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The spectral properties of a class of non-self-adjoint second-order elliptic operators
with indefinite weight functions on unbounded domains Ω are investigated. It is
shown, under an abstract regularity assumption, that the non-real spectrum of the
associated elliptic operators in L2(Ω) is bounded. In the special case where Ω = R

n

decomposes into subdomains Ω+ and Ω− with smooth compact boundaries and the
weight function is positive on Ω+ and negative on Ω−, it turns out that the non-real
spectrum consists only of normal eigenvalues that can be characterized with a
Dirichlet-to-Neumann map.

1. Introduction

This paper studies the spectral properties of partial differential operators associated
to second-order elliptic differential expressions of the form

Lf =
1
r
�(f), �(f) = −

n∑
j,k=1

∂

∂xj
ajk

∂

∂xk
f + af, (1.1)

with variable coefficients ajk, a and a weight function r defined on some bounded or
unbounded domain Ω ⊂ R

n, n > 1. It is assumed that the differential expression � is
formally symmetric and uniformly elliptic. The peculiarity here is that the function
r is allowed to have different signs on subsets of positive Lebesgue measure of Ω.
For this reason L is said to be an indefinite elliptic differential expression.

The differential expression � in (1.1) gives rise to a self-adjoint unbounded oper-
ator A in the Hilbert space L2(Ω) which is defined on the dense linear subspace
dom A = {f ∈ H1

0 (Ω) : �(f) ∈ L2(Ω)}. The spectral properties of the elliptic differ-
ential operator A depend on the geometry of Ω and the coefficients ajk and a, and
are, from a qualitative point of view at least, well understood. The self-adjointness
and ellipticity of A imply that the spectrum σ(A) is contained in R and that it
is semi-bounded from below. If the domain Ω is bounded or ‘thin’ at ∞, then the
resolvent of A is compact and, hence, σ(A) consists of a sequence of eigenvalues with
finite-dimensional eigenspaces which accumulates to +∞ (see, for example, [19]).
For general unbounded domains, σ(A) may also contain continuous and essential
spectrum of rather arbitrary form. However, if, for example, the coefficients ajk and
a converge to a limit for |x| → ∞, then the essential spectrum of A consists of a
single unbounded interval.
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In contrast with the self-adjoint case, the spectral properties of the non-self-
adjoint indefinite elliptic operator

T =
1
r
A, dom T = dom A, (1.2)

associated to the differential expression in (1.2) are much less well understood,
particularly if the domain Ω is unbounded. The case of a bounded domain Ω is
discussed in, for example, [21,22], where the point of view is similar to ours. Further
properties of indefinite elliptic operators on bounded domains such as asymptoti-
cal behaviour of eigenvalues or Riesz basis properties of eigenfunctions have been
studied (also for more general elliptic problems involving indefinite weights) in
various works. We mention here in particular the work of Faierman [20, 23–27],
Pyatkov [39–42] and others [2, 18,28].

The main objective of this paper is to study the spectral properties of non-self-
adjoint indefinite elliptic operators of the form (1.2) on unbounded domains. Such
problems are more difficult to investigate, and a purely abstract operator-theoretic
and functional-analytic approach is insufficient in this situation (since, for exam-
ple, the essential spectrum of A is in general non-empty, it is difficult to conclude
that the spectrum of T does not cover the whole complex plane). Therefore, in this
paper we combine methods from the classical theory of elliptic differential equations
with modern spectral and perturbation techniques for unbounded operators that
are symmetric with respect to an indefinite inner product. Our investigations lead
to new insights and results on the spectral properties of indefinite elliptic operators
on unbounded domains. For example, we prove that, under an abstract regularity
assumption, the non-real spectrum of T is bounded. Furthermore, in the special
case where Ω = R

n decomposes into subdomains Ω+ and Ω− with smooth com-
pact boundaries such that the weight function r is positive (respectively, negative)
on Ω+ (respectively, Ω−), it is shown that the non-real spectrum of T consists only
of normal eigenvalues which can be characterized with Dirichlet-to-Neumann maps
acting on interior and exterior domains.

The paper is organized as follows. After the precise assumptions and basic facts
explained in § 2, the known case of a bounded domain Ω is discussed in § 3 for
completeness (see, for example, [16, 22, 23, 39]). As one might expect, it turns out
that, in this case, the resolvent of T is compact and, hence, σ(T ) consists only of
eigenvalues with finite multiplicity. Some additional facts on self-adjoint operators
with finitely many negative squares in indefinite inner product spaces from [15,
34, 35] imply that the non-real spectrum of T consists of at most finitely many
eigenvalues. Section 4 deals with general unbounded domains. If the spectrum or
essential spectrum of A is positive, then abstract methods again ensure that the
non-real spectrum of T is bounded and consists of at most finitely many eigenvalues
(see [9, 15, 16, 32, 34, 35] and theorems 4.2 and 4.3). One of our main results states
that, without further assumptions on the operator A, the non-real spectrum of T
remains bounded if a certain isomorphism W which ensures the regularity of the
critical point ∞ exists (see condition (i) of theorem 4.4). In § 5 the special case
Ω = R

n with r having negative sign outside a bounded set is studied. A sufficient
condition in terms of the weight function r is given such that the non-real spectrum
of T is bounded. A more detailed analysis is provided in theorem 5.4, where a
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multidimensional variant of Glazman’s decomposition method is used to show that
the non-real spectrum of T consists only of eigenvalues with finite multiplicity
which may accumulate to certain subsets of the real line. Finally, in theorem 5.6
it is shown how the non-real spectrum of T can be characterized with the help of
Dirichlet-to-Neumann maps acting on interior and exterior domains. Furthermore,
a variant of Krein’s resolvent formula for indefinite elliptic differential operators is
obtained in theorem 5.7.

2. Elliptic differential operators in L2(Ω)

In this preliminary section we define an elliptic differential expression L with an
indefinite weight function on some domain Ω and we associate an unbounded dif-
ferential operator in L2(Ω) to L which is self-adjoint with respect to an indefinite
metric on L2(Ω) (see theorem 2.1).

2.1. The elliptic differential expression

Let Ω ⊂ R
n be a domain and let � be the ‘formally self-adjoint’ uniformly elliptic

second-order differential expression

(�f)(x) := −
n∑

j,k=1

(
∂

∂xj
ajk

∂f

∂xk

)
(x) + (af)(x), x ∈ Ω, (2.1)

with bounded coefficients ajk ∈ C∞(Ω) satisfying ajk(x) = akj(x) for all x ∈ Ω
and j, k = 1, . . . , n, the function a ∈ L∞(Ω) is real valued and

n∑
j,k=1

ajk(x)ξjξk � C

n∑
k=1

ξ2
k

holds for some C > 0, all ξ = (ξ1, . . . , ξn)� ∈ R
n and x ∈ Ω.

In what follows we investigate operators induced by the second-order elliptic
differential expression L with the indefinite weight r defined as

(Lf)(x) :=
1

r(x)
(�f)(x), x ∈ Ω.

Throughout this paper it is assumed that r is a real-valued function such that
r, r−1 ∈ L∞(Ω) and each of the sets

Ω+ := {x ∈ Ω : r(x) > 0} and Ω− := {x ∈ Ω : r(x) < 0} (2.2)

has positive Lebesgue measure. Observe that Ω \ (Ω+ ∪ Ω−) is a Lebesgue null set.
The restriction of the weight function r onto Ω± is denoted by r±. Similarly, for a
function f defined on Ω, the restriction onto Ω± is denoted by f±. Moreover, �±
and L± stand for the restrictions of the differential expressions � and L onto Ω±.

2.2. Differential operators in L2(Ω) associated to � and L
We associate the elliptic differential operator

Af := �(f), dom A = {f ∈ H1
0 (Ω) : �(f) ∈ L2(Ω)}, (2.3)
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to the differential expression �, where H1
0 (Ω) stands for the closure of C∞

0 (Ω)
in the Sobolev space H1(Ω). It is well known that A is an unbounded self-adjoint
operator in the Hilbert space (L2(Ω), (·, ·)) with spectrum semi-bounded from below
by ess inf a. This can be seen, for example, with the help of the sesquilinear form
associated to � and the first representation theorem from [31].

Besides the Hilbert space inner product (·, ·) in L2(Ω), we will make use of the
indefinite inner product

[f, g] :=
∫

Ω

f(x)g(x)r(x) dx, f, g ∈ L2(Ω). (2.4)

The space (L2(Ω), [·, ·]) is a so-called Krein space (see [5, 13, 33–35]). Observe that
[·, ·] is non-positive on functions with support in Ω− and non-negative on functions
with support in Ω+. Note also that the assumptions r ∈ L∞(Ω) and r−1 ∈ L∞(Ω)
imply that the multiplication operator Rf = rf , f ∈ L2(Ω), is an isomorphism in
L2(Ω) with inverse R−1f = r−1f , f ∈ L2(Ω). In particular, �(f) ∈ L2(Ω) if and
only if L(f) ∈ L2(Ω). Furthermore, the inner products (·, ·) and [·, ·] are connected
via

[f, g] = (Rf, g), (f, g) = [R−1f, g] for f, g ∈ L2(Ω). (2.5)

Next we introduce the differential operator T associated to the indefinite elliptic
expression L and we summarize some of its properties. The following theorem is a
direct consequence of (2.5) and the self-adjointness of A.

Theorem 2.1. The differential operator

Tf := L(f), dom T = {f ∈ H1
0 (Ω) : L(f) ∈ L2(Ω)}, (2.6)

is self-adjoint with respect to the Krein space inner product [·, ·] in L2(Ω), and T
is connected with the elliptic differential operator A in (2.3) via

T = R−1A and A = RT.

We remark that the adjoint of an (unbounded) operator with respect to a Krein
space inner product is defined in the same way as with respect to a usual scalar
product. Here the adjoint T+ of T with respect to [·, ·] can be equivalently defined
as T+ := R−1A∗ = R−1A, where ‘∗’ denotes the adjoint with respect to (·, ·). In
particular, this implies [Tf, g] = [f, Tg] for all f, g ∈ dom T .

We also point out that the spectrum of an operator which is self-adjoint in the
Krein space (L2(Ω), [·, ·]) can be quite arbitrary. In particular, the spectrum is
in general not a subset of R, and simple examples show that the spectrum can
be empty or cover the whole complex plane. However, the non-real spectrum is
necessarily symmetric with respect to the real line.

2.3. Spectral points of closed operators

Let S be a closed operator in a Hilbert space. The resolvent set ρ(S) of S consists
of all λ ∈ C such that S−λ is bijective. The complement of ρ(S) in C is the spectrum
σ(S) of S. The point spectrum σp(S) is the set of eigenvalues of S, i.e. those λ ∈ C

for which S − λ is not injective. An eigenvalue λ is said to be normal if λ is
an isolated point of σ(S) and its (algebraic) multiplicity is finite. The essential
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spectrum σess(S) consists of those points λ ∈ C for which S − λ is not a semi-
Fredholm operator. Recall that the essential spectrum is stable under compact and
relative compact perturbations (see [19, 31]). If S is a self-adjoint operator, then
σess(S) consists of the accumulation points of σ(S) and the isolated eigenvalues of
infinite multiplicity; the set of normal eigenvalues is the complement of σess(S) in
σ(S). Recall that the eigenvalues of a self-adjoint operator are semi-simple. We say
that the positive (respectively, negative) spectrum of (a not necessarily self-adjoint
operator) S has infinite multiplicity if σ(S)∩(0, +∞) (respectively, σ(S)∩(−∞, 0))
contains infinitely many eigenvalues or points of the essential spectrum of S.

3. Spectral properties of indefinite elliptic operators on bounded
domains

In this section we study the spectral properties of the indefinite elliptic operator T
in theorem 2.1 in the case where Ω is a bounded domain in R

n. Throughout this
section it will be tacitly assumed that Ω is bounded, but no further (regularity)
assumptions on the boundary are imposed.

Let us first recall the following well-known theorem on the qualitative spectral
properties of the self-adjoint elliptic operator A which is essentially a consequence
of the compactness of the embedding of H1

0 (Ω) into L2(Ω) (see, for example, [44,
theorem 7.1]), the ellipticity of � and the boundedness of the coefficient a.

Theorem 3.1. The spectrum of A is bounded from below and consists of normal
semi-simple eigenvalues that accumulate to +∞.

The main result in this section is the following, which is well known and follows
from the more general and abstract considerations in [22, 23, 39] and [15, 34, 35]. A
short proof is included for the reader’s convenience.

Theorem 3.2. The spectrum of T consists of normal eigenvalues that accumulate
to +∞ and −∞. The non-real spectrum of T is bounded and consists of at most
finitely many normal eigenvalues which are symmetric with respect to the real line.

Before we prove this theorem, a preparatory lemma on the resolvent set of T will
be proved.

Lemma 3.3. The set ρ(T ) is non-empty.

Proof. If 0 is not a normal eigenvalue of A, then 0 ∈ ρ(A) and it follows from
T = R−1A that T−1 = A−1R is a bounded and everywhere defined operator in
L2(Ω), i.e. 0 ∈ ρ(T ). Therefore, assume that 0 ∈ σ(A), that is, 0 is an isolated
eigenvalue of finite multiplicity of A by theorem 3.1. The restriction

B := A � (dom A ∩ (ker A)⊥)

of A on the orthogonal complement of kerA in L2(Ω) is regarded as a non-densely
defined symmetric operator in L2(Ω) with finite equal defect numbers. Note that B
is injective and that ranB = (kerA)⊥ is closed and has finite codimension. Hence,
there exists a self-adjoint operator Ã in L2(Ω) which is an extension of B such that
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0 ∈ ρ(Ã). Furthermore, since B is a finite-dimensional restriction of both A and Ã,
it follows that

dim ran((A − λ)−1 − (Ã − λ)−1) � dim kerA < ∞

holds for all λ ∈ ρ(A) ∩ ρ(Ã) and, hence, σ(Ã) is semi-bounded from below and
consists of normal eigenvalues.

The operator T̃ := R−1Ã is a self-adjoint operator in the Krein space (L2(Ω), [·, ·])
and from 0 ∈ ρ(Ã) we conclude 0 ∈ ρ(T̃ ). Furthermore, since Ã is semi-bounded
from below and [T̃ f, g] = (Ãf, g) holds for all f, g ∈ dom T̃ = dom Ã, it follows
that the form [T̃ ·, ·] has finitely many negative squares. It is easy to see that T̃
and T are both finite-dimensional extensions of the non-densely defined operator
S := R−1B. Now ρ(T ) �= ∅ follows from a slight modification of [15, proposition 1.1]
(see also [6, corollary 2.5]).

Proof of theorem 3.2. Observe that, by theorem 3.1, the resolvent (A − λ)−1 is
compact for all λ ∈ ρ(A) and that lemma 3.3 implies ρ(T ) ∩ ρ(A) �= ∅. A simple
computation shows that the relation

(T − λ)−1 = (A − λ)−1R − λ(A − λ)−1(I − R)(T − λ)−1

holds for all λ ∈ ρ(A) ∩ ρ(T ), and since the right-hand side is a compact operator
the same holds for the left-hand side. Hence, σ(T ) consists of normal eigenvalues.
As the negative spectrum of A consists of at most finitely many normal eigenvalues
the form [T ·, ·] = (A·, ·) has finitely many negative squares, and it follows from the
general results in [15, 34, 35] that the non-real spectrum of T consists of at most
finitely many normal eigenvalues which are symmetric with respect to the real line.
Finally, the assumption that the sets Ω+ and Ω− in (2.2) have positive Lebesgue
measure imply that the indefinite inner product [·, ·] in (2.4) has infinitely many
positive and negative squares. The reasoning in [15, proof of proposition 1.8] shows
that the positive spectrum and the negative spectrum of T are both of infinite
multiplicity. Hence, the real eigenvalues of T accumulate to +∞ and −∞.

4. Spectral properties of indefinite elliptic operators on unbounded
domains

In this section we study the spectral properties of the indefinite elliptic operator T
in (2.6) on an unbounded domain Ω ⊂ R

n. Since, for an unbounded domain, the
embedding of H1

0 (Ω) into L2(Ω) is in general not compact, the resolvent of the self-
adjoint operator A in (2.3) is also in general not compact and, hence, the essential
spectrum σess(A) of A may be non-empty. Only the following weaker variant of
theorem 3.1 holds.

Theorem 4.1. The spectrum of A is bounded from below and accumulates to +∞.

If the lower bound minσ(A) of the spectrum of A or the lower bound minσess(A)
of the essential spectrum of A is positive, then it is known that T = R−1A is
positive in the Krein space (L2(Ω), [·, ·]) or has a finite number of negative squares,
respectively. We recall these and some other facts in theorem 4.2 and theorem 4.3 for
the reader’s convenience. The proofs of the statements are essentially contained in
[13,15,34,35] (see also [32, theorem 3.3], [10, theorem 3.1] and [17, proposition 1.6]).
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Theorem 4.2. If min σ(A) > 0, then the spectrum of T is real, 0 ∈ ρ(T ), and T
has positive and negative spectrum, both of infinite multiplicities.

Theorem 4.3. If min σess(A) > 0, then the essential spectrum of T is real and
T has positive and negative spectrum, both of infinite multiplicities. The non-real
spectrum of T is bounded and consists of at most finitely many normal eigenvalues
which are symmetric with respect to the real line.

In the next step, the assumption minσess(A) > 0 will be dropped. The following
considerations and theorem 4.4 are partly inspired by general results on self-adjoint
operators in Krein spaces and the regularity of the critical point ∞ from [14,16,34]
and [9, proof of theorem 5.4]. Fix some ν < min σ(A) and define the space Hs,
s ∈ [0, 2], as the domains of the 1

2sth powers of the positive operator A − ν,

Hs := dom((A − ν)s/2), s ∈ [0, 2].

Note that H = H0, dom A = H2, and the form domain of A is H1. The spaces
Hs become Hilbert spaces when they are equipped with the usual inner products,
the induced topologies do not depend on the particular choice of ν < min σ(A)
(see [31]).

The following theorem is one of the main results in this paper. Under an addi-
tional abstract condition from [16], it will be shown that the non-real spectrum
of the indefinite elliptic operator is bounded. Roughly speaking, this condition is
satisfied in special situations when choosing W = R (see lemma 5.1).

Theorem 4.4. Assume that min σess(A) � 0 and that the following condition holds:

(i) there exists an isomorphism W in L2(Ω) such that RW is positive in L2(Ω)
and WHs ⊂ Hs holds for some s ∈ (0, 2].

Then the non-real spectrum of T is bounded.

Proof. 1. In this step of the proof we construct an indefinite elliptic operator Tη

which is a bounded perturbation of the indefinite elliptic operator T and which
induces (via its spectral decomposition) a new equivalent norm ‖ · ‖∼ on L2(Ω).

For this, fix some η < min σ(A) and consider the elliptic differential operator Aη

defined as

Aηf := (A − η)f = −
n∑

j,k=1

∂

∂xj
ajk

∂f

∂xk
+ (a − η)f, f ∈ dom Aη = dom A.

Clearly, Aη is a positive self-adjoint operator in the Hilbert space L2(Ω) and, hence,
the indefinite elliptic operator

Tηf :=
1
r

(
−

n∑
j,k=1

∂

∂xj
ajk

∂f

∂xk
+ (a − η)f

)
, f ∈ dom Tη = dom Aη,

is non-negative in the Krein space (L2(Ω), [·, ·]), the spectrum σ(Tη) is a subset of
R and 0 ∈ ρ(Tη) (see theorem 4.2). Note that Tη and T are connected via

Tη = R−1Aη = R−1A − ηR−1 = T − V, V := ηR−1, (4.1)

and that the perturbation term V in (4.1) is bounded.
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By [34,35], Tη possesses a spectral function defined for all bounded subintervals
of the real line. As a consequence of condition (i) and [16, part (iii) of theorem 2.1]
(see also [14]), it follows that ∞ is not a singular critical point of the operator Tη

and, therefore, the spectral projections E+ and E− corresponding to the intervals
(0, +∞) and (−∞, 0) exist. Moreover, as Tη is non-negative in (L2(Ω), [·, ·]), the
spectral subspaces (E±L2(Ω),±[·, ·]) are both Hilbert spaces and L2(Ω) can be
decomposed in

L2(Ω) = E+L2(Ω)[+̇]E−L2(Ω). (4.2)

We point out that the subspaces E±L2(Ω) differ from L2(Ω±) and that, within
this proof, the subscripts ± are used in the sense of (4.2). From the properties of
the spectral function it follows that Tη has diagonal form with respect to the space
decomposition (4.2),

Tη =
(

Tη,+ 0
0 Tη−

)
,

and that the spectrum of Tη,± is contained in R
±. The perturbation term V = ηR−1

in (4.1) admits the matrix representation

V =
(

V11 V12

V21 V22

)

with respect to the decomposition (4.2). Together with (4.1), we then have

T = Tη + V = Tη +
(

V11 V12

V21 V22

)
. (4.3)

In the following, we write functions x, y ∈ L2(Ω) in the form x = x+ + x− and
y = y+ + y−, where x±, y± ∈ E±L2(Ω) (see (4.2)). We emphasize that x± are
the components of x with respect to the space decomposition (4.2) and that x±
do not coincide with the restrictions of the function x onto Ω±. Since the spectral
subspaces (E±L2(Ω),±[·, ·]) are Hilbert spaces, the inner product (·, ·)∼ defined as

(x, y)∼ := [x+, y+] − [x−, y−], x, y ∈ L2(Ω),

is positive definite. Furthermore, this scalar product is connected with the usual
scalar product (·, ·) on L2(Ω) via

(x, y)∼ = [E+x, E+y] − [E−x, E−y]
= [(E+ − E−)x, y]
= (R(E+ − E−)x, y).

Therefore, as R(E+ −E−) is an isomorphism, the norms ‖ · ‖ and ‖ · ‖∼ induced by
the scalar products (·, ·) and (·, ·)∼, respectively, are equivalent. In particular, with
ν := ‖R(E+ − E−)‖−1, we have

‖x‖ �
√

ν‖x‖∼ for all x ∈ L2(Ω). (4.4)

2. In this step, it will be shown that, for sufficiently large |µ|, µ ∈ C \ R with
Re µ � 0, the operator Tη,+ + V11 − µ is invertible and the estimates

‖(Tη,+ + V11 − µ)−1‖∼ < 1
2 and ‖(Tη,+ + V11 − µ)−1V12‖∼ < 1

2 (4.5)
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hold. By replacing V11 and V12 in the reasoning below with V22 and V21, respectively,
it follows that, for sufficiently large |µ|, µ ∈ C \ R with Re µ � 0, the operator
Tη,− + V22 − µ is invertible and the estimates

‖(Tη,− + V22 − µ)−1‖∼ < 1
2 and ‖(Tη,− + V22 − µ)−1V21‖∼ < 1

2 (4.6)

are valid.
In the following, we assume that the entry V12 in the perturbation term V is non-

zero (otherwise the first estimate in (4.6) follows with δ > 2 and τ = δ + ‖V11‖∼ in
the argument below, and the second estimate is trivial). Choose δ > 0 such that

δ + ‖V11‖∼ > max
{

2 + ‖V11‖∼
‖V12‖∼

, 2 +
‖V11‖∼
‖V12‖∼

}
(4.7)

and define the constant τ by

τ := (δ + ‖V11‖∼)‖V12‖∼. (4.8)

Let µ ∈ C \ R with Re µ � 0 and |µ| > τ . Since σ(Tη,+) ⊂ R
+, it is clear that

dist(µ, σ(Tη+)) > τ

holds and, therefore, we have ‖(Tη,+ − µ)−1‖∼ < τ−1. This implies

‖V11(Tη,+ − µ)−1‖∼ <
1
τ

‖V11‖∼

and it follows from (4.7) and (4.8) that ‖V11(Tη,+ − µ)−1‖∼ < 1. Therefore, the
operator I + V11(Tη,+ − µ)−1 is boundedly invertible and the norm of the inverse
can be estimated by

‖(I + V11(Tη,+ − µ)−1)−1‖∼ <

(
1 − 1

τ
‖V11‖∼

)−1

.

It also follows that the operator

Tη,+ + V11 − µ = (I + V11(Tη,+ − µ)−1)(Tη,+ − µ)

is boundedly invertible, and we conclude that

‖(Tη,+ + V11 − µ)−1‖∼ <
1
τ

(
1 − 1

τ
‖V11‖∼

)−1

=
1

τ − ‖V11‖∼
. (4.9)

Since, by (4.7) and (4.8), τ − ‖V11‖∼ > 2, we obtain the first estimate in (4.6).
Furthermore, as a consequence of (4.7) and (4.8) we have

‖V12‖∼
τ − ‖V11‖∼

=
‖V12‖∼

(δ + ‖V11‖∼)‖V12‖∼ − ‖V11‖∼
< 1

2

and therefore (4.9) yields the second estimate in (4.6),

‖(Tη,+ + V11 − µ)−1V12‖∼ <
‖V12‖∼

τ − ‖V11‖∼
< 1

2 .
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3. Next, we verify the inequality

‖(T − µ)x‖∼ �
(√(

1 +
ν

|Im µ|

)2

+ 1 −
(

1 +
ν

|Im µ|

))
‖x‖∼ (4.10)

for x ∈ dom T and all sufficiently large |µ|, µ ∈ C \ R. Observe first that, for
x ∈ dom T , we have

[(T − µ)x, x] = [(T − Re µ)x, x] − i Im µ[x, x],

which, together with (4.4), implies

|Im µ| |[x, x]| � |[(T − µ)x, x]| � ‖(T − µ)x‖‖x‖ � ν‖(T − µ)x‖∼‖x‖∼

and, hence,
ν

|Im µ| ‖(T − µ)x‖∼‖x‖∼ � ±[x, x]. (4.11)

On the other hand, when we consider the equation (T −µ)x = y with x = x++x−,
y = y+ + y−, x±, y± ∈ E±L2(Ω), that is (see (4.3)),

(Tη,+ + V11 − µ)x+ + V12x− = y+,

V21x+ + (Tη,− + V22 − µ)x− = y−,

then we conclude, with the help of the estimates from step 2 that, for sufficiently
large |µ|, µ ∈ C \ R with Re µ � 0,

‖x+‖∼ � ‖(Tη+ + V11 − µ)−1y+‖∼ + ‖(Tη+ + V11 − µ)−1V12x−‖∼

� 1
2‖y+‖∼ + 1

2‖x−‖∼

� 1
2‖y+‖∼ + 1

2‖x‖∼

holds and that, for sufficiently large |µ|, µ ∈ C \ R with Re µ � 0,

‖x−‖∼ � ‖(Tη− + V22 − µ)−1y−‖∼ + ‖(Tη− + V22 − µ)−1V21x+‖∼

� 1
2‖y−‖∼ + 1

2‖x+‖∼

� 1
2‖y−‖∼ + 1

2‖x‖∼

holds. Since ‖y±‖∼ � ‖y‖∼ = ‖(T − µ)x‖∼, we have

‖x±‖2
∼ � 1

4‖(T − µ)x‖2
∼ + 1

4‖x‖2
∼ + 1

2‖(T − µ)x‖∼‖x‖∼ (4.12)

for sufficiently large |µ|, µ ∈ C \ R with Re µ � 0 and Reµ � 0, respectively. From
‖x+‖2

∼ + ‖x−‖2
∼ = ‖x‖2

∼, we obtain

±[x, x] = ±‖x+‖2
∼ ∓ ‖x−‖2

∼ = ‖x‖2
∼ − 2‖x∓‖2

∼

and, together with (4.12), we conclude that

±[x, x] � 1
2‖x‖2

∼ − 1
2‖(T − µ)x‖2

∼ − ‖(T − µ)x‖∼‖x‖∼

for sufficiently large |µ|, µ ∈ C \ R with Re µ � 0 and Re µ � 0, respectively.
Together with (4.11), this leads to

ν

|Im µ| ‖(T − µ)x‖∼‖x‖∼ � 1
2‖x‖2

∼ − 1
2‖(T − µ)x‖2

∼ − ‖(T − µ)x‖∼‖x‖∼,
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for all sufficiently large |µ|, µ ∈ C \ R. In other words, ‖(T − µ)x‖∼ satisfies the
quadratic inequality

‖(T − µ)x‖2
∼ + 2

(
1 +

ν

|Im µ|

)
‖x‖∼‖(T − µ)x‖∼ − ‖x‖2

∼ � 0.

Hence, it follows that (4.10) holds for all x ∈ dom T and all µ ∈ C \ R with
sufficiently large |µ|.
4. Let λ ∈ C \ R such that (4.10) is satisfied with µ = λ and µ = λ̄. Then we have
ker(T −λ) = {0} and ran(T −λ) is closed as T is closed. Furthermore, since T is self-
adjoint in the Krein space (L2(Ω), [·, ·]), it is clear that ran(T − λ)[⊥] = ker(T − λ̄)
holds. As ‖(T − λ̄)x‖∼, x ∈ dom T , satisfies the same estimate as ‖(T − λ)x‖∼ in
(4.10), this also implies that ker(T − λ̄) is trivial. Therefore, T − λ is bijective,
i.e. λ ∈ ρ(T ). Since this is true for every λ = µ that satisfies (4.10), we conclude
that the non-real spectrum of T is bounded.

5. Spectral properties of indefinite elliptic operators on R
n

In this section we consider the case where Ω = R
n and we assume that the subsets

Ω± = {x ∈ R
n : ± r(x) > 0} consist of finitely many connected components

with compact smooth boundaries. In particular, this implies that one of the sets
Ω± is bounded and one is unbounded, and that the boundaries ∂Ω+ and ∂Ω−
coincide. Here, and in what follows, we discuss the case where Ω− is unbounded and
Ω+ is bounded and we denote the boundary ∂Ω± by C. The simple modifications
of the results to the other case are left to the reader. Since the weight function
satisfies r, r−1 ∈ L∞(Rn), the restrictions r±, r−1

± belong to L∞(Ω±) and, hence, the
multiplication operators R±f± = r±f± are isomorphisms in L2(Ω±) with inverses
R−1

± f± = r−1
± f±, f± ∈ L2(Ω±).

Let us now assume that the coefficients ajk ∈ C∞(Rn) in (2.1) and their deriva-
tives are uniformly continuous and bounded, and that (as before) a ∈ L∞(Rn)
is real valued. An essential ingredient for the following considerations is that, by
elliptic regularity and interpolation,

dom A = dom T = H2(Rn), Hs = Hs(Rn), s ∈ [0, 2],

holds (see [1, 7, 36, 44], [37, condition 3.1], (2.3) and (2.6)). Here, Hs(Rn) is the
Sobolev space or order s. The spaces consisting of restrictions of functions from
Hs(Rn) onto Ω± are denoted by Hs(Ω±). In the next lemma and remark we give
simple sufficient conditions for the weight function r such that condition (i) of
theorem 4.4 holds.

Lemma 5.1. Assume that, for some s ∈ (0, 1
2 ) the spaces Hs(Ω+) and Hs(Ω−) are

invariant subspaces of the multiplication operators R+ and R−, respectively. Then
Hs(Rn) is an invariant subspace of the multiplication operator R, and condition (i)
of theorem 4.4 is satisfied with W replaced by R.

Proof. Let s be as in the assumptions of the lemma and let f ∈ Hs(Rn). Then the
restrictions f± of f onto Ω± are functions in Hs(Ω±) and, therefore, by assump-
tion, the functions g± := r±f± also belong to Hs(Ω±). As 0 < s < 1

2 , the con-
tinuations g̃± of g± by zero onto R

n both are in Hs(Rn) (see [29, theorem 1.4.4.4
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and corollary 1.4.4.5] and note that the proofs of these statements in [29] also cover
the case of an unbounded domain with a compact smooth boundary). Therefore,
Rf = rf = g̃+ + g̃− ∈ Hs(Rn) and, hence, Hs(Rn) is invariant for R. Furthermore,
R is an isomorphism in L2(Rn) and the estimate R2 � ess inf r2 > 0 holds, i.e. R
possesses all the properties of the operator W in condition (i) of theorem 4.4.

Remark 5.2. If, for example, the function r is equal to a (negative) constant out-
side some bounded subset of R

n and r± belong to the Hölder spaces C0,α(Ω̄±) for
some α > 0, then it follows from [29, theorem 1.4.1.1] and a similar argument as in
the proof of lemma 5.1 that Hs(Ω±), s ∈ (0, α), are invariant subspaces of R±.

For completeness, we state the following immediate consequence of theorem 4.4
and lemma 5.1.

Corollary 5.3. Assume that min σess(A) � 0 and R±(Hs(Ω±)) ⊂ Hs(Ω±) holds
for some s ∈ (0, 1

2 ). Then the non-real spectrum of T is bounded.

In the following theorem, we obtain more precise statements on the qualitative
spectral properties of T . The proof is based on a multidimensional variant of Glaz-
mann’s decomposition method from the theory of ordinary differential operators
(see, for example, [3, 10,15,19,38]).

Theorem 5.4. Assume that min σess(A) � 0. If ρ(T ) �= ∅, then the essential spec-
trum of T is real, bounded from above, and σess(T ) ∩ [0,∞) �= ∅ holds. Moreover,
the non-real spectrum of T consists of normal eigenvalues that are symmetric with
respect to the real line and which may accumulate to points in σess(T ).

If, in particular, R±(Hs(Ω±)) ⊂ Hs(Ω±) holds for some s ∈ (0, 1
2 ), then the

assumption ρ(T ) �= ∅ is satisfied, the above assertions hold and the non-real spec-
trum of T is bounded.

Proof. Besides the operators A and T , we will make use of the self-adjoint elliptic
differential operators

A±f± := �(f±), dom A± = H2(Ω±) ∩ H1
0 (Ω±), (5.1)

in L2(Ω±) and the weighted differential operators

B±f± := L±(f±) =
1
r±

�(f±), dom B± = H2(Ω±) ∩ H1
0 (Ω±), (5.2)

which are self-adjoint in the weighted L2-space L2(Ω±,±r±), where the (positive
definite) scalar products 〈·, ·〉± are defined as

〈f±, g±〉± :=
∫

Ω±

f±(x)g±(x)(±r±(x)) dx, f±, g± ∈ L2(Ω±). (5.3)

Observe that the orthogonal sums A+ ⊕A− and B+ ⊕B− are self-adjoint operators
in L2(Ω) and L2(Ω, r), respectively. Furthermore, since the boundary C is compact
and smooth, it can be shown that the resolvent differences

(A − λ)−1 − ((A+ ⊕ A−) − λ)−1, λ ∈ ρ(A) ∩ ρ(A+ ⊕ A−), (5.4)
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and
(T − λ)−1 − ((B+ ⊕ B−) − λ)−1, λ ∈ ρ(T ) ∩ ρ(B+ ⊕ B−), (5.5)

are compact operators in L2(Rn) (see [12] and theorem 5.7).
Recall that the spectra of A± are bounded from below and, moreover, as Ω+ is

assumed to be bounded, the spectrum of A+ consists of normal eigenvalues (see
theorems 3.1 and 4.1). Furthermore, the differential operators in (5.1) and (5.2) are
connected via

B± = R−1
± A±, (5.6)

where R± are the multiplication operators with the functions r± in the spaces
L2(Ω±). For λ ∈ ρ(A+) ∩ ρ(B+), the resolvents of A+ and B+ are connected via

(B+ − λ)−1 = (A+ − λ)−1R+ − λ(A+ − λ)−1(I − R+)(B+ − λ)−1

and since (A+ − λ)−1 is compact, the same holds for the resolvent of B+ (see the
proof of theorem 3.2). Thus, the spectrum of B+ is also bounded from below and
consists of normal eigenvalues which accumulate to +∞.

Next the spectrum of B− will be described in terms of the spectrum of A−. Since
the resolvent difference in (5.4) is compact and σess(A+) = ∅, we conclude that

σess(A) = σess(A+ ⊕ A−) = σess(A−).

Furthermore, the assumption minσess(A) � 0 implies that A− is bounded from
below with negative lower bound

ν := minσ(A−) � min σess(A−) � 0. (5.7)

Denote the usual scalar product in L2(Ω−) by (·, ·)− and let γ be the supremum of
the weight function r− on Ω−. Then we have γ < 0 and (−r−(x))−1 � (−γ)−1 for
all x ∈ Ω−. Moreover, from the estimate

(f−, f−)− =
∫

Ω−

1
−r−(x)

|f−(x)|2(−r−(x)) dx � 1
−γ

〈f−, f−〉−, f ∈ L2(Ω−),

we obtain together with (5.3) and (5.6) that

〈B−f−, f−〉− = (−A−f−, f−)− � −ν(f−, f−)− � ν

γ
〈f−, f−〉−

holds for all f− ∈ dom B−, i.e. the spectrum σ(B−) and the essential spectrum
σess(B−) are bounded from above by the positive constant ν/γ. Observe that
max σess(B−) � 0 holds, since otherwise min σess(−B−) is positive and A− =
(−R−)(−B−) implies that also minσess(A−) is positive which contradicts (5.7).

Summing up, we have shown that the essential spectrum of B+ ⊕ B− is real,
bounded from above and σess(B+ ⊕ B−) ∩ [0,∞) �= ∅. Since the resolvent difference
(5.5) is compact, we obtain σess(T ) = σess(B+ ⊕ B−) = σess(B−) which, together
with corollary 5.3, yields the statements.

In the following, we will show that the non-real eigenvalues of T and the corre-
sponding eigenspaces can be characterized with the help of Dirichlet-to-Neumann
maps associated to the restrictions of the elliptic differential expression L on Ω±.
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For this, recall first that the mapping C∞(Ω±) � f± �→ {f±|C , ∂f±/∂ν±|C} extends
to a continuous surjective mapping

H2(Ω±) � f± �→
{

f±|C ,
∂f±
∂ν±

∣∣∣∣
C

}
∈ H3/2(C) × H1/2(C), (5.8)

where
∂f±
∂ν±

∣∣∣∣
C

:=
n∑

j,k=1

ajkn±,j
∂f±
∂xk

∣∣∣∣
C

and n±(x) = (n±,1(x), . . . , n±,n(x)) is the unit vector at the point x ∈ C pointing
out of Ω±. The next simple lemma is based on a standard decomposition argument.
We provide a complete proof for the reader’s convenience.

Lemma 5.5. For every λ ∈ C \ R and ϕ ∈ H3/2(C), there exist unique functions
f±,λ(ϕ) ∈ H2(Ω±) such that

L±f±,λ(ϕ) = λf±,λ(ϕ) and f±,λ(ϕ)|C = ϕ.

Proof. It is sufficient to show that, for λ ∈ C \ R, the linear subspace

S := {h+ ⊕ h− ∈ H2(Ω+) ⊕ H2(Ω−) : h+|C = h−|C} (5.9)

admits the direct sum decomposition

S = {g+ ⊕ g− ∈ S : g±|C = 0}+̇{h+,λ ⊕ h−,λ ∈ S : L±h±,λ = λh±,λ}. (5.10)

In fact, it follows from (5.8) that the trace map h �→ h|C defined on S in (5.9) maps
onto H3/2(C), and since the first term on the right-hand side of (5.10) is its kernel,
it follows that the trace map maps the second term on the right-hand side of (5.10)
bijectively onto H3/2(C).

In order to prove the decomposition (5.10), note first that the inclusion ⊃ in
(5.10) holds. Hence, it remains to verify the inclusion ⊂. For this, let h+ ⊕ h− ∈ S
and λ ∈ C \ R be fixed. Since the boundary C of Ω± is assumed to be compact and
smooth, it follows that the differential operators B± in (5.2) are defined on

dom B± = H2(Ω±) ∩ H1
0 (Ω±)

= {f ∈ H2(Ω±) : f±|C = 0}. (5.11)

Hence, the first set on the right-hand side of (5.10) coincides with dom(B+ ⊕ B−).
Since the spectrum of B+ ⊕ B− is contained in R (see the proof of theorem 5.4)
B+ ⊕ B− − λ, λ ∈ C \ R, is a bijection from its domain onto L2(Rn). Thus, there
exists g+ ⊕ g− ∈ dom(B+ ⊕ B−) such that

(L+ − λ)h+ ⊕ (L− − λ)h− = (B+ − λ)g+ ⊕ (B− − λ)g−.

Therefore, L±(h± − g±) = λ(h± − g±) and, hence,

h+ ⊕ h− = g+ ⊕ g− + ((h+ − g+) ⊕ (h− − g−))

shows that the inclusion ⊂ in (5.10) is also valid. The sum in (5.10) is direct,
since σ(B+ ⊕ B−) ⊂ R; indeed, each element in the intersection of the sets on the
right-hand side of (5.10) would be an eigenfunction of B+ ⊕ B− corresponding to
λ ∈ C \ R.
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For λ ∈ C \ R, ϕ ∈ H3/2(C) and f±,λ(ϕ) ∈ H2(Ω±) as in lemma 5.5, we define

M(λ) : H3/2(C) → H1/2(C), ϕ �→ ∂f+,λ(ϕ)
∂ν+

∣∣∣∣
C

+
∂f−,λ(ϕ)

∂ν−

∣∣∣∣
C
. (5.12)

Roughly speaking, M is the sum of the Dirichlet-to-Neumann maps associated to
L± which map the Dirichlet boundary values of solutions of L±f± = λf± onto their
Neumann boundary values. A similar function in a ‘definite’ setting also appears
in [43]. In the next theorem we show how the non-real eigenvalues of T can be
described with the help of the function M .

Theorem 5.6. Let the operator function λ �→ M(λ) be defined as in (5.12) and
assume that ρ(T ) �= ∅. Then

σ(T ) ∩ (C \ R) = {λ ∈ C \ R : ker M(λ) �= {0}}

and ker(T − λ) = {f ∈ H2(Rn) : M(λ)f |C = 0} for all λ ∈ C \ R.

Proof. Assume first that λ ∈ C \ R belongs to the spectrum of T . Then, by the-
orems 4.3 and 5.4, the point λ is a normal eigenvalue of T and, hence, Lf = λf
holds for some non-trivial f ∈ dom T = H2(Rn). In particular, the restrictions f±
of f onto Ω± belong to H2(Ω±) and we have

L±f± = λf±, f+|C = f−|C ,
∂f+

∂ν+

∣∣∣∣
C

= −∂f−
∂ν−

∣∣∣∣
C
. (5.13)

By (5.8) we have ϕ := f±|C ∈ H3/2(C) and, hence, f± = f±,λ(ϕ) in the notation of
lemma 5.5. The third property in (5.13) implies

M(λ)ϕ =
∂f+,λ(ϕ)

∂ν+

∣∣∣∣
C

+
∂f−,λ(ϕ)

∂ν−

∣∣∣∣
C

=
∂f+

∂ν+

∣∣∣∣
C

+
∂f−
∂ν−

∣∣∣∣
C

= 0

and, hence, ϕ ∈ ker M(λ). Furthermore, ϕ is non-zero, since otherwise f± ∈ H2(Ω±)
would be non-trivial solutions of the Dirichlet problems L±f± = λf±, f±|C = 0,
which do not exist due to λ �∈ R. In other words, since the self-adjoint operators
B± in (5.2) do not have non-real eigenvalues, we conclude ϕ �= 0.

For the converse, let λ ∈ C \ R and ϕ ∈ ker M(λ) with ϕ �= 0. By lemma 5.5,
there exist unique functions f±,λ(ϕ) ∈ H2(Ω±) such that L±f±,λ(ϕ) = λf±,λ(ϕ)
and f±,λ(ϕ)|C = ϕ hold. Since M(λ)ϕ = 0, we have

∂f+,λ(ϕ)
∂ν+

∣∣∣∣
C

= −∂f−,λ(ϕ)
∂ν−

∣∣∣∣
C
. (5.14)

Define the function f = f+ ⊕ f− ∈ L2(Rn) by f± := f±,λ(ϕ) and let g ∈ dom T .
Then f �= 0 and

[Lf, g] − [f, Tg] = (�f, g) − (f, �g)
= (�+f+, g+)+ − (f+, �+g+)+ + (�−f−, g−)− − (f−, �−g−)−,

(5.15)
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where [·, ·] is the indefinite inner product in (2.4), (·, ·) is the usual scalar product
in L2(Rn) and (·, ·)± denote the scalar products in L2(Ω±). Since the function
g ∈ dom T satisfies

g+|C = g−|C and
∂g+

∂ν+

∣∣∣∣
C

= −∂g−
∂ν−

∣∣∣∣
C

it follows from Green’s identity, f+|C = f−|C and (5.14) that (5.15) is equal to(
f+|C ,

∂g+

∂ν+

∣∣∣∣
C

)
−

(
∂f+

∂ν+

∣∣∣∣
C
, g+|C

)
+

(
f−|C ,

∂g−
∂ν−

∣∣∣∣
C

)
−

(
∂f−
∂ν−

∣∣∣∣
C
, g−|C

)
= 0.

This is true for any g ∈ dom T , and since T is self-adjoint with respect to [·, ·],
we conclude from [Lf, g] = [f, Tg] that f ∈ dom T and Tf = Lf . Moreover,
from L±f± = λf±, we obtain f ∈ ker(T − λ), i.e. λ is an eigenvalue of T with
corresponding eigenfunction f .

The next theorem provides a variant of Krein’s formula which shows how the
resolvent of the indefinite elliptic operator T differs from the resolvent of the orthog-
onal sum of the weighted differential operators (see (5.2) and (5.11))

B±f± = L±(f±) =
1
r±

�±(f±), dom B± = H2(Ω±) ∩ H1
0 (Ω±).

The operators T and B+ ⊕ B− are viewed as operators in L2(Rn). We note first
that the statements in lemma 5.5 and theorem 5.6 remain true if the set C \ R is
replaced by the resolvent set of the operator B+ ⊕ B−. This set contains C \ R and
may also contain subsets of the real line. For λ ∈ ρ(B+ ⊕ B−), define the mapping
γ(λ) : L2(C) → L2(Rn) by

γ(λ)ϕ := f+,λ(ϕ) ⊕ f−,λ(ϕ), dom γ(λ) = H3/2(C),

where f±,λ(ϕ) are the unique solutions of L±u± = λu±, u±|C = ϕ (see lemma 5.5).
Theorem 5.7 is an indefinite variant of [4, part (ii) of theorem 4.4] and can be

proved in almost the same way. We therefore only sketch some ideas from the proof
and refer the interested reader to [4, § 4] for the details (see also [8]). Recall that
the multiplication operator R is an isomorphism in L2(Rn).

Theorem 5.7. For all λ ∈ ρ(T ) ∩ ρ(B+ ⊕ B−), the difference of the resolvents of
T and B+ ⊕ B− is a compact operator in L2(Rn) given by

(T − λ)−1 − ((B+ ⊕ B−) − λ)−1 = γ(λ)M(λ)−1γ(λ̄)∗R. (5.16)

Proof. A slight modification of [4, proposition 4.3] yields that γ(λ) is a densely
defined bounded operator from L2(C) into L2(Rn) and that the adjoint operator
γ(λ̄)∗ : L2(Rn) → L2(C) has the property

γ(λ̄)∗R((B+ ⊕ B−) − λ)f = −∂f+

∂ν+

∣∣∣∣
C

− ∂f−
∂ν−

∣∣∣∣
C
,

where f = f+ ⊕ f− ∈ dom(B+ ⊕ B−). In particular, taking ran γ(λ̄)∗ ⊂ H1/2(C)
with lemma 5.5, theorem 5.6 and (5.12), we conclude that the right-hand side of
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(5.16) is well defined for all λ ∈ ρ(T ) ∩ ρ(B+ ⊕ B−). The same reasoning as in the
proof of [4, part (ii) of theorem 4.4] shows the relation (5.16) for the difference of the
resolvents of T and B+ ⊕ B− in L2(Rn). Moreover, it follows from [36] in the same
way as in [4, corollaries 3.6 and 4.6] that, for λ ∈ ρ(T ) ∩ ρ(B+ ⊕ B−), the closure
of M(λ)−1 in L2(C) is a compact operator in L2(C). Therefore, the right-hand side
of (5.16) is a compact operator in L2(Rn).

Remark 5.8. We note that the resolvent difference in (5.16) is not only compact
but belongs to certain Schatten–von Neumann ideals that depend on the dimension
n (see [11,12,30,37]).
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17 B. Ćurgus and B. Najman. Quasi-uniformly positive operators in Krein space. In Operator
theory: advances and applications, vol. 80, pp. 90–99 (Springer, 1995).
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