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Rationale

= Electromagnetic Compatibility (EMC) problems (asserting certain
field values within enclosures) = Transmission problems
(coupling through apertures):

mApertures in conducting screen;
mWaveguide-to-cavity coupling, Cavity-to-cavity coupling, etc;
= Most solutions are:
mProblem specific (Spherlcal / cyhndncal /paralleleplped geometry)

mProblem approximations (infinite metallic bodies);

= EFIE + Equivalence principle largely used

mLimitations: EFIE does not treat ., Z €

int ext’

mComplex approach, often impractical for real-life geometries;

m EFIE & CFIE: big difficulties in accommodatlng combined PEC and

Transm|SS|on boundary condltlons
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Our Approach

"™ Direct Boundary Integral Method : The unknowns correspond to
physical tangential components of electric and magnetic field on
surface of scatterer = same quantities to occur in transmission
conditions;

m Use electric-to- magnetlc (or Dirichlet-to-Neuman) mapplng
operators; -

. -Accommodate naturally IPEC and Trahsmission boUndary
conditions.

m Structure of discretized equation perfectly matches
symmetry of coupled scattering problem; -

| " Galerkin diécretization séheme by meéns of divergénce conformihg
vectorial functions (RWG — functions);

m  No specific geometry assumed / No S|mpI|fy|ng assumptlons

. TreatS ‘c:mt 7 £ and/or lLIlnt -] /'Iext ,
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Transmission Problem. Traces

Electric (Dirichlet) trace:
ye:=exn

Transmission problem defined as:

curle =—jewph  curlh = jwee in Q" 0Q )

. y'e=0 and ye=0 on'l,,.
ye-ye=y'e, on I

yh—yh=y'h on [
.. curlcurle—k’e=0 in Q" 0Q"
hm(\/—hsx———«/—e j > .
- ' l ye—ye=ye, on
k., =y EM, Ao e
: guiE e E —_yNe—_'VNe:_yNe:y{hi on ra
- Magnetic (Neuman) trace: e L '
; 1
yye:= - Yo curl(e) j
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Framework of Function Spaces

- _Electric wave equations have solutions in: i
H(curl,Qs)::{uD(Lz@ s))3[[:* i (ﬁ( s))B'}

H (curl,Q,) ::{ ullH (curlQ )| y[u =

}a closed subspace of H (curl, Q)

- Trace theorem for H (curl.Q,): (D) H'l/z(dwrj' ) such that:

y, :H (Curl,'Q_) H"” (div,,l") and/ :Hr (Cuﬂ’Q ) > B (dive, T )

PEC

are continuous and surjective mappings
. Based on bilinear anti-symmetric pairing: (u,v), . = [(uxn)3dS u,vOL( )
 H”(div,.T) becomes self-dual.
Furthermore, for:
1 (ave, ) ={p0H G avE )@ 1 (i, )]

Sy (curl Q) H? (d1vr, .) Is also a contlnuous and surjectlve
mapping
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Maxwell Poincare-Steklov Operators

- Exterior problem - -~ Interior problem
curlcurle-ke=0 in Q" curlcurle—k’e=0 in Q°
ye=0 on I, . —ete ye=0 onl ...

. T i i
y,e=¢ onl, y,e=G onl,

| Silver-Mueller Radiation conditidn. . . .
= {H;/z (div,,T,) > H.” (div,,I) - {H;l/z (div.,l, ) H " (div,,T)
> ye CH y,e

b - - o

Ty e-T'ye=""ye=yn,
U

0

Seton H':(div.,[,) since {=0 on drl,

Dual space H"*(div,,T, ) provide appropriate test functions.
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Stratton-Chu Integral Representations

For Interior/ Exterior problem, Stratton-Chu representations:

é _ it (y;e)."“P];L (y;,e) | n H(curiZ, Q_) ()

L (y;e) o (y;,-e) in H(curlz, Q+)
Maxwell single and double layer potentials::
W () (x)= K% (¢) (x) + grad W (divee)(x)  xTT .
vi, (e)(x) =curl ¥, (e)(x), x[T .

Potentials = mappings of functions on I' to functions on Q*U Q-

eik[x—y'

v, (9)(x):

¥y () (%)

}.qﬁ(y)'Gk Selai fly)=2-
[u(y)G, (x-y)as(y) 47?\X-y\

r
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Boundary Integral Operators

. We mtroduce the boundary mtegral operators

Cso={pw) nw), cof v B ok, w3, = (7o)
S € H Y {div. [ o H;l/z (div,,T")

- They satiéfy'_thejump clzo.hditions: | _ | _ e

L] = Y] =0 | gy ] = | =d with [ =y -y

Apply traces and jump conditions.to. (1):

e e = 5% e+C.(7; e)+Sk(vye).
’”‘:’;re = é :re C, ( 't u)—SH(q-;{.—e) ; (2)
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Coupled Boundary Integral Equations

- By means of the scaled traces: |
; 3 p | : .ki
()= (We, -

U

Transmission conditions become:
dEe
By means of the Calderon projectors: '

o _(V21d+cC, S, (e S
B lmaig PoR+€ g - e

... (2) becomes:

—51d+C,.. LS, R
=S, —sld+C. A7) T

1 1. L0
(—zld-C.  —f2S,, ¢t _ .
_Er g —1ild-cC. AT

HO K + 2 K +
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Mapping Operators on the Boundary

Different equivalent formulas for mapping operators can be obtained
from (3) (e.g top equation = non-symmetric expression)

We look for a symmetric expression by means of BEM operators.

x | 1 ]
T = [k—_sk —(%Id +ij(§€’—_skj (—%Id +C
AR . .

: -1 ]
T = k—s i e e
m 2 = T 2 ¢

T*, T continuous mappings : H."* (div.,[' )= H " (div.,T")

_After some computations:

i : ! _
Tilx k_S o lld s, Dihy ——Id+CkJ§+’u—_skx =0
M 2 E 2 k
and
+ oo+ . k+ 1 t i l L & ikl
T'g ( I SN j@ (Eld _Ck+j)‘ . 21d +C j(g ytel.)+k+ S A" =0
where C' =C
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Mapping Operators on the Boundary I

~ Recalling the transmission condition:

Tye-T')e :L y,e = Jh,
7,

+

0

k—— Sk‘ +k_ Sk+
H H

[-lmc_j
2 k

1 :

2 k

Gld +C _
2 k

H g

— k_

)5

= Id +C,.

) (s v
A= 0 @)
H S+, Je)
2

Note

First equation — is the transmission condition — effective only on I"..
Second and third equations in (4) involve relations between
integral operators defined on the whole of I".
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Remark on “spurious resonances”

m|f k+corresponds to a Dirichlet Maxwell elgenvalue of Q;
the variational problem fails to possess a unique
solution.

= Although solution of (4) may no longer be unique fields
obtained from (1) remain unique.

= Nevertheless this situation causes numerical

instabilities. In our case; 50% increase |n number of
iterations.
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Galerkin BEM Formulation

We project (4) as follows:

= First equation is tested with #OH (div.[ )

= Second and third equations are tested with & v OH " (div,,I)

X

I" will be approximated by a triangulation I',, composed of flat triangles. We
assume that the boundary of I', is approximately resolved by edges of ',

Construct finite dimensional subspaces:

v, OH”(div.[ ,) w,0H'*(div[ ) edge elements,
' Test and shape functions = RWG vectorial functions

This will give a space of piecewise linear vectorfields on I whose surface
normal components" are continuous across edges of triangles.

Square system of 2N+N,.
=N — number of edges in a triangulation ', of

=N, — number of edges only within the aperture £=0 on dl',
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Metallic Container Filled With Sea Water

Incident wave |

Eguet

0.16

Electric field [V/m]

0.14

012
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Electric field [V/m]
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0.04+-

—&— 471 unknowns

—&— 826 unknowns
2864 unknowns

—4— 4858 unknowns

—&— 471 unknowns
—&— 826 unknowns

2864 unknowns
—&— 4858 unknowns
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Metallic Container Filled With Sea Water I

Incident Wavel | |

E £=%50
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Electromagnetlc field |n3|de the contalner ~ See
red line on the ge_ometry plot
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Metallic Casing with 1 Aperture

‘Shielding efficiency measured in the
centre of the enclosure (15, 6, 15) cm.

30 om

"(‘_\-\%‘

60 T T T T T T
: : ; —¢— Present calculation
—— Deshpande - High Mode

50r-

40+

30-

Aperture (20 cmx 3.0 arm)

20+

10+

Electric Field Shielding [dEB]

E -10
EFS(x)=—20lng— [dB]

g i | | i i |
1 SiiEs 0 100 200 300 400 500 600 700 800 900 1000
Frequency [MHz]
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Metallic Casing with 2 Apertures

30 cm

Ik\‘»

Shielding efficienéy. measured in the
centre of the enclosure (15, 6, 15) cm.

60.- ‘ | | ! !
I —s— Present Computation :
—=— Deshpande - With internal coupling

Deshpande - Without internal coupling | S m—

Rectangulag/ Aperture (20 cmx 3.0 crm)

10+

EFS faCtOr ) AN AU WU SO SUUNE.. . SR B oo _ "

101

Electric Field Shielding [dB]
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Metallic Casing with 4 Apertures

Shielding efficiency measured in the
centre of the enclosure (30, 6, 15) cm.

60 | I I \ ! \
f ; —4— Present computation

; ; —&— Deshpande - 1st+3rd mode
50 ; : ; : : =

Electric

EFS factor

i | \ b i |
100 200 300 400 500 600 700 800 900 1000
Frequency [MHz]

-20
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Conclusions

n Direct Boundary Int'_egral Equat‘_ion Approach: use of '_
physical unknowns.

m Use Electric-to-Magnetic Mapping — accommodate with
no problem both PEC and Transmission BC.

m Obtains symmetrical formulation.

m Able to treat configurations independent of the
geometry.

.-. Able to treat gint ¢ sext and/Or ﬂint i /'Iext
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