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Abstract

Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary Γ. It will

be shown that the Jordan chains of m-sectorial second-order elliptic

partial differential operators with measurable coefficients and (local

or non-local) Robin boundary conditions in L2(Ω) can be character-

ized with the help of Jordan chains of the Dirichlet-to-Neumann map

and the boundary operator from H1/2(Γ) into H−1/2(Γ). This result

extends the Birman–Schwinger principle in the framework of elliptic

operators for the characterization of eigenvalues, eigenfunctions and

geometric eigenspaces to the complete set of all generalized eigenfunc-

tions and algebraic eigenspaces.
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1 Introduction

The Dirichlet-to-Neumann map is an important object in the analysis of elliptic partial

differential equations since it can be used to describe the spectra of the associated elliptic

operators. The principal strategy and advantage is that a spectral problem for a partial

differential operator on a domain Ω is reduced to a spectral problem for an operator

function on the boundary Γ of this domain, where, very roughly speaking, the Dirichlet

and Neumann data can be measured. This type of approach to problems in spectral and

scattering theory for elliptic partial differential operators was used in the self-adjoint case

in, e.g. [AM, BMN, BR1, BR2, GM1, GM3, GMZ, MPP, Marl, MPPRY, MPP, Post],

for non-self-adjoint situations in, e.g. [BGHN, BGW, Gru, Mal], and we also refer the

reader to the more abstract contributions [AE2, AE4, AE5, AEKS, AEW, BMN, BHMNW,

BMNW1, BGP, DHK, DM1, DM2, EO1, EO2, LT, MM, Posi].

In the present paper we are interested in a characterization of Jordan chains of eigen-

values of elliptic operators. To motivate our investigations let us consider here in the

introduction only the special case of a Schrödinger operator A = −∆ + V on a bounded

Lipschitz domain Ω ⊂ Rd with d ≥ 2 and with a complex-valued potential V ∈ L∞(Ω).

Later in this paper much more general second-order partial differential expressions A with

measurable coefficients will be considered; see Section 3 for details. The Dirichlet-to-

Neumann map D(λ) corresponding to −∆ + V can be defined as a bounded operator

D(λ) : H1/2(Γ)→ H−1/2(Γ) by

Tr fλ 7→ γNfλ,

where fλ ∈ H1(Ω) is such that Afλ = λfλ. Here Tr fλ ∈ H1/2(Γ) and γNfλ ∈ H−1/2(Γ)

denote the Dirichlet and Neumann trace of fλ, respectively, and λ ∈ C is not an eigenvalue

of the Dirichlet realization AD of −∆ + V . Assume for simplicity that B : L2(Γ)→ L2(Γ)

is a bounded operator and consider the (non-local) Robin realization of −∆ + V defined

by

ABf = −∆f + V f, domAB =
{
f ∈ H1(Ω) : γNf = BTr f and −∆f + V f ∈ L2(Ω)

}
.

(1.1)

Note that the resolvents of AD and AB are both compact operators in L2(Ω) due to the

compactness of the embedding H1(Ω) ↪→ L2(Ω) and hence the spectra of AD and AB are

discrete. It is well-known and easy to see that for all λ0 6∈ σp(AD) one has λ0 ∈ σp(AB)

if and only if ker (D(λ0) − B) 6= {0}. Sometimes this is referred to as a variant of the

Birman–Schwinger principle. In fact, if λ0 ∈ σp(AB) and f0 ∈ domAB is a corresponding

eigenfunction, then Tr f0 6= 0 (as otherwise f0 would be an eigenfunction for AD at λ0) and

(D(λ0)−B)Tr f0 = D(λ0)Tr f0 −BTr f0 = γNf0 −BTr f0 = 0,

and conversely, if ϕ ∈ ker (D(λ0) − B) \ {0}, then the unique solution f0 ∈ H1(Ω) of the

boundary value problem (−∆ + V )f0 = λ0f0 with Tr f0 = ϕ, satisfies γNf0 − BTr f0 = 0,

so that f0 ∈ domAB is an eigenfunction of AB corresponding to λ0.

2



In the situation where the potential V is not real-valued or the Robin boundary op-

erator B is not symmetric the Schrödinger operator AB in (1.1) is m-sectorial, but not

self-adjoint in L2(Ω). Therefore, in general, the eigenvalues of AB are not semisimple

and besides an eigenvector f0 also (finitely many) generalized eigenvectors f1, . . . , fk are

associated to an eigenvalue λ0, which form a so-called Jordan chain. It is the main ob-

jective of the present paper to analyse the Jordan chains f0, f1, . . . , fk corresponding to

an eigenvalue λ0 of AB with the help of the Dirichlet-to-Neumann operator in a sim-

ilar form as in the above mentioned Birman–Schwinger principle. In fact, using the

notion of Jordan chains for holomorphic operator functions due to M.V. Keldysh [Kel]

(see also [Mark, §11]), it turns out in our main result Theorem 4.1 that {f0, f1, . . . , fk}
form a Jordan chain of AB at λ0 ∈ σp(AB) ∩ ρ(AD) if and only if the corresponding

traces ϕ0 = Tr f0, ϕ1 = Tr f1, . . . , ϕk = Tr fk form a Jordan chain for the holomorphic

L(H1/2(Γ), H−1/2(Γ))-valued operator function λ 7→M(λ) = D(λ)−B at λ0, that is,

j∑
l=0

1

l!
M (l)(λ0)ϕj−l = 0 (1.2)

for all j ∈ {0, . . . , k}, where M (l)(λ0) denotes the l-th derivative of the function M at λ0.

Note that for j = 0 the characterization of the eigenvector f0 in the Birman–Schwinger

principle follows from (1.2); see the above discussion or Corollary 4.2.

The structure of this paper is as follows. In Section 2 we briefly recall the notion of

Jordan chains for operators and holomorphic operator functions. In Section 3 we introduce

the elliptic differential operators and the corresponding Dirichlet-to-Neumann map that is

used for the analysis of the algebraic eigenspaces. Here we treat second-order divergence

form elliptic operators with (complex) L∞-coefficients of the form

A = −
d∑

k,l=1

∂kckl∂l +
d∑

k=1

ck∂k −
d∑

k=1

∂kbk + c0

on bounded Lipschitz domains with non-local Robin boundary conditions. In this general

situation it is necessary to pay special attention to the definition and properties of the

co-normal and adjoint co-normal derivative, and to the properties of the corresponding

sesquilinear forms and operators. Furthermore, the unique solvability of the homogeneous

and inhomogeneous Dirichlet boundary value problems is discussed. For the convenience of

the reader we provide proofs of these preparatory results in Section 3. Our main result on

the characterization of Jordan chains of second-order elliptic partial differential operators

with local or non-local Robin boundary conditions via Jordan chains of the Dirichlet-

to-Neumann map λ 7→ D(λ) and the boundary operator B is formulated and proved in

Section 4. The proof is technical and requires the preparatory Lemma 4.5. Finally, in

Subsection 5.1 we discuss a more regular situation in which the bounded domain Ω is

assumed to have a C2-smooth boundary and the coefficients of the elliptic operator are

slightly more regular. In this setting one then obtains a Dirichlet-to-Neumann operator

acting from H3/2(Γ) into H1/2(Γ) and a variant of Theorem 4.1 for H2(Ω)-smooth Jordan
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chains. In Subsection 5.2 we reconsider the Dirichlet-to-Neumann operator on a Lipschitz

domain, but now we treat the Dirichlet-to-Neumann operator acting fromH1(Γ) into L2(Γ).

For this we require a smoothness and symmetry condition on the principal coefficients.

Acknowledgements. J. Behrndt is most grateful for the stimulating research stay and

the hospitality at the University of Auckland, where parts of this paper were written.

This work is supported by the Austrian Science Fund (FWF), project P 25162-N26 and

part of this work is supported by the Marsden Fund Council from Government funding,

administered by the Royal Society of New Zealand.

2 Jordan chains of operators and holomorphic oper-

ator functions

Throughout this paper the field is the complex numbers. Let A be a linear operator in a

Banach space H. Further, let k ∈ N0, f0, . . . , fk ∈ H and λ0 ∈ C. Then we say that the

vectors {f0, . . . , fk} form a Jordan chain for A at λ0 if fj ∈ domA for all j ∈ {0, . . . , k}
satisfy

(A− λ0)fj = fj−1

for all j ∈ {0, . . . , k} with f0 6= 0 and we set f−1 = 0. The vector f0 is called an eigen-

vector of A at the eigenvalue λ0 and the vectors f1, . . . , fk are said to be generalized

eigenvectors of A at λ0. Note that the generalized eigenvectors are all nonzero.

The notion of Jordan chains exists also for holomorphic operator functions and goes

back to the work of M.V. Keldysh [Kel], for more details we also refer the reader to the

monograph [Mark, §11]. Let H1 and H2 be Banach spaces, O ⊂ C an open set and for all

λ ∈ O let M(λ) ∈ L(H1,H2). Assume, in addition, that the operator function λ 7→ M(λ)

is holomorphic on O and denote the l-th derivative of M(·) at λ ∈ O by M (l)(λ). Let

k ∈ N0 and ϕ0, . . . , ϕk ∈ H1. Then we say that the vectors {ϕ0, . . . , ϕk} form a Jordan

chain for the function M(·) at λ0 ∈ O if

j∑
l=0

1

l!
M (l)(λ0)ϕj−l = 0

for all j ∈ {0, . . . , k} and ϕ0 6= 0. The vector ϕ0 is called an eigenvector of the operator

function M(·) at the eigenvalue λ0 and the vectors ϕ1, . . . , ϕk are said to be generalized

eigenvectors of M(·) at λ0.

Observe that in the special case H1 = H2 and C ∈ L(H1) the notion of Jordan chain

for the operator C at λ0 ∈ C and the notion of Jordan chain for the function λ 7→ C − λ
at λ0 ∈ C coincide.
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3 Elliptic differential operators and Dirichlet-to-Neu-

mann maps

Let Ω ⊂ Rd be a bounded Lipschitz domain with boundary Γ. By H1(Ω) we denote the

L2-based Sobolev space of order 1 on Ω and H1
0 (Ω) denotes the closure of the compactly

supported C∞c (Ω)-functions in H1(Ω). On the Lipschitz boundary Γ the Sobolev space

H1/2(Γ) of order 1/2 will play an important role. Its dual is denoted by H−1/2(Γ) and 〈·, ·〉
stands for the extension of the L2(Γ) inner product onto the pairH1/2(Γ)×H−1/2(Γ). Recall

from [McL] Theorem 3.37 that there is a continuous trace map Tr : H1(Ω) → H1/2(Γ)

such that Tr f = f |Γ for all f ∈ H1(Ω) ∩ C1(Ω) and it admits a bounded right inverse.

For all k, l ∈ {1, . . . , d} fix ckl, bk, ck, c0 ∈ L∞(Ω). We recall that the field is the complex

numbers, so we emphasise that all coefficients are complex valued. Assume that there exists

a µ > 0 such that

Re
d∑

k,l=1

ckl(x) ξk ξl ≥ µ |ξ|2

for all x ∈ Ω and ξ ∈ Cd. Define the sesquilinear form a : H1(Ω)×H1(Ω)→ C by

a(f, g) =
d∑

k,l=1

∫
Ω

ckl(∂lf)∂kg +
d∑

k=1

∫
Ω

ck(∂kf)g +
d∑

k=1

∫
Ω

bkf∂kg +

∫
Ω

c0fg.

The form a is continuous in the sense that there exists an M ≥ 0 such that |a(f, g)| ≤
M ‖f‖H1(Ω) ‖g‖H1(Ω) for all f, g ∈ H1(Ω). One verifies in the same way as in the proof of

[AE1] Lemma 3.7 that the form is elliptic and hence [AE3] Lemma 3.1 implies that a is a

closed sectorial form.

Introduce A : H1(Ω)→ (H1
0 (Ω))∗ by

〈Af, g〉(H1
0 (Ω))∗×H1

0 (Ω) = a(f, g).

In order to introduce the co-normal derivative we need a lemma. Note that the ellipticity

condition on the principal coefficients is not needed in the next lemma.

Lemma 3.1. Let f ∈ H1(Ω) and suppose that Af ∈ L2(Ω). Then there exists a unique

ψ ∈ H−1/2(Γ) such that

a(f, g)− (Af, g)L2(Ω) = 〈ψ,Tr g〉H−1/2(Γ)×H1/2(Γ)

for all g ∈ H1(Ω). Moreover, there exists a constant c > 0, independent of f , such that

‖ψ‖H−1/2(Γ) ≤ c(‖f‖H1(Ω) + ‖Af‖L2(Ω)).

Proof. Define F : H1(Ω)→ C by F (g) = a(f, g)− (Af, g)L2(Ω). Then F is anti-linear and

bounded. Explicitly, there exists an M ≥ 0, independent of f , such that

‖F‖H1(Ω)∗ ≤M ‖f‖H1(Ω) + ‖Af‖L2(Ω).
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Moreover, F (g) = 0 for all g ∈ H1
0 (Ω). Hence there exists a unique anti-linear F̃ : H1/2(Γ)→

C such that F̃ (Tr g) = F (g) for all g ∈ H1(Ω). The map F̃ is bounded and ‖F̃‖H/2(Γ)∗ ≤
‖F‖H1(Ω)∗ ‖Z‖, where Z : H1/2(Γ) → H1(Ω) is a bounded right inverse of Tr . Write

ψ = F̃ ∈ H1/2(Γ)∗ = H−1/2(Γ). Then F̃ (ϕ) = 〈ψ, ϕ〉H−1/2(Γ)×H1/2(Γ) for all ϕ ∈ H1/2(Γ)

and the lemma follows.

If f ∈ H1(Ω) with Af ∈ L2(Ω), then we denote by γNf ∈ H−1/2(Γ) the function such

that

a(f, g)− (Af, g)L2(Ω) = 〈γNf,Tr g〉H−1/2(Γ)×H1/2(Γ)

for all g ∈ H1(Ω). We call γNf the co-normal derivative of f .

Denote by aD the restriction of a to H1
0 (Ω)×H1

0 (Ω). Then aD is a continous elliptic form

and hence a closed sectorial form (cf. [AE3] Lemma 3.1.) Denote by AD the m-sectorial

operator associated with the form aD. It follows that AD is the Dirichlet realization of A

in L2(Ω) given by

ADf = Af, domAD =
{
f ∈ H1

0 (Ω) : Af ∈ L2(Ω)
}
.

Lemma 3.2. Let λ ∈ ρ(AD). Then the following assertions hold.

(a) For all ϕ ∈ H1/2(Γ) there exists a unique solution f ∈ H1(Ω) of the homogeneous

boundary value problem

(A− λ)f = 0 and Tr f = ϕ. (3.1)

Moreover, the map ϕ 7→ f is continuous from H1/2(Γ) into H1(Ω).

(b) For all ϕ ∈ H1/2(Γ) and all h ∈ L2(Ω) there exists a unique solution f ∈ H1(Ω) of

the inhomogeneous boundary value problem

(A− λ)f = h and Tr f = ϕ. (3.2)

Proof. ‘(a)’. The existence follows as in the proof of [AE6] Lemma 2.1. For completeness

we give the details. There exists a T ∈ L(H1
0 (Ω)) such that

(Tf, g)H1
0 (Ω) = aD(f, g)− λ(f, g)L2(Ω)

for all f, g ∈ H1
0 (Ω). Further there exists an ω > 0 such that the sesquilinear form

b : H1
0 (Ω)×H1

0 (Ω)→ C given by b(f, g) = aD(f, g)−λ(f, g)L2(Ω) +ω(f, g)L2(Ω) is coercive.

Let j : H1
0 (Ω)→ L2(Ω) be the (compact) inclusion map. Then b(f, g) = ((T +K)f, g)H1

0 (Ω)

for all f, g ∈ H1
0 (Ω), where K = ωj∗j. So T +K is invertible by the Lax–Milgram theorem.

Consequently T is a Fredholm operator because K is compact. Now T is injective since

λ ∈ ρ(AD). Hence T is surjective.

There exists an f0 ∈ H1(Ω) such that Tr f0 = ϕ. Hence there exists an h ∈ H1
0 (Ω) such

that (Th, g)H1
0 (Ω) = a(f0, g)− λ(f0, g)L2(Ω) for all g ∈ H1

0 (Ω). Then f = f0 − h satisfies

〈Af − λf, g〉(H1
0 (Ω))∗×H1

0 (Ω) = a(f0, g)− λ(f0, g)L2(Ω) − aD(h, g) + λ(h, g)L2(Ω) = 0
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and hence (A− λ)f = 0. The uniqueness is easy. The continuity of the map follows from

the closed graph theorem.

‘(b)’. By Statement (a) there exists an f0 ∈ H1(Ω) such that (A − λ)f0 = 0 and

Tr f0 = ϕ. Then f0 +(AD−λ)−1h is a solution to the problem (3.2). Again the uniqueness

is easy.

Let λ ∈ ρ(AD). Now we are able to define the Dirichlet-to-Neumann operator

D(λ) : H1/2(Γ) → H−1/2(Γ). Let ϕ ∈ H1/2(Γ). By Lemma 3.2(a) there exists a unique

solution f ∈ H1(Ω) of the homogeneous boundary value problem (3.1). Then Af = λf ∈
L2(Ω). Hence one can define

D(λ)ϕ = γNf.

Then D(λ) is bounded operator from H1/2(Γ) into H−1/2(Γ) by the last parts of Lemmas 3.1

and 3.2(a).

We need two holomorphy results.

Lemma 3.3.

(a) Let ϕ ∈ H1/2(Γ). For all λ ∈ ρ(AD) let gλ ∈ H1(Ω) be the unique element such that

(A − λ)gλ = 0 and Tr gλ = ϕ. Then the map λ 7→ gλ is holomorphic from ρ(AD)

into H1(Ω).

(b) The map λ 7→ D(λ) is holomorphic from ρ(AD) into L(H1/2(Γ), H−1/2(Γ)).

Proof. ‘(a)’. Fix λ0 ∈ ρ(AD). By Lemma 3.2(a) there exists a unique gλ0 ∈ H1(Ω) such

that (A− λ0)gλ0 = 0 and Tr gλ0 = ϕ. Let λ ∈ ρ(AD) and consider

g =
(
1 + (λ− λ0)(AD − λ)−1

)
gλ0 ∈ H1(Ω). (3.3)

Then (A− λ)g = (A− λ)gλ0 + (λ− λ0)gλ0 = 0 and Tr g = Tr gλ0 = ϕ. Since the solution

of the homogeneous boundary value problem (A − λ)f = 0 with Tr f = ϕ, is unique by

Lemma 3.2(a) it follows that g = gλ. Now the holomorphy of the resolvent λ 7→ (AD−λ)−1

in (3.3) implies that the map λ 7→ gλ is holomorphic from ρ(AD) into H1(Ω).

‘(b)’. Let ϕ ∈ H1/2(Γ) and h ∈ H1(Ω). For all λ ∈ ρ(AD) let gλ ∈ H1(Ω) be as in

Statement (a). Then

〈D(λ)ϕ,Trh〉H−1/2(Γ)×H1/2(Γ) = 〈γNgλ,Trh〉H−1/2(Γ)×H1/2(Γ)

= a(gλ, h)− (Agλ, h)L2(Ω)

= a(gλ, h)− λ(gλ, h)L2(Ω)

for all λ ∈ ρ(AD). Since λ 7→ gλ is holomorphic from ρ(AD) into H1(Ω) by Statement (a),

it follows that λ 7→ D(λ) is holomorphic with respect to the weak operator topology on

L(H1/2(Γ), H−1/2(Γ)), and therefore it is also holomorphic with respect to the uniform

operator topology.
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For all l ∈ N we denote the l-th derivative of λ 7→ D(λ) at λ ∈ ρ(AD) by D(l)(λ). Then

according to Lemma 3.3(b) one has

D(l)(λ) ∈ L(H1/2(Γ), H−1/2(Γ))

for all λ ∈ ρ(AD).

The dual form a∗ of a is defined by dom (a∗) = H1(Ω) and a∗(f, g) = a(g, f) for all

f, g ∈ H1(Ω). So

a∗(f, g) =
d∑

k,l=1

∫
Ω

clk(∂lf)∂kg +
d∑

k=1

∫
Ω

bk(∂kf)g +
d∑

k=1

∫
Ω

ckf∂kg +

∫
Ω

c0fg.

Obviously a∗ is of the same type as a, with ckl replaced by clk, etc. Similar to the definition

of A with respect to a, we can define the operator Ã : H1(Ω)→ (H1
0 (Ω))∗ by

〈Ãf, g〉(H1
0 (Ω))∗×H1

0 (Ω) = a∗(f, g).

As in Lemma 3.1 it follows that for all f ∈ H1(Ω) with Ãf ∈ L2(Ω), there exists a unique

γ̃Nf ∈ H−1/2(Γ) such that

a∗(f, g)− (Ãf, g)L2(Ω) = 〈γ̃Nf,Tr g〉H−1/2(Γ)×H1/2(Γ)

for all g ∈ H1(Ω). Using all definitions it is easy to prove the following version of Green’s

second identity.

Lemma 3.4. Let f, g ∈ H1(Ω) and suppose that Af, Ãg ∈ L2(Ω). Then

(Af, g)L2(Ω)− (f, Ãg)L2(Ω) = 〈Tr f, γ̃Ng〉H1/2(Γ)×H−1/2(Γ)−〈γNf,Tr g〉H−1/2(Γ)×H1/2(Γ). (3.4)

Denote by a∗D the restriction of the dual form a∗ to H1
0 (Ω)×H1

0 (Ω). Then a∗D is a closed

sectorial form and the m-sectorial operator associated with a∗D is equal to the adjoint A∗D
of AD, see [Kat] Theorem VI.2.5. It follows that A∗D is the Dirichlet realization of Ã in

L2(Ω) given by

A∗Df = Ãf, domA∗D =
{
f ∈ H1

0 (Ω) : Ãf ∈ L2(Ω)
}
.

Similarly to the Dirichlet-to-Neumann map D(λ) ∈ L(H1/2(Γ), H−1/2(Γ)) one asso-

ciates the Dirichlet-to-Neumann map D̃(λ) ∈ L(H1/2(Γ), H−1/2(Γ)) to the adjoint form a∗

for all λ ∈ ρ(A∗D). A simple computation based on Greens second identity (3.4) shows

〈D(λ)ϕ, ψ〉H−1/2(Γ)×H1/2(Γ) = 〈ϕ, D̃(λ)ψ〉H1/2(Γ)×H−1/2(Γ) (3.5)

for all ϕ, ψ ∈ H1/2(Γ) and λ ∈ ρ(AD).

Finally we introduce the Robin operator. Let B ∈ L(H1/2(Γ), H−1/2(Γ)). We assume

that there is an η > 0 such that

Re〈Bϕ,ϕ〉H−1/2(Γ)×H1/2(Γ) ≤ η‖ϕ‖2
L2(Γ) (3.6)
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for all ϕ ∈ H1/2(Γ). Note that the restriction to the space H1/2(Γ) of every bounded

operator B in L2(Γ) can be viewed as an operator in L(H1/2(Γ), H−1/2(Γ)) that satisfies

(3.6). We also note that the above assumption on B ∈ L(H1/2(Γ), H−1/2(Γ)) can be

generalized further as in for example [GM2] Hypothesis 4.1. Next we define the sesquilinear

form aB : H1(Ω)×H1(Ω)→ C by

aB(f, g) = a(f, g)− 〈BTr f,Tr g〉H−1/2(Γ)×H1/2(Γ).

Proposition 3.5. The form aB is densely defined, closed and sectorial in L2(Ω). The

associated m-sectorial operator

ABf = Af, domAB =
{
f ∈ H1(Ω) : Af ∈ L2(Ω) and γNf = BTr f

}
,

is the Robin realisation of A in L2(Ω).

Proof. We will show first that aB is elliptic, that is, there are ν ∈ R and µ > 0 such that

Re aB(f) + ν‖f‖2
L2(Ω) ≥ µ‖f‖2

H1(Ω) (3.7)

for all f ∈ H1(Ω). Clearly there are µ1, ω1 > 0 such that Re a(f) ≥ 2µ1‖f‖2
H1(Ω) −

ω1‖f‖2
L2(Ω) for all f ∈ H1(Ω) (cf. [AE1] Lemma 3.7.) Choose ε < µ1

η
, where η > 0 is as

in (3.6). By Ehrling’s lemma and the compactness of Tr : H1(Ω) → L2(Γ) there exists a

c > 0 such that ‖Tr f‖2
L2(Γ) ≤ ε‖f‖2

H1(Ω) + c‖f‖2
L2(Ω) for all f ∈ H1(Ω). Then

Re〈BTr f,Tr f〉H−1/2(Γ)×H1/2(Γ) ≤ η‖Tr f‖2
L2(Γ) ≤ µ1‖f‖2

H1(Ω) + ηc‖f‖2
L2(Ω)

and hence

Re aB(f) = Re a(f)− Re〈BTr f,Tr f〉H−1/2(Γ)×H1/2(Γ) ≥ µ1‖f‖2
H1(Ω) − (ω1 + ηc)‖f‖2

L2(Ω)

for all f ∈ H1(Ω). So (3.7) holds with µ = µ1 and ν = ω1 + ηc, therefore aB is elliptic.

Hence aB is a densely defined, closed, sectorial form (see [AE3] Lemma 3.1).

The graph of the m-sectorial operator associated to aB is given by

G =
{

(f, h) ∈ H1(Ω)× L2(Ω) : aB(f, g) = (h, g)L2(Ω) for all g ∈ H1(Ω)
}

and it remains to show that G coincides with the Robin realisation AB. Now let f ∈ domG

and write h = Gf ∈ L2(Ω). Then f ∈ H1(Ω) and

〈Af, g〉(H1
0 (Ω))∗×H1

0 (Ω) = a(f, g) = aB(f, g) = (h, g)L2(Ω)

for all g ∈ H1
0 (Ω). So Af = h = Gf ∈ L2(Ω). If g ∈ H1(Ω), then

a(f, g)− (Af, g)L2(Ω) = aB(f, g) + 〈BTr f,Tr g〉H−1/2(Γ)×H1/2(Γ) − (h, g)L2(Ω)

= 〈BTr f,Tr g〉H−1/2(Γ)×H1/2(Γ).

So γNf = BTr f and hence f ∈ domAB. The converse inclusion follows similarly.
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4 Jordan chains of Robin realizations

Adopt the assumptions and notation as in Section 3. In this section we formulate and

prove our main result on the characterization of Jordan chains of the m-sectorial Robin

realization AB of A via the operator function λ 7→ D(λ) − B. Our goal is to show the

following theorem.

Theorem 4.1. Let AB be the Robin realisation of A in L2(Ω) as in Proposition 3.5, let

λ0 ∈ ρ(AD) and consider the holomorphic function

λ 7→ D(λ)−B (4.1)

from ρ(AD) into L(H1/2(Γ), H−1/2(Γ)). Then the following holds.

(a) Let {f0, . . . , fk} be a Jordan chain for AB at λ0. For all m ∈ {0, . . . , k} define

ϕm = Tr fm. Then {ϕ0, . . . , ϕk} is a Jordan chain for the function (4.1) at λ0.

(b) Let {ϕ0, . . . , ϕk} be a Jordan chain for the function (4.1) at λ0. Set f−1 = 0. For all

m ∈ {0, . . . , k} let fm ∈ H1(Ω) be the unique solution of the boundary value problem

(A− λ0)fm = fm−1, Tr fm = ϕm.

Then {f0, . . . , fk} is a Jordan chain for AB at λ0.

For the special case k = 0 one obtains the following well-known result.

Corollary 4.2. Adopt the notation and assumptions as in Theorem 4.1. Then the following

holds.

(a) If f0 is an eigenvector of AB at λ0, then D(λ0)Tr f0 = BTr f0 and Tr f0 6= 0.

(b) If D(λ0)ϕ0 = Bϕ0 and ϕ0 6= 0, then the unique solution f0 ∈ H1(Ω) of the boundary

value problem

(A− λ0)f0 = 0, Tr f0 = ϕ0,

is an eigenvector of AB at λ0.

Corollary 4.3. Adopt the notation and assumptions as in Theorem 4.1. Then

Tr (ker (AB − λ0)) = ker (D(λ0)−B)

and Tr is a bijection from ker (AB − λ0) onto ker (D(λ0)−B).

Remark 4.4. We can mention here that the assumption λ0 ∈ ρ(AD) in Theorem 4.1 and

Corollary 4.2 is really needed. In fact, one may define the Dirichlet-to-Neumann graph as a

linear relation consisting of the Cauchy data for all λ0 ∈ σp(AD). By [Fil] Theorem 1 there

exist µ > 0, λ ∈ R, u ∈ C∞c (R3) \ {0} and a Hölder continuous function g : R3 → [µ,∞)

such that − div g∇u = λu. Let Ω be a Lipschitz domain with suppu ⊂ Ω. Choose

ckl = g|Ω δkl, bk = ck = c0 = 0 for all k, l ∈ {1, . . . , d} and f0 = u|Ω. Let B ∈ L(L2(Γ)).

Then f0 is an eigenfunction of AB at λ. But Tr f0 = 0. So one cannot drop the assumption

λ0 ∈ ρ(AD) in Corollary 4.2(a).

10



Observe that the homogenenous and inhomogeneous boundary value problems in The-

orem 4.1(b) and Corollary 4.2(b) admit unique solutions by Lemma 3.2. The proof of

Theorem 4.1 requires quite some preparation. The next lemma is particularly useful; its

proof is partly based on an argument that was given by V.A. Derkach for symmetric and

selfadjoint linear relations in Krein spaces; see also [DM3] Section 7.4.4.

Lemma 4.5. Let AB be the Robin realisation of A in L2(Ω) as in Proposition 3.5 and

let {f0, . . . , fk} be a Jordan chain of AB at λ0 ∈ ρ(AD). For all m ∈ {0, . . . , k} define

ϕm = Tr fm ∈ H1/2(Γ). Let ϕ ∈ H1/2(Γ) and let g ∈ H1(Ω) be the unique solution of the

adjoint problem (Ã− λ0)g = 0 such that Tr g = ϕ. Then the following holds.

(a) If j ∈ {1, . . . , k}, then

(fj−1, g)L2(Ω) = 〈D(λ0)ϕj −Bϕj, ϕ〉H−1/2(Γ)×H1/2(Γ). (4.2)

(b) If j ∈ {1, . . . , k + 1}, then

(fj−1, g)L2(Ω) = −
j∑
l=1

1

l!
〈D(l)(λ0)ϕj−l, ϕ〉H−1/2(Γ)×H1/2(Γ). (4.3)

Proof. For all λ ∈ ρ(AD) let gλ ∈ H1(Ω) be the unique solution of the adjoint problem

(Ã− λ)gλ = 0 such that Tr gλ = ϕ; see Lemma 3.2(a). Then gλ0 = g. We set f−1 = 0.

‘(a)’. If j ∈ {0, . . . , k} and λ ∈ ρ(AD), then fj ∈ domAB, so ABfj = Afj and

γNfj = BTr fj by Proposition 3.5. Therefore

(ABfj, gλ)L2(Ω) − (fj, λgλ)L2(Ω)

= (Afj, gλ)L2(Ω) − (fj, Ãgλ)L2(Ω)

= 〈Tr fj, γ̃Ngλ〉H1/2(Γ)×H−1/2(Γ) − 〈γNfj,Tr gλ〉H−1/2(Γ)×H1/2(Γ)

= 〈Tr fj, D̃(λ)Tr gλ〉H1/2(Γ)×H−1/2(Γ) − 〈BTr fj,Tr gλ〉H−1/2(Γ)×H1/2(Γ)

=
〈
D(λ)ϕj −Bϕj, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

, (4.4)

where we used (3.5) in the last step. Choosing λ = λ0 gives

(fj−1, g)L2(Ω) =
(
(AB − λ0)fj, gλ0

)
L2(Ω)

= (ABfj, gλ0)L2(Ω) − (fj, λ0gλ0)L2(Ω) =
〈
D(λ0)ϕj −Bϕj, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

,

which proves (4.2). Note that j = 0 gives 〈D(λ0)ϕ0−Bϕ0, ϕ〉H−1/2(Γ)×H1/2(Γ) = 0 and hence

D(λ0)ϕ0 = Bϕ0. (4.5)

‘(b)’. We shall show that

−(fj−1, gλ)L2(Ω) =

j∑
l=1

〈
1

(λ− λ0)l

(
D(λ)−

l−1∑
s=0

1

s!
(λ− λ0)sD(s)(λ0)

)
ϕj−l, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

(4.6)
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for all j ∈ {1, . . . , k+1} and λ ∈ ρ(AD)\{λ0}. Once we have shown this, then the equality

(4.3) easily follows by taking the limit λ→ λ0. In fact, the left hand side of (4.6) tends to

−(fj−1, gλ0)L2(Ω) = −(fj−1, g)L2(Ω) by Lemma 3.3(a), and using the Taylor expansion

D(λ) =
∞∑
s=0

1

s!
(λ− λ0)sD(s)(λ0)

it is easy to see that for λ→ λ0 the right hand side in (4.6) tends to

j∑
l=1

1

l!
〈D(l)(λ0)ϕj−l, ϕ〉H−1/2(Γ)×H1/2(Γ).

We prove formula (4.6) by induction. If j = 1 and λ ∈ ρ(AD) \ {λ0}, then (4.4) gives

−(λ− λ0)L2(Ω) (f0, gλ)L2(Ω) = (λ0f0, gλ)L2(Ω) − (f0, λgλ)L2(Ω)

= (ABf0, gλ)L2(Ω) − (f0, λgλ)L2(Ω)

=
〈
D(λ)ϕ0 −Bϕ0, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

=
〈
(D(λ)−D(λ0))ϕ0, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

,

where we used (4.5) in the last step. So (4.6) is valid if j = 1.

Let m ∈ {1, . . . , k} and suppose that (4.6) is valid for j = m. Then by taking the limit

λ→ λ0 one deduces that

−(fm−1, g)L2(Ω) =
m∑
l=1

1

l!
〈D(l)(λ0)ϕm−l, ϕ〉H−1/2(Γ)×H1/2(Γ),

and together with (4.2) we conclude

〈
D(λ0)ϕm −Bϕm, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

= −
m∑
l=1

1

l!
〈D(l)(λ0)ϕm−l, ϕ〉H−1/2(Γ)×H1/2(Γ). (4.7)

Now let us prove the formula (4.6) for j = m + 1. Let λ ∈ ρ(AD) \ {λ0}. Then a simple

computation shows

m+1∑
l=1

1

(λ− λ0)l

(
D(λ)−

l−1∑
s=0

1

s!
(λ− λ0)sD(s)(λ0)

)
ϕm+1−l

=
m+1∑
l=2

1

(λ− λ0)l

(
D(λ)−

l−1∑
s=0

1

s!
(λ− λ0)sD(s)(λ0)

)
ϕm+1−l

+
D(λ)−D(λ0)

λ− λ0

ϕm

=
m∑
l=1

1

(λ− λ0)l+1

(
D(λ)−

l∑
s=0

1

s!
(λ− λ0)sD(s)(λ0)

)
ϕm−l

+
D(λ)−D(λ0)

λ− λ0

ϕm
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=
1

λ− λ0

m∑
l=1

1

(λ− λ0)l

(
D(λ)−

l−1∑
s=0

1

s!
(λ− λ0)sD(s)(λ0)

)
ϕm−l

− 1

λ− λ0

m∑
l=1

1

l!
D(l)(λ0)ϕm−l +

D(λ)−D(λ0)

λ− λ0

ϕm

and using (4.6) for j = m for the first term on the right hand side, and (4.7) for the second

term on the right hand side gives

m+1∑
l=1

〈
1

(λ− λ0)l

(
D(λ)−

l−1∑
s=0

1

s!
(λ− λ0)sD(s)(λ0)

)
ϕm+1−l, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

= − 1

λ− λ0

(fm−1, gλ)L2(Ω) +
1

λ− λ0

〈
D(λ0)ϕm −Bϕm, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

+
1

λ− λ0

〈
D(λ)ϕm −D(λ0)ϕm, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

=
1

λ− λ0

〈
D(λ)ϕm −Bϕm, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

− 1

λ− λ0

(fm−1, gλ)L2(Ω)

=
1

λ− λ0

(
(ABfm, gλ)L2(Ω) − (fm, λgλ)L2(Ω) − (fm−1, gλ)

)
L2(Ω)

=
1

λ− λ0

(
(fm−1 + λ0 fm, gλ)L2(Ω) − (fm, λgλ)L2(Ω) − (fm−1, gλ)

)
L2(Ω)

= −(fm, gλ)L2(Ω),

where (4.4) was used for j = m in third equality and (AB − λ0)fm = fm−1 was used in the

fourth equality. We have shown (4.6) for j = m+ 1. The proof of (b) is complete.

Now we are able to prove the main theorem.

Proof of Theorem 4.1. ‘(a)’. Let {f0, . . . , fk} form a Jordan chain for AB at λ0 ∈ ρ(AD)

and let ϕj = Tr fj ∈ H1/2(Γ) for all j ∈ {1, . . . , k} be the corresponding traces. We have

to prove that
j∑
l=0

1

l!
D(l)(λ0)ϕj−l = Bϕj (4.8)

for all j ∈ {0, . . . , k} and that ϕ0 6= 0.

Using Proposition 3.5 it is easy to see that

D(λ0)ϕ0 −Bϕ0 = D(λ0)Tr f0 −BTr f0 = γNf0 − γNf0 = 0

and hence (4.8) is valid if j = 0. Furthermore, ϕ0 = Tr f0 6= 0 as otherwise f0 ∈ domAD

and therefore (AD − λ0)f0 = (AB − λ0)f0 = 0, which together with λ0 ∈ ρ(AD) would

imply f0 = 0.

Let j ∈ {1, . . . , k} and let ϕ ∈ H1/2(Γ). Then Lemma 4.5 gives

〈
D(λ0)ϕj −Bϕj, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

= −
j∑
l=1

1

l!
〈D(l)(λ0)ϕj−l, ϕ〉H−1/2(Γ)×H1/2(Γ).
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This implies that

Bϕj = D(λ0)ϕj +

j∑
l=1

1

l!
D(l)(λ0)ϕj−l =

j∑
l=0

1

l!
D(l)(λ0)ϕj−l

as required.

‘(b)’. Assume that {ϕ0, . . . , ϕk} form a Jordan chain of the function λ 7→ D(λ)−B at

λ0, that is, (4.8) is valid for all j ∈ {0, 1, . . . k} and ϕ0 6= 0. In the following we construct a

Jordan chain {f0, . . . , fk} of AB at λ0 such that the corresponding traces are given by the

set of vectors {ϕ0, . . . , ϕk}. We proceed by induction. According to Lemma 3.2(a) there

exists a unique f0 ∈ H1(Ω) such that (A− λ0)f0 = 0 and Tr f0 = ϕ0. Making use of (4.8)

for j = 0 we obtain

γNf0 = D(λ0)Tr f0 = D(λ0)ϕ0 = Bϕ0 = BTr f0

and hence f0 ∈ domAB with (AB − λ0)f0 = 0 by Proposition 3.5. Since ϕ0 6= 0 it is clear

that also f0 6= 0.

Now let m ∈ {1, . . . , k} and assume that there are f0, . . . , fm−1 ∈ H1(Ω) such that

ϕj = Tr fj for all j ∈ {0, . . . ,m − 1} and the vectors {f0, . . . , fm−1} form a Jordan chain

for AB at λ0. By Lemma 3.2(b) there exists a unique vector fm ∈ H1(Ω) such that

(A− λ0)fm = fm−1 and Tr fm = ϕm. (4.9)

We shall prove that γNfm = BTr fm. Once we proved that, it follows that fm ∈ domAB

and (AB − λ0)fm = fm−1.

By assumption and (4.9) one deduces that

D(λ0)Tr fm = D(λ0)ϕm = Bϕm −
m∑
l=1

1

l!
D(l)(λ0)ϕm−l = BTr fm −

m∑
l=1

1

l!
D(l)(λ0)ϕm−l.

Let ϕ ∈ H1/2(Γ). By Lemma 3.2(a) there exists a unique g ∈ H1(Ω) such that (Ã−λ0)g = 0

and Tr g = ϕ. Then

((A− λ0)fm, g)L2(Ω) = (Afm, g)L2(Ω) − (fm, λ0g)L2(Ω)

= (Afm, g)L2(Ω) − (fm, Ãg)L2(Ω)

= 〈Tr fm, γ̃Ng〉H1/2(Γ)×H−1/2(Γ) − 〈γNfm,Tr g〉H−1/2(Γ)×H1/2(Γ)

= 〈Tr fm, D̃(λ0)Tr g〉H1/2(Γ)×H−1/2(Γ) − 〈γNfm,Tr g〉H−1/2(Γ)×H1/2(Γ)

=
〈
D(λ0)Tr fm − γNfm, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

=

〈
BTr fm − γNfm −

m∑
l=1

1

l!
D(l)(λ0)ϕm−l, ϕ

〉
H−1/2(Γ)×H1/2(Γ)

.

On the other hand, as {f0, . . . , fm−1} is a Jordan chain of AB at λ0 we have

((A− λ0)fm, g)L2(Ω) = (fm−1, g)L2(Ω) = −
m∑
l=1

1

l!
〈D(l)(λ0)ϕm−l, ϕ〉H−1/2(Γ)×H1/2(Γ)

14



by Lemma 4.5(b). Therefore 〈BTr fm − γNfm, ϕ〉H−1/2(Γ)×H1/2(Γ) = 0 for all ϕ ∈ H1/2(Γ).

Thus γNfm = BTr fm as required. So {f0, . . . , fm} is a Jordan chain for AB at λ0 with

traces {ϕ0, . . . , ϕm}.

Remark 4.6. In the abstract setting of boundary triplets and their Weyl functions for

adjoint pairs [LS, MM, Vai] it is known under a natural unique continuation hypothesis that

the poles of the Weyl function correspond to the isolated eigenvalues of the fixed extension,

see [BMNW1, Theorem 4.4]. See also [BMNW2, BHMNW, BL] for related results in the

context of indefinite inner product spaces.

5 Variations

In the previous section we considered the Dirichlet-to-Neumann operator D(λ) : H1/2(Γ)→
H−1/2(Γ) and the Jordan chain with respect to the holomorphic operator function λ 7→
D(λ)−B from ρ(AD) into L(H1/2(Γ), H−1/2(Γ)), where B ∈ L(H1/2(Γ), H−1/2(Γ)) satisfies

(3.6).

Except from the obvious ellipticity condition and to have a Lipschitz domain, there

were no conditions on the coefficients: merely bounded measurable and complex valued.

There are two other Dirichlet-to-Neumann operators that we consider in this section.

5.1 C2-domains

Throughout this subsection we suppose that Ω is a C2-domain, ckl ∈ C1(Ω) and bk = 0 for

all k, l ∈ {1, . . . , d}. We summarise some regularity results that we need in this subsection.

Lemma 5.1.

(a) If f ∈ H2(Ω), then Tr f ∈ H3/2(Γ), Af ∈ L2(Ω) and

γNf =
d∑

k,l=1

νkTr (ckl ∂lf) ∈ H1/2(Γ).

Moreover, the map f 7→ γNf is continuous from H2(Ω) into H1/2(Γ).

(b) Let λ ∈ ρ(AD). For all ϕ ∈ H3/2(Γ) there exists a unique f ∈ H2(Ω) such that

(A− λ)f = 0 and Tr f = ϕ. Moreover, the map ϕ 7→ f is continuous from H3/2(Γ)

into H2(Ω).

(c) Let λ ∈ ρ(AD). For all h ∈ L2(Ω) and ϕ ∈ H3/2(Γ) there exists a unique f ∈ H2(Ω)

such that (A− λ)f = h and Tr f = ϕ.

Proof. ‘(a)’. This follows from [Gri] Theorem 1.5.1.2 and the divergence theorem.

‘(b)’. By [Gri] Theorem 1.5.1.2 there exists an f0 ∈ H2(Ω) such that Tr f0 = ϕ.

Then it follows [Eva] Theorem 6.3.4 that there exists a unique h ∈ H2(Ω) such that

(A − λ)h = (A − λ)f0 and Trh = 0. Therefore f = f0 − h satisfies the requirements.
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The uniqueness is easy. The continuity follows from Lemma 3.2(a) and the closed graph

theorem.

‘(c)’. This can be proved similarly.

For all λ ∈ ρ(AD) define the Dirichlet-to-Neumann operator D̂(λ) : H3/2(Γ)→ H1/2(Γ)

as follows. Let ϕ ∈ H3/2(Γ). By Lemma 5.1(b) there exists a unique f ∈ H2(Ω) such that

(A − λ)f = 0 and Tr f = ϕ. Define D̂(λ)ϕ = γNf ∈ H1/2(Γ) by Lemma 5.1(a). Then

D̂(λ) is a bounded operator.

Next we consider holomorphy.

Lemma 5.2. The map λ 7→ D̂(λ) from ρ(AD) into L(H3/2(Γ), H1/2(Γ)) is holomorphic.

Proof. For all ϕ ∈ H3/2(Γ) and ψ ∈ H1/2(Γ) define αϕ,ψ : L(H3/2(Γ), H1/2(Γ))→ C by

αϕ,ψ(F ) = (Fϕ, ψ)L2(Γ).

Then αϕ,ψ ∈ L(H3/2(Γ), H1/2(Γ))∗. Let W = span{αϕ,ψ : ϕ ∈ H3/2(Γ) and ψ ∈ H1/2(Γ)}.
Since H1/2(Γ) is dense in L2(Γ), it follows that the space W is separating, that is, if

F ∈ L(H3/2(Γ), H1/2(Γ)) with α(F ) = 0 for all α ∈ W , then it follows that F = 0. If

ϕ ∈ H3/2(Γ) and ψ ∈ H1/2(Γ), then

αϕ,ψ(D̂(λ)) = (D̂(λ)ϕ, ψ)L2(Γ) = 〈D(λ)ϕ, ψ〉H−1/2(Γ)×H1/2(Γ)

for all λ ∈ ρ(AD). Hence the map λ 7→ αϕ,ψ(D̂(λ)) is holomorphic for all ϕ ∈ H3/2(Γ)

and ψ ∈ H1/2(Γ) by Lemma 3.3(b). Consequently the map λ 7→ D̂(λ) from ρ(AD) into

L(H3/2(Γ), H1/2(Γ)) is holomorphic by [ABHN] Theorem A.7.

The alluded variation of Theorem 4.1 is as follows.

Theorem 5.3. Let B ∈ L(H3/2(Γ), H1/2(Γ)) and suppose there exists an η > 0 such that

Re(Bϕ,ϕ)L2(Γ) ≤ η‖ϕ‖2
L2(Γ)

for all ϕ ∈ H3/2(Γ). Let AB be the Robin realisation of A in L2(Ω) as in Proposition 3.5,

let λ0 ∈ ρ(AD) and consider the holomorphic function

λ 7→ D̂(λ)−B (5.1)

from ρ(AD) into L(H3/2(Γ), H1/2(Γ)). Then the following holds.

(a) Let f0, . . . , fk ∈ H2(Ω). Suppose that {f0, . . . , fk} is a Jordan chain for AB at λ0.

For all m ∈ {0, . . . , k} define ϕm = Tr fm. Then {ϕ0, . . . , ϕk} is a Jordan chain for

the function (5.1) at λ0.

(b) Let {ϕ0, . . . , ϕk} be a Jordan chain for the function (5.1) at λ0. Set f−1 = 0. For all

m ∈ {0, . . . , k} let fm ∈ H2(Ω) be the unique solution of the boundary value problem

(A− λ0)fm = fm−1 and Tr fm = ϕm.

Then {f0, . . . , fk} is a Jordan chain for AB at λ0.

The proof is similar to the proof of Theorem 4.1, with obvious changes.
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5.2 m-Sectorial operators

Throughout this subsection we merely assume again that Ω is a Lipschitz domain, but

we put conditions on the coefficients of the elliptic operator. We assume that ckl = clk ∈
W 1,∞(Ω,R) is real valued and bk = ck = 0 for all k ∈ {1, . . . , d}. We emphasise that c0

can be complex valued and merely measurable. An example is the Schrödinger operator

with complex potential. The Dirichlet-to-Neumann operator D(λ) : H1/2(Γ) → H−1/2(Γ)

has been studied intensively in [BE1, BGHN, GM1, GM3]. Let D(λ) be the part of D(λ)

in L2(Γ). So D(λ) ⊂ D(λ) and if ϕ ∈ L2(Γ), then ϕ ∈ domD(λ) if and only if ϕ ∈ H1/2(Γ)

and D(λ)ϕ ∈ L2(Γ). The operator D(λ) can be represented by a form.

Lemma 5.4. Let λ ∈ ρ(AD). Let ϕ, ψ ∈ L2(Γ). Then the following are equivalent.

(i) ϕ ∈ domD(λ) and D(λ)ϕ = ψ.

(ii) There exists an f ∈ H1(Ω) such that Tr f = ϕ and

a(f, g)− λ(f, g)L2(Ω) = (ψ,Tr g)L2(Γ)

for all g ∈ H1(Ω).

The easy proof is left to the reader.

It seems that the domain of D(λ) depends on λ. This is not the case because of the

restriction on the principal part of the elliptic operator. We collect the main properties of

the operator D(λ) in the next proposition.

Proposition 5.5. (a) If λ ∈ ρ(AD), then the operator D(λ) is m-sectorial.

(b) If λ ∈ ρ(AD), then domD(λ) = H1(Ω).

(c) The map λ 7→ D(λ) from ρ(AD) into L(H1(Γ), L2(Γ)) is holomorphic.

Proof. ‘(a)’. See [Ouh] Corollary 2.3.

‘(b)’. ‘⊂’. Let ϕ ∈ domD(λ). Then there exists an f ∈ H1(Ω) such that ϕ = Tr f

and (A − λ)f = 0. So Af = λf ∈ L2(Ω) and γNf = D(λ)ϕ ∈ L2(Γ). Therefore [McL]

Theorem 4.24(ii) implies that ϕ = Tr f ∈ H1(Γ).

‘⊃’. Let ϕ ∈ H1(Γ). By Lemma 3.2(a) there exists a unique f ∈ H1(Ω) such that

(A− λ)f = 0 and Tr f = ϕ. Then Af = λf ∈ L2(Ω). Hence [McL] Theorem 4.24(i) gives

γNf ∈ L2(Γ). So ϕ ∈ domD(λ).

‘(c)’. For all ϕ ∈ H1(Γ) and ψ ∈ H1/2(Γ) define αϕ,ψ : L(H1(Γ), L2(Γ))→ C by

αϕ,ψ(F ) = (Fϕ, ψ)L2(Γ).

Then argue as in the proof of Lemma 5.2.

Now we are able to formulate another version of Theorem 4.1.
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Theorem 5.6. Let B ∈ L(H1(Γ), L2(Γ)) and suppose that there exists an η > 0 such that

Re(Bϕ,ϕ)L2(Γ) ≤ η‖ϕ‖2
L2(Γ)

for all ϕ ∈ H1(Γ). Let AB be the Robin realisation of A in L2(Ω) as in Proposition 3.5,

let λ0 ∈ ρ(AD) and consider the holomorphic function

λ 7→ D̂(λ)−B

from ρ(AD) into L(H1(Ω), L2(Γ)). Then the following holds.

(a) Let {f0, . . . , fk} be a Jordan chain for AB at λ0. For all m ∈ {0, . . . , k} define

ϕm = Tr fm. Then {ϕ0, . . . , ϕk} is a Jordan chain for the function (5.1) at λ0.

(b) Let {ϕ0, . . . , ϕk} be a Jordan chain for the function (5.1) at λ0. Set f−1 = 0. For all

m ∈ {0, . . . , k} let fm ∈ H1(Ω) be the unique solution of the boundary value problem

(A− λ0)fm = fm−1 and Tr fm = ϕm.

Then {f0, . . . , fk} is a Jordan chain for AB at λ0.

The proof is similar to the proof of Theorem 4.1, with obvious changes.
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