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1. Introduction

In this paper we study a class of boundary value problems with eigenvalue de-
pendent boundary conditions. Let A be a closed symmetric operator or relation
of defect one in a separable Krein space K, let {C, Γ0, Γ1} be a boundary value
space for the adjoint A+ and let τ be a function locally holomorphic in some open
subset of the extended complex plane which is symmetric with respect to the real
line such that τ(λ) = τ(λ) holds. We investigate boundary value problems of the

following form: For a given k ∈ K find a vector f̂ =
( f

f ′

)
∈ A+ such that

f ′ − λf = k and τ(λ)Γ0f̂ + Γ1f̂ = 0 (1.1)

holds. Under additional assumptions on τ and A a solution of this problem can
be obtained with the help of the compressed resolvent of a selfadjoint extension

Ã of A which acts in a larger Krein space. Making use of the coupling method
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from [6] we construct this so-called linearization Ã and we study its local spectral
properties, which are closely connected with the solvability of (1.1).

More precisely, let Ω be some domain in C symmetric with respect to the real
line such that Ω∩R 6= ∅ and the intersections of Ω with the upper and lower open
half-planes are simply connected. We will assume that the selfadjoint extension
A0 := kerΓ0 of A is definitizable over Ω, i.e. for every subdomain Ω′ of Ω with
the same properties as Ω, Ω′ ⊂ Ω, there exists a selfadjoint projection E which
reduces A0 such that A0 ∩ (EK)2 is definitizable in the Krein space EK and Ω′

belongs to the resolvent set of A0 ∩ ((1 − E)K)2. With the help of approximative
eigensequences or the local spectral function of A0 the spectral points of A0 in
Ω ∩ R can be classified in points of positive and negative type and critical points
(cf. [13], [16]).

Further we assume that τ is a function which is definitizable in Ω, that is,
for every domain Ω′ as Ω, Ω′ ⊂ Ω, the function τ can be written as the sum of a
definitizable function (cf. [14], [15]) and a function holomorphic on Ω′. Similarly to
selfadjoint operators and relations definitizable over Ω the points in Ω ∩ R can be
classified in points of positive and negative type and critical points. It was shown
in [17] that τ can be represented with a selfadjoint relation T0 definitizable over
Ω′ in some Krein space H such that the sign types of τ and T0 coincide in Ω′ ∩R.

If, in addition, the sign types of A0 and τ are “compatible” in Ω∩R (see Defi-
nition 2.8), the selfadjoint relation A0×T0 in the Krein space K×H is definitizable

over Ω′. The linearization Ã of the boundary value problem (1.1) turns out to be a
two dimensional perturbation in resolvent sense of A0×T0. Under some additional
minimality assumptions on the selfadjoint relations A0 and T0 and with the help
of a recent result of T.Ya. Azizov and P. Jonas which states that the inverse of a
matrix-valued locally definitizable function is again locally definitizable we prove

in Theorem 3.6 that Ã is definitizable over Ω′.
The paper is organized as follows. In Section 2 we introduce the necessary

notations and we recall the definitions of locally definitizable operators and rela-
tions and locally definitizable functions which can be found in e.g. [13], [16] and
[17]. Section 3 deals with boundary value problems of the form (1.1). After some
preparatory work in Section 3.1 and Section 3.2 we formulate and prove the main

result in Section 3.3: The linearization Ã of the eigenvalue dependent boundary
value problem (1.1) is locally definitizable.

I thank P. Jonas for encouragement and critical help in the preparation of
the manuscript.

2. Locally Definitizable Selfadjoint Relations and Locally
Definitizable Functions

2.1. Notations and Definitions

Let (K, [·, ·]) be a separable Krein space. We study linear relations in K, that is,
linear subspaces of K2. The set of all closed linear relations in K is denoted by
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C̃(K). Linear operators in K are viewed as linear relations via their graphs. For the
usual definitions of the linear operations with relations, the inverse etc., we refer

to [9]. We denote the sum (direct sum) of subspaces in K2 by (resp.
.

). The
linear space of bounded linear operators defined on a Krein space K1 with values
in a Krein space K2 is denoted by L(K1,K2). In the case K := K1 = K2 we simply
write L(K).

If (H, [·, ·]H) is another separable Krein space the elements of K ×H will be
written in the form {k, h}, k ∈ K, h ∈ H. K×H equipped with the inner product
[·, ·]K×H defined by

[{k, h}, {k′, h′}]K×H := [k, k′] + [h, h′]H, k, k′ ∈ K, h, h′ ∈ H,

is also a Krein space. If S is a relation in K and T is a relation in H we shall write
S × T for the direct product of S and T which is a relation in K ×H,

S × T =

{(
{s, t}
{s′, t′}

) ∣∣∣
(

s
s′

)
∈ S,

(
t
t′

)
∈ T

}
. (2.1)

For the pair
(

{s,t}

{s′,t′}

)
on the right hand side of (2.1) we shall also write {ŝ, t̂}, where

ŝ =
(

s
s′

)
, t̂ =

(
t
t′

)
.

Let S be a closed linear relation in K. The resolvent set ρ(S) of S is the set of
all λ ∈ C such that (S − λ)−1 ∈ L(K), the spectrum σ(S) of S is the complement
of ρ(S) in C. The extended spectrum σ̃(S) of S is defined by σ̃(S) = σ(S) if
S ∈ L(K) and σ̃(S) = σ(S) ∪ {∞} otherwise. We say that λ ∈ C belongs to the
approximate point spectrum of S, denoted by σap(S), if there exists a sequence(

xn

yn

)
∈ S, n = 1, 2, . . . , such that ‖xn‖ = 1 and limn→∞ ‖yn − λxn‖ = 0. The

extended approximate point spectrum σ̃ap(S) of S is defined by

σ̃ap(S) :=

{
σap(S) ∪ {∞} if 0 ∈ σap(S

−1)

σap(S) if 0 6∈ σap(S
−1)

.

We remark, that the boundary points of σ̃(S) in C belong to σ̃ap(S).

Next we recall the definitions of the spectra of positive and negative type of
a closed linear relation (see [16], [19]). For equivalent descriptions of the spectra
of positive and negative type we refer to [16, Theorem 3.18].

Definition 2.1. Let S be a closed linear relation in K. A point λ ∈ σap(S) is said to
be of positive type (negative type) with respect to S, if for every sequence

(
xn

yn

)
∈ S,

n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖yn − λxn‖ = 0 we have

lim inf
n→∞

[xn, xn] > 0
(
resp. lim sup

n→∞
[xn, xn] < 0

)
.

If ∞ ∈ σ̃ap(S), ∞ is said to be of positive type (negative type) with respect to S if
0 is of positive (resp. negative) type with respect to S−1.

An open subset ∆ of R is said to be of positive type (negative type) with
respect to S if each point λ ∈ ∆ ∩ σ̃(S) is of positive (resp. negative) type with
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respect to S. ∆ is called of definite type with respect to S if ∆ is of positive or
negative type with respect to S.

Let A be a linear relation in K. The adjoint relation A+ ∈ C̃(K) is defined as

A+ :=

{(
h
h′

) ∣∣∣ [g′, h] = [g, h′] for all

(
g
g′

)
∈ A

}
.

A is said to be symmetric (selfadjoint) if A ⊂ A+ (resp. A = A+).
For a selfadjoint relation A in K the points of definite type introduced in

Definition 2.1 belong to R. In fact, if e.g. λ 6= ∞ is of positive type with respect to
A, and

(
xn

yn

)
∈ A is a sequence with ‖xn‖ = 1 and limn→∞ ‖yn − λxn‖ = 0, then

|Im λ| lim inf
n→∞

[xn, xn] = lim inf
n→∞

|Im [yn − λxn, xn]| ≤ lim
n→∞

‖yn − λxn‖ = 0

implies λ ∈ R.

2.2. Locally Definitizable Selfadjoint Relations in Krein Spaces

Let Ω be a domain in C symmetric with respect to the real axis such that Ω∩R 6= ∅
and the intersections of Ω with the upper and lower open half-planes are simply
connected.

Let A0 be a selfadjoint relation in the Krein space K such that σ(A0)∩(Ω\R)
consists of isolated points which are poles of the resolvent of A0, and no point of
Ω∩R is an accumulation point of the non-real spectrum of A0. Let ∆ be an open
subset of Ω ∩ R. We say that A0 belongs to the class S∞(∆), if for every finite
union ∆′ of open connected subsets, ∆′ ⊂ ∆, there exists m ≥ 1, M > 0 and an
open neighbourhood U of ∆′ in C such that

‖(A0 − λ)−1‖ ≤ M(1 + |λ|)2m−2 |Im λ|−m (2.2)

holds for all λ ∈ U\R. We remark, that for an open subset ∆ of Ω ∩ R which is
of positive type with respect to A0 the estimate (2.2) holds with m = 1 (see [16,
Theorem 3.18] and [19] for the case of a bounded operator A0).

Definition 2.2. Let Ω be a domain as above and let A0 be a selfadjoint relation in K
such that σ(A0)∩(Ω\R) consists of isolated points which are poles of the resolvent
of A0 and no point of Ω ∩ R is an accumulation point of the nonreal spectrum of
A0 in Ω. The relation A0 is said to be definitizable over Ω, if A0 ∈ S∞(Ω∩R) and
every point µ ∈ Ω ∩ R has an open connected neighbourhood Iµ in R such that
both components of Iµ\{µ} are of definite type with respect to A0.

The next theorem is a variant of [16, Theorem 4.8]. The simple modification
of the proof is left to the reader.

Theorem 2.3. Let A0 be a selfadjoint relation in K and let Ω be a domain as
above. A0 is definitizable over Ω if and only if for every domain Ω′ with the same
properties as Ω, Ω′ ⊂ Ω, there exists a selfadjoint projection E in K such that A0

can be decomposed in

A0 =
(
A0 ∩ (EK)2

) . (
A0 ∩ ((1 − E)K)2

)
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and the following holds.

(i) A0 ∩ (EK)2 is a definitizable relation in the Krein space EK.

(ii) σ̃
(
A0 ∩ ((1 − E)K)2

)
∩ Ω′ = ∅.

Let A0 be a selfadjoint relation in K which is definitizable over Ω, let Ω′

be a domain with the same properties as Ω, Ω′ ⊂ Ω, and let E be a selfadjoint
projection with the properties as in Theorem 2.3. If E ′ is the spectral function of
the definitizable selfadjoint relation A0 ∩ (EK)2 in the Krein space EK (cf. [15,
page 71], [10] and [18]), then the mapping

δ 7→ E′(δ)E =: EA0
(δ) (2.3)

defined for all finite unions δ of connected subsets of Ω′∩R the endpoints of which
belong to Ω′∩R and are of definite type with respect to A0∩(EK)2, is the spectral
function of A0 on Ω′ ∩ R (see [16, Section 3.4 and Remark 4.9]).

2.3. Locally Definitizable Functions

Let Ω be a domain as in the beginning of Section 2.2 and let τ be an L(Cn)-
valued piecewise meromorphic function in Ω\R which is symmetric with respect
to the real line, that is τ(λ) = τ(λ)∗ for all points λ of holomorphy of τ . If, in
addition, no point of Ω∩R is an accumulation point of nonreal poles of τ we write
τ ∈ Mn×n(Ω). The set of the points of holomorphy of τ in Ω\R and all points
µ ∈ Ω ∩ R such that τ can be analytically continued to µ and the continuations
from Ω ∩ C+ and Ω ∩ C− coincide, is denoted by h(τ).

In the next definition we introduce the sign type of open subsets in Ω ∩ R

with respect to functions from the class Mn×n(Ω) (see [17]).

Definition 2.4. Let τ ∈ Mn×n(Ω). An open subset ∆ ⊂ Ω ∩ R is said to be of
positive type with respect to τ if for every x ∈ Cn and every sequence (µk) of
points in Ω ∩ C+ ∩ h(τ) which converges in C to a point of ∆ we have

lim inf
k→∞

Im (τ(µk)x, x) ≥ 0.

An open subset ∆ ⊂ Ω ∩ R is said to be of negative type with respect to τ if ∆ is
of positive type with respect to −τ . ∆ is said to be of definite type with respect
to τ if ∆ is of positive or negative type with respect to τ .

Definition 2.5. A function τ ∈ Mn×n(Ω) is called definitizable in Ω if the following
holds.

(i) Every point µ ∈ Ω ∩ R has an open connected neighbourhood Iµ in R such
that both components of Iµ\{µ} are of definite type with respect to τ .

(ii) For every open subset ∆ in R, ∆ ⊂ Ω ∩ R, there exists m ≥ 1, M > 0 and
an open neighbourhood U of ∆ in C such that

‖τ(λ)‖ ≤ M(1 + |λ|)2m |Im λ|−m

holds for all λ ∈ U\R.
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In [17] it is shown that a function τ ∈ Mn×n(Ω) is definitizable in Ω if and
only if for every finite union ∆ of open connected subsets of R such that ∆ ⊂ Ω∩R,
τ can be written as the sum of an L(Cn)-valued definitizable function (see [14],
[15]) and an L(Cn)-valued function which is locally holomorphic on ∆.

The following theorem will be used in Section 3.2 and Section 3.3. It states
that a locally definitizable function can be represented with a locally definitizable
selfadjoint relation. A proof can be found in [17].

Theorem 2.6. Let τ be an L(Cn)-valued locally definitizable function in Ω and
let Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω. Then there exists a
Krein space H, a selfadjoint relation T0 in H definitizable over Ω′ and a mapping
γ′ ∈ L(Cn,H) with the following properties.

(a) ρ(T0) ∩ Ω′ = h(τ) ∩ Ω′.

(b) For a fixed λ0 ∈ ρ(T0) ∩ Ω′ and all λ ∈ ρ(T0) ∩ Ω′

τ(λ) = Re τ(λ0) + γ′+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(T0 − λ)−1

)
γ′

holds.

(c) For any finite union ∆ of open connected subsets of R, ∆ ⊂ Ω′∩R, such that
the boundary points of ∆ are of definite type with respect to τ the spectral
projection ET0

(∆) is defined. If Ω′′ is a domain with the same properties
as Ω and Ω′, Ω′′ ⊂ Ω′, and if we set E := ET0

(∆) + ET0
(Ω′′\R), then the

minimality condition

EH = clsp
{(

1 + (λ − λ0)(T0 − λ)−1
)
Eγ′x |λ ∈ ρ(T0) ∩ Ω′, x ∈ C

n
}

is fulfilled.

(d) Any finite union ∆ of open connected subsets of R, ∆ ⊂ Ω′∩R, is of positive
(negative) type with respect to τ if and only if ∆ is of positive (resp. negative)
type with respect to T0.

If τ and T0 are as in Theorem 2.6 we shall say that T0 is an Ω′-minimal
representing relation for τ .

Remark 2.7. Let τ be an L(Cn)-valued locally definitizable function in Ω and let
Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω. If, in addition, τ is the
restriction of a definitizable function (see [14], [15]) or if, in addition, the boundary
of Ω′ is contained in h(τ), then the selfadjoint relation T0 in Theorem 2.6 can be
chosen such that the minimality condition

H = clsp
{(

1 + (λ − λ0)(T0 − λ)−1
)
γ′x |λ ∈ ρ(T0) ∩ Ω′, x ∈ C

n
}

holds.

The next definition connects sign types of locally definitizable functions and
sign types of spectral points of locally definitizable relations.
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Definition 2.8. Let τ be an L(Cn)-valued locally definitizable function in Ω and
let A0 be a selfadjoint relation in the Krein space K which is definitizable over Ω.
We say that the sign types of τ and A0 are d-compatible in Ω if for every point
µ ∈ Ω ∩ R there exists an open connected neighbourhood Iµ ⊂ Ω ∩ R of µ such
that each component of Iµ\{µ} is of positive type with respect to τ and A0 or of
negative type with respect to τ and A0.

If τ is a function which is definitizable in Ω, Ω′ is a domain as Ω, Ω′ ⊂ Ω,
and T0 is an Ω′-minimal representing relation for τ (see Theorem 2.6), then the
sign types of τ and T0 are d-compatible in Ω′.

3. Boundary Value Problems with Locally Definitizable Functions
in the Boundary Condition

3.1. Boundary Value Spaces and Weyl Functions Associated with Symmetric Re-
lations in Krein Spaces

Let (K, [·, ·]) be a separable Krein space, let J be a corresponding fundamental

symmetry and let A ∈ C̃(K) be a closed symmetric relation in K. We say that A
is of defect m ∈ N ∪ {∞}, if both deficiency indices

n±(JA) = dim ker((JA)∗ − λ), λ ∈ C
±,

of the symmetric relation JA in the Hilbert space (K, [J ·, ·]) are equal to m.
Here ∗ denotes the Hilbert space adjoint. We remark, that this is equivalent to
the fact that there exists a selfadjoint extension of A in K and that each selfad-
joint extension Â of A in K satisfies dim

(
Â/A

)
= m.

We shall use the so-called boundary value spaces for the description of the
selfadjoint extensions of closed symmetric relations in Krein spaces. The following
definition is taken from [5].

Definition 3.1. Let A be a closed symmetric relation in the Krein space (K, [·, ·]).
We say that {G, Γ0, Γ1} is a boundary value space for A+ if (G, (·, ·)) is a Hilbert

space and there exist mappings Γ0, Γ1 : A+ → G such that Γ =
(

Γ0

Γ1

)
: A+ → G×G

is surjective, and the relation

[f ′, g] − [f, g′] = (Γ1f̂ , Γ0ĝ) − (Γ0f̂ , Γ1ĝ)

holds for all f̂ =
( f

f ′

)
, ĝ =

( g

g′

)
∈ A+.

In the following we recall some basic facts on boundary value spaces which
can be found in e.g. [4] and [5]. For the Hilbert space case we refer to [11], [7] and
[8]. Let A be a closed symmetric relation in K, let

Nλ,A+ := ker(A+ − λ) = ran (A − λ)[⊥]

be the defect subspace of A at the point λ and let

N̂λ,A+ =
{(

fλ

λfλ

)∣∣fλ ∈ Nλ,A+

}
.
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When no confusion can arise we write Nλ and N̂λ instead of Nλ,A+ and N̂λ,A+ . If
there exists a selfadjoint extension A′ of A such that ρ(A′) 6= ∅ then we have

A+ = A′
.
N̂λ for all λ ∈ ρ(A′).

In this case there exists a boundary value space {G, Γ0, Γ1} for A+ such that
kerΓ0 = A′ (cf. [5]).

Let in the following A, {G, Γ0, Γ1} and Γ be as in Definition 3.1. It follows
that the mappings Γ0 and Γ1 are continuous. The selfadjoint extensions

A0 := kerΓ0 and A1 := kerΓ1

of A are transversal, i.e. A0 ∩A1 = A and A0 A1 = A+. The mapping Γ induces,
via

AΘ := Γ−1Θ =
{
f̂ ∈ A+ |Γf̂ ∈ Θ

}
, Θ ∈ C̃(G), (3.1)

a bijective correspondence Θ 7→ AΘ between the set of all closed linear relations

C̃(G) in G and the set of closed extensions AΘ ⊂ A+ of A. In particular (3.1) gives
a one-to-one correspondence between the symmetric (selfadjoint) extensions of A
and the symmetric (resp. selfadjoint) relations in G. If Θ is a closed operator in G,
then the corresponding extension AΘ of A is determined by

AΘ = ker
(
Γ1 − ΘΓ0

)
. (3.2)

Assume that ρ(A0) 6= ∅ and denote by π1 the orthogonal projection onto the
first component of K ×K. For every λ ∈ ρ(A0) we define the operators

γ(λ) = π1(Γ0|N̂λ)−1 ∈ L(G,K) and M(λ) = Γ1(Γ0|N̂λ)−1 ∈ L(G).

The functions λ 7→ γ(λ) and λ 7→ M(λ) are called the γ-field and Weyl function
corresponding to A and {G, Γ0, Γ1}. γ and M are holomorphic on ρ(A0) and the
relations

γ(ζ) = (1 + (ζ − λ)(A0 − ζ)−1)γ(λ) (3.3)

and

M(λ) − M(ζ)∗ = (λ − ζ)γ(ζ)+γ(λ) (3.4)

hold for all λ, ζ ∈ ρ(A0) (cf. [5]).

If Θ ∈ C̃(G) and AΘ is the corresponding extension of A (see (3.1)), then a
point λ ∈ ρ(A0) belongs to ρ(AΘ) if and only if 0 belongs to ρ(Θ − M(λ)). For
λ ∈ ρ(AΘ) ∩ ρ(A0) the well-known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)+ (3.5)

holds (for a proof see e.g. [5]).
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3.2. Locally Definitizable Functions as Weyl Functions of Symmetric Relations

Let, as in Section 2.2, Ω be a domain in C symmetric with respect to the real axis
such that Ω ∩ R 6= ∅ and the intersections of Ω with the upper and lower open
half-planes are simply connected.

In the next proposition we consider boundary value spaces and Weyl functions
associated with symmetric relations in Krein spaces which have the additional
property that there exists a locally definitizable selfadjoint extension. We restrict
ourselves to the case of defect one.

Proposition 3.2. Let A be a closed symmetric relation of defect one in the Krein
space K and assume that there exists a selfadjoint extension A0 of A which is
definitizable over Ω. Let {C, Γ0, Γ1} be a boundary value space for A+ such that
A0 = kerΓ0. Then the corresponding Weyl function M is definitizable in Ω. If ∆
is an open subset of Ω ∩ R which is of positive (negative) type with respect to A0,
then ∆ is of positive (resp. negative) type with respect to M .

Proof. As A0 is a selfadjoint relation which is definitizable over Ω it follows that
the Weyl function M corresponding to A and {C, Γ0, Γ1} is piecewise meromorphic
in Ω\R and no point of Ω∩R is an accumulation point of nonreal poles of M . Let
λ0 ∈ ρ(A0). Making use of (3.3) and (3.4) we obtain that M is symmetric with
respect to the real axis, Im M(λ0) = (Im λ0)γ(λ0)

+γ(λ0) and

M(λ) = M(λ0) + (λ − λ0)γ(λ0)
+γ(λ)

= ReM(λ0) − i (Imλ0)γ(λ0)
+γ(λ0)

+ γ(λ0)
+
(
(λ − λ0) + (λ − λ0)(λ − λ0)(A0 − λ)−1

)
γ(λ0)

= ReM(λ0) + γ(λ0)
+
(
(λ−Reλ0) + (λ− λ0)(λ− λ0)(A0 − λ)−1

)
γ(λ0)

(3.6)

holds for all λ ∈ ρ(A0). Since A0 belongs to the class S∞(Ω∩R) it follows that M
fulfils the second condition in Definition 2.5. Let µ ∈ Ω∩R and let Iµ ⊂ Ω∩R be an

open connected neighbourhood of µ in R such that both components of Iµ\{µ} are
of definite type with respect to A0. By [16, Theorem 3.18] a component of Iµ\{µ}
is of positive (negative) type with respect to A0 if and only if it is of positive (resp.
negative) type with respect to the function

λ 7→ (λ − Re λ0) + (λ − λ0)(λ − λ0)(A0 − λ)−1.

Now it follows from (3.6) that both components of Iµ\{µ} are of the same sign
type with respect to A0 and M and therefore the Weyl function M is definitizable
in Ω. The same argument shows that an open subset ∆ ⊂ Ω∩R which is of positive
(negative) type with respect to A0 is also of positive (negative) type with respect
to M . �

The next theorem is a variant of [3, Theorem 3.3]. For the convenience of the
reader we sketch the proof.
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Theorem 3.3. Let τ be a complex-valued locally definitizable function in Ω and
assume that τ is not identically equal to a constant. Let Ω′ be a domain with the
same properties as Ω and Ω′ ⊂ Ω. Then there exists a Krein space H, a closed
symmetric relation T of defect one in H and a boundary value space {C, Γ′

0, Γ
′
1}

for T+ such that τ coincides with the corresponding Weyl function on Ω′ and
T0 := kerΓ′

0 is an Ω′-minimal representing relation for τ .

Sketch of the proof of Theorem 3.3. Let τ be represented with an Ω′-minimal self-
adjoint relation T0 in a Krein space H as in Theorem 2.6. Let γ ′ ∈ L(C,H) be as
in Theorem 2.6 and fix some λ0 ∈ h(τ) ∩ Ω′. For all λ ∈ h(τ) ∩ Ω′ we define

γ′(λ) :=
(
1 + (λ − λ0)(T0 − λ)−1

)
γ′ ∈ L(C,H).

The linear functional γ′(λ)c 7→ c defined on ran γ′(λ) is denoted by γ′(λ)(−1). The
closed symmetric relation

T :=

{(
f
g

)
∈ T0

∣∣∣ [g − µf, γ′(µ) 1] = 0

}

has defect one and does not depend on the choice of µ ∈ h(τ) ∩ Ω′. For every

λ ∈ h(τ) ∩ Ω′ we write the elements f̂ ∈ T+ in the form f̂ =
( f0

f ′

0

)
+
(

fλ

λfλ

)
, where

( f0

f ′

0

)
∈ T0 and fλ ∈ ran γ′(λ) = Nλ,T+ . As in the proof of [3, Theorem 3.3] (see

also [7, Theorem 1]) one verifies that {C, Γ′
0, Γ

′
1}, where

Γ′
0f̂ := γ′(λ)(−1)fλ,

Γ′
1f̂ := γ′(λ)+(f ′

0 − λf0) + τ(λ)γ′(λ)(−1)fλ,

is a boundary value space for T + and the corresponding Weyl function coincides
with τ on Ω′. �

Remark 3.4. Let the function τ be definitizable in Ω and assume that τ is not
identically equal to a constant. Let Ω′ be a domain with the same properties as
Ω, Ω′ ⊂ Ω, and assume that τ is the restriction of a definitizable function or that
the boundary of Ω′ is contained in h(τ). If we choose T0 as in Remark 2.7 and
T ⊂ T0 ⊂ T+ as in Theorem 3.3, then the condition

H = clsp {ran γ′(λ) |λ ∈ ρ(T0) ∩ Ω′} = clsp {Nλ,T+ |λ ∈ ρ(T0) ∩ Ω′}

is fulfilled. In this case T is an operator.

In the following proposition we use Definition 2.8. The statements will be
useful in the proof of our main result in Section 3.3.

Proposition 3.5. Let A be a closed symmetric relation of defect one in the Krein
space K, let {C, Γ0, Γ1} be a boundary value space for A+ and denote by M the
corresponding Weyl function. Assume that the selfadjoint relation A0 = kerΓ0 is
definitizable over Ω and let τ be a complex-valued function which is definitizable
in Ω such that the sign types of τ and A0 are d-compatible in Ω.
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Let Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω, and let T0 be an
Ω′-minimal representing relation for τ in some Krein space H (see Theorem 2.6).
Then the following holds.

(i) The selfadjoint relation A0 × T0 ∈ C̃(K ×H) is definitizable over Ω′ and the
sign types of A0 × T0 and the functions τ and M are d-compatible in Ω′.

(ii) The function M + τ is definitizable in Ω.

(iii) If τ(η) 6= 0 and (M + τ)(η′) 6= 0 for some η, η′ ∈ Ω, then the functions

λ 7→

(
M(λ) 0

0 −τ(λ)−1

)
and λ 7→ −

(
M(λ) −1
−1 −τ(λ)−1

)−1

(3.7)

are definitizable in Ω and their sign types are d-compatible with the sign types
of the selfadjoint relation A0 × T0 in Ω′.

Proof. (i) Since A0 and T0 belong to S∞(Ω∩R) and S∞(Ω′ ∩R), respectively, we
conclude that A0 × T0 belongs to S∞(Ω′ ∩R). Let µ ∈ Ω′ ∩R and let Iµ ⊂ Ω′ ∩ R

be an open connected neighbourhood of µ in R such that each component of
Iµ\{µ} is of the same sign type with respect to A0 and τ . As T0 is an Ω′-minimal
representing relation for τ both components of Iµ\{µ} are of definite type with
respect to A0 × T0 and it follows that A0 × T0 is definitizable over Ω′.

The assumption that the sign types of τ and A0 are d-compatibel in Ω implies
that the sign types of τ and A0 × T0 as well as the sign types of M and A0 × T0

are d-compatible in Ω.

(ii) For µ ∈ Ω ∩ R we choose an open connected neighbourhood Iµ ⊂ Ω ∩ R of µ
such that both components of Iµ\{µ} are of the same sign type with respect to A0

and τ . By Proposition 3.2 the sign types of M are the same as of A0 and therefore
both components of Iµ\{µ} are of the same sign type with respect to M + τ . The
growth properties of M and τ imply that M + τ fulfils the second condition in
Definition 2.5 and therefore M + τ is definitizable in Ω.

(iii) By [1, Theorem 2.3] the function −τ−1 is definitizable in Ω and it follows from
the proof of [1, Theorem 2.3] that each point µ ∈ Ω ∩ R has an open connected
neighbourhood Iµ ⊂ Ω ∩ R such that both components of Iµ\{µ} are of the same
sign type with respect to −τ−1 and τ . Therefore the sign types of −τ−1 and
A0 are d-compatible in Ω. Now it is easy to see that the first function in (3.7) is
definitizable in Ω and its sign types are d-compatible with the sign types of A0×T0

in Ω′.

As the function

λ 7→

(
M(λ) −1
−1 −τ(λ)−1

)

is also definitizable in Ω another application of [1, Theorem 2.3] shows that the
second function in (3.7) is definitizable in Ω and its sign types are d-compatible
with the sign types of A0 × T0 in Ω′. �
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3.3. The Main Result

In this section we investigate the spectral properties of linearizations of a class of
abstract eigenvalue dependent boundary value problems with locally definitizable
functions in the boundary condition. Similar problems with a local variant of
generalized Nevanlinna functions in the boundary condition have been considered
in [3]. The main feature in Theorem 3.6 below is that the linearization turns out
to be locally definitizable.

Theorem 3.6. Let Ω be a domain as in the beginning of Section 3.2 and let A
be a closed symmetric operator of defect one in the Krein space K such that
K = clsp {Nλ,A+ |λ ∈ Ω} holds. Assume that there exists a selfadjoint extension
A0 of A which is definitizable over Ω. Let {C, Γ0, Γ1} be a boundary value space
for A+, A0 = kerΓ0, and denote by γ and M the corresponding γ-field and Weyl
function, respectively.
Let τ be a nonconstant function which is definitizable in Ω, let Ω′ be a domain
as Ω, Ω′ ⊂ Ω, choose H, T ⊂ T0 ⊂ T+ and {C, Γ′

0, Γ
′
1} as in Theorem 3.3 and

assume that the condition H = clsp {Nλ,T+ |λ ∈ Ω′} is fulfilled.
Let the sign types of τ and A0 be d-compatible in Ω, assume that the function
M + τ is not identically equal to zero and define

h0 := h(M) ∩ h(τ) ∩ h
(
τ−1

)
∩ h
(
(M + τ)−1

)
.

Then the relation

Ã =
{{

f̂1, f̂2

}
∈ A+× T+

∣∣Γ1f̂1 − Γ′
1f̂2 = Γ0f̂1 + Γ′

0f̂2 = 0
}

(3.8)

is a selfadjoint extension of A in K × H which is definitizable over Ω′ and the

sign types of Ã are d-compatible with the sign types of τ and M in Ω′. The set
Ω′\(R ∪ h0) is finite. For every k ∈ K and every λ ∈ h0 ∩ Ω′ the unique solution
of the eigenvalue dependent boundary value problem

f ′
1 − λf1 = k, τ(λ)Γ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A+, (3.9)

is given by

f1 = PK(Ã − λ)−1{k, 0} = (A0 − λ)−1k − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+k,

f ′
1 = λf1 + k.

(3.10)

Proof. 1. In this step we construct the selfadjoint relation Ã in K × H with the

help of the coupling method from [6, §5.2], we show that h0 ∩ Ω′ belongs to ρ(Ã)
and that (3.10) is the unique solution of the boundary value problem (3.9). We
follow the lines of [3, Proof of Theorem 4.1].

As the functions M , τ and M + τ are definitizable in Ω (see Proposition 3.5)
[1, Theorem 2.3] implies that −τ−1 and −(M + τ)−1 are also definitizable in Ω.
Let Ω′ and h0 be as in the assumptions of the theorem. As the nonreal poles of the
functions M , τ , τ−1 and (M + τ)−1 in Ω do not accumulate to Ω∩R we conclude
from Ω′ ⊂ Ω that the set Ω′\(R ∪ h0) is finite.
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Let H, T ⊂ T+ and {C, Γ′
0, Γ

′
1} be as in Theorem 3.3. Then τ is the cor-

responding Weyl function and the selfadjoint relation T0 = kerΓ′
0 is definitizable

over Ω′. We denote the γ-field corresponding to {C, Γ′
0, Γ

′
1} by γ′ and we set

T1 := kerΓ′
1. As {C, Γ′

1,−Γ′
0} is a boundary value space for T + with correspond-

ing γ-field and Weyl function

λ 7→ γ′(λ)τ(λ)−1 and λ 7→ −τ(λ)−1, λ ∈ h(τ) ∩ h
(
τ−1

)
∩ Ω′, (3.11)

respectively, it follows without difficulty that {C2, Γ̃0, Γ̃1}, where Γ̃0 and Γ̃1 are
mappings from A+× T+ into C

2 defined by

Γ̃0

{
f̂1, f̂2

}
:=

(
Γ0f̂1

Γ′
1f̂2

)
and Γ̃1

{
f̂1, f̂2

}
:=

(
Γ1f̂1

−Γ′
0f̂2

)
,

{f̂1, f̂2} ∈ A+× T+, is a boundary value space for A+× T+ with corresponding
γ-field

λ 7→ γ̃(λ) =

(
γ(λ) 0

0 γ′(λ)τ(λ)−1

)
, λ ∈ h(M) ∩ h(τ) ∩ h(τ−1) ∩ Ω′, (3.12)

and Weyl function

λ 7→ M̃(λ) =

(
M(λ) 0

0 −τ(λ)−1

)
, λ ∈ h(M) ∩ h(τ) ∩ h(τ−1) ∩ Ω′.

The selfadjoint relation Ã in K×H corresponding to Θ =
(

0 1
1 0

)
∈ L(C2) via (3.1)

and (3.2) is given by

Ã = ker(Γ̃1 − ΘΓ̃0)

=
{{

f̂1, f̂2

}
∈ A+× T+

∣∣Γ1f̂1 − Γ′
1f̂2 = Γ0f̂1 + Γ′

0f̂2 = 0
}
.

(3.13)

For λ ∈ h0 ∩ Ω′ the resolvent of Ã can be written as

(Ã − λ)−1 =

(
(A0 − λ)−1 0

0 (T1 − λ)−1

)
+ γ̃(λ)

(
Θ − M̃(λ)

)−1
γ̃(λ)+, (3.14)

(see (3.5)). Calculating (Θ − M̃(λ))−1 one verifies that the compressed resolvent

of Ã onto K is given by

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+, λ ∈ h0 ∩ Ω′.

For k ∈ K we set f1 := PK(Ã − λ)−1{k, 0} and f2 := PH(Ã − λ)−1{k, 0}.
Then (

{f1, f2}
{λf1 + k, λf2}

)
∈ Ã ⊂ A+× T+

and f̂1 :=
(

f1

λf1+k

)
∈ A+, f̂2 :=

(
f2

λf2

)
∈ N̂λ,T+ . From (3.13) and since τ is the

Weyl function corresponding to {C, Γ′
0, Γ

′
1} we get

Γ1f̂1 = Γ′
1f̂2 = τ(λ)Γ′

0f̂2 = −τ(λ)Γ0f̂1, λ ∈ h0 ∩ Ω′,



14 Jussi Behrndt

and it follows that f̂1 ∈ A+ is a solution of (3.9).

Let us verify that this solution f̂1 ∈ A+ is unique. Assume that the vector

ĝ1 =
( g1

λg1+k

)
∈ A+ is also a solution of (3.9), λ ∈ h0 ∩ Ω′. Then f̂1 − ĝ1 belongs

to N̂λ,A+ and

0 = τ(λ)Γ0(f̂1 − ĝ1) + Γ1(f̂1 − ĝ1) =
(
τ(λ) + M(λ)

)
Γ0(f̂1 − ĝ1)

implies f̂1−ĝ1 ∈ A0∩N̂λ,A+ as τ(λ)+M(λ) 6= 0. Therefore f̂1 = ĝ1 since λ ∈ h(M).

2. It remains to prove that Ã is definitizable over Ω′ and that the sign types

of Ã are d-compatible with the sign types of the functions τ and M in Ω′. In
this step we show that for every point µ ∈ Ω′ ∩ R there exists an open connected
neighbourhood Iµ of µ in Ω′ ∩ R such that both components of Iµ\{µ} are of

definite type with respect to Ã.
As the sign types of τ and A0 are d-compatible in Ω, Proposition 3.5 implies

that the selfadjoint relation A0 × T0 is definitizable over Ω′. It is straightforward

to check that {C2, Γ̂0, Γ̂1}, where

Γ̂0 := Γ̃1 − ΘΓ̃0, Γ̂1 := −Γ̃0,

is a boundary value space for A+×T+ with ker Γ̂0 = Ã. The corresponding γ-field

γ̂ and Weyl function M̂ are defined on ρ(Ã) and for λ ∈ h0 ∩Ω′ they are given by

λ 7→ γ̂(λ) = γ̃(λ)
(
M̃(λ) − Θ

)−1
(3.15)

and

λ 7→ M̂(λ) = −(M̃(λ) − Θ)−1 = −

(
M(λ) −1
−1 −τ(λ)−1

)−1

,

respectively. In particular

M̂(λ) = Re M̂(λ0) + γ̂(λ0)
+
(
(λ − Re λ0)

+ (λ − λ0)(λ − λ0)(Ã − λ)−1
)
γ̂(λ0)

(3.16)

holds for a fixed λ0 ∈ h0 ∩Ω′ and all λ ∈ h0 ∩Ω′ (see the proof of Proposition 3.2).

By Proposition 3.5 the function M̂ is definitizable in Ω and the sign types of M̂
and A0 × T0 are d-compatible in Ω′.

Let µ ∈ Ω′ ∩ R and assume e.g. that a one-sided open connected neighbour-
hood ∆+ of µ in R, ∆+ ⊂ Ω′ ∩ R, is of positive type with respect to A0 × T0.

As the sign types of M̂ and A0 × T0 are d-compatible in Ω′, it is no restriction to

assume that ∆+ is also of positive type with respect to M̂ . Since A0 × T0 and Ã
are both selfadjoint extensions of the symmetric relation A× T in K×H we have

dim
(
ran

(
(Ã − λ)−1 − ((A0 × T0) − λ)−1

))
≤ 2

for all λ ∈ h0∩Ω′. Let Ω∆+
be a domain with the same properties as Ω, Ω∆+

⊂ Ω′,

such that Ω∆+
∩ R = ∆+. It follows from [2, Corollary 2.5] that Ã is definitizable
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over Ω∆+
and that for every finite union δ of open connected subsets in ∆+,

δ ⊂ ∆+, such that the spectral projection E eA
(δ) is defined the space E eA

(δ)(K×H)
equipped with the inner product [·, ·]K×H is a Pontryagin space with finite rank of
negativity.

Let Ω′′ be a domain with the same properties as Ω such that Ω′′ ⊂ Ω′ and
∆+ ⊂ Ω′′ ∩R. By Theorem 2.6 there exists an Ω′′-minimal representing relation S

for M̂ , that is, S is a selfadjoint relation in some Krein space G which is definitizable

over Ω′′, ρ(S) ∩ Ω′′ = h(M̂ ) ∩ Ω′′, and with a suitable Λ ∈ L(C2,G) we have

M̂(λ) = Re M̂(λ0) + Λ+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(S − λ)−1

)
Λ (3.17)

for a fixed λ0 ∈ ρ(S) ∩ Ω′′ and all λ ∈ ρ(S) ∩ Ω′′. The spectral function of S on
Ω′′ ∩ R will be denoted by ES (comp. (2.3)).

In the following we will assume that the point λ0 in (3.16) and (3.17) belongs

to ρ(Ã) ∩ ρ(S) ∩ Ω′′. This is no restriction. From (3.16) and (3.17) we obtain

γ̂(λ0)
+γ̂(λ0) = Λ+Λ and γ̂(λ0)

+(Ã − λ)−1γ̂(λ0) = Λ+(S − λ)−1Λ

for all λ ∈ ρ(Ã) ∩ ρ(S) ∩ Ω′′. Therefore the relation

V :=

{( ∑n
k=1(1 + (λk − λ0)(S − λk)−1)Λxk∑n

k=1(1 + (λk − λ0)(Ã − λk)−1)γ̂(λ0)xk

) ∣∣∣λk ∈ ρ(S) ∩ ρ(Ã) ∩ Ω′′

xk ∈ C2, k = 1, . . . , n

}

is isometric. The assumptions

K = clsp {Nλ,A+ |λ ∈ Ω} and H = clsp {Nλ,T+ |λ ∈ Ω′}

imply

K = clsp
{

ran γ(λ) |λ ∈ ρ(S) ∩ ρ(Ã) ∩ Ω′′
}

and

H = clsp
{
ran γ′(λ) |λ ∈ ρ(S) ∩ ρ(Ã) ∩ Ω′′

}
,

respectively. From (3.12) and (3.15) we obtain

K ×H = clsp
{
γ̂(λ)x |λ ∈ ρ(S) ∩ ρ(Ã) ∩ Ω′′, x ∈ C

2
}

and therefore ran V is dense in K×H. This implies that V is an isometric operator
and the same holds for its closure V .

Let δ be a finite union of open connected subsets in ∆+, δ ⊂ ∆+, such

that the boundary points of δ in R are of definite type with respect to Ã. Then
(E eA

(δ)(K ×H), [·, ·]K×H) is a Pontryagin space with finite rank of negativity. As
∆+ is of positive type with respect to S the spectral projection ES(δ) is defined
and ES(δ)G equipped with the inner product from G is a Hilbert space. Writing
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ES(δ) and E eA
(δ) as strong limits of the resolvents of S and Ã, respectively, one

verifies that V is reduced by ES(δ)G × E eA
(δ)(K ×H). Then

Vδ := V ∩
(
ES(δ)G × E eA

(δ)(K ×H)
)

is a closed isometric operator from the Hilbert space ES(δ)G with dense range
in the Pontryagin space E eA

(δ)(K ×H). As in the proof of [12, Theorem 6.2] one

verifies that Vδ is bounded and from this we conclude dom Vδ = ES(δ)G and
ran Vδ = E eA

(δ)(K × H). The isometry of Vδ implies that E eA
(δ)(K × H) is a

Hilbert space.

Let ξ ∈ δ ∩ σ(Ã) and choose a sequence
(

un

vn

)
∈ Ã with ‖un‖ = 1 and

‖vn − ξun‖ → 0 for n → ∞. From

(
Ã ∩

(
(I − E eA

(δ))(K ×H)
)2

− ξ
)−1

∈ L
(
(I − E eA

(δ))(K ×H)
)

and

lim
n→∞

‖(I − E eA
(δ))(vn − ξun)‖ = 0

we obtain ‖(I−E eA
(δ))un‖ → 0 and ‖E eA

(δ)un‖ → 1 for n → ∞. As E eA
(δ)(K×H)

is a Hilbert space we have

lim inf
n→∞

[un, un]K×H = lim inf
n→∞

[E eA
(δ)un, E eA

(δ)un]K×H > 0,

that is, ξ is of positive type with respect to Ã. If ∞ belongs to δ ∩ σ̃(Ã) a similar

reasoning shows that ∞ is of positive type with respect to Ã. Therefore δ is of

positive type with respect to Ã. As this is true for every finite union δ of open
connected subsets in ∆+, δ ⊂ ∆+, such that the boundary points of δ in R are of

definite type with respect to Ã we conclude that ∆+ is also of positive type with

respect to Ã.

Analogously one verifies that a one-sided open connected neighbourhood ∆−

of µ in R, ∆− ⊂ Ω′∩R, which is of negative type with respect to A0×T0 and M̂ is

of negative type with respect to Ã. We have shown that for every point µ ∈ Ω′∩R

there is an open connected neighbourhood Iµ in R such that both components of

Iµ\{µ} are of the same sign type with respect to A0 × T0 and Ã.

3. It remains to verify that Ã belongs to S∞(Ω′ ∩ R). For this we use the
relation (3.14). We show first that the selfadjoint relation T1 = kerΓ′

1 in H is
definitizable over Ω′. As the function

−τ(λ)−1 = Re
(
−τ(λ0)

−1
)
+ τ(λ0)

−1γ′(λ0)
+
(
(λ − Re λ0)

+ (λ − λ0)(λ − λ0)(T1 − λ)−1
)
γ′(λ0)τ(λ0)

−1

(see (3.11) and the proof of Proposition 3.2) is definitizable in Ω and the selfadjoint
relation T0 is definitizable over Ω′ the same considerations as in step 2 of the

proof applied to −τ−1, T0 and T1 instead of M̂ , A0 × T0 and Ã show that every
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point µ ∈ Ω′ ∩ R has an open connected neighbourhood Iµ in R such that both
components of Iµ\{µ} are of definite type with respect to T1. By (3.5) we have

(T1 − λ)−1 = (T0 − λ)−1 + γ′(λ)
(
−τ(λ)−1

)
γ′(λ)+

for all λ ∈ h(τ)∩h(τ−1)∩Ω′. Since −τ−1 is definitizable in Ω the nonreal spectrum
of T1 in Ω′ does not accumulate to points in Ω′∩R. The growth properties of −τ−1

(see Definition 2.5) and the resolvent of T0 imply T1 ∈ S∞(Ω′ ∩ R) and therefore
T1 is definitizable over Ω′.

As the sign types of −τ−1 and A0 are d-compatible in Ω (see the proof of
Proposition 3.5 (iii)) it follows that A0 × T1 is definitizable over Ω′. The relation

(Ã − λ)−1 = (A0 × T1 − λ)−1 + γ̃(λ)M̂ (λ)γ̃(λ)+, λ ∈ h0 ∩ Ω′,

(cf. (3.14)) and the growth properties of M̂ and the resolvent of A0 × T0 show

Ã ∈ S∞(Ω′ ∩ R). This completes the proof of Theorem 3.6. �

Remark 3.7. Let Ω, Ω′, A ⊂ A0, τ and T0 be as in Theorem 3.6 and let ∆ be
an open connected subset in R, ∆ ⊂ Ω′ ∩ R, which is of positive (negative) type
with respect to A0 and τ . As T0 is an Ω′-minimal representing relation for τ it
follows that ∆ is of positive (negative) type with respect to the selfadjoint relation
A0 × T0 in K ×H. From [2, Corollary 2.5] we obtain that for every finite union δ
of open connected subsets in R, δ ⊂ ∆, such that the spectral projection E eA

(δ)

corresponding to Ã in (3.8) and the set δ is defined, (E eA
(δ)(K ×H), [·, ·]K×H) is

a Pontryagin space with finite rank of negativity (positivity). This can also be
deduced from [3, Theorem 4.1].

Remark 3.8. The assumption H = clsp {Nλ,T+ |λ ∈ Ω′} in Theorem 3.6 implies

that the selfadjoint extension Ã in (3.8) satisfies the minimality condition

K×H = clsp
{
(1 + (λ − λ0)(Ã − λ)−1){k, 0} | k ∈ K, λ ∈ ρ(Ã) ∩ Ω′

}
(3.18)

for some fixed λ0 ∈ ρ(Ã)∩Ω′. This can be verified as in [3, Proof of Theorem 4.1].

Let A ∈ C̃(K) be as in Theorem 3.6 and assume that B̃ is a selfadjoint extension
of A in some Krein space K × H′ which is definitizable over Ω′ such that the

compressed resolvent of B̃ onto K yields a solution of (3.9). Then PK(B̃ − λ)−1|K
and PK(Ã − λ)−1|K coincide. If B̃ fulfils the minimality condition (3.18) with

K × H and ρ(Ã) ∩ Ω′ replaced by K × H′ and ρ(B̃) ∩ Ω′, respectively, and we

choose λ0 ∈ ρ(Ã) ∩ ρ(B̃) ∩ Ω′, then

W :=

{(∑n
i=1(1 + (λi − λ0)(Ã − λi)

−1){ki, 0}∑n
i=1(1 + (λi − λ0)(B̃ − λi)

−1){ki, 0}

)∣∣∣λi ∈ ρ(Ã) ∩ ρ(B̃) ∩ Ω′,
ki ∈ K, i = 1, 2, . . . , n

}

is a densely defined isometric operator in K×H with dense range in K×H′ and the

same holds for its closure W . We denote the local spectral functions of Ã and B̃
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by E eA
and E eB

, respectively. Let ∆ be an open connected subset in R, ∆ ⊂ Ω′∩R,

such that E eA
(∆) is defined. Then also E eB

(∆) is defined and W is reduced by

E eA
(∆)(K ×H) × E eB

(∆)(K ×H′).

The closed isometric operator

W∆ := W ∩
(
E eA

(∆)(K ×H) × E eB
(∆)(K ×H′)

)

intertwines the resolvents of

Ã1 := Ã ∩
(
E eA

(∆)(K ×H)
)2

and B̃1 := B̃ ∩
(
E eB

(∆)(K ×H′)
)2

,

i.e. for λ ∈ ρ(Ã1) ∩ ρ(B̃1) ∩ Ω′ and x ∈ dom W∆ we have

W∆(Ã1 − λ)−1x = (B̃1 − λ)−1W∆x.

In particular, the ranks of positivity and negativity of the inner products on the
subspaces E eA

(∆)(K ×H) and E eB
(∆)(K ×H′) coincide.

If, in addition to the assumptions above, (E eA
(∆)(K×H), [·, ·]K×H) is a Pon-

tryagin space, then E eB
(∆)(K×H′) equipped with the inner product from K×H′

is also a Pontryagin space and by [12, Theorem 6.2] the operator W∆ is an iso-

metric isomorphism of E eA
(∆)(K × H) onto E eB

(∆)(K × H′), i.e. Ã1 and B̃1 are
isometrically equivalent.

The case that the function τ is a real constant is excluded in Theorem 3.6.
In this case we have the following theorem.

Theorem 3.9. Let Ω be a domain as in the beginning of Section 3.2 and let A
be a closed symmetric operator of defect one in the Krein space K such that
K = clsp {Nλ,A+ |λ ∈ Ω} holds. Assume that there exists a selfadjoint extension
A0 of A which is definitizable over Ω. Let {C, Γ0, Γ1} be a boundary value space for
A+, A0 = kerΓ0, denote by γ and M the corresponding γ-field and Weyl function,
respectively, and let τ be a real constant.

Then the relation A−τ = ker
(
Γ1 + τΓ0

)
is a selfadjoint extension of A in K

which is definitizable over Ω. The sign types of M and A−τ are d-compatible in
Ω. For every k ∈ K and every λ ∈ h(M) ∩ h((M + τ)−1) ∩ Ω a solution of the
boundary value problem

f ′
1 − λf1 = k, τΓ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A+, (3.19)

is given by

f1 = (A−τ − λ)−1k = (A0 − λ)−1k − γ(λ)
(
M(λ) + τ

)−1
γ(λ)+k,

f ′
1 = λf1 + k.

Proof. The proof of Theorem 3.9 is a modification of the proof of Theorem 3.6.
Note first that the relation (3.4) and K = clsp {ran γ(λ) |λ ∈ Ω ∩ ρ(A0)} imply
that the Weyl function M is not identically equal to a constant. Here it is obvious
that the resolvent of A−τ yields a solution of the boundary value problem (3.19)
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(compare (3.1), (3.2) and (3.5)). As in step 2 and step 3 of the proof of Theorem 3.6
the function λ 7→ −(M(λ) + τ)−1, which by [1, Theorem 2.3] is definitizable in Ω,
can be regarded as the Weyl function corresponding to a boundary value space
{C, Γ̂0, Γ̂1} for A+ with A−τ = ker Γ̂0. Now the same arguments as in the proof
of Theorem 3.6 show that A−τ is definitizable over Ω. The details are left to the
reader. �
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