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Abstract
For a family of self-adjoint Dirac operators −ic(α · ∇) + c2

2 subject to generalized
MIT bag boundary conditions on domains in R

3, it is shown that the nonrelativistic
limit in the norm resolvent sense is the Dirichlet Laplacian. This allows to transfer
spectral geometry results for Dirichlet Laplacians to Dirac operators for large c.
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1 Introduction

The MIT bag operator and more general types of self-adjoint Dirac operators on
domains� ⊂ R

3 have attracted a lot of attention in the last years. TheMIT bag model
itself originates from the investigation of quarks in hadrons from the 1970s [22, 26,
28, 34] and has been studied from a more mathematical perspective in [3–5, 16, 40,
42, 44, 47, 48]. The present paper is inspired by the recent contribution [7], where
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spectral properties of the family H�
κ , κ ∈ R, of self-adjoint Dirac operators

H�
κ f = −ic(α · ∇) f + c2

2
β f ,

dom H�
κ = {

f ∈ H1(�;C4) : f = i(sinh(κ)I4 − cosh(κ)β)(α · ν) f on ∂�
}
,

(1.1)
in L2(�;C4) were studied. Here α · ∇ = α1∂1 + α2∂2 + α3∂3 with the usual Dirac
matrices α1, α2, α3, β ∈ C

4×4 (see (1.5) and (1.7) below), c > 0 is the speed of
light, � is a C2-domain with unit normal vector ν, and H1(�;C4) is the first order
L2-based Sobolev space. The operators H�

κ model the propagation of a relativistic
spin 1

2 particle with mass m = 1
2 subject to the boundary conditions in (1.1), which

are a three-dimensional counterpart of the quantum dot boundary conditions; cf. [19,
20], the introduction in [7] for more references in dimension two, and Sect. 2.2 for a
further motivation of these boundary conditions. In particular, for κ = 0 the standard
MIT bag boundary conditions are recovered. If � is bounded, then the spectrum of
H�

κ is purely discrete and consists of eigenvalues

· · · ≤ λ−
2 (H�

κ ) ≤ λ−
1 (H�

κ ) ≤ −c2

2
<

c2

2
≤ λ+

1 (H�
κ ) ≤ λ+

2 (H�
κ ) ≤ . . . , (1.2)

that accumulate at ±∞. The main objective in [7] is the analysis of the eigenvalue
curves κ �→ λ±

j (H�
κ ) and their asymptotic behaviour, which then leads to spectral

geometry results for H�
κ with κ sufficiently large. The most remarkable result therein

is a variant of the Faber–Krahn inequality for κ sufficiently large minimizing the first
positive eigenvalue when � is a ball. For related spectral geometry results for two-
dimensional Dirac operators with infinite mass boundary conditions we refer to [2,
20, 23, 39, 51].

In this paper we propose a different approach to obtain spectral inequalities and
spectral geometry results for the Dirac operators H�

κ , which is based on the analysis
of a nonrelativistic limit. This allows us to conclude for all sufficiently large c and
all κ ∈ R, e.g., the Faber–Krahn inequality for the first two positive eigenvalues
λ+
1 (H�

κ ), λ+
2 (H�

κ ), the Hong–Krahn–Szegö inequality minimizing the second two
positive eigenvalues λ+

3 (H�
κ ), λ+

4 (H�
κ ), or the Payne–Pólya–Weinberger inequality

for the ratios λ+
j (H�

κ )/λ+
l (H�

κ ), j = 1, 2, l = 3, 4, of the first two and the second two
positive eigenvalues, relying on classical counterparts for the Dirichlet Laplacian [8,
29, 33, 36, 37, 45]; here the spectral inequalities come for pairs of eigenvalues, as all
eigenvalues of H�

κ have even multiplicity, and remain valid in an analogous form also
for the first two pairs of negative eigenvalues, see Remark 3.7. In the same spirit other
results from spectral geometry can be transferred from Laplacians to Dirac operators;
we refer the reader to the monographs [31, 38, 46] for an introduction to and overview
of this topic, but limit ourselves to the above-mentioned three examples.

The nonrelativistic limit provides a connection of the generalized MIT bag models
with their nonrelativistic counterparts, i.e. Schrödinger operators, and is of independent
interest, as it gives a physical interpretation of H�

κ . To find it one has to subtract the

energy of the resting particle c2
2 and compute the limit of the resolvent of H�

κ − c2
2
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Nonrelativistic Limit of... Page 3 of 30 12

as c → ∞. Nonrelativistic limits of Dirac operators have been computed in many
different settings.More information on three dimensional Dirac operators with regular
potentials, for example, can be found in [50, Chapter 6] and the references therein. In
[27] it was shown that the nonrelativistic limit of a family of one-dimensional Dirac
operators with boundary conditions containing the counterpart of H�

κ is a Dirichlet or
a Neumann Laplacian. Moreover, the nonrelativistic limit of one-dimensional Dirac
operators with singular interactions supported on points, which are closely related to
one-dimensional Dirac operators with boundary conditions, was studied extensively
in [24, 25, 30, 32]. In higher dimensions, the nonrelativistic limit of Dirac operators
with singular potentials supported on curves in R

2 and surfaces in R
3 was computed

in various situations in [10, 11, 13, 18]. We also point out the paper [3], where it
is shown that for bounded � the discrete eigenvalues of the MIT bag model, i.e. of
H�

κ in (1.1) for κ = 0, converge in the nonrelativistic limit to the eigenvalues of the
Dirichlet Laplacian. However, in [3] only the convergence of the eigenvalues and not
of the operator itself was studied.

In order to state our main result on the nonrelativistic limit of the operators H�
κ we

make the following assumption on �, where we use the definition of a C2-domain as,
e.g., in [41].

Hypothesis 1.1 Let� ⊂ R
3 be a (bounded or unbounded)C2-domain, not necessarily

connected, with a compact boundary and unit normal vector field ν pointing outwards
of �. The bounded element in {�,R3 \ �} is denoted by �+, the unbounded element
in {�,R3 \ �} is denoted by �−, and ν+ is the unit normal vector field pointing
outwards of �+, so that ν = ν+ if � = �+ and ν = −ν+ if � = �−. For the
common boundary we write 	 := ∂� = ∂�+ = ∂�−.

Then, the main result of the present paper reads as follows:

Theorem 1.2 Let κ ∈ R, � ⊂ R
3 be as in Hypothesis 1.1, and z ∈ C \ [0,∞).

Then, there exists a constant K (z) such that for all c sufficiently large z + c2
2 ∈

ρ(H�
κ ) ∩ ρ(−��

D) and

∥∥∥∥∥

(
H�

κ −
(
z + c2

2

))−1

− (−��
D − z)−1

(
I2 0
0 0

)∥∥∥∥∥
L2(�;C4)→L2(�;C4)

≤ K (z)√
c

,

(1.3)
where −��

D denotes the self-adjoint Dirichlet Laplacian in L2(�;C).

The strategy to prove Theorem 1.2 is to consider the self-adjoint orthogonal sum
H�+

κ ⊕H�−
κ in L2(�+;C4)⊕L2(�−;C4), which can be identifiedwith a self-adjoint

Dirac operator A	
κ in L2(R3;C4) with a δ-shell potential supported on 	, see [6, 11,

16, 21]. Such types of Dirac operators with singular interactions are well-studied, see
the review article [17] and the references therein. We collect some properties of A	

κ in
Sect. 2.2 and provide a Krein type formula in Proposition 2.2 for its resolvent, which
is the key tool for the analysis of the nonrelativistic limit. Each of the terms appearing
in the resolvent formula will be examined separately and the main technical difficulty
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is the limit behavior of the inverse of

ϑc + McCz+c2/2Mc, (1.4)

involving a strongly singular boundary integral operator Cz+c2/2 on 	, a coefficient
matrix ϑc modelling the boundary condition in dom H�

κ , and a scalingmatrixMc (see
(2.5), (2.9), and (2.10) for details). In fact, it turns out that the operator in (1.4) does
not converge to a boundedly invertible operator in one Sobolev space on	, but instead
it is necessary to study the convergence of the inverse of (1.4) as an operator acting
between different fractional order Sobolev spaces on 	. Here we argue via the Schur
complement and rely on an advanced and deep analysis of various boundary integral
operators appearing in this context. Eventually, it turns out that the limit of A	

κ in the
norm resolvent sense is an orthogonal sum of Dirichlet Laplacians and compressing
the resolvents onto the original domain leads to (1.3).

It iswell-known that the operator normconvergence in (1.3) implies the convergence
of the corresponding spectra (see, e.g. [35, 49, 52]) and, in particular, if � is bounded,
the spectrum of H�

κ is discrete and we conclude convergence of eigenvalues. This
leads to spectral inequalities for the positive eigenvalues of the Dirac operators H�

κ ,
κ ∈ R, for c > 0 sufficiently large; cf. Remark 3.7 for analogous results for the
negative eigenvalues.

Corollary 1.3 Letκ ∈ R,� ⊂ R
3 be aboundedC2-domain, B ⊂ R

3 be aball such that
|B| = |�| and B1, B2 ⊂ R

3 be identical and disjoint balls such that |B1|+|B2| = |�|.
Then, the following assertions hold for c > 0 sufficiently large:

(i) λ+
j (HB

κ ) ≤ λ+
j (H�

κ ) for j ∈ {1, 2} and equality holds if and only if � is a ball.

(ii) λ+
j (HB1∪B2

κ ) ≤ λ+
j (H�

κ ) for j ∈ {3, 4} and equality holds if and only if � is the
union of two identical disjoint balls.

(iii) If, in addition, � is connected, then

λ+
j (HB

κ )

λ+
l (HB

κ )
≤ λ+

j (H�
κ )

λ+
l (H�

κ )
, j ∈ {1, 2}, l ∈ {3, 4},

and equality holds if and only if � is a ball.

The article is organized as follows. In Sect. 2 we introduce the free Dirac operator
in R

3 and some associated integral operators, show the connection of H�
κ and Dirac

operators A	
κ with singular interactions supported on 	 = ∂�, and recall some

properties of the Dirichlet Laplacian. In Sect. 3 we compute the nonrelativistic limit
of A	

κ , which allows us to prove Theorem 1.2 and Corollary 1.3.

Notations

The Dirac matrices are denoted by

αk =
(
0 σk
σk 0

)
, k ∈ {1, 2, 3}, β =

(
I2 0
0 −I2

)
, (1.5)
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where In is the n × n identity matrix, n ∈ N, and

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

are the Pauli matrices. The Dirac matrices satisfy

α jαk + αkα j = 2δ jk I4, α jβ + βα j = 0, j, k ∈ {1, 2, 3}, (1.6)

where δ jk is the Kronecker symbol. Moreover, the notations

α · ∇ =
3∑

j=1

α j∂ j and α · x =
3∑

j=1

α j x j , x = (x1, x2, x3) ∈ C
3, (1.7)

will often be used.
If M ⊂ R

3 and k, l ∈ N, then the set of all continuous and k times continuously
differentiable functions f : M → C

l is denoted byC(M;Cl) andCk(M;Cl), respec-
tively. Next, denote by F the Fourier transform on the space S ′(R3;C) of tempered
distributions. For the Sobolev spaces Hs(R3;C), s ∈ R, we shall use the definition

Hs(R3;C) =
{
f ∈ S ′(R3;C) :

∫

R3
(1 + |x |2)s |F f (x)|2dx < ∞

}
, (1.8)

with Hilbert space norm

‖ f ‖2Hs (R3;C)
:=

∫

R3
(1 + |x |2)s |F f (x)|2dx, f ∈ Hs(R3;C). (1.9)

For� as inHypothesis 1.1 the Sobolev spaces Hs(�;C), s > 0, are defined via restric-
tions of functions from Hs(R3;C) onto �, and the spaces Ht (	;C), t ∈ [−2, 2], on
the boundary 	 of � are defined by using an open cover of 	 and a corresponding
partition of unity, reducing it to Sobolev spaces on hypographs; see, e.g., [41, Chap-
ter 3] for more details. We denote by γD : H1(�;C) → H1/2(	;C) the bounded
Dirichlet trace operator and we shall use the same symbol for the trace operator
γD : H1(R3;C) → H1/2(	;C). Sobolev spaces of vector valued functions are
defined component-wise and in this context the action of the Dirichlet trace operator
is also understood component-wise.

If A is a linear operator acting between twoHilbert spacesH andG, then its domain,
range, and kernel are denoted by dom A, ran A, and ker A, respectively. Whenever A
is bounded and everywhere defined, then ‖A‖H→G is the operator norm of A. If A is
self-adjoint inH, then the symbols ρ(A), σ(A), σess(A), and σdisc(A) are used for the
resolvent set, spectrum, essential spectrum, and discrete spectrum of A, respectively.
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2 Preliminaries

In this preliminary section we first collect several results about the free Dirac operator
in R

3 and associated integral operators. Afterwards, we show how the operators H�
κ

in (1.1) are related to Dirac operators with δ-shell potentials, andwe recall some useful
properties of the single layer potential, single layer boundary integral operator, and
the Dirichlet Laplacian that are needed to prove Theorem 1.2. Throughout this section
we assume that �, �±, and 	 are as in Hypothesis 1.1.

2.1 The Free Dirac Operator and Associated Integral Operators

It is well-known that the free Dirac operator

A0 f = −ic(α · ∇) f + c2

2
β f , dom A0 = H1(R3;C4), (2.1)

inR3 is self-adjoint in L2(R3;C4) and its spectrum is σ(A0) = (−∞,− c2
2 ]∪[ c22 ,∞).

For z ∈ ρ(A0) = C \ ((−∞,− c2
2 ] ∪ [ c22 ,∞)) and f ∈ L2(R3;C4), the resolvent of

A0 is given by

(A0 − z)−1 f (x) =
∫

R3
Gz(x − y) f (y)dy, x ∈ R

3,

where the function Gz : R3 \ {0} → C
4×4 is defined by

Gz(x) =
⎛

⎝ z

c2
I4 + 1

2
β +

⎛

⎝1 − i

√
z2

c2
− c2

4
|x |

⎞

⎠ i(α · x)
c|x |2

⎞

⎠ ei
√

z2/c2−c2/4|x |

4π |x |
(2.2)

and the square root is chosen such that Im
√
z2/c2 − c2/4 > 0; cf. [50, Section 1.E].

Next, we introduce several integral operators and summarize some of their proper-
ties that are necessary to prove Theorem1.2; we refer to [11, 15, 17] formore details. In
the following γD : H1(R3;C4) → H1/2(	;C4) denotes the Dirichlet trace operator.
For z ∈ ρ(A0) the map

�∗
z := γD(A0 − z)−1 : L2(R3;C4) → H1/2(	;C4) (2.3)

is well-defined and bounded. It is not difficult to see that �∗
z acts on f ∈ L2(R3;C4)

as

�∗
z f (x) =

∫

R3
Gz(x − y) f (y)dy, x ∈ 	.

The definition of �∗
z in (2.3) allows to define the bounded anti-dual map

�z := (�∗
z )

′ : H−1/2(	;C4) → L2(R3;C4). (2.4)
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With the help of Fubini’s theorem and (Gz(x))∗ = Gz(−x) one shows that �z acts
on ϕ ∈ L2(	;C4) as

�zϕ(x) :=
∫

	

Gz(x − y)ϕ(y)dσ(y), x ∈ R
3 \ 	,

where dσ denotes the surface measure on 	. We will also make use of the strongly
singular boundary integral operator Cz : L2(	;C4) → L2(	;C4), z ∈ ρ(A0), acting
via

Czϕ(x) := lim
ε→0+

∫

	\B(x,ε)
Gz(x − y)ϕ(y)dσ(y), x ∈ 	, ϕ ∈ L2(	;C4),

(2.5)

where B(x, ε) is the ball of radius ε centered at x . For s ∈ [0, 1
2 ] the map Cz gives rise

to a bounded operator
Cz : Hs(	;C4) → Hs(	;C4). (2.6)

The adjoint of the realization of Cz in L2(	;C4) satisfies C∗
z = Cz and it follows

from (2.6) that Cz admits a bounded extension to Hs(	;C4), s ∈ [− 1
2 , 0], such that

Cz = (Cz)′ : Hs(	;C4) → Hs(	;C4), s ∈ [ − 1
2 , 0

]
, (2.7)

where (Cz)′ denotes the anti-dual of Cz .

2.2 HÄ
� and Dirac Operators with ı-Shell Potentials

In this subsection we show how the operators H�
κ defined in (1.1) are related to

Dirac operators A	
κ with δ-shell potentials supported on 	; the latter operators are

well-studied, see, e.g., [6, 11, 17] and the references therein. Recall the notation �±
and the unit outward normal vector field ν+ from Hypothesis 1.1. For a function
f : R3 → C

4 we write f± := f � �±. Define the operator

A	
κ = ( − ic(α · ∇) + c2

2 β
)
f+ ⊕ ( − ic(α · ∇) + c2

2 β
)
f−,

dom A	
κ = {

f = f+ ⊕ f− ∈ H1(�+;C4) ⊕ H1(�−;C4) :
− i(α · ν+)(γD f+ − γD f−)

= (sinh(κ)I4 + cosh(κ)β)(γD f+ + γD f−)
}
,

(2.8)

in L2(R3;C4). We note that A	
κ is the rigorously defined operator associated with the

formal differential expression −ic(α · ∇) + c2
2 β + 2c(sinh(κ)I4 + cosh(κ)β)δ	 .

Our first observation is an immediate consequence from [11, Lemma 3.1 (ii)], which
says that the operator formally given by −ic(α · ∇) + c2

2 β + (ηI4 + τβ)δ	 decouples
to the orthogonal sum of two Dirac operators with boundary conditions acting on
functions in �± if and only if η2 − τ 2 = −4c2; in the present setting the strength η of

123
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the electrostatic interaction in [11] is 2c sinh(κ), the strength τ of the Lorentz scalar
interaction is 2c cosh(κ), and the normal vector in the definition of H�−

κ in (1.1) is
−ν+. Note that this choice of η and τ is a natural parametrization of the arm of the
hyperbola η2 − τ 2 = −4c2 that contains the MIT bag boundary conditions. We also
refer the reader to [6, Section 5], [16, Section 5.3], or [17, Section 5.2] for similar
statements.

Lemma 2.1 The equality A	
κ = H�+

κ ⊕ H�−
κ holds.

In the next proposition we summarize some properties of the operator A	
κ that will

be particularly useful for our analysis. Recall that A0 is the free Dirac operator defined
in (2.1) and that �z and Cz are the operators defined in (2.4) and (2.5), respectively.
Moreover, define the two numbers

a+ := 1

2
(cosh(κ) − sinh(κ)) > 0, a− := −1

2
(cosh(κ) + sinh(κ)) < 0, (2.9)

and for c > 0 the coefficient matrix ϑc and the scaling matrixMc

ϑc :=
( 1

c a+ I2 0
0 a− I2

)
∈ C

4×4, Mc :=
(
I2 0
0

√
cI2

)
∈ C

4×4. (2.10)

Proposition 2.2 Let κ ∈ R and c > 0. Then, the operator A	
κ in (2.8) is self-adjoint

in L2(R3;C4), σ(A	
κ ) = (−∞,− c2

2 ] ∪ [ c22 ,∞), for z ∈ ρ(A	
κ ) the linear operator

ϑc + McCzMc admits a bounded inverse in H1/2(	;C4), and the formula

(A	
κ − z)−1 = (A0 − z)−1 − �zMc

(
ϑc + McCzMc

)−1Mc�
∗
z

holds.

Proof It follows from [11, Lemma 3.3 and Theorems 3.4 & 4.1] or [17, The-
orem 5.6] (in the case c = 1) that A	

κ is self-adjoint in L2(R3;C4), that

σess(A	
κ ) = (−∞,− c2

2 ] ∪ [ c22 ,∞), that I4 + 2c(sinh(κ)I4 + cosh(κ)β)Cz is bijective
in H1/2(	;C4) for z ∈ ρ(A	

κ ) ∩ ρ(A0) and that the resolvent formula

(A	
κ − z)−1 = (A0 − z)−1 − �z

(
I4 +2c(sinh(κ)I4 + cosh(κ)β)Cz

)−1

· 2c(sinh(κ)I4 + cosh(κ)β)�∗
z

holds. Note that the matrix 2c(sinh(κ)I4 + cosh(κ)β) is invertible with inverse

(
2c(sinh(κ)I4 + cosh(κ)β)

)−1 = 1

2c
(− sinh(κ)I4 + cosh(κ)β) = M−1

c ϑcM−1
c .

Hence, also ϑc+McCzMc = Mc(
1
2c (− sinh(κ)I4+cosh(κ)β)+Cz)Mc is bijective

in H1/2(	;C4) and the claimed resolvent formula is true.
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It remains to show that (− c2
2 , c2

2 ) ∩ σ(A	
κ ) = (− c2

2 , c2
2 ) ∩ σp(A	

κ ) = ∅. For this,
we use the Birman–Schwinger principle for A	

κ from [11, Lemma 3.3], which states
that

z ∈
(

−c2

2
,
c2

2

)
∩σp(A

	
κ ) if and only if 0 ∈ σp(I4+2c(sinh(κ)I4+cosh(κ)β)Cz).

(2.11)
Let z ∈ (− c2

2 , c2
2 ) and assume that ϕ ∈ ker(I4 + 2c(sinh(κ)I4 + cosh(κ)β)Cz). Then,

0 = (
(I4 + 2cCz(− sinh(κ)I4 + cosh(κ)β))

· (I4 + 2c(sinh(κ)I4 + cosh(κ)β)Cz)ϕ, ϕ
)
L2(	;C4)

=
(
(I4 + 4c2C2z + 2c cosh(κ)(Czβ + βCz))ϕ, ϕ

)

L2(	;C4)
.

(2.12)

With (1.6) and (2.2) one finds that

Czβ + βCz = 2

(
1

2
I4 + z

c2
β

)
Sz2/c2−c2/4,

where Sz2/c2−c2/4 is the single layer boundary integral operator defined below in
(2.14). In the present situation we have z2/c2 − c2/4 < 0 and hence it follows that
Sz2/c2−c2/4 is a non-negative operator in L2(	;C); cf. the text below (2.15) in the
next subsection. Therefore, I4 + 4c2C2z + 2c cosh(κ)(Czβ + βCz) is a strictly positive
operator in L2(	;C4) and we obtain ϕ = 0 from (2.12). Therefore, by (2.11) we have
z /∈ σp(A	

κ ). ��
From the properties of A	

κ one can now easily deduce the properties of H�
κ stated

in the following corollary, when� coincides either with�+ or�−. The claims follow
immediately from Lemma 2.1 and Proposition 2.2; for (i) one additionally uses that
dom H�

κ ⊂ H1(�;C4) is compactly embedded in L2(�;C4) if � is bounded, see
also [7, Lemma 1.2], and that H�

κ commutes with the anti-linear time reversal operator
T f = −i

( 0 I2
I2 0

)
α2 f , see the proof of [11, Proposition 4.2 (ii)] for details.

Corollary 2.3 Let κ ∈ R and c > 0. Then, the operator H�
κ in (1.1) is self-adjoint in

L2(�;C4) and the following holds:

(i) If � is bounded, then σ(H�
κ ) = σdisc(H�

κ ) ⊂ (−∞,− c2
2 ] ∪ [ c22 ,∞) and all

eigenvalues of H�
κ have even multiplicity.

(ii) If � is unbounded, then σ(H�
κ ) = (−∞,− c2

2 ] ∪ [ c22 ,∞).

Moreover, for z ∈ C \ ((−∞,− c2
2 ] ∪ [ c22 ,∞)) the resolvent formula

(H�
κ − z)−1 = P�(A0 − z)−1P∗

� − P��zMc
(
ϑc + McCzMc

)−1Mc�
∗
z P

∗
�

holds, where P� : L2(R3;C4) → L2(�;C4) is the projection operator acting as
f �→ f � � and its adjoint P∗

� : L2(�;C4) → L2(R3;C4) is the embedding
operator which extends a function g ∈ L2(�;C4) by zero.
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2.3 The Dirichlet Laplacian and Associated Integral Operators

We begin by briefly recalling some properties of the single layer potential and single
layer boundary integral operator associatedwith−�−μ, where−� is the self-adjoint
Laplacian in L2(R3;C) defined on H2(R3;C) and μ ∈ ρ(−�) = C \ [0,∞).

For ϕ ∈ L2(	;C) the single layer potential SLμ is the formal integral operator
that acts as

SLμϕ(x) =
∫

	

ei
√

μ|x−y|

4π |x − y|ϕ(y)dσ(y), x ∈ R
3 \ 	, (2.13)

and the single layer boundary integral operator Sμ is the mapping defined by

Sμϕ(x) =
∫

	

ei
√

μ|x−y|

4π |x − y|ϕ(y)dσ(y), x ∈ 	, (2.14)

where
√

μ is again the complex square root satisfying Im
√

μ > 0 forμ ∈ C\[0,∞).
It is well-known that for any s ∈ [− 1

2 ,
1
2 ] the map Sμ gives rise to a bounded and

bijective operator
Sμ : Hs(	;C) → Hs+1(	;C). (2.15)

Moreover, we will use that for μ < 0 the realization of Sμ in L2(	;C) is self-
adjoint and non-negative. These claims can be shown in the same way as in [12,
Lemma 2.6], where the two-dimensional case and μ = −1 is treated. Furthermore,
by [41, Corollary 6.14] the mapping SLμ gives for any s ∈ (− 1

2 , 1] rise to a bounded
operator

SLμ : Hs−1/2(	;C) → Hs+1(�+;C) ⊕ Hs+1(�−;C).

Moreover, the representations

SLμ = (−� − μ)−1γ ′
D : H−1/2(	;C) → H1(R3;C)

and
Sμ = γD(−� − μ)−1γ ′

D : H−1/2(	;C) → H1/2(	;C) (2.16)

hold, where γD : H1(R3;C) → H1/2(	;C) is the bounded Dirichlet trace operator
and γ ′

D : H−1/2(	;C) → H−1(R3;C) its anti-dual map. We will also use that the
L2-adjoint of SLμ is given by

SL∗
μ = γD(−� − μ)−1 : L2(R3;C) → H3/2(	;C), (2.17)

which is bounded, as the restriction γD : H2(R3;C) → H3/2(	;C) is bounded.
Next, we state a useful continuity property of the map μ �→ Sμ.

Lemma 2.4 Let M ⊂ C \ [0,∞) be compact. Then, for all μ1, μ2 ∈ M the operator
Sμ1 −Sμ2 has a bounded extension from H−3/2(	;C) to H3/2(	;C) and there exists
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a constant K (M) > 0 such that the estimate

∥∥Sμ1 − Sμ2

∥∥
H−3/2(	;C)→H3/2(	;C)

≤ K (M)|μ1 − μ2| (2.18)

holds. In particular, for any s ∈ [− 3
2 ,

3
2 ] the operator Sμ : Hs(	;C) → Hs(	;C)

is uniformly bounded in μ ∈ M.

Proof It suffices to show that

(−� − μ1)
−1 − (−� − μ2)

−1 = (μ1 − μ2)(−� − μ1)
−1(−� − μ2)

−1

gives rise to a bounded operator from H−2(R2;C) to H2(R2;C) that satisfies

∥∥(−� − μ1)
−1 − (−� − μ2)

−1
∥∥
H−2(R3;C)→H2(R3;C)

≤ K (M)|μ1 − μ2|, (2.19)

as then (2.18) follows from (2.16) and the fact that γD has a continuous restriction γD :
H2(R3;C) → H3/2(	;C) and γ ′

D a continuous extension γ ′
D : H−3/2(	;C) →

H−2(R3;C). To show (2.19), we compute for f ∈ H−2(R3;C), taking (1.9) into
account,

∥∥(
(−� − μ1)

−1 − (−� − μ2)
−1) f

∥∥2
H2(R3;C)

=
∫

R3
(1 + |x |2)2∣∣F(

(−� − μ1)
−1 − (−� − μ2)

−1) f (x)
∣∣2dx

=
∫

R3
(1 + |x |2)2

∣∣∣∣
1

|x |2 − μ1
− 1

|x |2 − μ2

∣∣∣∣

2

|F f (x)|2dx

=
∫

R3

(1 + |x |2)4|μ1 − μ2|2
|(|x |2 − μ1)(|x |2 − μ2)|2

|F f (x)|2
(1 + |x |2)2 dx

≤ sup
x∈R3

(1 + |x |2)4|μ1 − μ2|2
|(|x |2 − μ1)(|x |2 − μ2)|2 · ‖ f ‖2H−2(R3;C)

.

This shows (2.19) with K (M) := supx∈R3,μ1,μ2∈M
(1+|x |2)2

|(|x |2−μ1)(|x |2−μ2)| .
Eventually, it follows from (2.18) that Sμ : H−3/2(	;C) → H3/2(	;C) is uni-

formly bounded inμ ∈ M . Since Hs1(	;C) is continuously embedded in Hs2(	;C)

for s1 > s2, we conclude thatSμ : Hs(	;C) → Hs(	;C) is also uniformly bounded
in μ ∈ M for any s ∈ [− 3

2 ,
3
2 ]. ��

Let again � be a C2-domain as in Hypothesis 1.1. In the next lemma we express
the resolvent of the self-adjoint Dirichlet Laplacian

− ��
D f = −� f , dom(−��

D) = {
f ∈ H2(�;C) : γD f = 0

}
, (2.20)

in L2(�;C) as the compression of the resolvent of the self-adjoint Laplacian −� in
L2(R3;C) and a perturbation term. The statement follows from, e.g., [1, Theorem4.4],
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12 Page 12 of 30 J. Behrndt etal.

[9, Theorem 3.2] or [14, Theorem 8.6.3], where instead of the single layer potential
(2.13) and the single layer boundary integral operator (2.14) the terminology of γ -
fields, Weyl functions or Q-functions, and Dirichlet-to-Neumann maps is used.

Lemma 2.5 Let � and �± be as in Hypothesis 1.1 and −��
D and −�

�±
D be the

corresponding Dirichlet Laplacians defined as in (2.20). Then, for the orthogonal
sum −�D := (−�

�+
D ) ⊕ (−�

�−
D ) and any z ∈ ρ(−�D) = C \ [0,∞) the resolvent

formula
(−�D − z)−1 = (−� − z)−1 − SLzS−1

z SL∗
z

holds. In particular, one has

(−��
D − z)−1 = P�(−� − z)−1P∗

� − P�SLzS−1
z SL∗

z P
∗
�

with the projection and embedding operators P� and P∗
� from Corollary 2.3.

3 The Nonrelativistic Limit

In this section we compute the nonrelativistic limit of the operator A	
κ defined in (2.8)

and use this to show Theorem 1.2 and Corollary 1.3. Again, we will always assume
that�± is as in Hypothesis 1.1 and	 = ∂�±. Furthermore, we will often assume that
z ∈ C \ [0,∞) and c >

√|z|, as then z + c2
2 ∈ ρ(A0) = ρ(A	

κ ); cf. Proposition 2.2.
In the following, the Krein type resolvent formula

(
A	

κ −
(
z + c2

2

))−1

=
(
A0 −

(
z + c2

2

))−1

− �z+c2/2Mc
(
ϑc + McCz+c2/2Mc

)−1Mc�
∗
z+c2/2 (3.1)

from Proposition 2.2 will play an important role. We will compute the limit of each of
the terms on the right hand side separately. The convergence of (A0 − (z + c2/2))−1,
�z+c2/2Mc, andMc�

∗
z+c2/2

is investigated in Sect. 3.1, the convergence of the map

(ϑc + McCz+c2/2Mc)
−1 is treated in Sect. 3.2, and the nonrelativistic limit of A	

κ is
computed in Sect. 3.3.

3.1 Convergence of (A0 − (z + c2/2))−1,8z+c2/2Mc, andMc8∗
z+c2/2

First, the nonrelativistic limit of the freeDirac operator A0 defined in (2.1) is discussed.
This result is well-known, it follows, e.g., as a special case of the results in [50,
Section 6]. However, since the result and the topology, in which the convergence takes
place, are of importance in the analysis of �z+c2/2Mc and Mc�

∗
z+c2/2

, we give a
direct simple proof here to keep the presentation self-contained.
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Proposition 3.1 Let z ∈ C \ [0,∞) and c >
√|z|. Then, there exists a constant K (z)

such that

∥∥∥∥

(
A0 −

(
z + c2

2

))−1

− (−� − z)−1
(
I2 0
0 0

)∥∥∥∥
L2(R3;C4)→H1(R3;C4)

≤ K (z)

c
.

Proof We shall use (1.9) and compute for f ∈ L2(R3;C4) and c >
√|z|

∫

R3
(1 + |x |2)

∣∣∣∣∣
F

[(
A0 −

(
z + c2

2

))−1

− (−� − z)−1
(
I2 0
0 0

)]

f (x)

∣∣∣∣∣

2

dx

=
∫

R3
(1 + |x |2)

∣∣∣∣∣

[
α · x + c

2β + ( z
c + c

2

)
I4

c(|x |2 − ( z
2

c2
+ z))

− 1

|x |2 − z

(
I2 0
0 0

)]

F f (x)

∣∣∣∣∣

2

dx .

Next, we decompose the part of the integrand that does not depend on F f in the last
line of the equation. Using 1

2 (β + I4) = (
I2 0
0 0

)
we find

sup
x∈R3

(1 + |x |2)
∣∣∣∣

α · x + z
c I4

c
(|x |2 − z2

c2
− z

) +
1
2 (β + I4)

|x |2 − z2

c2
− z

− 1

|x |2 − z

(
I2 0
0 0

) ∣∣∣∣

2

= sup
x∈R3

1 + |x |2
c2

∣∣∣∣
α · x + z

c I4

|x |2 − z2

c2
− z

+ z2

c(|x |2 − z2

c2
− z)(|x |2 − z)

(
I2 0
0 0

) ∣∣∣∣

2

≤ K (z)2

c2

for some constant K (z) that does not depend on c, since the assumptions z ∈ C\[0,∞)

and c >
√|z| ensure that there is no singularity in the last x-dependent expression.

As ‖F f ‖L2(R3;C4) = ‖ f ‖L2(R3;C4) we conclude

∫

R3
(1 + |x |2)

∣∣∣∣∣
F

[(
A0 −

(
z + c2

2

))−1

− (−� − z)−1
(
I2 0
0 0

)]

f (x)

∣∣∣∣∣

2

dx

≤ K (z)2

c2
‖ f ‖2L2(R3;C4)

,

which shows the desired result. ��
By using the convergence result from Proposition 3.1 and the definition (2.3) of

�∗
z , it is not difficult to obtain the convergence of �z+c2/2 and �∗

z+c2/2
. Recall that

SLμ, μ ∈ C \ [0,∞), is the single layer potential defined in (2.13) and that Mc is
the scaling matrix given by (2.10). Since there is a multiplication by

√
c involved, the

rate of convergence in the following proposition reduces toO(c−1/2). This is the main
reason why we get this rate of convergence in Theorem 1.2.

Proposition 3.2 Let z ∈ C \ [0,∞) and c >
√|z|. Then, there exists a constant K (z)

such that
∥∥∥∥�z+c2/2Mc − SLz

(
I2 0
0 0

)∥∥∥∥
H−1/2(	;C4)→L2(R3;C4)

≤ K (z)√
c

(3.2)
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and
∥∥∥∥Mc�

∗
z+c2/2 − SL∗

z

(
I2 0
0 0

)∥∥∥∥
L2(R3;C4)→H1/2(	;C4)

≤ K (z)√
c

. (3.3)

In particular, the operators �z+c2/2Mc : H−1/2(	;C4) → L2(R3;C4) and the
mappings Mc�

∗
z+c2/2

: L2(R3;C4) → H1/2(	;C4) are uniformly bounded in c.

Proof Recall from (2.3) and (2.17) that

�∗
z+c2/2 = γD

(
A0 −

(
z + c2

2

))−1

and SL∗
z = γD(−� − z)−1.

Hence, (3.3) follows from Proposition 3.1 and the mapping properties of the trace
operator; the stated rates of convergence are obtained by accounting for the matrix
terms in equation (3.3). The claim in (3.2) follows from (3.3) by duality. The uniform
boundedness of �z+c2/2Mc and Mc�

∗
z+c2/2

is clear as these operators converge. ��

3.2 Convergence of (#c + McCz+c2/2Mc)
−1

The more difficult part in the analysis of (3.1) is (ϑc +McCz+c2/2Mc)
−1. To handle

it in the computation of the nonrelativistic limit, first a more detailed consideration of
Cz+c2/2 is provided. Define for z ∈ ρ(A0) the auxiliary operator Tz that formally acts
on a sufficiently smooth function ϕ : 	 → C

2 via

Tzϕ(x) := lim
ε→0+

∫

	\B(x,ε)
tz(x − y)ϕ(y)dσ(y), x ∈ 	,

with

tz(x) :=
⎛

⎝1 − i

√
z2

c2
− c2

4
|x |

⎞

⎠ i(σ · x)
4π |x |3 e

i
√

z2/c2−c2/4|x |, x �= 0.

Next, the definition of Gz in (2.2) implies

Gz+c2/2(x) =
⎛

⎝ z

c2
I4 +

(
I2 0
0 0

)
+

⎛

⎝1 − i

√

z + z2

c2
|x |

⎞

⎠ i(α · x)
c|x |2

⎞

⎠ ei
√

z+z2/c2|x |

4π |x | .

This and the definitions of Cz and Sz in Eqs. (2.5) and (2.14) lead to

Cz+c2/2 =
(( z

c2
+ 1

)
Sz+z2/c2 I2

1
cTz+c2/2

1
cTz+c2/2

z
c2
Sz+z2/c2 I2

)

. (3.4)
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It follows from the latter representation and (2.6)–(2.7) that Tz+c2/2 gives rise to a
bounded operator

Tz+c2/2 : Hs(	;C2) → Hs(	;C2), s ∈ [− 1
2 ,

1
2

]
, (3.5)

and that the anti-dual of Tz+c2/2 satisfies T ′
z+c2/2

= Tz+c2/2. In the next proposition
we show that these operators are even uniformly bounded in c.

Proposition 3.3 Let z ∈ C \ [0,∞) and c >
√|z|. Then, for any s ∈ [− 1

2 ,
1
2 ] the

operators Tz+c2/2 : Hs(	;C2) → Hs(	;C2) are uniformly bounded in c.

Proof The proof of this proposition is split into three steps. In Step 1 the integral kernel
tz+c2/2 of Tz+c2/2 is decomposed into a singular part d, which is independent of c,
and a remainder term t̃z,c which is easier to analyze. In Step 2 it is shown that the
integral operator with kernel t̃z,c gives rise to a bounded operator from L2(	;C2) to
H1(�+;C2) that is uniformly bounded in c. By combining the results from Step 1 &
2, the proof of the proposition is completed in Step 3.

Step 1 Rewriting the exponential in the kernel

tz+c2/2(x) =
⎛

⎝1 − i

√

z + z2

c2
|x |

⎞

⎠ i(σ · x)
4π |x |3 e

i
√

z+z2/c2|x |, x �= 0,

as a power series shows that the terms with |x |−2 cancel out. After combining and
rearranging the coefficients of the remaining terms we obtain

tz+c2/2(x) = d(x) + t̃z,c(x), (3.6)

where

d(x) = i(σ · x)
4π |x |3 , x �= 0, (3.7)

and

t̃z,c(x) =
∞∑

k=0

(
i k+3

(k + 2)! + i k+1

(k + 1)!
)⎛

⎝

√

z + z2

c2

⎞

⎠

k+2

|x |k−1 σ · x
4π

, x �= 0.

Step 2 Now we consider t̃z,c(x − y) for x ∈ �+ and y ∈ 	 and define the integral
operator T̃z,c for sufficiently smooth functions ϕ : 	 → C

2 as

T̃z,cϕ(x) :=
∫

	

t̃z,c(x − y)ϕ(y)dσ(y), x ∈ �+. (3.8)

We will show that

T̃z,c : L2(	;C2) → H1(�+;C2) is uniformly bounded in c. (3.9)
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For this, we first establish some simple bounds on t̃z,c and its first order derivatives
that are independent of c. Observe that for a constant K1 = K1(z) one has for all
x ∈ �+ and y ∈ 	

∣∣̃tz,c(x − y)
∣∣ ≤

∞∑

k=0

2

k!
(√

2|z|)k+2|x − y|k
4π

≤ K1, (3.10)

as the latter series is absolutely converging and defines a continuous function on the
compact set �+ × 	. Likewise, there exists a constant K2 = K2(z) such that for the
partial derivatives of t̃z,c and all x ∈ �+ and y ∈ 	 one has

∣∣∂x j t̃z,c(x − y)
∣∣ ≤

∞∑

k=0

2

k!
(√

2|z|)k+2

4π

∣∣∂x j
(
(σ · (x − y))|x − y|k−1)∣∣

=
∞∑

k=0

(√
2|z|)k+2

2πk!
∣∣∣∣σ j + (k − 1)(x j − y j )(σ · (x − y))

|x − y|2
∣∣∣∣|x − y|k−1

≤ K2

|x − y| .
(3.11)

Since �+ is bounded, (3.10) and (3.11) imply

(x, y) �→ t̃z,c(x − y) ∈ L2(�+ × 	;C2×2),

(x, y) �→ ∂x j t̃z,c(x − y) ∈ L2(�+ × 	;C2×2)

and there exists a constant K3 = K3(z) such that

∫

�+

∫

	

∣∣̃tz,c(x − y)
∣∣2dσ(y)dx ≤ K3,

∫

�+

∫

	

∣∣∂x j t̃z,c(x − y)
∣∣2dσ(y)dx ≤ K3.

(3.12)
Furthermore, using that for any y ∈ 	 one has x �→ t̃z,c(x − y) ∈ C∞(�+;C2×2),
(3.11), and the dominated convergence theorem, it is not difficult to see that for any
ϕ ∈ L2(	;C2) one has T̃z,cϕ ∈ C1(�+;C2) and

∂x j T̃z,cϕ(x) =
∫

	

∂x j t̃z,c(x − y)ϕ(y)dσ(y), x ∈ �+. (3.13)

Combining (3.8) and (3.13) with (3.12) shows that T̃z,c, ∂x j T̃z,c : L2(	;C2) →
L2(�+;C2) are Hilbert–Schmidt operators that are uniformly bounded in c, and
hence (3.9) is true.

Step 3 We verify that Tz+c2/2 : Hs(	;C2) → Hs(	;C2) is uniformly bounded

in c for any s ∈ [− 1
2 ,

1
2 ]. First, we do this for s = 1

2 . For that purpose, consider the
operator γDT̃z,c : L2(	;C2) → H1/2(	;C2), which is uniformly bounded in c by
the results in Step 2, and hence also the restriction
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γDT̃z,c : H1/2(	;C2) → H1/2(	;C2) (3.14)

is uniformly bounded in c. Furthermore, we shall use that

γDT̃z,cϕ(x) =
∫

	

t̃z,c(x − y)ϕ(y)dσ(y), x ∈ 	, (3.15)

holds for all ϕ ∈ L2(	;C2) (and, in particular, for all ϕ ∈ H1/2(	;C2)). In fact, the
estimate (3.10) extends to�+×	 and this implies that the function T̃z,cϕ : �+ → C

2

admits a continuous extension onto �+, which shows (3.15).
Next, recall that the function d is defined by (3.7). For ϕ ∈ H1/2(	;C2) consider

the integral operator

Dϕ(x) := lim
ε→0+

∫

	\B(x,ε)
d(x − y)ϕ(y)dσ(y), x ∈ 	,

which is bounded in H1/2(	;C2) by [43, Theorem 4.3.1] as d is a homogeneous
kernel of order 0 in the sense of [43, Section 4.3.2], see also [43, Example 4.2] (the
boundedness of D would also follow from (3.16) and the reasoning below, as Tz+c2/2

is bounded in H1/2(	;C2) by (3.5)). From (3.6) and (3.15) we obtain

Tz+c2/2ϕ = Dϕ + γDT̃z,cϕ, ϕ ∈ H1/2(	;C2), (3.16)

and now it follows from the uniform boundedness of the operator γDT̃z,c in (3.14) that
also Tz+c2/2 : H1/2(	;C2) → H1/2(	;C2) is uniformly bounded in c.

To show the claim for s = − 1
2 , recall that Tz+c2/2 has a bounded extension in

H−1/2(	;C2) given by Tz+c2/2 = (Tz+c2/2)
′. Hence, by the already shown uniform

boundedness in c of Tz+c2/2 in H1/2(	;C2) also

(Tz+c2/2)
′ = Tz+c2/2 : H−1/2(	;C2) → H−1/2(	;C2)

is uniformly bounded in c. Finally, as Tz+c2/2 is uniformly bounded in H−1/2(	;C2)

and H1/2(	;C2) in c, it follows with an interpolation argument using [41, Theorems
B.2 and B.11] that Tz+c2/2 : Hs(	;C2) → Hs(	;C2) is also uniformly bounded in

c for any s ∈ (− 1
2 ,

1
2 ). This finishes the proof. ��

Next, the convergence of (ϑc + McCz+c2/2Mc)
−1 is analyzed. Recall that a± is

defined by (2.9). By (3.4) one has the block structure

ϑc + McCz+c2/2Mc =
⎛

⎝

(
1
c a+ +

(
z
c2

+ 1
)
Sz+z2/c2

)
I2

1√
c
Tz+c2/2

1√
c
Tz+c2/2

(
a− + z

cSz+z2/c2

)
I2

⎞

⎠ .

To proceed, note that for z ∈ C \ [0,∞) and c > 0 sufficiently large the operator
a− + z

cSz+z2/c2 is boundedly invertible in Hs(	;C), s ∈ [− 1
2 ,

1
2 ], with inverse given
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by
(
a− + z

c
Sz+z2/c2

)−1

= 1

a−

∞∑

n=0

(
− z

a−c
Sz+z2/c2

)n

, (3.17)

as a− < 0 and by Lemma 2.4 the operator Sz+z2/c2 is (uniformly) bounded in
Hs(	;C) in c. Thus, one can write

ϑc + McCz+c2/2Mc =
(
I2

1√
c
Tz+c2/2

(
a− + z

cSz+z2/c2
)−1

0 I2

)

·
(
S̃z,c 0
0

(
a− + z

cSz+z2/c2
)
I2

) (
I2 0

1√
c

(
a− + z

cSz+z2/c2
)−1 Tz+c2/2 I2

)

,

(3.18)

where the Schur complement S̃z,c is given by

S̃z,c = 1

c
a+ I2 +

( z

c2
+ 1

)
Sz+z2/c2 I2 − 1

c
Tz+c2/2

(
a− + z

c
Sz+z2/c2

)−1
Tz+c2/2.

(3.19)

The first and the third factor in (3.18) are bijective in H1/2(	;C4). Since the map
ϑc + McCz+c2/2Mc has this property as well by Proposition 2.2, we conclude that
also S̃z,c is bijective in H1/2(	;C2). In the following proposition, the convergence
of S̃−1

z,c is analyzed.

Proposition 3.4 Let z < 0 and c >
√|z|. Then, there exists a constant K (z) such that

for all c sufficiently large

∥∥S̃−1
z,c − S−1

z I2
∥∥
H3/2(	;C2)→H−1/2(	;C2)

≤ K (z)

c
. (3.20)

Moreover, S̃−1
z,c : H1/2(	;C2) → H−1/2(	;C2) is uniformly bounded in c.

Proof The proof of this proposition is split into four steps. In Step 1 we show that for
s ∈ [− 1

2 ,
1
2 ] there exists a constant K1 = K1(z, s) such that

∥∥S̃z,c − Sz I2
∥∥
Hs (	;C2)→Hs (	;C2)

≤ K1

c
(3.21)

for c > 0 sufficiently large. In Step 2we verify that the realization of S̃z,c in L2(	;C2)

is bijective and there exists a constant K2 such that for c > 0 sufficiently large

∥∥S̃−1
z,c

∥∥
L2(	;C2)→L2(	;C2)

≤ K2c. (3.22)

Using this, we show in Step 3 our claim that S̃−1
z,c : H1/2(	;C2) → H−1/2(	;C2)

is uniformly bounded in c, while in Step 4 we prove (3.20).
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Step 1 For s ∈ [− 1
2 ,

1
2 ] fixed and c > 0 sufficiently large we obtain the estimate

∥∥S̃z,c − Sz I2
∥∥
Hs (	;C2)→Hs (	;C2)

≤
∥∥∥(Sz+z2/c2 − Sz)I2

∥∥∥
Hs (	;C2)→Hs (	;C2)

+ 1

c

∥∥∥∥a+ I2 + z

c
Sz+z2/c2 I2

− Tz+c2/2

(
a− + z

c
Sz+z2/c2

)−1

Tz+c2/2

∥∥∥∥
Hs (	;C2)→Hs (	;C2)

(3.23)

from (3.19). For the first term on the right-hand side of (3.23) one has by Lemma 2.4

∥∥(Sz+z2/c2 − Sz)I2
∥∥
Hs (	;C2)→Hs (	;C2)

≤ ∥∥(Sz+z2/c2 − Sz)I2
∥∥
H−3/2(	;C2)→H3/2(	;C2)

≤ K ′
1
z2

c2

with some constant K ′
1 = K ′

1(z). Note also that Sz+z2/c2 is uniformly bounded in
Hs(	;C) for c > 0 sufficiently large by Lemma 2.4. Therefore, since a− < 0 we
conclude from (3.17) and the estimate

∥∥∥∥∥

(
a− + z

c
Sz+z2/c2

)−1
∥∥∥∥∥
Hs (	;C)→Hs (	;C)

≤ 1

−a−

(
1 − z

a−c
‖Sz+z2/c2‖Hs (	;C)→Hs(	;C)

)−1

that (a− + z
cSz+z2/c2)

−1 is also uniformly bounded in Hs(	;C) for c > 0 sufficiently
large. Combining this with Proposition 3.3 it follows that the second term on the right-

hand side of (3.23) is bounded by
K ′′
1
c with some constant K ′′

1 = K ′′
1 (z, s); thus we

conclude (3.21).
Step 2 For z < 0 and c > 0 sufficiently large we shall now consider the operator

S̃z,c = 1

c
a+ I2 +

(
z

c2
+ 1

)
Sz+z2/c2 I2 − 1

c
Tz+c2/2

(
a− + z

c
Sz+z2/c2

)−1

Tz+c2/2

in L2(	;C2). Note that for c > 0 sufficiently large Sz+z2/c2 is bounded, self-adjoint
and nonnegative in L2(	;C2) (see the discussion after (2.15)) and hence the same
holds for the operator ( z

c2
+ 1)Sz+z2/c2 . Furthermore, for c > 0 sufficiently large

Tz+c2/2 is bounded and self-adjoint in L2(	;C2) (see (3.5)), and together with (3.17)
we conclude that also S̃z,c is bounded and self-adjoint. As a− < 0 and Sz+z2/c2

is uniformly bounded in c it is clear that a− + z
cSz+z2/c2 is a negative operator in
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L2(	;C2) for c > 0 sufficiently large, and the same is true for its inverse. Therefore,

−1

c
Tz+c2/2

(
a− + z

c
Sz+z2/c2

)−1

Tz+c2/2

is a nonnegative operator in L2(	;C2) for c > 0 sufficiently large. This implies
S̃z,c ≥ a+

c for c > 0 sufficiently large, which in turn yields (3.22) with K2 = a−1+ .
Step 3We claim that S̃−1

z,c : H1/2(	;C2) → H−1/2(	;C2) is uniformly bounded
in c. For this it suffices to prove that for c > 0 sufficiently large there exists a constant
K3 = K3(z) such that

∥∥S̃−1
z,c

∥∥
H1(	;C2)→L2(	;C2)

≤ K3, (3.24)

as then by duality and formal symmetry one also has

∥∥S̃−1
z,c

∥∥
L2(	;C2)→H−1(	;C2)

≤ K3,

and an interpolation argument (see [41, TheoremsB.2 andB.11]) leads to the assertion.
To show (3.24), we use

S̃−1
z,c = S−1

z I2 − S̃−1
z,c

(
S̃z,c − Sz I2

)
S−1
z I2 (3.25)

and the fact that S−1
z : H1(	;C) → L2(	;C) is bounded; cf. (2.15). Using (3.21)

for s = 0 with K1 = K1(z, 0) and (3.22) we obtain

∥∥S̃−1
z,c

∥∥
H1(	;C2)→L2(	;C2)

≤ ‖S−1
z ‖H1(	;C)→L2(	;C)

+ ∥∥S̃−1
z,c

∥∥
L2(	;C2)→L2(	;C2)

∥∥Sz I2 − S̃z,c
∥∥
L2(	;C2)→L2(	;C2)

‖S−1
z ‖H1(	;C)→L2(	;C)

≤ ‖S−1
z ‖H1(	;C)→L2(	;C)

(
1 + K2 · c · K1

c

)
,

and hence (3.24) holds.
Step 4 Finally,we show (3.20).Using again (3.25), the fact thatSz : H1/2(	;C) →

H3/2(	;C) is boundedly invertible, and the results from Step 1 and Step 3 we obtain

∥∥S̃−1
z,c − S−1

z I2
∥∥
H3/2(	;C2)→H−1/2(	;C2)

≤ ∥∥S̃−1
z,c

∥∥
H1/2(	;C2)→H−1/2(	;C2)∥∥Sz I2 − S̃z,c

∥∥
H1/2(	;C2)→H1/2(	;C2)

‖S−1
z ‖H3/2(	;C)→H1/2(	;C)

≤ K (z)

c
.

This completes the proof of Proposition 3.4. ��
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Now we are ready to study the convergence of the inverse of ϑc +McCz+c2/2Mc.

Proposition 3.5 Let z < 0 and c >
√|z|. Then, there exists a constant K (z) such that

for all c sufficiently large

∥∥∥∥
(
ϑc + McCz+c2/2Mc

)−1 −
(
S−1
z I2 0
0 a−1− I2

)∥∥∥∥
H3/2(	;C4)→H−1/2(	;C4)

≤ K (z)√
c

.

Moreover,
(
ϑc + McCz+c2/2Mc

)−1 : H1/2(	;C4) → H−1/2(	;C4) is uniformly
bounded in c.

Proof It follows from (3.18) that

(
ϑc + McCz+c2/2Mc

)−1 = F1(c)F2(c)F3(c), (3.26)

where

F1(c) :=
(

I2 0

− 1√
c

(
a− + z

cSz+c2/2
)−1 Tz+c2/2 I2

)

,

F2(c) :=
(
S̃−1
z,c 0

0
(
a− + z

cSz+z2/c2
)−1

I2

)

,

F3(c) :=
(
I2 − 1√

c
Tz+c2/2

(
a− + z

cSz+z2/c2
)−1

0 I2

)

.

For c > 0 sufficiently large we use the uniform boundedness of Sz+z2/c2 in Hs(	;C),

s ∈ [− 1
2 ,

1
2 ], from Lemma 2.4 to estimate

∥∥∥∥∥

(
a− + z

c
Sz+z2/c2

)−1

− a−1−

∥∥∥∥∥
Hs (	;C)→Hs (	;C)

= − 1

a−

∥∥∥∥∥

∞∑

n=1

(
− z

a−c
Sz+z2/c2

)n
∥∥∥∥∥
Hs (	;C)→Hs (	;C)

≤ − 1

a−

( z
a−c‖Sz+z2/c2‖Hs (	;C)→Hs (	;C)

1 − z
a−c‖Sz+z2/c2‖Hs (	;C)→Hs (	;C)

)

≤ K1

c
,

where K1 = K1(z, s) is a constant; for the restriction onto H3/2(	;C) viewed as a
mapping into H−1/2(	;C) this estimate yields

∥∥∥∥∥

(
a− + z

c
Sz+z2/c2

)−1

− a−1−

∥∥∥∥∥
H3/2(	;C)→H−1/2(	;C)

≤ K1

c
, (3.27)
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and also shows that (a− + z
cSz+z2/c2)

−1 is uniformly bounded in Hs(	;C2), s ∈
[− 1

2 ,
1
2 ], for c > 0 sufficiently large; cf. Step 1 in the proof of Proposition 3.4.

Together with Proposition 3.3 this implies with a constant K2 = K2(z) that

‖F1(c) − I4‖H−1/2(	;C4)→H−1/2(	;C4) ≤ K2√
c
,

‖F3(c) − I4‖H1/2(	;C4)→H1/2(	;C4) ≤ K2√
c
. (3.28)

In particular, F1(c) is uniformly bounded in H−1/2(	;C4) and F3(c) is uniformly
bounded in H1/2(	;C4) in c, and the restrictions onto H1/2(	;C4) and H3/2(	;C4)

satisfy the same bounds

‖F1(c) − I4‖H1/2(	;C4)→H−1/2(	;C4) ≤ K2√
c
,

‖F3(c) − I4‖H3/2(	;C4)→H1/2(	;C4) ≤ K2√
c
. (3.29)

Moreover, Proposition 3.4 and (3.27) imply

∥∥∥∥F2(c) −
(
S−1
z I2 0
0 a−1− I2

)∥∥∥∥
H3/2(	;C4)→H−1/2(	;C4)

≤ K3

c

with some constant K3 = K3(z). Eventually, it follows from Proposition 3.4 and
the uniform boundedness of (a− + z

cSz+z2/c2)
−1 as a mapping from H1/2(	;C) to

H−1/2(	;C) that F2(c) : H1/2(	;C4) → H−1/2(	;C4) is uniformly bounded.
Combining this with (3.28) and (3.29) gives

∥∥∥∥
(
ϑc + McCz+c2/2Mc

)−1 −
(
S−1
z 0
0 a−1− I2

)∥∥∥∥
H3/2(	;C4)→H−1/2(	;C4)

≤ ∥∥F1(c)F2(c)(F3(c) − I4)
∥∥
H3/2(	;C4)→H−1/2(	;C4)

+
∥∥∥∥F1(c)

(
F2(c) −

(
S−1
z I2 0
0 a−1− I2

))∥∥∥∥
H3/2(	;C4)→H−1/2(	;C4)

+
∥∥∥∥(F1(c) − I4)

(
S−1
z I2 0
0 a−1− I2

)∥∥∥∥
H3/2(	;C4)→H−1/2(	;C4)

≤ ∥∥F1(c)F2(c)
∥∥
H1/2(	;C4)→H−1/2(	;C4)

∥∥F3(c) − I4
∥∥
H3/2(	;C4)→H1/2(	;C4)

+ ‖F1(c)‖H−1/2(	;C4)→H−1/2(	;C4)

∥∥∥∥F2(c) −
(
S−1
z I2 0
0 a−1− I2

)∥∥∥∥
H3/2(	;C4)→H−1/2(	;C4)

+ ‖F1(c) − I4‖H1/2(	;C4)→H−1/2(	;C4)

∥∥∥∥

(
S−1
z I2 0
0 a−1− I2

)∥∥∥∥
H3/2(	;C4)→H1/2(	;C4)

≤ K (z)√
c

,
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which is exactly the claimed convergence result.
Finally, the claim about the uniform boundedness of the operator

(ϑc + McCz+c2/2Mc)
−1 : H1/2(	;C4) → H−1/2(	;C4)

follows from (3.26) and the above observations on the uniform boundedness of
F1(c) in H−1/2(	;C4), F2(c) from H1/2(	;C4) to H−1/2(	;C4), and F3(c) in
H1/2(	;C4). ��

3.3 Nonrelativistic Limit of A6
�

With the preparations from the previous sections we are now ready to discuss the
nonrelativistic limit of the Dirac operators A	

κ .

Proposition 3.6 Let A	
κ , κ ∈ R, be as in (2.8) and −�D := (−�

�+
D ) ⊕ (−�

�−
D ),

where −�
�±
D is the Dirichlet Laplacian in �± from (2.20). Let z < 0 and c >

√|z|.
Then, there exists a constant K (z) such that for all c sufficiently large

∥∥∥∥∥

(
A	

κ −
(
z + c2

2

))−1

− (−�D − z)−1
(
I2 0
0 0

)∥∥∥∥∥
L2(R3;C4)→L2(R3;C4)

≤ K (z)√
c

.

Proof LetMc andϑc be defined by (2.10). As−c2 < z < 0, one has z ∈ ρ(−�D) and
z + c2

2 ∈ (− c2
2 , c2

2 ) ⊂ ρ(A	
κ ); cf Proposition 2.2. Furthermore, from Proposition 2.2

and Lemma 2.5 we obtain

(
A	

κ −
(
z + c2

2

))−1

− (−�D − z)−1
(
I2 0
0 0

)

=
(
A0 −

(
z + c2

2

))−1

− �z+c2/2Mc
(
ϑc + McCz+c2/2Mc

)−1Mc�
∗
z+c2/2

−
(
(−� − z)−1 − SLzS−1

z SL∗
z

) (
I2 0
0 0

)

= D1(c) + D2(c) + D3(c) + D4(c)
(3.30)

with

D1(c) :=
(
A0 −

(
z + c2

2

))−1

− (−� − z)−1
(
I2 0
0 0

)
,

D2(c) := −�z+c2/2Mc
(
ϑc + McCz+c2/2Mc

)−1
(
Mc�

∗
z+c2/2 − SL∗

z

(
I2 0
0 0

))
,

D3(c) := −�z+c2/2Mc

((
ϑc + McCz+c2/2Mc

)−1 −
(
S−1
z 0
0 a−1− I2

))
SL∗

z

(
I2 0
0 0

)
,

D4(c) := −
(

�z+c2/2Mc − SLz

(
I2 0
0 0

)) (
S−1
z 0
0 a−1− I2

)
SL∗

z

(
I2 0
0 0

)
.
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First, it follows from Proposition 3.1 that ‖D1(c)‖L2(R3;C4)→L2(R3;C4) ≤ K1
c for a

constant K1 = K1(z). To discuss D2(c) recall that �z+c2/2Mc : H−1/2(	;C4) →
L2(R3;C4) is uniformlybounded in c byProposition3.2 and (ϑc+McCz+c2/2Mc)

−1 :
H1/2(	;C4) → H−1/2(	;C4) is uniformly bounded in c by Proposition 3.5. Hence,
we find with Proposition 3.2 that there exists a constant K2 = K2(z) such that

‖D2(c)‖L2(R3;C4)→L2(R3;C4)

≤ ∥∥�z+c2/2Mc
∥∥
H−1/2(	;C4)→L2(R3;C4)

·
∥∥∥
(
ϑc + McCz+c2/2Mc

)−1
∥∥∥
H1/2(	;C4)→H−1/2(	;C4)

·
∥∥∥∥Mc�

∗
z+c2/2 − SL∗

z

(
I2 0
0 0

)∥∥∥∥
L2(R3;C4)→H1/2(	;C4)

≤ K2√
c
.

Next, as SL∗
z : L2(R3;C) → H3/2(	;C) is bounded (see (2.17)), Proposition 3.5

implies that there exists a constant K3 = K3(z) such that

‖D3(c)‖L2(R3;C4)→L2(R3;C4) ≤ ∥∥�z+c2/2Mc
∥∥
H−1/2(	;C4)→L2(R3;C4)

·
∥∥∥∥
(
ϑc + McCz+c2/2Mc

)−1 −
(
S−1
z 0
0 a−1− I2

)∥∥∥∥
H3/2(	;C4)→H−1/2(	;C4)

·
∥∥∥∥SL

∗
z

(
I2 0
0 0

)∥∥∥∥
L2(R3;C4)→H3/2(	;C4)

≤ K3√
c
.

In a similar way, as S−1
z : H1/2(	;C) → H−1/2(	;C) is bounded (see (2.15)), we

find with Proposition 3.2 that there exists a constant K4 = K4(z) such that

‖D4(c)‖L2(R3;C4)→L2(R3;C4)

≤
∥∥∥∥�z+c2/2Mc − SLz

(
I2 0
0 0

)∥∥∥∥
H−1/2(	;C4)→L2(R3;C4)

·
∥∥∥∥

(
S−1
z 0
0 a−1− I2

)∥∥∥∥
H1/2(	;C4)→H−1/2(	;C4)

·
∥∥∥∥SL

∗
z

(
I2 0
0 0

)∥∥∥∥
L2(R3;C4)→H1/2(	;C4)

≤ K4√
c
.

Now the statement of the proposition follows by combining the above estimates for
the operators D1(c), D2(c), D3(c), and D4(c) with (3.30). ��

3.4 Proof of Theorem 1.2 and Corollary 1.3

In this section we complete the proof of our main result by combining Lemma 2.1 and
Proposition 3.6. For this letκ ∈ R,�,�± be as inHypothesis 1.1, and	 = ∂�. Let the
Dirac operator A	

κ bedefined as in (2.8) anddenote by P� : L2(R3;C4) → L2(�;C4)
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the operator P� f = f � �; cf. Corollary 2.3. Then, the self-adjoint Dirac operator
H�

κ in L2(�;C4) satisfies
H�

κ = P�A	
κ P∗

�

by Lemma 2.1 and since σ(H�
κ ) ⊂ (−∞,− c2

2 ] ∪ [ c22 ,∞) by Corollary 2.3 it is clear
that z + c2/2 with z ∈ C \ [0,∞) and c >

√|z| belongs to ρ(H�
κ ) ∩ ρ(A	

κ ), so that

(
H�

κ −
(
z + c2

2

))−1

= P�

(
A	

κ −
(
z + c2

2

))−1

P∗
�.

Therefore, if z < 0, then (1.3) follows from Proposition 3.6. In the general case
z ∈ C \ [0,∞) we obtain (1.3) by assuming that c > 1 and using the identity

(
H�

κ −
(
z + c2

2

))−1

− (−��
D − z)−1

(
I2 0
0 0

)

=
(
I4 + (z + 1)(−��

D − z)−1
(
I2 0
0 0

))

·
[(

H�
κ −

(
−1 + c2

2

))−1

− (−��
D + 1)−1

(
I2 0
0 0

)]

·
(

I4 + (z + 1)

(
H�

κ −
(
z + c2

2

))−1
)

.

This completes the proof of Theorem 1.2 and now we turn our attention to Corol-
lary 1.3, which can be viewed as an immediate consequence of classical results on
eigenvalues of Dirichlet Laplacians and convergence of spectra under operator norm
convergence of resolvents. For the convenience of the reader and to keep the presen-
tation self-contained we briefly provide the details of the arguments. In the present
situation, it is convenient to apply [52, Satz 3.17 d)] or [31, Theorem 2.3.1] about the
convergence of eigenvalues of nonnegative compact operators. More precisely, let Bc,
c ∈ (c0,∞] for a suitable c0 ∈ R, be a family of compact, self-adjoint, and nonneg-
ative operators with eigenvalues μ1(Bc) ≥ μ2(Bc) ≥ · · · ≥ 0 taking multiplicities
into account. If Bc converges to B∞ in the operator norm, as c → ∞, then by [52,
Satz 3.17 d)] for all j ∈ N also μ j (Bc) converges to μ j (B∞), as c → ∞. We apply
this result to

Bc := f

((
H�

κ −
(

− 1 + c2

2

))−1 )
and B∞ := f

(
(−��

D + 1)−1
(
I2 0
0 0

))
,

where f ∈ C(R) is a nonnegative function such that f (x) = 0 for x ∈ (−∞, 0] ∪
[2,∞), and f (x) = x for x ∈ (0, 1]. It is clear that Bc and B∞ are nonnegative
bounded self-adjoint operators, and from the compactness of the resolvents of H�

κ

and −��
D , which holds as dom H�

κ and dom(−��
D) are compactly embedded in

L2(�;C4) and L2(�;C), respectively, it follows that Bc and B∞ are both compact.
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In the following let c > 1. For the eigenvalues λ±
j (H�

κ ) of H�
κ ordered as in (1.2)

we have

(
λ−
j (H�

κ ) + 1 − c2

2

)−1

< 0 and

(
λ+
j (H�

κ ) + 1 − c2

2

)−1

≤ 1, j ∈ N;

cf. Corollary 2.3. From the choice of f it is clear that the positive eigenvalues of Bc

are given by μ j (Bc) = (λ+
j (H�

κ ) + 1− c2
2 )−1. Similarly, σ(−��

D) ⊂ [0,∞) and the

fact that two copies of (−��
D + 1)−1 appear in the definition of B∞ leads to

μ2 j−1(B∞) = μ2 j (B∞) = (λ j (−��
D) + 1)−1

for j ∈ N, where 0 < λ1(−��
D) ≤ λ2(−��

D) ≤ . . . denote the discrete eigenvalues
of −��

D taking multiplicities into account. Now it follows from Theorem 1.2 and [49,
Theorem VIII.20] that Bc converges to B∞ in the operator norm, as c → ∞. Using
that all eigenvalues of H�

κ have even multiplicity, see Corollary 2.3 (i), we conclude
with [52, Satz 3.17 d)] from the above considerations that for any j ∈ N

μ2 j−1(Bc) = μ2 j (Bc) =
(

λ+
2 j−1(H

�
κ ) − c2

2
+ 1

)−1

=
(

λ+
2 j (H

�
κ ) − c2

2
+ 1

)−1

tends to

μ2 j−1(B∞) = μ2 j (B∞) = (
λ j (−��

D) + 1
)−1

, as c → ∞,

which is equivalent to

λ+
2 j−1(H

�
κ ) − c2

2
= λ+

2 j (H
�
κ ) − c2

2
→ λ j (−��

D), as c → ∞. (3.31)

Eventually, to conclude Corollary 1.3 we note that (3.31) remains true if � is
replaced by a ball B or the disjoint union of two balls B1∪ B2. Thus, the claims follow
immediately from the classical results for the Dirichlet Laplacian, which under the
assumptions of Corollary 1.3 read as follows:

(i) Faber–Krahn inequality: λ1(−�B
D) ≤ λ1(−��

D) and equality holds if and only if
� is a ball, see [29, 36] and also [31, Theorem 3.2.1 and Remark 3.2.2].

(ii) Hong–Krahn–Szegö inequality: λ2(−�
B1∪B2
D ) ≤ λ2(−��

D) and equality holds if
and only if � is the union of two identical disjoint balls, see [33, 37] and also [31,
Theorem 4.1.1 and Remark 4.1.2].

(iii) Payne–Pólya–Weinberger inequality: If � is connected, then

λ1(−�B
D)

λ2(−�B
D)

≤ λ1(−��
D)

λ2(−��
D)

and equality holds if and only if � is a ball, see [8, 45].
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Remark 3.7 Finally, let us remark that from Theorem 1.2 and Corollary 1.3 one gets
information about the positive part of the spectrum of H�

κ . Similar statements are
also true for the negative part of the spectrum of H�

κ . Indeed, consider the self-
adjoint unitary matrix U = ( 0 −i I2

i I2 0

)
. Then, as Uα j + α jU = 0, j ∈ {1, 2, 3}, and

Uβ + βU = 0, it is not difficult to see that H�
κ = −UH�−κU , i.e. H�

κ and −H�−κ

are unitarily equivalent. Hence, it follows from Theorem 1.2 that for z ∈ C \ (−∞, 0]
also

(
H�

κ −
(
z − c2

2

))−1

=
(

−UH�−κU −
(
z − c2

2

))−1

= −U

(
H�−κ −

(
−z + c2

2

))−1

U

→ −U (−��
D + z)−1

(
I2 0
0 0

)
U = ( − (−��

D) − z
)−1

(
0 0
0 I2

)

in the operator norm, as c → ∞. This convergence is of interest by its own, but
similarly as in the proof of Corollary 1.3 one can conclude spectral inequalities for
the negative eigenvalues λ−

j (H�
κ ) of H�

κ ; alternatively one can argue via the unitary

equivalence H�
κ = −UH�−κU . More precisely, for a bounded C2-domain � ⊂ R

3, a
ball B ⊂ R

3 with |B| = |�|, and two identical and disjoint balls B1, B2 ⊂ R
3 with

|B1| + |B2| = |�| the following assertions follow for sufficiently large c > 0:

(i) λ−
j (HB

κ ) ≥ λ−
j (H�

κ ) for j ∈ {1, 2} and equality holds if and only if � is a ball.

(ii) λ−
j (HB1∪B2

κ ) ≥ λ−
j (H�

κ ) for j ∈ {3, 4} and equality holds if and only if � is the
union of two identical disjoint balls.

(iii) If, in addition, � is connected, then

λ−
j (HB

κ )

λ−
l (HB

κ )
≤ λ−

j (H�
κ )

λ−
l (H�

κ )
, j ∈ {1, 2}, l ∈ {3, 4},

and equality holds if and only if � is a ball.
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23. Briet, P., Krejčiřík, D.: Spectral optimization of Dirac rectangles. J. Math. Phys. 63(1), 013502 (11
pages) (2022)

24. Budyika, V., Malamud,M., Posilicano, A.: Nonrelativistic limit for 2p×2p-Dirac operators with point
interactions on a discrete set. Russ. J. Math. Phys. 24(4), 426–435 (2017)

25. Carlone, R., Malamud, M., Posilicano, A.: On the spectral theory of Gesztesy-Šeba realizations of 1-D
Dirac operators with point interactions on a discrete set. J. Differ. Equ. 254(9), 3835–3902 (2013)

26. Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: New extended model of hadrons.
Phys. Rev. D 9(12), 3471–3495 (1974)

27. Cuenin, J.-C.: Estimates on complex eigenvalues for Dirac operators on the half-line. Integr. Equ. Oper.
Theory 79(3), 377–388 (2014)

28. DeGrand, T., Jaffe, R.L., Johnson, K., Kiskis, J.: Masses and other parameters of the light hadrons.
Phys. Rev. D 12(7), 2060–2076 (1975)

29. Faber, G.: Beweis, dass unter allen homogenenMembranen von gleicher Fläche und gleicher Spannung
die kreisförmige den tiefsten Grundton gibt. Sitzungsber. Bayer. Akad. Wiss. München Math.-Phys.
Kl. 169–172 (1923)

30. Gesztesy, F., Šeba, P.: New analytically solvable models of relativistic point interactions. Lett. Math.
Phys. 13(4), 345–358 (1987)

31. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics.
Birkhäuser Verlag, Basel (2006)

32. Heriban, L., Tušek, M.: Non-self-adjoint relativistic point interaction in one dimension. J. Math. Anal.
Appl. 516(2), 126536 (28 pages) (2022)

33. Hong, I.: On an inequality concerning the eigenvalue problem of membrane. Kodai Math. Sem. Rep.
6, 113–114 (1954)

34. Johnson, K.: The MIT bag model. Acta Physica Pol. B 6, 865–892 (1975)
35. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-Verlag, Berlin

(1995). (Reprint of the 1980 edition)
36. Krahn, E.: Über eine vonRayleigh formulierteMinimaleigenschaft desKreises.Math. Ann. 94, 97–100

(1925)
37. Krahn, E.: Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen. Acta Univ. Dorpat.

A 9, 1–44 (1926)
38. Levitin, M., Mangoubi, D., Polterovich, I.: Topics in Spectral Geometry. Graduate Studies in Mathe-

matics, vol. 237. American Mathematical Society, Providence (2023)
39. Lotoreichik, V., Ourmières-Bonafos, T.: A sharp upper bound on the spectral gap for graphene quantum

dots. Math. Phys. Anal. Geom. 22, 13 (30 pages) (2019)
40. Lotoreichik, V., Ourmières-Bonafos, T.: Spectral asymptotics of the Dirac operator in a thin shell.

arXiv:2307.09033
41. McLean,W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press,

Cambridge (2000)
42. Moroianu, A., Ourmières-Bonafos, T., Pankrashkin, K.: Dirac operators on hypersurfaces as largemass

limits. Commun. Math. Phys. 374(3), 1963–2013 (2020)
43. Nédélec, J.C.: Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Prob-

lems. Springer-Verlag, New York (2001)
44. Ourmières-Bonafos, T., Vega, L.: A strategy for self-adjointness of Dirac operators: application to the

MIT bag model and δ-shell interactions. Publ. Mat. 62, 397–437 (2018)
45. Pólya, G.: On the characteristic frequencies of a symmetric membrane. Math. Z. 63, 331–337 (1955)
46. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics

Studies, vol 27. Princeton University Press, Princeton (1951)
47. Rabinovich, V.S.: Boundary problems for three-dimensional Dirac operators and generalized MIT bag

models for unbounded domains. Russ. J. Math. Phys. 27(4), 500–516 (2020)
48. Rabinovich, V.S.: Boundary value problems for 3D-Dirac operators and MIT bag model. Springer

Proc. Math. Stat. 357, 479–495 (2021)
49. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. Academic

Press, Cambridge (1972)

123

http://arxiv.org/abs/2307.09033


12 Page 30 of 30 J. Behrndt etal.

50. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer-Verlag, Berlin (1992)
51. Vu, T.: Spectral inequality for Dirac right triangles. J. Math. Phys. 64(4), 041502 (18 pages) (2023)
52. Weidmann, J.: Lineare Operatoren in Hilberträumen. Teil I. Grundlagen. Mathematische Leitfäden. B.

G. Teubner, Stuttgart (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Nonrelativistic Limit of Generalized MIT Bag Models and Spectral Inequalities
	Abstract
	1 Introduction
	Notations

	2 Preliminaries
	2.1 The Free Dirac Operator and Associated Integral Operators
	2.2 HκΩ and Dirac Operators with δ-Shell Potentials
	2.3 The Dirichlet Laplacian and Associated Integral Operators

	3 The Nonrelativistic Limit
	3.1 Convergence of (A0 - (z + c2/2))-1, Φz+c2/2 mathcalMc, and mathcalMc Φoverlinez + c2/2*
	3.2 Convergence of ( c + mathcalMc mathcalCz + c2/2 mathcalMc )-1
	3.3 Nonrelativistic Limit of AκΣ
	3.4 Proof of Theorem 1.2 and Corollary 1.3

	Acknowledgements
	References




