Spectral properties of Robin-Laplacians on sharp infinite cones

Abstract

Let $\omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. For $\varepsilon > 0$ consider the infinite cone

$$\Omega_{\varepsilon} := \{(x_1, x') \in (0, \infty) \times \mathbb{R}^n : x' \in \varepsilon x_1 \omega\} \subset \mathbb{R}^{n+1}$$

and the Laplace-Operator $Q_{\varepsilon}^{\alpha}u = -\Delta u$ with Robin boundary conditions $\partial_{\nu}u = \alpha u$ on $\partial\Omega_{\varepsilon}$, where ∂_{ν} is the outward normal derivative and $\alpha > 0$ is a coupling constant. We discuss several spectral properties of Q_{ε}^{α} . This includes the essential spectrum, the number of discrete eigenvalues and the bottom of the spectrum. After that we look at the asymptotic behavior of the eigenvalues $E_{j}(Q_{\varepsilon}^{\alpha})$ when the cone gets sharper, i.e. $\varepsilon \to 0$.