Söllerhaus, October 2nd, 2004. Adaptive Fast Boundary Element Methods in Industrial Applications ## Efficient Update of Hierarchical **Matrices** joint work with L. Grasedyck, W. Hackbusch and S. Le Borne Jelena Djokić Max Planck Institute for Mathematics in the Sciences Leipzig #### Overview Concept of hierarchical (or \mathcal{H} -) matrices Motivation for update of ${\cal H} ext{-}$ matrices - Update algorithm - Numerical results ## Properties of \mathcal{H} -Matrices - ${\cal H} ext{-}{\sf matrix}$ is an approximation of full matrix that e.g. arises from discretisation of integral operator. - ${\mathcal H} ext{-}{\sf matrices}$ have a block structure each block is either rank k (Rk) or dense (full) matrix. - With $\mathcal{H} ext{-}$ matrices is possible to perform matrix operations (MVM,MM,Inv) with almost linear complexity. ## Some construction remarks - $T_{\mathcal{I} imes \mathcal{I}}$. ${\mathcal H} ext{-}{\sf matrices}$ are based on the given block cluster tree - The block cluster tree $T_{\mathcal{I} \times \mathcal{I}}$ is constructed using the cluster tree $T_{\mathcal{I}}$ (and an admissibility condition). - The cluster tree $T_{\mathcal{I}}$ is determined and based on a partitioned grid au and an index set \mathcal{I} . In general: #Basis functions $= |\mathcal{I}|$. **Example:** Piece-wise constant ansatz leads to the $|\tau| = |\mathcal{I}|$. ## Geometrically regular clustering Compute a box, that contains the whole domain to whom grid τ belongs. - 1. Determine the maximal extent. - 2. Split box in that direction. - 3. Repeat the process as long as it is necessary. Remark: This clustering routine is independent of the grid. #### **Block Cluster Tree** 9 Given: cluster tree $T_{\mathcal{I}}$ with root $\mathcal{I} = \{1, \ldots, n\}$ Seeking: block cluster tree $T_{\mathcal{I} \times \mathcal{I}}$ Start: $\mathcal{I} \times \mathcal{I}$. Iterate: subdivide inadmissible blocks: $$sons(t \times s) := sons(t) \times sons(s).$$ Admissibility condition: $\min(\operatorname{diam}(B_t), \operatorname{diam}(B_s)) \leq \eta \operatorname{dist}(B_t, B_s)$ The grid τ locally refined Cluster tree $T_{\mathcal{I}}$, based on \mathcal{I} . Matrix $G \in \mathcal{H}(T_{\mathcal{I} \times \mathcal{I}}, k)$. Grid au' is obtained. Cluster tree $T_{\mathcal{I}'}$, based on \mathcal{I}' . Matrix $G' \in \mathcal{H}(T_{\mathcal{I}' \times \mathcal{I}'}, k)$. **Question:** Can G be **used** in the construction of the G', an \mathcal{H} -matrix that corresponds to the refined grid τ' ? **Idea: Recycle** the \mathcal{H} -matrix instead of constructing new one = **Update** of \mathcal{H} -matrix. ## $\mathcal{H} ext{-}\mathsf{Matrix}$ Update Algorithm in three steps: Let $G \in \mathcal{H}(T_{\mathcal{I} \times \mathcal{I}}, k)$ be an \mathcal{H} -matrix. Update of G can be done - Update of cluster tree $T_{\mathcal{I}}$ (removing old and adding new indices in tree). - cluster tree $T_{\mathcal{I}}$. Update of block cluster tree $T_{\mathcal{I} \times \mathcal{I}}$ using already changed - Update of Rk and full matrix blocks from G. #### Adaptive Refinement - au' is the grid obtained after local refinement of the grid au. - \mathcal{I}' is an index set that corresponds to the grid τ' . - For \mathcal{I}' there holds: $$\mathcal{I}' = (\mathcal{I} \setminus \mathcal{I}_{out})$$ $\dot{}$ $\dot{}$ $\dot{}$ \mathcal{I}_{in} - $\mathcal{I}_{out} \subset \mathcal{I}$ is the set of indices that have to be removed from \mathcal{I} . - $(\mathcal{I} \setminus \mathcal{I}_{out})$ is the set of indices that correspond to the unchanged basis functions - \mathcal{I}_{in} is the set of indices, that correspond to the new basis functions ## Update of the cluster tree can be represented as The cluster tree $T_{\mathcal{I}'}$ that corresponds to the refined grid au' $$T_{\mathcal{I}'} = (T_{\mathcal{I}} \setminus T_{\mathcal{I}_{out}}) \quad \cup \quad T_{\mathcal{I}_{in}}$$ index sets \mathcal{I}_{out} and \mathcal{I}_{in} . where $T_{\mathcal{I}_{out}}, T_{\mathcal{I}_{in}}$ are the cluster trees that correspond to the **Problem:** How to construct those cluster trees? clustering) of the tree $T_{\mathcal{I}'}$ has the following steps The algorithm that describes the construction (not the given cluster tree $T_{\mathcal{I}}$. 1a. Construct the cluster tree $T_{\mathcal{I}_{out}}$ as index reproduction of **reproduction** of the given cluster tree $T_{\mathcal{I}}$. 1b. Construct the cluster tree $T_{\mathcal{I}_{in}}$ as bounding box 2. **Restrict** the cluster tree $T_{\mathcal{I}}$. The result is the cluster tree $(T_{\mathcal{I}} \setminus T_{\mathcal{I}_{out}})$. - whose size is greater than given n_{min} . 3. Do a **fusion** (union) of the trees $T_{\mathcal{I}} \setminus T_{\mathcal{I}_{out}}$ and $T_{\mathcal{I}_{in}}$. We obtain the preliminary tree $T_{\mathcal{I}'}'$, that might have some leaves - $n_{min}.$ The final result is the tree $T_{\mathcal{I}'}.$ 3a. Subdivide only those leaves whose size are larger than Given: cluster tree $T_{\mathcal{I}}$ with root $\mathcal{I} = \{1, \dots, n\}$ Seeking: block cluster tree $T_{\mathcal{I} \times \mathcal{I}}$ Start: $\mathcal{I} \times \mathcal{I}$. Iterate: subdivide inadmissible blocks: $$sons(t \times s) := sons(t) \times sons(s).$$ Admissibility condition: $\min(\operatorname{diam}(B_t), \operatorname{diam}(B_s)) \leq \eta \operatorname{dist}(B_t, B_s)$ boxes, there is one-one correspondence between block cluster trees $T_{\mathcal{I} imes \mathcal{I}}$ **Update:** Since the cluster trees $T_{\mathcal{I}}$ and $T_{\mathcal{I}'}$ have the same bounding and $T_{\mathcal{I}' \times \mathcal{I}'}$. # Update of the \mathcal{H} -matrix $G \in \mathcal{H}(T_{\mathcal{I} \times \mathcal{I}}, k), G' \in \mathcal{H}(T_{\mathcal{I}' \times \mathcal{I}'}, k)$ block cluster tree $T_{\mathcal{I}'\times\mathcal{I}'}$) using the \mathcal{H} -matrix G is: The algorithm for constructing the matrix G^\prime (based on the - if the leaf of the block cluster tree remained unchanged block). then copy the corresponding block matrix (Rk or full - if the leaf of the block cluster tree contains all new indices than construct **new** matrix block - if the leaf of the block cluster tree contains some new indices update the corresponding block. $$G_{ij} = \int_{\Gamma} \int_{\Gamma} \phi_i(x) g(x, y) \phi_j(y) \, \mathrm{d}\Gamma_x \mathrm{d}\Gamma_y$$ $G|_{t \times s} \approx AB^T, A \in \mathbb{R}^{\#t \times k}, B \in \mathbb{R}^{\#s \times k}$ Interpolation: $$g(\pmb{x},\pmb{y})pprox\sum_{ u=1}^{m^3}L_ u(\pmb{x})g(x_ u,\pmb{y})$$ $$A_{i u} = \int_{\Gamma} \phi_i(x) L_{ u}(x) d\Gamma_x, \quad B_{j u} = \int_{\Gamma} \phi_j(y) g(x_{ u}, y) d\Gamma_y$$ $$G'|_{t'\times s'} = A'B'^T \in \mathbb{R}^{\#t'\times \#s'}$$ $igg| A_{i u}$ $$\int_{\Gamma} \phi_i(x) L_{\nu}(x) \, \mathrm{d}\Gamma_x \quad i \in t' \setminus t$$ $$\int_{\Gamma} \phi_i(x) L_{\nu}(x) \, \mathrm{d}\Gamma_x \quad i \in t' \setminus t$$ $$B'_{j\nu} = \begin{cases} B_{j\nu} & j \in s \\ \int_{\Gamma} \phi_j(y) g(x_{\nu}, y) d\Gamma_y & j \in s' \setminus s \end{cases}$$ $$\tilde{g}^{t,s}(x,y) := (\mathcal{J}_{m}^{t} \otimes \mathcal{J}_{m}^{s})[g](x,y) = \sum_{\nu \in K} \sum_{\mu \in K} g(x_{\nu}^{t}, x_{\mu}^{s}) \mathcal{L}_{\nu}^{t}(x) \mathcal{L}_{\mu}^{s}(y).$$ $$\tilde{G}_{ij} := \int_{\Omega} \varphi_{i}(x) \int_{\Omega} \tilde{g}^{t,s}(x,y) \varphi_{j}(y) \, \mathrm{d}y \, \mathrm{d}x$$ $$= \sum_{\nu \in K} \sum_{\mu \in K} g(x_{\nu}^{t}, x_{\mu}^{s}) \left(\int_{\Omega} \varphi_{i}(x) \mathcal{L}_{\nu}^{t}(x) \, \mathrm{d}x \right) \left(\int_{\Omega} \varphi_{j}(y) \mathcal{L}_{\mu}^{s}(y) \, \mathrm{d}y \right)$$ $$= V^{t} S^{t,s} V^{s}^{T}$$ • Matrix S depends **only** on bounding box. $:= \mathcal{L}_{\nu}^{t}(x_{\nu'}^{t'}), \quad V^{t} = \begin{pmatrix} V^{t_{1}} \cdot T^{t_{1}, t} \\ V^{t_{2}} \cdot T^{t_{2}, t} \end{pmatrix}.$;; || $g(x_{\nu}^t, x_{\mu}^s).$ - Matrices V^t depend only on the cluster but they will be computed - Transfer matrices $T^{t,t^{\prime}}$ depend also only on bounding boxes ## Update of \mathcal{H}^2 -Matrices - $T^{t,t^{\prime}}$ and S matrices need not to be updated, since bounding boxes do not change. - are updated. V matrices are updated in the same way as \mathtt{Rk} matrices $$\mathcal{G}[u](x) = f(x), \quad f := \mathcal{V}\partial_n u, \quad x \in \Gamma := \partial\Omega, \Omega := [-1, 1]^3$$ ${\cal G}$ is the double layer potential operator $$\mathcal{G}[u](x) = \frac{1}{2}u(x) + \frac{1}{4\pi} \int_{\Gamma} \frac{\langle n(y), x-y \rangle u(y)}{\|x-y\|^3} d\Gamma_y$$ ${\cal V}$ is the single layer potential operator $$\mathcal{V}[u](x) := \frac{1}{4\pi} \int_{\Gamma} \frac{\partial_n u(y)}{\|x - y\|} d\Gamma_y.$$ $u(x) = \frac{1}{\|x - y_0\|}, \ y_0 = (1.0, 1.0, 1.001).$ Machine: SUN ULTRASPARC III with 900 MHz CPU clock rate and 150 MHz memory clock rate Time (in seconds) for the update of the (double-layer potential operator) $\mathcal{H}\text{-matrix}$ compared to reassembly starting with n_1 degrees of freedom. | $\frac{\ G'' - G'\ _2}{\ G''\ _2}$ | savings(costs) | reassembly $(G^{\prime\prime})$ | adaptive (G^{\prime}) | new | $n_1 = 49152$ | $\frac{\ G'' - G'\ _2}{\ G''\ _2}$ | savings(costs) | reassembly $(G^{\prime\prime})$ | adaptive (G^\prime) | new | $n_1 = 12288$ | |------------------------------------|----------------|---------------------------------|-------------------------|-------|---------------|------------------------------------|----------------|---------------------------------|-----------------------|-------|---------------| | 7.05×10^{-16} | 97%(3%) | 169 | 6.05 | 2.1% | $n_2 = 49682$ | 6.04×10^{-16} | 97%(3%) | 29.5 | 1.02 | 2.1% | $n_2 = 12422$ | | 7.05×10^{-16} | 85%(15%) | 209.6 | 31.8 | 10.5% | $n_2 = 51880$ | 6×10^{-16} | 82%(18%) | 31.67 | 5.76 | 10.9% | $n_2 = 13002$ | | 6.44×10^{-16} | 52%(48%) | 252.7 | 121.78 | 42.8% | $n_2 = 62544$ | 5.29×10^{-16} | 44%(56%) | 40.82 | 23.16 | 44.5% | $n_2 = 15806$ | | $\frac{\ G'' - G'\ _2}{\ G''\ _2}$ | savings(costs) | reassembly $(G^{\prime\prime})$ | adaptive (G^\prime) | new | $n_1 = 196608$ | |------------------------------------|----------------|---------------------------------|-----------------------|-------|----------------| | 7.90×10^{-16} | 95%(5%) | 791 | 42.91 | 2.1% | $n_2 = 198686$ | | 7.80×10^{-16} | 83%(17%) | 875.8 | 147.65 | 10.2% | $n_2 = 207190$ | | 4.3×10^{-16} | 51%(49%) | 1068.48 | 543.55 | 42% | $n_2 = 248290$ | reassembly starting with $n_1=49152(196608)$ degrees of freedom. Time (in seconds) for the update of the \mathcal{H}^2 -matrix compared to | savings (costs) | reassembly | adaptive | new | $n_1 = 196608$ | savings(costs) | reassembly | adaptive | new | $n_1 = 49152$ | |-----------------|------------|----------|-------|----------------|----------------|------------|----------|-------|---------------| | 97%(3%) | 455.6 | 14.1 | 2.1% | $n_2 = 198672$ | 97%(3%) | 67.6 | 2.3 | 2.1% | $n_2 = 49676$ | | 88%(12%) | 471.2 | 55.3 | 9.8 % | $n_2 = 206754$ | 87%(13%) | 71 | 9.5 | 10% | $n_2 = 51734$ | | 47%(53%) | 547.2 | 291.4 | 41.4% | $n_2 = 247984$ | 42%(58%) | 86.8 | 50.1 | 42.6% | $n_2 = 62462$ | 26 #### Outlook - \mathcal{H} and \mathcal{H}^2 -matrices can be efficiently updated. - If Rk matrices are computed using ACA (Adaptive Cross efficiently performed Approximation), updated of $\mathcal{H} ext{-}$ matrices can be as well #### Current work - Implementation of local error estimators. - Update of \mathcal{H} -matrices if Rk matrices are computed using HCA (Hybrid Cross Approximation). www.hmatrix.org # Adaptive Cross Approximation (ACA) $M\in\mathbb{R}^{n imes m}$ up to a relative error $\|M-\sum_{ u=1}^k a_ u b_ u^T\|_2pprox \epsilon \|M\|_2$. Algorithm **Aim** Construct an approximation of the form $\sum_{ u=1}^k a_ u b_ u^T$ to a matrix **Input:** A function that returns the matrix entry M_{ij} for an index pair (i,j). **Step** $\nu = 1 ... k$: - 1. Determine (and **save**) a pivot index (i^*, j^*) . - 2. Compute the entries of the two vectors $a_{\nu} \in \mathbb{R}^n, b_{\nu} \in \mathbb{R}^m$ by $$(a_{\nu})_{i} := M_{ij^{*}} - \sum_{\nu=1}^{\mu-1} (a_{\nu})_{i} (b_{\nu})_{j^{*}}, (b_{\nu})_{j} := \frac{1}{\delta} \Big(M_{i^{*}j} - \sum_{\nu=1}^{\mu-1} (a_{\nu})_{i^{*}} (b_{\nu})_{j} \Big).$$ **Stop if** $||a_{\nu}||_2 ||b_{\nu}||_2 \le \epsilon ||a_1||_2 ||b_1||_2$. **Output:** The factorisation $AB^T \approx M$. (computed by ACA) we distinguish three cases: Since the pivot elements are saved in the update of Rk matrix - All pivot pairs can be reused. - computed as in the original algorithm. First t, t < k pivot pairs can be used, rest has to be - There is no pivot pair that can be used again, there is no update possible, i.e. Rk matrix is completely new Time (in seconds) for the update of the SLP \mathcal{H} -matrix compared to reassembly starting with $n_1=12288(n_1=49152)$ degrees of freedom | $\ G_{or} - G_{exact}\ _2$ | $\ G_{ad} - G_{exact}\ _2$ | savings (costs) | reassembly G_{or} | adaptive G_{ad} | new | $n_1 = 12288$ | |----------------------------|----------------------------|-----------------|---------------------|-------------------|-------|---------------| | 9.22×10^{-7} | 9.5×10^{-7} | 94%(6%) | 33.7 | 1.5 | 2.2% | $n_2 = 12422$ | | 8.26×10^{-5} | 8.33×10^{-7} | 76%(24%) | 35.5 | 8.6 | 11.2% | $n_2 = 13014$ | | 6.70×10^{-7} | 1.54×10^{-6} | 26%(74%) | 44.1 | 32.4 | 44.4% | $n_2 = 15790$ | #### Numerical test for ACA | (| ,, | |---|----| | (| | | $\ G_{or} - G_{exact}\ _2$ | $ G_{ad} - G_{exact} _2$ | savings(costs) | reassembly G_{or} | adaptive G_{ad} | new | $n_1 = 49152$ | |----------------------------|----------------------------|----------------|---------------------|-------------------|-------|---------------| | 3.36×10^{-7} | 3.37×10^{-7} | 94%(6%) | 167.2 | 10 | 2.1% | $n_2 = 49682$ | | 1.75×10^{-7} | 4.85×10^{-7} | 76%(24%) | 177.1 | 43.2 | 10.5% | $n_2 = 51870$ | | 1.93×10^{-7} | 4.21×10^{-7} | 32%(68%) | 213.7 | 146 | 42.7% | $n_2 = 62494$ |