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_ Introduction

Numerical formulation

Electrostatic field problems
Boundary element method

Indirect formulation based on charges
Galerkin method

Second order boundary elements

Iterative solver GMRES with Jacobi preconditioner

Fast multipole method
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Direct BEM formulation

® FElectrostatics
® Steady current flow fields
® (Green’s theorem
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® Dirichlet boundary conditions

® Ncumann boundary conditions
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Indirect BEM formulation

® Electrostatics
® Magnetostatics

® Charge densities

u(r): ! G(r')dA'

® Dirichlet boundary conditions

® Ncumann boundary conditions

University of Stuttgart Institute for Theory of Electrical Engineering



_ Introduction

Initial situation

® BEM with compressed matrix

® Very high compression rates (90 % to 99 %)

® Typical problem size: 10000 to 100000 unknowns

® Typical memory requirements: 100 MByte to 1 GByte

® Computing time for linear problems: up to a few hours

® Computing time for nonlinear problems: up to a few days

Aim of parallelization

® Reduction of computing time
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Properties

® Parallel execution of multiple instructions on a single CPU
® Hardware and compiler dependent

® Recommended for dense data structures
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. Vectorization

Multipole transformations
® (lassical multipole-to-local transformation
® Dense transformation matrix
® Processor optimized numerical libraries
® O(L%)
L Ml Jm—l|~|m|] Al AmYl m (,u,v)

ZZ -
k+n+1Al m

k
k=0 1=k ) P ntk

{L} :[TMzL]{M}

University of Stuttgart Institute for Theory of Electrical Engineering



B T

Multipole transformations

® Modified multipole-to-local transformation

® Sparse transformation matrices
® O(L3)
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U Vectorization

Summary

® Fast for dense operations
® Sparse operators are faster
® Use all special properties of the operators

® Reduce number of sub-operations
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_ Multithreading

Properties

® Easy to implement

® Only time consuming parts are
parallelized !

T1 Iu/////%7////T1 serial

® Dynamic load distribution
during runtime
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Multipole transformations

® Operations of the octree cubes can be computed independent of
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Properties

® Whole program runs in parallel

® Deterministic algorithm for
load distribution

® Synchronization between T V5577 = 'Serial
Processces :
I
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Multipole transformations

® Data transfer between processes 1S necessary
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Hardware
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Coated sphere

® 9892 second order quadrilateral elements
® 29680 unknowns
® 066 linear iteration steps

® 230 MByte

® Homogeneous mesh
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Coated sphere

® Potential at a radial line
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Numerical examples

Coated sphere
® Computing times
Serial | OpenMP OpenMP + MPI
Processes | 1 2
Threads | 2 2%*7
Matrix assembly 2931 s 1466
Reduction 50 %
Solution linear
. 3851 s 2387 s 1268 s
equation system
: 67 % (38 % OpenMP
0 9
Reduction 38 % 47 % MPI)
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Gas insulated high voltage system

.
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Gas insulated high voltage system

® 9529 second order quadrilateral elements
® 28855 unknowns
® 178 linear 1teration steps

® 305 MByte

® Problem oriented mesh
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- Numerical examples

Gas insulated high voltage system
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Gas insulated high voltage system

® Computing times

Serial | OpenMP OpenMP + MPI

Processes 1 1 2
Threads 1 2 2%
Solution linear | 51 ¢ | 4194 3360 s 2548 s
equation system

. 50 % 62 %

0

Reduction 38 % (19 % MPI) | (39 % MPI)
Octree level 4 7
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® Compressed BEM matrices (fast multipole method)

® Vectorization, multithreading, multiprocessing
® Reduction of computing time
® Easy-to-implement approach

® Limits of numerical algorithms in combination with parallelization
methods
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