order quadrilateral elements

28855 unknowns

178 linear iteration steps

305 MByte

Problem oriented mesh
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Numerical examples

Gas insulated high voltage system
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Numerical examples

Gas insulated high voltage system
Computing times

74Octree level

62 %
(39 % MPI)

2548 s

50 %
(19 % MPI)38 %Reduction

3360 s4194 s6730 sSolution linear 
equation system

2*221Threads
211Processes

OpenMP + MPIOpenMPSerial
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Conclusions

Compressed BEM matrices (fast multipole method)

Vectorization, multithreading, multiprocessing

Reduction of computing time

Easy-to-implement approach

Limits of numerical algorithms in combination with parallelization 
methods
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