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In this paper the spectral properties of Dirac operators Aη with electrostatic δ-shell 
interactions of constant strength η supported on compact smooth surfaces in R3 are 
studied. Making use of boundary triple techniques a Krein type resolvent formula 
and a Birman–Schwinger principle are obtained. With the help of these tools some 
spectral, scattering, and asymptotic properties of Aη are investigated. In particular, 
it turns out that the discrete spectrum of Aη inside the gap of the essential spectrum 
is finite, the difference of the third powers of the resolvents of Aη and the free Dirac 
operator A0 is trace class, and in the nonrelativistic limit Aη converges in the norm 
resolvent sense to a Schrödinger operator with an electric δ-potential of strength η.
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Dans cet article, on étudie les propriétés spectrales des opérateurs de Dirac Aη avec 
une interaction δ électrostatique de force constante η supportée sur des surfaces 
compactes régulières dans R3. En utilisant des techniques de triplets au bord, une 
formule de résolvante à la Krein et un principe de Birman–Schwinger sont obtenus. 
Grâce à ces outils, certaines propriétés spectrales, de diffusion et asymptotiques 
de Aη sont étudiées. En particulier, il s’avère que le spectre discret de Aη dans 
le trou du spectre essentiel est fini, les différences entre les puissances troisièmes 
des résolvantes de Aη et A0 sont de classe trace, et dans la limite non relativiste 
Aη converge en norme de la résolvante vers un opérateur de Schrödinger avec une 
interaction δ électrique de force η.
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1. Introduction

Singular δ-interactions are often used as idealized replacements for strongly localized electric potentials; 
the spectral data, the scattering properties, and the location of resonances for the original operator can be 
deduced then approximately. While Schrödinger operators with δ-interactions supported on manifolds of 
small co-dimensions were investigated extensively, cf. the monographs [1,11,22] and the review article [21], 
much less attention was paid to Dirac operators with δ-interactions.

Let us choose units such that � = 1 and denote the speed of light by c. It is well-known that the free 
Dirac operator

A0 := −ic

3∑
j=1

αj∂j + mc2β = −icα · ∇ + mc2β, domA0 = H1(R3;C4),

where m > 0 and α = (α1, α2, α3), β denote the Dirac matrices described in (1.1) below, is self-adjoint in 
L2(R3; C4) and that

σ(A0) = (−∞,−mc2] ∪ [mc2,∞).

The free Dirac operator describes the motion of a spin-1
2 particle with mass m in vacuum taking relativistic 

aspects into account; cf. [32]. In the following let Σ be the boundary of a bounded C∞-smooth domain 
Ω ⊂ R

3. Then the Dirac operator with an electrostatic δ-shell interaction supported on Σ with a constant 
interaction strength η ∈ R is formally given by

Aη = −icα · ∇ + mc2β + ηδΣ,

where δΣ stands for the δ-distribution supported on the surface Σ acting as

δΣf = 1
2
(
f+|Σ + f−|Σ

)
; f+ = f |Ω, f− = f |

R3\Ω.

Note that Aη is defined on functions that are weakly differentiable away from Σ, the δ-interaction is then 
modeled, as usual, by a jump condition for these functions on Σ. It is the main objective of this paper to 
analyze the properties of Dirac operators with electrostatic δ-shell interactions by applying the abstract 
technique of quasi boundary triples and their Weyl functions from extension theory of symmetric operators. 
Our investigations and some of our results are inspired by the very recent contributions [2–4] in this area.

The mathematical study of Dirac operators with δ-interactions started in the 1980s. One-dimensional 
Dirac operators with singular point interactions were studied in [25]; cf. also [1, Appendix J], [15] and the 
references therein, and the first mathematically rigorous treatise on a Dirac operator in R3 with a δ-shell 
interaction supported on a sphere was [19]. Using a decomposition into spherical harmonics and the results 
on the one-dimensional Dirac operator with singular interactions the self-adjointness of Aη and a number 
of spectral properties were shown in [19]. The interest in the topic arose again with the discovery of a 
family of artificial materials where the Dirac equation can be approximately deduced from Schrödinger’s 
equation [33]. From a mathematical point of view the investigation of Dirac operators with δ-interactions 
supported on more general surfaces in R3 was initiated recently in [2–4].

Our motivation is to show how the concept of quasi boundary triples and their Weyl functions can be 
used to introduce and study Dirac operators with electrostatic δ-shell interactions. Quasi boundary triples 
are a slight generalization of the concept of (ordinary) boundary triples, which is a powerful tool in the 
analysis of self-adjoint extensions of symmetric operators [13,14,17,27,29]. Quasi boundary triples were 
originally introduced in [6] for the study of elliptic partial differential operators, they were applied in the 
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investigation of Schrödinger operators with singular interactions in [8], and they are easily applicable also 
to Dirac operators since in contrast to form methods no semi-boundedness is required. In this context let 
us briefly explain our approach to define the Dirac operator Aη with an electrostatic δ-shell interaction. Let 
S be the restriction of the free Dirac operator A0 to functions that vanish at Σ and let S∗ be its adjoint. 
We then construct an operator T which is dense in S∗ and define the δ-operators Aη as restrictions of T to 
functions that satisfy certain jump conditions on Σ; cf. Section 4 for details. For η �= ±2c we conclude the 
self-adjointness of Aη and a Krein type formula relating the resolvent of Aη with the resolvent of the free 
Dirac operator A0 from the general theory of quasi boundary triples and their Weyl functions. We remark 
that the self-adjointness of Aη for η �= ±2c is also proven in [2] using another approach.

Let us describe the main results of this paper. First, we discuss the spectral properties of the Dirac 
operator with an electrostatic δ-shell interaction. Making use of some special properties of the Weyl function 
in the present situation the next result can be viewed as a consequence of the abstract resolvent formula and 
the corresponding Birman–Schwinger principle; for more details and additional results see Theorem 4.4.

Theorem 1.1. Let η ∈ R \ {±2c} and let Aη be the Dirac operator with an electrostatic δ-shell interaction of 
strength η. Then the essential spectrum is given by

σess(Aη) = (−∞,−mc2] ∪ [mc2,∞)

and the discrete spectrum in the gap (−mc2, mc2) is finite, that is,

�
{
σd(Aη) ∩ (−mc2,mc2)

}
< ∞.

The next result on the trace class property of the difference of the third powers of the resolvents of Aη

and A0 has important consequences for mathematical scattering theory. In particular, it follows that the 
wave operators for the scattering system {Aη, A0} exist and are complete and that the absolutely continuous 
parts of Aη and A0 are unitarily equivalent. For more details see Theorem 4.6, where also a trace formula 
in terms of the Weyl function and its derivatives is provided.

Theorem 1.2. Let η ∈ R \ {±2c}, let Aη be the Dirac operator with an electrostatic δ-shell interaction and 
let λ ∈ ρ(Aη) ∩ ρ(A0). Then the operator

(Aη − λ)−3 − (A0 − λ)−3

belongs to the trace class ideal.

Our third and last main result in Theorem 5.3 concerns the nonrelativistic limit of the Dirac operator 
with an electrostatic δ-shell interaction. We show that – after subtracting the rest energy of the mass 
from the total energy – Aη converges in the norm resolvent sense to the Schrödinger operator with an 
electric δ-potential of strength η supported on Σ times a projection onto the two upper components of the 
Dirac wave function, as c → ∞. Hence, the Dirac operator with an electrostatic δ-shell potential is the 
relativistic counterpart of the Schrödinger operator with an electric δ-interaction; cf. [32, Chapter 6]. Since 
it is known that the Schrödinger operator with a δ-potential is a suitable idealized model for Schrödinger 
operators with strongly localized regular potentials, cf. [5], the nonrelativistic limit yields a justification for 
the usage of Aη as an idealized model for the motion of a spin-1

2 particle in the presence of such a potential. 
Furthermore, this theorem allows one to deduce spectral properties of Aη for large c from the well-known 
results on the Schrödinger operator with a δ-potential. Similar statements are already obtained for the 
one-dimensional Dirac operator with δ-interactions; see [1,15,25]. In a slightly simplified form Theorem 5.3
reads as follows.
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Theorem 1.3. Let η ∈ R and let Aη be the Dirac operator with an electrostatic δ-shell interaction of strength η. 
Then for any λ ∈ C \ R it holds

lim
c→∞

(
Aη − (λ + mc2)

)−1 =
(
− 1

2mΔ + ηδΣ − λ

)−1 (
I2 0
0 0

)
,

where I2 denotes the identity matrix in C2×2 and the convergence is in the operator norm.

Finally, let us familiarize the reader with the structure of this paper. In Section 2 we provide a brief 
introduction to the general theory of quasi boundary triples and their Weyl functions. The abstract results 
are formulated in the way they are needed to prove our main results. Then, in Section 3 we introduce 
and investigate a quasi boundary triple which is suitable to define and study the Dirac operator Aη with 
an electrostatic δ-shell potential. Using this quasi boundary triple we conclude the self-adjointness of Aη

and derive a Krein type resolvent formula, which is an important tool in the proofs of our main results in 
Section 4 and Section 5. Finally, we have added the short Appendix A on criteria for the boundedness of 
certain integral operators to ensure a self-contained presentation.

Notations. The identity matrix in Cn×n is denoted by In. The Dirac matrices α1, α2, α3 and β are

αj :=
(

0 σj

σj 0

)
and β :=

(
I2 0
0 −I2

)
, (1.1)

where σj , j ∈ {1, 2, 3}, are the Pauli spin matrices

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

Note that the Dirac matrices satisfy the anti-commutation relation

αjαk + αkαj = 2δjkI4, j, k ∈ {0, 1, 2, 3}, (1.2)

with the convention α0 := β.
For vectors x = (x1, x2, x3)� we sometimes use the notation

α · x :=
3∑

j=1
αjxj .

Furthermore, m and c denote positive constants that stand for the mass of the particle and the speed of 
light, respectively. The square root 

√· is fixed by 
√
λ ≥ 0 for λ ≥ 0 and by Im

√
λ > 0 for λ ∈ C \ [0, ∞).

Throughout the text Σ is the boundary of a bounded C∞-smooth domain in R
3 and σ denotes the 

Hausdorff measure on Σ. We shall mostly work with the L2-spaces L2(R3; Cn) and L2(Σ; Cn) of Cn-valued 
square integrable functions, and more generally with L2(X; μ; Cn), where (X, μ) is a measure space. We 
denote by C∞

c (Ω; Cn) the space of Cn-valued infinitely smooth functions with compact support in an open 
set Ω ⊂ R

3, Hk(R3; Cn) stands for the usual Sobolev space of k-times weakly differentiable functions and 
H1

0 (R3 \Σ; Cn) is the closure of C∞
c (R3 \Σ; Cn) with respect to the H1-norm. In a similar manner, Sobolev 

spaces on Σ are denoted by Hs(Σ; Cn), s ≥ 0.
For Hilbert spaces X and Y we denote by B(X, Y ) the space of all everywhere defined and bounded 

linear operators from X to Y , in the case X = Y we shall simply write B(X). We use Sp,∞(X, Y ) for the 
weak Schatten–von Neumann ideal of order p > 0. Recall that a compact operator K : X → Y belongs to 
Sp,∞(X, Y ), if there exists a constant κ such that the singular values sk(K) of K satisfy sk(K) ≤ κk−1/p
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for all k ∈ N; cf. [26] or [9, Section 2.2]. When no confusion can arise we will suppress the spaces X, Y and 
simply write Sp,∞. For a linear operator T : X → Y we denote the domain, range, and kernel by domT , 
ranT , and kerT , respectively. If T is a closed operator in X then its resolvent set, spectrum, essential 
spectrum, discrete and point spectrum are denoted by ρ(T ), σ(T ), σess(T ), σd(T ), and σp(T ), respectively. 
Finally, �σd(T ) denotes the number of discrete eigenvalues of T counted with multiplicities.

2. Quasi boundary triples and associated Weyl functions

In this section we provide a brief introduction to boundary triple techniques in extension and spectral 
theory of symmetric and self-adjoint operators in Hilbert spaces. Here we present the necessary abstract 
material that is used in the formulation and proofs of our main results on Dirac operators with electrostatic 
δ-shell interactions; we refer the reader to [6,7,14,16–18,27] for more details, complete proofs and typical 
applications of boundary triples and their Weyl functions in the theory of ordinary and partial differential 
operators.

In the following let H be a Hilbert space with inner product (·, ·)H, let S be a densely defined closed 
symmetric operator in H, and let S∗ be the adjoint of S.

Definition 2.1. Let T be a linear operator in H such that T = S∗. A triple {G, Γ0, Γ1} is called a quasi 
boundary triple for S∗ if (G, (·, ·)G) is a Hilbert space and Γ0, Γ1 : domT → G are linear mappings such that 
the following conditions (i)–(iii) hold.

(i) The abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

is valid for all f, g ∈ domT .
(ii) The range of the mapping Γ = (Γ0, Γ1)� : domT → G × G is dense.
(iii) The operator A0 := T � ker Γ0 is self-adjoint in H.

A quasi boundary triple is said to be a generalized boundary triple if ran Γ0 = G and it is called an ordinary 
boundary triple if ran Γ = G × G.

The notion of quasi boundary triples was introduced in [6] and further studied in [7] and, e.g., [8–10]. It 
slightly extends the concepts of generalized boundary triples from [18] and ordinary boundary triples from 
[13,29]. We note that the above definition of ordinary boundary triples is equivalent to the usual definition 
in [14,17,27]; cf. [6, Corollary 3.2]. We also mention that a quasi boundary triple for S∗ exists if and only 
if S admits self-adjoint extensions in H, that is, if and only if the defect numbers dim ker(S∗ ± i) coincide, 
and that the operator T arising in Definition 2.1 is in general not unique (namely, when the defect numbers 
of S are both infinite). Assume that T ⊂ T = S∗ and let {G, Γ0, Γ1} be a quasi boundary triple for S∗. 
Then according to [6] one has

S = T �
(
ker Γ0 ∩ ker Γ1

)
and the mapping Γ = (Γ0, Γ1)� : domT → G × G is closable.

Next we recall a variant of [6, Theorem 2.3] which in many situations is an efficient tool to verify that a 
certain boundary space G and boundary mappings Γ0, Γ1 form a quasi boundary triple. We will make use 
of Theorem 2.2 in the proof of Theorem 3.2.

Theorem 2.2. Let T be a linear operator in H, let G be a Hilbert space and assume that Γ0, Γ1 : domT → G
are linear mappings which satisfy the following conditions (i)–(iii).
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(i) The abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

holds for all f, g ∈ domT .
(ii) The kernel and range of Γ = (Γ0, Γ1)� : domT → G × G are dense in H and G × G, respectively.
(iii) The restriction T � ker Γ0 contains a self-adjoint operator A0.

Then

S := T �
(
ker Γ0 ∩ ker Γ1

)
is a densely defined closed symmetric operator in H and {G, Γ0, Γ1} is a quasi boundary triple for T = S∗

such that A0 = T � ker Γ0.

In the following we assume that {G, Γ0, Γ1} is a quasi boundary triple for T = S∗ with A0 = T � ker Γ0. 
The definition of the γ-field and Weyl function associated with the quasi boundary triple {G, Γ0, Γ1} below 
is based on the direct sum decomposition

domT = domA0 +̇ ker(T − λ) = ker Γ0 +̇ ker(T − λ), λ ∈ ρ(A0). (2.1)

For ordinary and generalized boundary triples the γ-field and Weyl function were introduced in [17] and [18]. 
The definition for quasi boundary triples is formally the same.

Definition 2.3. The γ-field γ and Weyl function M corresponding to a quasi boundary triple {G, Γ0, Γ1} for 
T = S∗ are defined by

ρ(A0) 
 λ �→ γ(λ) =
(
Γ0 � ker(T − λ)

)−1

and

ρ(A0) 
 λ �→ M(λ) = Γ1
(
Γ0 � ker(T − λ)

)−1
,

respectively.

It is immediate from Definition 2.3 and (2.1) that γ(λ), λ ∈ ρ(A0), is a linear operator defined on ran Γ0
which maps onto ker(T − λ). Since ran Γ0 = dom γ(λ) is dense in G by Definition 2.1 (ii) it is clear that 
γ(λ), λ ∈ ρ(A0), is a densely defined operator from G into H. It can be shown with the help of the abstract 
Green’s identity in Definition 2.1 (i) that

γ(λ)∗ = Γ1(A0 − λ)−1 ∈ B(H,G), λ ∈ ρ(A0), (2.2)

and this yields γ(λ) = γ(λ)∗∗ ∈ B(G, H) for λ ∈ ρ(A0); cf. [6, Proposition 2.6] or [7, Proposition 6.13]. 
Furthermore, for λ, μ ∈ ρ(A0) and ϕ ∈ ran Γ0 one has

γ(λ)ϕ =
(
I + (λ− μ)(A0 − λ)−1)γ(μ)ϕ. (2.3)

In particular, for all ϕ ∈ ran Γ0 the H-valued function λ �→ γ(λ)ϕ is holomorphic on ρ(A0). For λ ∈ ρ(A0)
we shall later also make use of the relations
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dk

dλk
γ(λ)ϕ = k!(A0 − λ)−kγ(λ)ϕ, k = 0, 1, . . . , (2.4)

for ϕ ∈ ran Γ0 and

dk

dλk
γ(λ)∗ = k!Γ1(A0 − λ)−k−1, k = 0, 1, . . . , (2.5)

which were proved in [10, Lemma 2.4]. In the context of the γ-field we finally note that in the case of an 
ordinary or generalized boundary triple {G, Γ0, Γ1} the property ran Γ0 = G implies γ(λ) = γ(λ). This leads 
to some obvious simplifications in the above considerations, that is, (2.3) and (2.4) hold for all ϕ ∈ G and 
they can be viewed as equalities in B(G, H).

Next we collect some useful properties of the Weyl function M associated with the quasi boundary triple 
{G, Γ0, Γ1}. Observe first that the values M(λ), λ ∈ ρ(A0), are densely defined linear operators in G with 
domM(λ) = ran Γ0 and ranM(λ) ⊂ ran Γ1, and that

M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(T − λ). (2.6)

For λ, μ ∈ ρ(A0) the Weyl function and γ-field are connected via the identity

M(λ)ϕ−M(μ)∗ϕ = (λ− μ)γ(μ)∗γ(λ)ϕ, ϕ ∈ ran Γ0. (2.7)

This leads to M(λ) ⊂ M(λ)∗, λ ∈ ρ(A0), and hence M(λ) is a closable, but in general unbounded operator 
in G. Furthermore, together with (2.3) one obtains from (2.7) that

M(λ)ϕ = M(μ)ϕ + (λ− μ)γ(μ)∗
(
I + (λ− μ)(A0 − λ)−1)γ(μ)ϕ, ϕ ∈ ran Γ0, (2.8)

and hence for each ϕ ∈ ran Γ0 the G-valued function λ �→ M(λ)ϕ is holomorphic on ρ(A0). Moreover, due 
to (2.8) the operator-valued function λ �→ M(λ) can be viewed as the sum of a possibly unbounded operator 
M(μ) and the function

λ �→ (λ− μ)γ(μ)∗
(
I + (λ− μ)(A0 − λ)−1)γ(μ),

whose values are densely defined bounded operators. Thus it is clear that for λ ∈ ρ(A0) the derivatives of M
are bounded operators and from [10, Lemma 2.4] and (2.2) one obtains for ϕ ∈ ran Γ0

dk

dλk
M(λ)ϕ = k!Γ1(A0 − λ)−kγ(λ)ϕ, k = 1, 2, . . . . (2.9)

For k = 1 and λ ∈ ρ(A0) ∩ R it follows directly from (2.7) that

d
dλ (M(λ)ϕ,ϕ)G =

(
γ(λ)ϕ, γ(λ)ϕ

)
H
> 0, ϕ ∈ ran Γ0 \ {0}. (2.10)

Similarly, as for the γ-field, some of the above considerations simplify in the special case when M is the Weyl 
function corresponding to an ordinary or generalized boundary triple {G, Γ0, Γ1}. Since in both situations 
ran Γ0 = G it follows that the operators M(λ) are defined on the whole space G and hence (2.7) yields 
M(λ) = M(λ)∗, so that M(λ) ∈ B(G) for all λ ∈ ρ(A0). Therefore (2.9) holds for all ϕ ∈ G and hence 
as an equality in B(G). Furthermore, by (2.10) the B(G)-valued operator function M is monotonously 
non-decreasing on intervals in ρ(A0) ∩ R.

We shall use quasi boundary triples and their Weyl functions to describe self-adjoint extensions of S and 
their spectral properties in Section 4. For a linear operator B in G we consider the extension
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A[B] = T � ker(Γ0 + BΓ1), (2.11)

that is, f ∈ domT belongs to domA[B] if and only if f satisfies the boundary condition Γ0f = −BΓ1f . We 
emphasize that the abstract boundary condition in (2.11) is different to the usual choice ker(Γ1 −ΘΓ0), but 
is formally related to it via Θ = −B−1. Note that for a symmetric operator B in G the abstract Green’s 
identity yields

(A[B]f, g)H − (f,A[B]g)H = −(Γ1f,BΓ1g)G + (BΓ1f,Γ1g)G = 0, (2.12)

and hence the extension A[B] is symmetric in H. However, it is important to note that a self-adjoint op-
erator B does not automatically lead to a self-adjoint extension A[B]. In fact, in contrast to the theory of 
ordinary boundary triples, in the more general situation of quasi boundary triples and generalized bound-
ary triples there is in general no one-to-one correspondence between self-adjoint parameters B (or Θ) and 
self-adjoint extensions A[B] of the symmetric operator S in H.

The next theorem contains a variant of Krein’s resolvent formula for canonical extensions which is useful 
to prove their self-adjointness; cf. [6, Theorem 2.8], [7, Theorem 6.16], and [10, Theorem 2.6].

Theorem 2.4. Let S be a densely defined closed symmetric operator in H and let {G, Γ0, Γ1} be a quasi 
boundary triple for T = S∗ with A0 = T � ker Γ0, γ-field γ and Weyl function M . Let B be a linear operator 
in G and let A[B] be the extension of S in (2.11). Then for all λ ∈ ρ(A0) one has

ker(A[B] − λ) =
{
γ(λ)ϕ : ϕ ∈ ker(I + BM(λ))

}
and, in particular, λ ∈ σp(A[B]) if and only if −1 ∈ σp(BM(λ)). Furthermore, if λ ∈ ρ(A0) is not an 
eigenvalue of A[B] then the following assertions (i) and (ii) hold.

(i) g ∈ ran(A[B] − λ) if and only if Bγ(λ)∗g ∈ dom (I + BM(λ))−1;
(ii) For all g ∈ ran(A[B] − λ) we have

(A[B] − λ)−1g = (A0 − λ)−1g − γ(λ)
(
I + BM(λ)

)−1
Bγ(λ)∗g. (2.13)

If B ∈ B(G) is self-adjoint and (I + BM(λ±))−1 ∈ B(G) for some λ± ∈ C
± then A[B] is a self-adjoint 

operator in H and (2.13) holds for all λ ∈ ρ(A0) ∩ ρ(A[B]) and all g ∈ H.

3. Quasi boundary triples and Weyl functions for Dirac operators with singular interactions supported 
on Σ

In this section we construct a quasi boundary triple which turns out to be suitable for the definition 
of Dirac operators with electrostatic δ-shell interactions supported on a compact C∞-surface Σ. We pay 
special attention to the properties of the associated Weyl function; these in turn will lead to a better 
understanding of the spectral properties of Dirac operators with electrostatic δ-shell interactions in Section 4. 
For λ ∈ (−mc2, mc2) the values M(λ) of the Weyl function are closely related with the operators Cλ

σ in 
[2–4]; in this view the results on M(·) in Proposition 3.5 (ii) and Proposition 3.6 for λ ∈ (−mc2, mc2) are 
known from [2–4].

Recall first that the free Dirac operator

A0f := −ic
3∑

αj∂jf + mc2βf, domA0 = H1(R3;C4), (3.1)

j=1
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where the Dirac matrices α1, α2, α3 and β are given by (1.1), is self-adjoint in L2(R3; C4) and that

σ(A0) = (−∞,−mc2] ∪ [mc2,∞) (3.2)

holds; cf. [32] or [35, Chapter 20]. Next, for λ ∈ ρ(A0) the resolvent of A0 acts as

(A0 − λ)−1f(x) =
∫
R3

Gλ(x− y)f(y)dy, x ∈ R
3, f ∈ L2(R3;C4), (3.3)

where the C4×4-valued integral kernel Gλ is given by

Gλ(x) =
(

λ

c2
I4 + mβ +

(
1 − i

√
λ2

c2
− (mc)2|x|

)
i(α · x)
c|x|2

)
ei

√
λ2/c2−(mc)2|x|

4π|x| ; (3.4)

see [32, Section 1.E] or [3, Lemma 2.1]. The explicit form of this integral kernel will be particularly important 
in our further considerations. Moreover, if we denote by −Δ the self-adjoint Laplacian in L2(R3; C) defined 
on H2(R3; C) then using (1.2) we get

A2
0 = (−c2Δ + m2c4)I4, domA2

0 = H2(R3;C4); (3.5)

cf. [35, Korollar 20.2] (here, the case m = c = 1 is considered, which is up to a scaling transform equivalent 
to our case). The operator (−c2Δ +m2c4)I4 is understood as a 4 ×4 block operator with diagonal structure, 
where each diagonal entry acts as −c2Δ + m2c4.

In the following let Σ be the boundary of a bounded C∞-domain Ω ⊂ R
3. For the definition of the quasi 

boundary triple in Theorem 3.2 below we first introduce two integral operators associated with the function

G0(x) = e−mc|x|

4π|x|

(
mβ +

(
1 + mc|x|

) i(α · x)
c|x|2

)
.

Note that there exist constants κ, R > 0 such that

|G0(x)| ≤ κ

{
|x|−2, |x| < R,

e−mc|x|, |x| ≥ R.
(3.6)

Now define the strongly singular integral operator M : L2(Σ; C4) → L2(Σ; C4) by

Mϕ(x) := lim
ε↘0

∫
|x−y|>ε

G0(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;C4). (3.7)

It was shown in [2, Lemma 3.3 and Lemma 3.7] that M is a bounded self-adjoint operator in L2(Σ; C4)
(to see this, note that cM = Cσ in the notation of [2, Lemma 3.3], where m in [2, Lemma 3.1] is replaced 
by mc). Furthermore, we define the mapping γ : L2(Σ; C4) → L2(R3; C4) by

γϕ(x) :=
∫
Σ

G0(x− y)ϕ(y)dσ(y), x ∈ R
3, ϕ ∈ L2(Σ;C4), (3.8)

and observe that (3.6) and Proposition A.4 imply that γ is bounded and everywhere defined.
The following auxiliary result ensures that the operator T in (3.9) below is well-defined.
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Lemma 3.1. Let f, g ∈ H1(R3; C4) and ϕ, ψ ∈ L2(Σ; C4) such that f + γϕ = g + γψ. Then f = g and 
ϕ = ψ.

Proof. From f + γϕ = g + γψ it follows γ(ψ−ϕ) = f − g ∈ H1(R3; C4) = domA0. Let h ∈ H1
0 (R3 \Σ; C4). 

Then the self-adjointness of A0 and [2, Lemma 2.10] together yield

(A0γ(ψ − ϕ), h)L2(R3;C4) = (γ(ψ − ϕ), A0h)L2(R3;C4)

=
(
ψ − ϕ, (A−1

0 A0h)|Σ
)
L2(Σ;C4) = 0

and, since H1
0 (R3 \ Σ; C4) is dense in L2(R3; C4), we conclude A0γ(ψ − ϕ) = 0. Now 0 ∈ ρ(A0) yields 

f − g = γ(ψ − ϕ) = 0.
It remains to show ϕ = ψ. Using [2, Lemma 2.10] we obtain for k ∈ L2(R3; C4)

0 = (γ(ψ − ϕ), k)L2(R3;C4) =
(
ψ − ϕ, (A−1

0 k)|Σ
)
L2(Σ;C4),

and since the range of the mapping L2(R3; C4) 
 k �→ (A−1
0 k)|Σ is H1/2(Σ; C4) we conclude ϕ = ψ. �

Now we define the operator T in L2(R3; C4) via

T (f + γϕ) := A0f,

domT :=
{
f + γϕ : f ∈ H1(R3;C4), ϕ ∈ L2(Σ;C4)

}
.

(3.9)

In the following the elements in domT will always be written in the form f + γϕ with f ∈ H1(R3; C4) and 
ϕ ∈ L2(Σ; C4); this decomposition is unique because of Lemma 3.1 and hence T is well defined.

Theorem 3.2. Let T be given by (3.9). Then the operator

S := A0 � H1
0 (R3 \ Σ;C4) (3.10)

is densely defined, closed and symmetric in L2(R3; C4) and {L2(Σ; C4), Γ0, Γ1}, where

Γ0(f + γϕ) = ϕ and Γ1(f + γϕ) = f |Σ + Mϕ, f + γϕ ∈ domT, (3.11)

is a quasi boundary triple for T = S∗ such that T � ker Γ0 coincides with the free Dirac operator A0 in (3.1).

Proof. We shall use Theorem 2.2 to prove the claim. Note that the mappings Γ0 and Γ1 are well-defined 
by Lemma 3.1. First, we check Green’s identity in Theorem 2.2 (i). For f + γϕ, g + γψ ∈ domT it follows 
from (3.9) and the self-adjointness of A0 that

(
T (f + γϕ), g + γψ

)
L2(R3;C4) −

(
f + γϕ, T (g + γψ)

)
L2(R3;C4)

=
(
A0f, g + γψ

)
L2(R3;C4) −

(
f + γϕ,A0g

)
L2(R3;C4)

=
(
A0f, γψ

)
L2(R3;C4) −

(
γϕ,A0g

)
L2(R3;C4).

Since (
A0f, γψ

)
2 3 4 =

(
f |Σ, ψ

)
2 4 and

(
γϕ,A0g

)
2 3 4 =

(
ϕ, g|Σ

)
2 4
L (R ;C ) L (Σ;C ) L (R ;C ) L (Σ;C )
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by [2, Lemma 2.10] and M is self-adjoint, we obtain

(
T (f + γϕ), g + γψ

)
L2(R3;C4) −

(
f + γϕ, T (g + γψ)

)
L2(R3;C4)

=
(
f |Σ, ψ

)
L2(Σ;C4) −

(
ϕ, g|Σ

)
L2(Σ;C4)

=
(
f |Σ + Mϕ,ψ

)
L2(Σ;C4) −

(
ϕ, g|Σ + Mψ

)
L2(Σ;C4)

=
(
Γ1(f + γϕ),Γ0(g + γψ)

)
L2(Σ;C4) −

(
Γ0(f + γϕ),Γ1(g + γψ)

)
L2(Σ;C4),

that is, assumption (i) in Theorem 2.2 holds.
Next, we prove that Γ has dense range. To show this, consider (ψ, ξ) ∈ (ran Γ)⊥. Then we have(

ψ,Γ0(f + γϕ)
)
L2(Σ;C4) +

(
ξ,Γ1(f + γϕ)

)
L2(Σ;C4) = 0 (3.12)

for all f + γϕ ∈ domT . The special choice ϕ = 0 leads to

0 =
(
ξ,Γ1f

)
L2(Σ;C4) =

(
ξ, f |Σ

)
L2(Σ;C4), f ∈ H1(R3;C4).

Since the trace operator has dense range we conclude ξ = 0 and therefore (3.12) reduces to

0 =
(
ψ,Γ0(f + γϕ)

)
L2(Σ;C4) = (ψ,ϕ)L2(Σ;C4)

for all ϕ ∈ L2(Σ; C4). Thus ψ = 0 and it follows that ranΓ is dense. It is clear that kerΓ = H1
0 (R3 \ Σ; C4)

is dense in L2(R3; C4). We have shown that assumption (ii) in Theorem 2.2 is satisfied. Finally, assumption 
(iii) in Theorem 2.2 holds, since T � ker Γ0 is the free Dirac operator.

Now it follows from Theorem 2.2 that {L2(Σ; C4), Γ0, Γ1} is a quasi boundary triple for T = S∗, where 
S is the restriction of T onto ker Γ = H1

0 (R3 \ Σ; C4) in (3.10). �
Remark 3.3. Note that ran Γ0 = L2(Σ; C4) in Theorem 3.2 and hence the triple {L2(Σ; C4), Γ0, Γ1} is 
even a generalized boundary triple in the sense of [18]; cf. Definition 2.1. In particular, it follows that the 
values of the corresponding γ-field and Weyl function (see Proposition 3.4 below) are everywhere defined 
and bounded operators. In the case that γ in (3.8) and the strongly singular integral operator M in (3.7)
are only considered on a dense subspace of L2(Σ; C4) the corresponding triple in Theorem 3.2 is still a 
quasi boundary triple. A natural choice in this context is to consider γ and M defined on the Sobolev 
space H1/2(Σ; C4). In this situation T is the orthogonal sum of Dirac operators defined on H1(Ω; C4) and 
H1(R3 \ Ω; C4).

Next we compute the γ-field and the Weyl function associated with the quasi (or generalized) boundary 
triple {L2(Σ; C4), Γ0, Γ1}. It turns out that the operators γ and M introduced in (3.8) and (3.7), respectively, 
coincide with the values of the γ-field and the Weyl function at the point λ = 0.

Proposition 3.4. Let {L2(Σ; C4), Γ0, Γ1} be as in Theorem 3.2 and let Gλ be the integral kernel of the 
resolvent of the free Dirac operator A0 in (3.4). Then the following holds.

(i) The γ-field of {L2(Σ; C4), Γ0, Γ1} is holomorphic on ρ(A0) = C \((−∞, −mc2] ∪[mc2, ∞)), the operators 
γ(λ) : L2(Σ; C4) → L2(R3; C4) are everywhere defined and bounded, and given by

γ(λ)ϕ(x) =
∫

Gλ(x− y)ϕ(y)dσ(y), x ∈ R
3, ϕ ∈ L2(Σ;C4).
Σ
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Their adjoints γ(λ)∗ : L2(R3; C4) → L2(Σ; C4) are

γ(λ)∗f(x) =
∫
R3

Gλ(x− y)f(y)dy, x ∈ Σ, f ∈ L2(R3;C4).

The operators γ(λ) and γ(λ)∗ are compact for all λ ∈ ρ(A0).
(ii) The Weyl function M(·) of {L2(Σ; C4), Γ0, Γ1} is holomorphic on ρ(A0) = C \((−∞, −mc2] ∪[mc2, ∞)), 

the operators M(λ) : L2(Σ; C4) → L2(Σ; C4) are everywhere defined and bounded, and given by

M(λ)ϕ(x) := lim
ε↘0

∫
|x−y|>ε

Gλ(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;C4).

Proof. (i) By (2.2) we have γ(λ)∗ = Γ1(A0 − λ)−1, λ ∈ ρ(A0), and this operator has the explicit represen-
tation

γ(λ)∗f(x) =
∫
R3

Gλ(x− y)f(y)dy, x ∈ Σ, f ∈ L2(R3;C4). (3.13)

From the properties of the trace map we conclude ranγ(λ)∗ = H1/2(Σ; C4), which together with the closed 
graph theorem implies that γ(λ)∗ is bounded and everywhere defined as an operator from L2(R3; C4) onto 
H1/2(Σ; C4). Since the embedding H1/2(Σ; C4) ↪→ L2(Σ; C4) is compact it follows that γ(λ)∗, λ ∈ ρ(A0), is 
compact.

Next, we analyze γ(λ), λ ∈ ρ(A0). As Γ0 is surjective it follows that γ(λ) is everywhere defined and 
bounded (see Section 2) and since γ(λ)∗ is compact also γ(λ) = γ(λ)∗∗ is compact. Moreover, using (3.13)
and Gλ(x− y) = Gλ(y − x) we obtain

(
γ(λ)ϕ, f

)
L2(R3;C4) =

(
ϕ, γ(λ)∗f

)
L2(Σ;C4) =

∫
Σ

ϕ(x)
∫
R3

Gλ(x− y)f(y)dydσ(x)

=
∫
R3

∫
Σ

Gλ(y − x)ϕ(x)dσ(x)f(y)dy

for all ϕ ∈ L2(Σ; C4) and f ∈ L2(R3; C4), which yields the integral representation of γ(λ).
(ii) In order to compute M(λ), λ ∈ ρ(A0), we use γ(λ) = (I4 + λ(A0 − λ)−1)γ(0) and γ(0) = γ; cf. (2.3)

and (3.8). It follows from the definition of Γ1 in (3.11) that

M(λ)ϕ = Γ1γ(λ)ϕ = Γ1
(
I4 + λ(A0 − λ)−1)γϕ = Mϕ +

(
λ(A0 − λ)−1γϕ

)
|Σ. (3.14)

We shall derive an integral formula for (λ(A0 − λ)−1γϕ)|Σ next. First note that for all g ∈ C∞
c (R3; C4) and 

almost all x ∈ R
3 we have∫
R3

[
Gλ(x− y) −G0(x− y)

]
g(y)dy = (A0 − λ)−1g(x) −A−1

0 g(x)

= λ(A0 − λ)−1A−1
0 g(x)

= λ

∫
Gλ(x− y)

∫
G0(y − z)g(z)dzdy
R3 R3
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= λ

∫
R3

g(z)
∫
R3

Gλ(x− y)G0(y − z)dydz

= λ

∫
R3

g(y)
∫
R3

Gλ(x− z)G0(z − y)dzdy,

where Fubini’s theorem and a permutation of the variables y and z were used in the last two steps. Hence,

Gλ(x− y) −G0(x− y) = λ

∫
R3

Gλ(x− z)G0(z − y)dz

is true for almost all x, y ∈ R
3. This can be extended by the continuity of Gλ for all x �= y. Employing again 

Fubini’s theorem, we deduce for x ∈ Σ

λ(A0 − λ)−1γϕ(x) = λ

∫
R3

Gλ(x− y)
∫
Σ

G0(y − z)ϕ(z)dσ(z)dy

= λ

∫
Σ

ϕ(z)
∫
R3

Gλ(x− y)G0(y − z)dydσ(z)

=
∫
Σ

ϕ(z)
[
Gλ(x− z) −G0(x− z)

]
dσ(z).

(3.15)

Since λ(A0 − λ)−1γϕ|Σ ∈ L2(Σ; C4) the last term is finite for almost all x ∈ Σ. Therefore, we have that 
ϕ
[
Gλ(x − ·) −G0(x − ·)

]
∈ L1(Σ; C4) for almost all x ∈ Σ. Hence, for these x we obtain from (3.14), (3.7), 

(3.15), and dominated convergence that

M(λ)ϕ(x) = Mϕ(x) + λ(A0 − λ)−1γϕ(x)

= lim
ε↘0

∫
|x−y|>ε

G0(x− y)ϕ(y)dσ(y) + lim
ε↘0

∫
|x−y|>ε

[
Gλ(x− y) −G0(x− y)

]
ϕ(y)dσ(y)

= lim
ε↘0

∫
|x−y|>ε

Gλ(x− y)ϕ(y)dσ(y);

this shows the representation of M(λ) in (ii). Note that the operators M(λ), λ ∈ ρ(A0), are everywhere 
defined and bounded since ran Γ0 = L2(Σ; C4) (see Section 2). �

In order to show self-adjointness and to discuss the spectral properties of Dirac operators with δ-shell 
interactions in the next section some more information on the Weyl function M(·) is necessary. Most of the 
results in the next two propositions are already contained in [3,4] in a similar form; for the convenience of 
the reader we collect and trace them back to those in [3,4]. First, we show that the Weyl function M(·)
admits an extension to the points λ = ±mc2; this extension is in agreement with the integral representation 
of M(·) in Proposition 3.4 (ii) in the sense that the functions G±mc2 in Proposition 3.5 (i) below coincide 
with the integral kernel Gλ of the resolvent of the free Dirac operator A0 in (3.4) at λ = ±mc2. The assertion 
in Proposition 3.5 (ii) is a variant of [3, Lemma 3.2].

Proposition 3.5. Let {L2(Σ; C4), Γ0, Γ1} be the quasi boundary triple in Theorem 3.2 with the corresponding 
Weyl function M(·). Then the following assertions hold.
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(i) The limits

M(mc2) := lim
λ↗mc2

M(λ) and M(−mc2) := lim
λ↘−mc2

M(λ)

exist in the operator norm on B
(
L2(Σ; C4)

)
. The limit operators M(±mc2) : L2(Σ; C4) → L2(Σ; C4)

are given by

M(±mc2)ϕ(x) = lim
ε↘0

∫
|x−y|>ε

G±mc2(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;C4),

where the functions G±mc2 are defined by

G±mc2(x) =
(
m(β ± I4) + i(α · x)

c|x|2
)

1
4π|x| .

(ii) The Weyl function λ �→ M(λ) is uniformly bounded on [−mc2, mc2], i.e.

M0 := sup
λ∈[−mc2,mc2]

‖M(λ)‖ < ∞.

Proof. (i) We discuss only the case λ ↗ mc2, the statement for λ ↘ −mc2 can be proved in exactly the 
same way. We define the singular integral operator

Cϕ(x) = lim
ε↘0

∫
|x−y|>ε

Gmc2(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;C4),

and show that M(λ) converges to C in the operator norm as λ ↗ mc2. Note that for λ ∈ (−mc2, mc2) we 
have

C −M(λ) = T1(λ) + T2(λ) + T3(λ),

where for j ∈ {1, 2, 3} the operator Tj(λ) : L2(Σ; C4) → L2(Σ; C4) is of the form

Tj(λ)ϕ(x) := lim
ε↘0

∫
|x−y|>ε

tλj (x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;C4),

with

tλ1 (x) :=
(
m− λ

c2

)
e−

√
(mc)2−λ2/c2|x|

4π|x| I4;

tλ2 (x) := −
√

(mc)2 − λ2

c2
i(α · x)
c|x|

e−
√

(mc)2−λ2/c2|x|

4π|x| ;

tλ3 (x) :=
(
i(α · x)
c|x|2 + m(I4 + β)

)
1 − e−

√
(mc)2−λ2/c2|x|

4π|x| .

We will see that the operators T1(λ), T2(λ) and T3(λ) are bounded and everywhere defined, which then 
yields that also C has this property.

First, since |tλ1 (x)| ≤
(
m− λ/c2

)
(4π|x|)−1 for x ∈ R

3, Proposition A.5 yields that there is a constant κ1
(independent of λ) such that
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‖T1(λ)‖ ≤ κ1

(
m− λ

c2

)
→ 0, λ ↗ mc2. (3.16)

Similarly, as |tλ2 (x)| ≤ κ2
√

(mc)2 − λ2/c2 |x|−1 for all x ∈ R
3 and a constant κ2, we obtain from Proposi-

tion A.5 a constant κ3 (independent of λ) such that

‖T2(λ)‖ ≤ κ3

√
(mc)2 − λ2

c2
→ 0, λ ↗ mc2. (3.17)

Eventually, to get a suitable estimate for tλ3 we note first that

∣∣∣1 − e−
√

(mc)2−λ2/c2|x|
∣∣∣ =

∣∣∣∣∣∣
0∫

−1

d
dte

t
√

(mc)2−λ2/c2|x|dt

∣∣∣∣∣∣
≤

0∫
−1

∣∣∣∣et√(mc)2−λ2/c2|x| ·
√

(mc)2 − λ2

c2
|x|

∣∣∣∣dt
≤

√
(mc)2 − λ2

c2
|x|.

Thus there exists a constant κ4 such that

|tλ3 (x)| ≤ κ4
√

(mc)2 − λ2/c2
(
1 + |x|−1)

for all x ∈ R
3. Therefore, we can apply Proposition A.5 and obtain some κ5 (independent of λ) such that

‖T3(λ)‖ ≤ κ5

√
(mc)2 − λ2

c2
→ 0, λ ↗ mc2. (3.18)

Combining (3.16)–(3.18) we conclude

‖C −M(λ)‖ ≤ ‖T1(λ)‖ + ‖T2(λ)‖ + ‖T3(λ)‖ → 0, λ ↗ mc2,

which shows the claim of statement (i).
(ii) In the same way as in [3, Lemma 3.2] (where the case c = 1 is treated) one verifies

sup
λ∈(−mc2,mc2)

‖M(λ)‖ < ∞.

Finally, since M(mc2) = limλ↗mc2 M(λ) and M(−mc2) = limλ↘−mc2 M(λ) by definition it follows that

M0 = sup
λ∈[−mc2,mc2]

‖M(λ)‖ < ∞. �

In the following proposition we collect some spectral properties of the Weyl function M(·). In particular, 
we give a detailed description of the spectrum of M(λ) for λ ∈ [−mc2, mc2], which is needed to prove that 
the discrete spectrum of the Dirac operator with an electrostatic δ-shell interaction is finite. The results are 
mostly contained in [4, Lemma 3.2], but for the convenience of the reader we add their proofs here.

Proposition 3.6. Let {L2(Σ; C4), Γ0, Γ1} be the quasi boundary triple in Theorem 3.2 with the corresponding 
Weyl function M(·). Then the following assertions hold.
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(i) For all λ ∈ ρ(A0) there exists a compact operator K(λ) in L2(Σ; C4) such that

M(λ)2 = 1
4c2 I4 + K(λ).

(ii) Let M0 := supλ∈[−mc2,mc2] ‖M(λ)‖. Then there exists an at most countable family of continuous and 
non-decreasing functions μn : [−mc2, mc2] →

[ 1
4c2M0

, M0
]

such that

σ(M(λ)) =
{
± 1

2c

}
∪ {μn(λ) : n ∈ N} ∪

{
− 1

4c2μn(λ) : n ∈ N

}
.

Moreover, for any fixed λ ∈ [−mc2, mc2] the number 1
2c is the only possible accumulation point of the 

sequence (μn(λ)).

Proof. (i) First, it follows from [2, equation (22) and Lemma 3.5] that

M(0)2 = 1
4c2 I4 + K,

where K is a compact operator in L2(Σ; C4) (note that cM(0) = Cσ in the notation of [2, Lemma 3.1 and 
Lemma 3.3], where m in [2, Lemma 3.1] has to be replaced by mc). For λ ∈ ρ(A0) we have

M(λ) = M(0) + λγ(0)∗γ(λ)

by (2.7), and as all the operators on the right hand side are bounded and everywhere defined we get

M(λ)2 = M(0)2 + λM(0)γ(0)∗γ(λ) + λγ(0)∗γ(λ)M(0) +
(
λγ(0)∗γ(λ)

)2 = 1
4c2 I4 + K(λ),

where

K(λ) := K + λM(0)γ(0)∗γ(λ) + λγ(0)∗γ(λ)M(0) +
(
λγ(0)∗γ(λ)

)2
is compact, as γ(0)∗ and γ(λ) are compact by Proposition 3.4 (i). Hence, assertion (i) of this proposition is 
true.

In order to show (ii) assume first that λ ∈ (−mc2, mc2). By (i) there exist at most countable sequences 
of eigenvalues μ+

n (λ) ⊂ [0, ∞) and μ−
n (λ) ⊂ (−∞, 0) such that

σ(M(λ)) ⊂
{
± 1

2c

}
∪
{
μ+
n (λ) : n ∈ N

}
∪
{
μ−
n (λ) : n ∈ N

}
and the only possible accumulation point of μ±

n (λ) is ± 1
2c . Since λ �→ M(λ) is analytic and monotonously 

increasing on the interval (−mc2, mc2) according to (2.10) the functions μ±
n : (−mc2, mc2) → R can be 

chosen to be continuous and non-decreasing. In the proof of [3, Theorem 3.3] (observe that the operator Cλ
σ

in [3, Theorem 3.3] coincides with cM(λ), when m in [3] is replaced by mc) it is shown that

μ ∈ σp(cM(λ)) if and only if − 1
4μ ∈ σp(cM(λ)),

and hence

μ ∈ σp(M(λ)) if and only if − 1
2 ∈ σp(M(λ)).
4c μ
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Thus it follows that

μn(λ) := μ+
n (λ) ∈

[
1

4c2M0
,M0

]
and μ−

n (λ) = − 1
4c2μn(λ) .

In particular, both points ± 1
2c belong to σ(M(λ)) (they are accumulation points of μ±

n (λ) or eigenvalues). 
Finally, since the operators M(±mc2) are the continuous extensions of M(λ), λ ∈ (−mc2, mc2), in the 
operator norm (see Proposition 3.5 (i)) it follows that the spectral properties of M(λ) extend by continuity 
to the endpoints ±mc2; cf. [34, Satz 9.24]. �
4. Dirac operators with δ-shell interactions and their spectra

In this section we define Dirac operators with electrostatic δ-shell interactions supported on surfaces in 
R

3 and study their spectral properties. The definition of the operator Aη for constant interaction strength 
η �= ±2c is via the quasi boundary triple in Theorem 3.2.

Definition 4.1. Let T be given by (3.9) and let {L2(Σ; C4), Γ0, Γ1} be the quasi boundary triple in Theo-
rem 3.2. The Dirac operator Aη with an electrostatic δ-shell interaction of strength η ∈ R \{±2c} supported 
on Σ is defined by

Aη := T � ker(Γ0 + ηΓ1),

or, equivalently, it admits the following more explicit representation:

Aη(f + γϕ) = A0f, domAη =
{
f + γϕ ∈ domT : η(f |Σ + Mϕ) = −ϕ

}
.

The boundary condition for f + γϕ ∈ domAη corresponds to a certain jump condition:

Remark 4.2. Let Ω ⊂ R
3 be the bounded C∞-domain with ∂Ω = Σ, denote the outer unit normal vector 

field of Ω by ν and let h := f + γϕ ∈ domAη. It is known that for x ∈ Σ the nontangential limits

h+(x) := lim
Ω
y→x

h(y) = f(x) + Mϕ(x) − i

2cα · ν ϕ(x)

and

h−(x) := lim
R3\Ω
y→x

h(y) = f(x) + Mϕ(x) + i

2cα · ν ϕ(x)

exist and define functions in L2(Σ; C4); cf. [2, Lemma 3.3] (note that cγ = Φ(·) and cM = Cσ with Φ(·)
and Cσ in the notation of [2, Lemma 3.3]). Making use of (α · ν)2 = I4 (this follows from (1.2)) one verifies 
that the boundary condition η(f |Σ + Mϕ) = −ϕ is equivalent to the jump condition

η

2 (h+ + h−) = −icα · ν (h+ − h−) .

Note that Green’s identity for the quasi boundary triple {L2(Σ; C4), Γ0, Γ1} shows that Aη is symmetric; 
cf. (2.12). In the following we shall employ some abstract results on quasi boundary triples and their Weyl 
functions from Section 2, which together with the properties of the γ-field and Weyl function M(·) in 
Propositions 3.4–3.6 are the main ingredients in the proofs of Theorem 4.4 and Theorem 4.6 below. We first 
verify that I4 + ηM(λ) is boundedly invertible.



64 J. Behrndt et al. / J. Math. Pures Appl. 111 (2018) 47–78
Lemma 4.3. Let η ∈ R \ {±2c} and let λ ∈ C \ R. Then I4 + ηM(λ) has a bounded and everywhere defined 
inverse.

Proof. First, we note that I4+ηM(λ) is injective for λ ∈ C \R, as otherwise λ would be a non-real eigenvalue 
of the symmetric operator Aη; cf. Theorem 2.4. It remains to prove that I4 + ηM(λ) is surjective. Observe 
that by Proposition 3.6 (i)

(I4 + ηM(λ))(I4 − ηM(λ)) = I4 − η2M(λ)2 =
(

1 − η2

4c2

)
I4 − η2K(λ),

where K(λ) is a compact operator. Hence,

(I4 + ηM(λ))(I4 − ηM(λ)) =
(

1 − η2

4c2

)
(I4 + dK(λ)), d = − 4c2η2

4c2 − η2 ,

and therefore ran(I4 +dK(λ)) ⊂ ran(I4 +ηM(λ)). Since the left hand side in the above equation is injective 
(otherwise λ would be a non-real eigenvalue of one of the symmetric operators A±η by Theorem 2.4) the 
same is true for the right hand side. Thus the Fredholm alternative implies that ran(I4+dK(λ)) = L2(Σ; C4). 
Hence, I4 + ηM(λ) is also surjective, which yields the assertion. �

In the next theorem we verify the self-adjointness of Aη, provide a Krein type resolvent formula, and 
we investigate the discrete spectrum of Aη in the gap (−mc2, mc2) of the essential spectrum. It turns out 
in (iii) that the discrete spectrum in (−mc2, mc2) is finite (and non-trivial for certain η by Proposition 5.5). 
Moreover, for sufficiently small or sufficiently large |η| the discrete spectrum of Aη is empty by assertion (iv). 
While this behavior for small interaction strengths is similar as for Schrödinger operators with δ-interactions, 
such an effect does not occur for large η. This result and also assertion (ii) are known from [3]; here they 
follow immediately from Theorem 2.4 and Proposition 3.6.

Theorem 4.4. Let {L2(Σ; C4), Γ0, Γ1} be the quasi boundary triple in Theorem 3.2 with corresponding 
γ-field γ(·) and Weyl function M(·). As in Proposition 3.5 (ii) set

M0 := sup
λ∈[−mc2,mc2]

‖M(λ)‖.

Then the Dirac operator Aη in Definition 4.1 is self-adjoint in L2(R3; C4) for all η ∈ R \ {±2c} and

(Aη − λ)−1 = (A0 − λ)−1 − γ(λ)
(
I4 + ηM(λ)

)−1
ηγ(λ)∗ (4.1)

for all λ ∈ ρ(A0) ∩ ρ(Aη). Furthermore, the following assertions are true.

(i) σess(Aη) = (−∞, −mc2] ∪ [mc2, ∞).
(ii) dim ker(Aη − λ) = dim ker(I4 + ηM(λ)) for all λ ∈ (−mc2, mc2).
(iii) σ(Aη) ∩ (−mc2, mc2) is finite for all η ∈ R \ {±2c}.
(iv) σ(Aη) ∩ (−mc2, mc2) = ∅ for |η| < 1

M0
or |η| > 4c2M0.

Proof. The fact that Aη is self-adjoint in L2(R3; C4) and that the resolvent of Aη is given by (4.1) are 
immediate consequences of Theorem 2.4 and Lemma 4.3.

(i) The resolvent formula (4.1) implies that (Aη −λ)−1 − (A0 −λ)−1 is compact for all λ ∈ ρ(A0) ∩ρ(Aη)
since γ(λ) and γ(λ)∗ are compact by Proposition 3.4 and (I4 + ηM(λ))−1η is bounded by Lemma 4.3. This 
yields
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σess(Aη) = σess(A0) = σ(A0) = (−∞,−mc2] ∪ [mc2,∞).

(ii) This claim follows from Theorem 2.4.
Assertion (iii) will be shown by an indirect proof. Assume that for some interaction strength η ∈ R \{±2c}

there are infinitely many discrete eigenvalues of Aη in the gap (−mc2, mc2) of the essential spectrum. Then 
mc2 or −mc2 is an accumulation point of these eigenvalues in (−mc2, mc2) and in the following we discuss 
the case η < 0 and that there is a sequence (λn) ⊂ σ(Aη) ∩ (−mc2, mc2) which tends to mc2; the cases with 
η > 0 or eigenvalues accumulating to −mc2 can be treated analogously. Recall from Proposition 3.6 (ii) 
that

σ(M(λ)) =
{
± 1

2c

}
∪ {μn(λ) : n ∈ N} ∪

{
− 1

4c2μn(λ) : n ∈ N

}
,

where μn : [−mc2, mc2] →
[ 1
4c2M0

, M0
]

are continuous and non-decreasing functions for all n ∈ N. Since 
0 < − 1

η ∈ σp(M(λn)) by (ii) and − 1
η �= 1

2c for each n ∈ N there exists k(n) such that μk(n)(λn) = − 1
η . By 

monotonicity we have

1
4c2M0

≤ μk(n)(−mc2) ≤ −1
η

and −1
η
≤ μk(n)(mc2) ≤ M0

for all n ∈ N and hence the infinite sequences (μk(n)(−mc2)) ⊂ σ(M(−mc2)) and (μk(n)(mc2)) ⊂ σ(M(mc2))
both have an accumulation point in 

[ 1
4c2M0

, − 1
η

]
and 

[
− 1

η , M0
]
, respectively. Since 1

2c is the only possible 
accumulation point of σ(M(−mc2)) and σ(M(mc2)) in 

[ 1
4c2M0

, M0
]

this is a contradiction to η �= −2c. It 
follows that σ(Aη) ∩ (−mc2, mc2) is finite.

(iv) For η /∈ {0, ±2c} it follows from (ii) that λ ∈ (−mc2, mc2) is an eigenvalue of Aη if and only if − 1
η is an 

eigenvalue of M(λ). Hence the assertion follows from the fact that σ(M(λ)) ⊂ [−M0, − 1
4c2M0

] ∪ [ 1
4c2M0

, M0], 
see Proposition 3.6 (ii). �

Besides the qualitative properties of the spectrum of Aη in Theorem 4.4 we establish a trace class result 
important for mathematical scattering theory in Theorem 4.6 below. We keep the notations simple and skip 
the respective spaces in the symbols of (weak) Schatten–von Neumann ideals Sp,∞. We also note the useful 
property

S1/x,∞ ·S1/y,∞ = S1/(x+y),∞, x, y > 0, (4.2)

see, e.g. [9, Lemma 2.3 (iii)]. In the next preparatory lemma we first provide some auxiliary Schatten–
von Neumann estimates for the derivatives of the γ-field and Weyl function in Proposition 3.4.

Lemma 4.5. Let λ ∈ ρ(A0) and let the operators γ(λ) and M(λ) be given as in Proposition 3.4. Then for all 
k ∈ N0 one has

dk

dλk
γ(λ) ∈ S4/(2k+1),∞, and dk

dλk
γ(λ)∗ ∈ S4/(2k+1),∞.

Moreover, it holds for all k ∈ N

dk

dλk
M(λ) ∈ S2/k,∞.

Proof. We shall use that for all λ ∈ ρ(A0) the relations
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dk

dλk
γ(λ)∗ = k!Γ1(A0 − λ)−k−1, k = 0, 1, . . . , (4.3)

and

dk

dλk
M(λ) = k!Γ1(A0 − λ)−kγ(λ), k = 1, 2, . . . , (4.4)

hold; see (2.5) and (2.9). It follows from (3.5) and dom Δl = H2l(R3; C) that domAk+1
0 = Hk+1(R3; C4)

and hence ran(A0 − λ)−k−1 = Hk+1(R3; C4). Therefore, ran(Γ1(A0 − λ)−k−1) = Hk+1/2(Σ; C4) and 
[9, Lemma 4.7] yields

Γ1(A0 − λ)−k−1 ∈ S4/(2k+1),∞, k = 0, 1, . . . . (4.5)

Now the second assertion of the lemma follows from (4.3) and by taking adjoint we get the first statement. 
The assertion on dk

dλkM(λ) follows from (4.4), (4.5), γ(λ) ∈ S4,∞ and (4.2). �
In the next theorem we prove that the difference of the third powers of the resolvents of Aη and A0 is 

a trace class operator, and we provide a formula for the trace in terms of the Weyl function M(·). Note 
that the trace on the left hand side in (4.6) is taken in the space L2(R3; C4), whereas the trace on the right 
hand side is in the boundary space L2(Σ; C4). We refer the reader to [10,23,24] and the references therein 
for related results on elliptic differential operators, Fredholm perturbation determinants and other types of 
trace formulae for Schrödinger operators.

Theorem 4.6. Let η ∈ R \ {±2c} and let M(·) be as in Proposition 3.4. Then for all λ ∈ ρ(A0) ∩ ρ(Aη) the 
operator

(Aη − λ)−3 − (A0 − λ)−3

belongs to the trace class ideal and

tr
[
(Aη − λ)−3 − (A0 − λ)−3] = −1

2tr
[

d2

dλ2

(
(I4 + ηM(λ))−1η

d
dλM(λ)

)]
(4.6)

holds. In particular, the wave operators for the pair {Aη, A0} exist and are complete, and the absolutely 
continuous parts of Aη and A0 are unitarily equivalent.

Proof. For η ∈ R \ {±2c} and λ ∈ ρ(A0) ∩ ρ(Aη) it follows from Lemma 4.3 and Theorem 4.4 that 
(I4 + ηM(λ))−1η is a bounded and everywhere defined operator. We shall use the symbol B for the class of 
bounded and everywhere defined operators in the following. The resolvent formula from Theorem 4.4 and 
[10, equation (2.7)] yield

(Aη − λ)−3 − (A0 − λ)−3 = 1
2

d2

dλ2

[
(Aη − λ)−1 − (A0 − λ)−1]

= −1
2

d2

dλ2

[
γ(λ)(I4 + ηM(λ))−1ηγ(λ)∗

]
= −

∑
p+q+r=2

1
p!q!r!

(
dp

dλp
γ(λ)

)(
dq

dλq
(I4 + ηM(λ))−1η

)(
dr

dλr
γ(λ)∗

)
.

(4.7)

Before we verify that each summand on the right-hand side in (4.7) is a trace class operator we first mention 
that
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d
dλ (I4 + ηM(λ))−1η = −(I4 + ηM(λ))−1η

(
d
dλM(λ)

)
(I4 + ηM(λ))−1η ∈ S2,∞

and

d2

dλ2 (I4 + ηM(λ))−1η = 2(I4 + ηM(λ))−1η

((
d
dλM(λ)

)
(I4 + ηM(λ))−1η

)2

−(I4 + ηM(λ))−1η

(
d2

dλ2M(λ)
)

(I4 + ηM(λ))−1η ∈ S1,∞

hold by Lemma 4.5 and (4.2). It then follows from Lemma 4.5 that(
d2

dλ2 γ(λ)
)

(I4 + ηM(λ))−1ηγ(λ)∗ ∈ S4/5,∞ ·B ·S4,∞,(
d
dλγ(λ)

)(
d
dλ (I4 + ηM(λ))−1η

)
γ(λ)∗ ∈ S4/3,∞ ·S2,∞ ·S4,∞,(

d
dλγ(λ)

)
(I4 + ηM(λ))−1η

(
d
dλγ(λ)∗

)
∈ S4/3,∞ ·B ·S4/3,∞,

γ(λ)
(

d
dλ (I4 + ηM(λ))−1η

)(
d
dλγ(λ)∗

)
∈ S4,∞ ·S2,∞ ·S4/3,∞,

γ(λ)(I4 + ηM(λ))−1η

(
d2

dλ2 γ(λ)∗
)

∈ S4,∞ ·B ·S4/5,∞,

γ(λ)
(

d2

dλ2 (I4 + ηM(λ))−1η

)
γ(λ)∗ ∈ S4,∞ ·S1,∞ ·S4,∞,

and using (4.2) we observe that each term is in the weak Schatten–von Neumann ideal S2/3,∞. Since S2/3,∞
is contained in the trace class ideal we then conclude from (4.7) the first claim of this theorem. Moreover, 
using the cyclicity of the trace it follows in the same way as in the proof of [10, Theorem 3.7 (ii)] from (4.7)
that

tr
(
(Aη − λ)−3 − (A0 − λ)−3)

= −
∑

p+q+r=2

1
p!q!r! tr

[(
dp

dλp
γ(λ)

)(
dq

dλq
(I4 + ηM(λ))−1η

)(
dr

dλr
γ(λ)∗

)]

= −
∑

p+q+r=2

1
p!q!r! tr

[(
dq

dλq
(I4 + ηM(λ))−1η

)(
dr

dλr
γ(λ)∗

)(
dp

dλp
γ(λ)

)]

= −1
2tr

[
d2

dλ2

(
(I4 + ηM(λ))−1ηγ(λ)∗γ(λ)

)]
= −1

2tr
[

d2

dλ2

(
(I4 + ηM(λ))−1η

d
dλM(λ)

)]
.

This shows the trace formula in Theorem 4.6. The assertion on the wave operators and the absolutely 
continuous spectrum are well-known consequences of the trace class property, see, e.g. [36, Chapter 0, Theo-
rem 8.2], [31, Problem 25], and the standard definition of existence and completeness of wave operators. �
Remark 4.7. We have actually proven a slightly stronger claim in Theorem 4.6, namely, that the resolvent 
power difference (Aη−λ)−3−(A0−λ)−3 belongs to the weak Schatten–von Neumann class S2/3,∞. A similar 
analysis can be performed for other integer powers of the resolvents of Aη and A0 in the spirit of [8,10]. In 
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the present text we restricted our attention to the third powers, because it is the smallest power for which 
the resolvent power difference of Aη and A0 is in the trace class. This implies, in particular, the existence 
and completeness of the wave operators for the pair {Aη, A0}.

5. The nonrelativistic limit

In this section we show that the Dirac operator Aη with an electrostatic δ-shell interaction of strength 
η ∈ R converges in the nonrelativistic limit, i.e. when the energy of the rest mass mc2 is subtracted from 
the total energy and the speed of light c tends to ∞, to a Schrödinger operator with an electric δ-potential 
of strength η. This shows that Aη is indeed the relativistic counterpart of the Schrödinger operator with a 
δ-interaction. Because of the convergence in the nonrelativistic limit one can also deduce spectral properties 
of Aη for large c from those of the Schrödinger operator with a δ-interaction. As an illustration we show in 
Proposition 5.5 that for sufficiently large −η > 0 the number of eigenvalues of Aη in the gap (−mc2, mc2)
of σess(Aη) becomes arbitrarily large remaining finite.

First we recall the definition of the Schrödinger operator with a δ-potential supported on Σ of strength 
η ∈ R and some of its properties. For this we consider the sesquilinear form

bη[f, g] := 1
2m

(
∇f,∇g

)
L2(R3;C3) + η(f |Σ, g|Σ)L2(Σ;C), dom bη = H1(R3;C), (5.1)

which is symmetric, bounded from below and closed, see [12, Section 4] or [8]. The corresponding self-adjoint 
operator −Δη is the Schrödinger operator with a δ-potential supported on Σ of strength η. In what follows, 
we want to state a suitable resolvent formula for −Δη. For this purpose, we introduce for λ ∈ C \ R the 
function

Kλ(x) := 2mei
√

2mλ|x|

4π|x| , x ∈ R
3 \ {0}. (5.2)

Then Kλ is the integral kernel of the resolvent of − 1
2mΔ, i.e.(

− 1
2mΔ − λ

)−1

f(x) =
∫
R3

Kλ(x− y)f(y)dy, x ∈ R
3, f ∈ L2(R3;C). (5.3)

Furthermore, we define the operators γ̃(λ) : L2(Σ; C) → L2(R3; C),

γ̃(λ)ϕ(x) :=
∫
Σ

Kλ(x− y)ϕ(y)dσ(y), x ∈ R
3, ϕ ∈ L2(Σ;C), (5.4)

and M̃(λ) : L2(Σ; C) → L2(Σ; C),

M̃(λ)ϕ(x) :=
∫
Σ

Kλ(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;C). (5.5)

According to [8, Proposition 3.2 and Remark 3.3] the operators γ̃(λ) and M̃(λ) are bounded and everywhere 
defined. It is not difficult to check that the adjoint of γ̃(λ) is given by γ̃(λ)∗ : L2(R3; C) → L2(Σ; C),

γ̃(λ)∗f(x) :=
∫
R3

Kλ(x− y)f(y)dy, x ∈ Σ, f ∈ L2(R3;C). (5.6)

With these notations we recall a resolvent formula for −Δη; cf. [8, Theorem 3.5] or [12, Lemma 2.3].
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Theorem 5.1. Let η ∈ R and let λ ∈ C \ R. Then the operator I + ηM̃(λ) has a bounded and everywhere 
defined inverse and

(−Δη − λ)−1 =
(
− 1

2mΔ − λ

)−1

− γ̃(λ)
(
I + ηM̃(λ)

)−1
ηγ̃(λ)∗.

It will be shown that the resolvents of the Dirac operators Aη with η ∈ R fixed converge in the nonrel-
ativistic limit to the resolvent of the Schrödinger operator with a δ-potential times a projection to the two 
upper components of the Dirac wave function, i.e. that for any λ ∈ C \ R

lim
c→∞

(
Aη − (λ + mc2)

)−1 =
(
− Δη − λ

)−1
P+,

where

P+ :=
(
I2 0
0 0

)
.

Note that the Dirac operator Aη is self-adjoint for all sufficiently large c by Theorem 4.4. The resolvent 
formula in Theorem 4.4 indicates that it is sufficient to compute the limits of the operators (A0−(λ +mc2))−1, 
γ(λ +mc2), M(λ +mc2) and γ(λ+mc2)∗. This is done next in a preparatory proposition. The nonrelativistic 
limit of the free Dirac operator in (5.7a) is known from [32, Theorem 6.1].

Proposition 5.2. Let λ ∈ C \ R and let γ(λ + mc2), M(λ + mc2) and γ(λ + mc2)∗ be as in Proposition 3.4. 
Moreover, let γ̃(λ), M̃(λ) and γ̃(λ)∗ be as in (5.4)–(5.6). Then there exists a constant κ = κ(m, λ) such 
that the following statements are true:∥∥∥∥∥(A0 − (λ + mc2)

)−1 −
(
− 1

2mΔ − λ

)−1

P+

∥∥∥∥∥ ≤ κ

c
; (5.7a)

∥∥γ(λ + mc2) − γ̃(λ)P+
∥∥ ≤ κ

c
; (5.7b)∥∥γ(λ + mc2)∗ − γ̃(λ)∗P+

∥∥ ≤ κ

c
; (5.7c)∥∥M(λ + mc2) − M̃(λ)P+

∥∥ ≤ κ

c
. (5.7d)

Proof. Since all differences that shall be estimated in the operator norm are integral operators with the 
integral kernel Gλ+mc2 −KλP+ we consider first this function. Let Kλ be as in (5.2) and note that

Gλ+mc2(x) =
(

λ

c2
I4 + 2mP+ +

(
1 − i

√
λ2

c2
+ 2mλ|x|

)
i(α · x)
c|x|2

)
ei

√
λ2/c2+2mλ|x|

4π|x| .

We use the decomposition

Gλ+mc2(x) −Kλ(x)P+ = t1(x) + t2(x), (5.8)

where the functions t1 and t2 are defined by

t1(x) = ei
√

λ2/c2+2mλ|x|

4π|x|

(
λ

c2
I4 +

(
1 − i

√
λ2

c2
+ 2mλ|x|

)
i(α · x)
c|x|2

)
;

t2(x) =
(
ei

√
λ2/c2+2mλ|x| − ei

√
2mλ|x|

) 2m
P+.

(5.9)
4π|x|
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It is easy to see that there exist positive constants κ1(m, λ) and κ2(m, λ) independent of c and an R > 0
such that

|t1(x)| ≤ κ1(m,λ)
c

{
|x|−2, |x| < R,

e−κ2(m,λ)|x|, |x| ≥ R.
(5.10)

In order to estimate t2 note that

∣∣∣ei√λ2/c2+2mλ|x| − ei
√

2mλ|x|
∣∣∣ =

∣∣∣∣∣∣
1∫

0

d
dte

i
√
tλ2/c2+2mλ|x|dt

∣∣∣∣∣∣
≤ |x|

c

1∫
0

∣∣∣∣ei√tλ2/c2+2mλ|x| iλ2

2c
√

tλ2/c2 + 2mλ

∣∣∣∣dt.
(5.11)

Since λ ∈ C \ R there exist constants κ3(m, λ), κ4(m, λ) > 0 such that for all sufficiently large c∣∣∣∣∣ iλ2

2c
√

tλ2/c2 + 2mλ

∣∣∣∣∣ ≤ κ3(m,λ) and Re
(
i
√

tλ2/c2 + 2mλ
)
≤ −κ4(m,λ)

hold for all t ∈ [0, 1]. This implies

|t2(x)| =
∣∣∣∣ 2m
4π|x|

(
ei

√
λ2/c2+2mλ|x| − ei

√
2mλ|x|

)
P+

∣∣∣∣
≤ κ3(m,λ) 2m

4πce
−κ4(m,λ)|x|.

(5.12)

Eventually, because of the estimates (5.8), (5.10) and (5.12) there exist constants κ5(m, λ), κ6(m, λ) > 0
such that

|Gλ+mc2(x) −Kλ(x)P+| ≤ |t1(x)| + |t2(x)|

≤ κ5(m,λ)
c

{
|x|−2, |x| < R,

e−κ6(m,λ)|x|, |x| ≥ R.

(5.13)

Now we are prepared to prove (5.7a)–(5.7c). By (3.3) and (5.3) we have

((
A0 − (λ + mc2)

)−1 −
(
− 1

2mΔ − λ

)−1

P+

)
f(x)

=
∫
R3

(
Gλ+mc2(x− y) −Kλ(x− y)P+

)
f(y)dy

for x ∈ R
3 and f ∈ L2(R3; C4). Employing (5.13) and Proposition A.3 we find that∥∥∥∥∥(A0 − (λ + mc2)

)−1 −
(
− 1

2mΔ − λ

)−1

P+

∥∥∥∥∥ ≤ κ7(m,λ)
c

for some constant κ7(m, λ) and hence (5.7a) holds. In order to prove (5.7b) recall from Proposition 3.4 (i) 
and (5.4) that
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(
γ(λ + mc2) − γ̃(λ)P+

)
ϕ(x) =

∫
Σ

(
Gλ+mc2(x− y) −Kλ(x− y)P+

)
ϕ(y)dσ(y)

for x ∈ R
3 and ϕ ∈ L2(Σ; C4). Here the asymptotics in (5.13) and Proposition A.4 yield

∥∥γ(λ + mc2) − γ̃(λ)P+
∥∥ ≤ κ8(m,λ,Σ)

c
,

which is already the claimed estimate. Moreover, the relation (5.7c) follows by taking adjoints. Finally, we 
prove M(λ + mc2) → M̃(λ)P+. For that purpose we use the decomposition(

M(λ + mc2) − M̃(λ)P+
)
ϕ(x) = lim

ε↘0

∫
|x−y|>ε

(
Gλ+mc2(x− y) −Kλ(x− y)P+

)
ϕ(y)dσ(y)

= (U1 + U2 + U3 + U4)ϕ(x), x ∈ Σ, ϕ ∈ L2(Σ;C4),

where for j ∈ {1, 2, 3, 4} the operators Uj : L2(Σ; C4) → L2(Σ; C4) are integral operators of the form

Ujϕ(x) := lim
ε↘0

∫
|x−y|>ε

uj(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;C4),

and the functions uj are given by

u1(x) := ei
√
λ2/c2+2mλ|x|

4π|x|

(
λ

c2
I4 + α · x

c|x|

√
λ2

c2
+ 2mλ

)
, u2(x) := t2(x),

u3(x) := i(α · x)
4cπ|x|3

(
ei

√
λ2/c2+2mλ|x| − 1

)
, u4(x) := i(α · x)

4cπ|x|3 ,

with t2 as in (5.9). Note that u1 +u3 +u4 = t1 with t1 given by (5.9). It is easy to see that |u1(x)| ≤ κ9(m,λ)
c|x|

for some constant κ9(m, λ) and all x ∈ R
3 \ {0}, and |u2(x)| ≤ κ3(m, λ) 2m

4πc for all x ∈ R
3 by (5.12). Next, 

we observe that

∣∣∣ei√λ2/c2+2mλ|x| − 1
∣∣∣ =

∣∣∣∣∣∣
1∫

0

d
dte

it
√
λ2/c2+2mλ|x|dt

∣∣∣∣∣∣
≤ |x|

1∫
0

∣∣∣∣eit√λ2/c2+2mλ|x| · i
√

λ2

c2
+ 2mλ

∣∣∣∣dt,
and hence there exists κ10(m, λ) such that |u3(x)| ≤ κ10(m,λ)

c|x| for all x ∈ R
3 \ {0}. Therefore, we can apply 

Proposition A.5 and obtain

‖Uj‖ ≤ κ11(m,λ)
c

, j ∈ {1, 2, 3},

for some constant κ11(m, λ). Eventually, we note that U4 = 1
cC, where C is the integral operator with 

integral kernel cu4(x − y) = i(α·(x−y))
4π|x−y|3 ; this operator is independent of c, everywhere defined and bounded, 

see the proof of [2, Lemma 3.3]. Therefore, ‖U4‖ ≤ κ12
c . This yields finally that∥∥∥M(λ + mc2) − M̃(λ)P+

∥∥∥ ≤ ‖U1‖ + ‖U2‖ + ‖U3‖ + ‖U4‖ ≤ κ13(m,λ)
c

and completes the proof of (5.7d). �
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The next theorem is the main result in this section and basically a consequence of the resolvent formulae 
for Aη and −Δη from Theorem 4.4 and Theorem 5.1, respectively, and the estimates in Proposition 5.2.

Theorem 5.3. Let η ∈ R and let Aη be the Dirac operator with an electrostatic δ-shell interaction in Defi-
nition 4.1. Furthermore, denote by −Δη the Schrödinger operator with a δ-interaction of strength η. Then 
for any λ ∈ C \ R there exists a constant κ = κ(m, λ, η) such that for all sufficiently large c∥∥∥(Aη − (λ + mc2)

)−1 −
(
− Δη − λ

)−1
P+

∥∥∥ ≤ κ

c
.

Remark 5.4. For the special case η = 0 the convergence of the free Dirac operator to the free Laplace 
operator in the nonrelativistic limit is well known, see, e.g., [32, Theorem 6.1], where it is shown that the 
order of convergence is 1

c . Hence, the order of convergence in Theorem 5.3 is optimal for general interaction 
strengths η ∈ R.

Proof of Theorem 5.3. First, recall that by Theorem 4.4 the resolvent of Aη is given by(
Aη − (λ + mc2)

)−1 =
(
A0 − (λ + mc2)

)−1 − γ(λ + mc2)
(
1 + ηM(λ + mc2)

)−1
ηγ(λ + mc2)∗.

From Proposition 5.2 we know that there exists a constant κ1 = κ1(m, λ) such that∥∥∥∥∥(A0 − (λ + mc2)
)−1 −

(
− 1

2mΔ − λ

)−1

P+

∥∥∥∥∥ ≤ κ1

c
;

∥∥γ(λ + mc2) − γ̃(λ)P+
∥∥ ≤ κ1

c
;∥∥γ(λ + mc2)∗ − γ̃(λ)∗P+

∥∥ ≤ κ1

c
;∥∥M(λ + mc2) − M̃(λ)P+

∥∥ ≤ κ1

c
.

Since the operators I4 + ηM(λ + mc2) and I4 + ηM̃(λ)P+ are boundedly invertible, see Lemma 4.3 and 
Theorem 5.1, it follows from [30, Theorem IV 1.16] that∥∥∥(I4 + ηM(λ + mc2)

)−1 −
(
I4 + ηM̃(λ)P+

)−1
∥∥∥ ≤ κ2

c

holds for some constant κ2 = κ2(m, λ, η). Therefore, by using the resolvent formula for −Δη from Theo-
rem 5.1 we obtain

lim
c→∞

(
Aη − (λ + mc2)

)−1 = lim
c→∞

[(
A0 − (λ + mc2)

)−1

− γ(λ + mc2)
(
I4 + ηM(λ + mc2)

)−1
ηγ(λ + mc2)∗

]
=

(
− 1

2mΔ − λ

)−1

P+ − γ̃(λ)P+
(
I4 + ηM̃(λ)P+

)−1
ηγ̃(λ)∗P+

=
(
− Δη − λ

)−1
P+

and the order of convergence in the operator norm can be estimated by 1
c . This completes the proof of 

Theorem 5.3. �
Finally, we show that for large c and −η > 0 sufficiently large the number of eigenvalues of Aη in the 

gap (−mc2, mc2) of σess(Aη) becomes large. The proof is based on Theorem 5.3 and a result from [20] on 
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the spectrum of −Δη. In a similar way, one can derive also other results on the spectrum of Aη from the 
well-known properties of −Δη.

Proposition 5.5. For any fixed j ∈ N there exists η < 0 such that �σd(Aη) ≥ j for all sufficiently large c.

Proof. Note first that σess(−ΔηP+) = σess(−Δη) ∪ {0} = [0, ∞) and recall from [8, Theorem 3.14] that 
σd(−ΔηP+) = σd(−Δη) is finite. For j ∈ N fixed [20, Theorem 2.1] yields �σd(−ΔηP+) ≥ j for some 
η < 0. Next, choose a < b < 0 with σd(−Δη) ⊂ (a, b) and denote by E−ΔηP+((a, b)) and EAη−mc2((a, b))
the spectral projections of −ΔηP+ and Aη − mc2, respectively, corresponding to (a, b). For c → ∞ and 
λ ∈ C \R Theorem 5.3 yields that the operators (Aη− (λ +mc2))−1 converge to (−Δη−λ)−1P+. The latter 
operator is the resolvent of a self-adjoint relation (multivalued operator) and hence it follows in the same 
way as in [34, Satz 9.24 b)] together with [34, Satz 2.58 a)] that for all sufficiently large c the dimensions of 
the ranges of E−ΔηP+((a, b)) and EAη−mc2((a, b)) coincide, i.e.

dim ranEAη−mc2((a, b)) = dim ranE−ΔηP+((a, b)) ≥ j.

Hence, the operator Aη has at least j discrete eigenvalues (counted with multiplicities) in the interval 
(a + mc2, b + mc2) ⊂ (−mc2, mc2) for sufficiently large c. �
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Appendix A. Criteria for the boundedness of integral operators

In this appendix we discuss the boundedness of integral operators for some special integral kernels. The 
results are presented in the form that can be applied directly in the main part of the paper. First we recall 
the Schur test, which is the abstract tool to prove these results; cf. [30, Example III 2.4] or [34, Satz 6.9]
for the case of scalar integral kernels.

Proposition A.1. Let (X, μ) and (Y, ν) be σ-finite measure spaces and let t : X × Y → C
n×n be μ× ν-

measurable. Assume that there exist measurable functions t1, t2 : X × Y → [0, ∞) satisfying |t|2 ≤ t1t2
almost everywhere and constants κ1, κ2 > 0 such that∫

X

t1(x, y)dμ(x) ≤ κ1, y ∈ Y, and
∫
Y

t2(x, y)dν(y) ≤ κ2, x ∈ X.

Then the operator T : L2(Y ; ν; Cn) → L2(X; μ; Cn),

Tf(x) =
∫
Y

t(x, y)f(y)dν(y), x ∈ X, f ∈ L2(Y ; ν;Cn),

is everywhere defined and bounded with ‖T‖2 ≤ κ1κ2. In particular, if (X, μ) = (Y, ν) and t1(x, y) = t2(y, x)
for all almost x, y ∈ X, then ‖T‖ ≤ κ1.
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In the following the Schur test will be applied in the cases that X and Y are either R3 equipped with 
the Lebesgue measure or Σ (the boundary of a C∞-smooth bounded domain in R3) equipped with the 
associated Hausdorff measure σ and where the integral kernels satisfy O

(
|x −y|−s

)
for small x −y and some 

suitable s > 0. For further purposes, we need the following integral estimates.

Lemma A.2. The following assertions (i)–(ii) hold.

(i) Let κ, R > 0 and s ∈ (0, 3) and define the function

τ(x) :=
{
|x|−s, |x| < R,

e−κ|x|, |x| ≥ R,

for x ∈ R
3 \ {0}. Then there is a constant K > 0 such that for all x ∈ R

3

∫
R3

τ(x− y)dy ≤ K.

(ii) Let s ∈ (0, 2). Then there is a constant K such that for all x ∈ R
3

∫
Σ

(
1 + |x− y|−s

)
dσ(y) ≤ K.

Proof. (i) In the following we denote by B(x, R) the open ball of radius R > 0 centered at x ∈ R
3. For 

x ∈ R
3 fixed the translation invariance of the Lebesgue measure shows∫

R3

τ(x− y)dy =
∫
R3

τ(−y)dy =
∫

B(0,R)

|y|−sdy +
∫

R3\B(0,R)

e−κ|y|dy,

where the integrals on the right-hand side are independent of x and finite for s ∈ (0, 3).
In order to prove (ii) fix again some x ∈ R

3. It is clear that 
∫
Σ 1dσ(y) = σ(Σ) is finite and independent 

of x. Furthermore, since Σ is compact there exists R1 > 0 such that Σ ⊂ B(0, R1 − 1). If |x| > R1 then 
|x − y| > 1 for all y ∈ Σ and therefore∫

Σ

|x− y|−sdσ(y) ≤
∫
Σ

dσ(y) = σ(Σ).

If |x| ≤ R1 we need a slightly more sophisticated estimate which follows the ideas of [5, Proposition A.4]. 
Define

An =
{
y ∈ Σ : 2−n ≤ |x− y|/R1 < 2−n+1} , n = 0, 1, 2, . . . ,

so that Σ =
⋃∞

n=0 An. Moreover, for y ∈ An we have

|x− y|−s ≤ R−s
1 2sn

and hence ∫
|x− y|−sdσ(y) =

∞∑
n=1

∫
|x− y|−sdσ(y) ≤

∞∑
n=1

R−s
1 2sn

∫
dσ(y).
Σ An An
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Since Σ is a smooth and bounded surface there is a constant k = k(Σ) > 0 such that

σ(B(x, ρ) ∩ Σ) ≤ kρ2

independent of x ∈ R
3 and ρ > 0, cf. [28, Chapter II, Example 3]. Using the fact that An ⊂ B(x, R1 ·2−n+1)

it follows that ∫
Σ

|x− y|−sdσ(y) ≤
∞∑

n=1
kR−s

1 2sn(R1 · 2−n+1)2 = 4kR2−s
1

∞∑
n=1

2(s−2)n.

Since s ∈ (0, 2) the last sum is finite. Therefore, the claim is also true in the case |x| ≤ R1. The proof of 
Lemma A.2 (ii) is complete. �

Finally, by applying the Schur test and the estimates from the previous lemma, we can show that integral 
operators with suitable integral kernels are bounded and everywhere defined and we get estimates for their 
operator norms. The results are formulated such that they can be applied directly in the main part of the 
paper.

Proposition A.3. Let t : R3 → C
n×n be measurable and assume that there exist positive constants κ1, κ2

and R such that

|t(x)| ≤ κ1

{
|x|−2, |x| < R,

e−κ2|x|, |x| ≥ R,

for x ∈ R
3 \ {0}. Then the operator T : L2(R3; Cn) → L2(R3; Cn),

Tf(x) :=
∫
R3

t(x− y)f(y)dy, x ∈ R
3, f ∈ L2(R3;Cn),

is everywhere defined and bounded with ‖T‖ ≤ κ1K for some K > 0.

Proof. We define for x ∈ R
3 \ {0}

τ(x) := κ1

{
|x|−2, |x| < R,

e−κ2|x|, |x| ≥ R,

and t1(x, y) = t2(x, y) := τ(x − y) for x, y ∈ R
3. Then it follows from Lemma A.2 (i) that there exists a 

constant K such that ∫
R3

t1(x, y)dx =
∫
R3

τ(x− y)dx ≤ κ1K

for almost every y ∈ R
3. Hence, the Schur test (Proposition A.1) implies that T is bounded and everywhere 

defined and that ‖T‖ ≤ κ1K holds. �
Proposition A.4. Let t : R3 → C

n×n be measurable and assume that there exist positive constants κ1, κ2
and R such that

|t(x)| ≤ κ1

{
|x|−2, |x| < R,

e−κ2|x|, |x| ≥ R,
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for x ∈ R
3 \ {0}. Then the operators T1 : L2(R3; Cn) → L2(Σ; Cn),

T1f(x) :=
∫
R3

t(x− y)f(y)dy, x ∈ Σ, f ∈ L2(R3;Cn),

and T2 : L2(Σ; Cn) → L2(R3; Cn),

T2ϕ(x) :=
∫
Σ

t(x− y)ϕ(y)dσ(y), x ∈ R
3, ϕ ∈ L2(Σ;Cn),

are everywhere defined and bounded with ‖T1‖, ‖T2‖ ≤ κ1K for some K > 0.

Proof. We prove the statement for the operator T1, the claim for T2 follows then by taking adjoints. Let us 
define for an s ∈ (0, 1) and x ∈ R

3 \ {0}

τ1(x) := κ1κ3|x|−2+s

and

τ2(x) := κ1

{
|x|−2−s, |x| < R,

e−κ2|x|, |x| ≥ R,

where the constant κ3 is chosen such that e−κ2|x| ≤ κ3|x|−2+s for |x| ≥ R. Set tj(x, y) := τj(x − y) for 
j ∈ {1, 2} and x ∈ Σ, y ∈ R

3, and note that the estimate |t(x − y)|2 ≤ t1(x, y)t2(x, y) holds for almost all 
x, y. By applying Lemma A.2 (ii) we see that there is a constant K1 such that∫

Σ

t1(x, y)dσ(x) =
∫
Σ

τ1(x− y)dσ(x) ≤ κ1K1

for almost all y ∈ R
3. Similarly, Lemma A.2 (i) implies that∫

R3

t2(x, y)dy =
∫
R3

τ2(x− y)dy ≤ κ1K2

is true for almost all x ∈ Σ and a constant K2. Therefore, Proposition A.1 yields the assertions for T1. �
Proposition A.5. Let t : R3 → C

n×n be measurable and assume that there exists a constant κ > 0 such that

|t(x)| ≤ κ
(
1 + |x|−1)

for x ∈ R
3 \ {0}. Then the operator T : L2(Σ; Cn) → L2(Σ; Cn),

Tϕ(x) :=
∫
Σ

t(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ L2(Σ;Cn),

is everywhere defined and bounded with ‖T‖ ≤ κK for some K > 0.

Proof. We define the functions
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τ(x) := κ
(
1 + |x|−1), x ∈ R

3 \ {0},

and t1(x, y) = t2(x, y) := τ(x − y) for x, y ∈ Σ. Lemma A.2 (ii) shows that there is a constant K > 0 such 
that ∫

Σ

t1(x, y)dσ(x) =
∫
Σ

τ(x− y)dσ(x) ≤ κK

for almost every y ∈ Σ. Hence, Proposition A.1 implies the statement. �
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