T Available online at www.sciencedirect.com _
*x . . Journal of
st ScienceDirect Differential
Equations
ELSEVIER Journal of Differential Equations 462 (2026) 114131 E————————

www.elsevier.com/locate/jde

On sesquilinear forms for lower semibounded (singular)
Sturm—Liouville operators

Jussi Behrndt **, Fritz Gesztesy °, Seppo Hassi ¢, Roger Nichols ¢,
Henk de Snoo

& Technische Universitit Graz, Institut fiir Angewandte Mathematik, Steyrergasse 30, 8010 Graz, Austria
b Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th Street, Waco, TX 76706, USA
¢ Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland
d Department of Mathematics (Dept. 6956), The University of Tennessee at Chattanooga, 615 McCallie Avenue,
Chattanooga, TN 37403, USA
€ Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, P.O. Box
407, 9700 AK Groningen, Netherlands

Received 8 September 2025; revised 6 January 2026; accepted 14 January 2026

Abstract

Any self-adjoint extension of a (singular) Sturm-Liouville operator bounded from below uniquely leads
to an associated sesquilinear form. This form is characterized in terms of principal and nonprincipal so-
lutions of the Sturm-Liouville operator by using generalized boundary values. We provide these forms in
detail in all possible cases (explicitly, when both endpoints are limit circle, when one endpoint is limit cir-
cle, and when both endpoints are limit point).
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1. Introduction

The traditional three-coefficient Sturm—Liouville (generalized eigenvalue) problem on an ar-
bitrary open interval (a, b) C R is of the form

—(p@)f(x)) +qx)f(x)=zr(x) f(x) forae. x € (a,b), zeC, (1.1)

where the coefficients p, g, r are real-valued (Lebesgue) a.e. on (a, b), p,r > 0 a.e. on (a, b),
and p‘l, q,r € Llloc((a, b); dx). In addition, z € C represents a (generally, complex-valued)
spectral parameter, and f and pf’ are assumed to be locally absolutely continuous on (a, b); see

Section 2 for details. More precisely, the differential expression t underlying (1.1),

1

d d
12@[—Ep(x)a+q(x):| for a.e. x € (a, b), (1.2)

naturally leads to a minimal closed symmetric operator 7,;, in the Hilbert space Lz((a, b);rdx)
(cf. (2.10) and (2.12)) and its deficiency indices are then given by (0, 0), (1, 1), or (2, 2). From
the outset, the operator T,,;, is in general not lower semibounded. However, in this paper it will
be assumed that equation (1.1) has solutions which are nonoscillatory at the endpoints a and b
for some z € R and in this case 7,,;, turns out to be lower semibounded. As a consequence,
all self-adjoint extensions of T},;, in L>((a, b); r dx) are then lower semibounded, see Propo-
sition 2.8. For example, in the special case of a one-dimensional Schrodinger operator where
T simplifies to T = —(d? /dxz) + g(x) for a.e. x € (a, b), quantum mechanical considerations
typically lead to the requirement of lower semibounded self-adjoint extensions of 7},;, and the
characterization of the underlying quadratic forms (representing the sum of kinetic and potential
energy) corresponding to them.

In this paper we consider the natural and nontrivial question of determining the form do-
mains associated with general, that is, lower semibounded, self-adjoint, singular, three-coefficient
Sturm-Liouville operators associated with L?((a, b); r dx)-realizations of the differential ex-
pression 7 in (1.2). The corresponding sesquilinear forms are then connected to integrals of the
form
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b
/ dx [p() f/(x)g'(x) + g (x) f()g(x)] (1.3)

for “appropriate” elements f, g € L*>((a, b); r dx). However, if one of the functions f or g is not
compactly supported in (a, b), there might well be a problem with the convergence of the integral
in (1.3). This problem will be avoided when rewriting the integral by means of the nonoscillatory
solutions of (1.1) mentioned above. These solutions will also be used to introduce generalized
boundary values (see Proposition 2.10) that are associated to the particular self-adjoint extension
of T,,i, under consideration. The main results in this paper are formulated in terms of proper
interpretations of the integral (1.3) and, in particular, in terms of generalized boundary values,
see Proposition 2.10.

The history of Sturm-Liouville problems, and, especially, the naturally associated spectral
theory, is incredibly rich. Hence, we can only point to some of the classical contributions by
Weyl [39-43], Titchmarsh [31-34], [35, Chs. I-VI], and Kodaira [19], [20], and, for more recent
accounts, refer to the monographs [1, Sects. 127, 132], [3, Ch. 6], [4, Chs. 4, 6-8], [6, Ch. 9], [7,
Sect. 13.6, 13.9, 13.10], [8, Ch. 2], [9, Sect. 3.10], [11, Chs. 4-10, 13], [13], [14, Parts II, III],
[15, Ch. III], [21, Sect. 11.9], [22, Sect. 15-19], [24, Ch. 6], [27, Chs. 1-4, 6], [29, Ch. 15], [30,
Ch. 9], [37, Sects. 3-7], [38, Ch. 13], [36, Sect. 8.4], [44, Ch. 5], and [45, Chs. 7-10].

The material in this paper is presented in a systematic and straightforward way. A brief review
of Sturm-Liouville theory is given in Section 2. The description of all self-adjoint extensions
by means of generalized boundary values can be found in Propositions 2.12, 2.13, and 2.14,
depending on the endpoints being in the limit circle case or in the limit point case. Section 2 also
briefly surveys the history of the notion of generalized boundary values (cf. Remark 2.15). In
each of our principal Sections 3, 4, and 5, one can find a systematic description of the quadratic
forms corresponding to the self-adjoint extensions in the various cases; see Theorems 3.8, 3.9,
4.5, and 5.4. The results are obtained via integration by parts of the expression (f, T;,4xg) for
f, g € dom(Tyn4y), where Ty, denotes the maximal operator associated to (1.2); see Lemma 3.4
and Lemma 4.4. This yields an alternative and very explicit formulation of the results in [3, Ch. 6]
in terms of generalized boundary values. These results generalize those of [11, Sect. 4.5] in the
special case where 7 is regular at a and b. The presentation is for the most part self-contained. For
completeness and convenience of the reader, we identify in Appendix A the boundary triplet and
the boundary pair used in [3] to obtain the general formulation of the main results in Sections 3
and 4. In the appendix the emphasis is on the abstract analogue of Lemma 3.4 and Lemma 4.4.
The abstract results also lead to a description of the Friedrichs extension in each of these sections
by means of a boundary pair.

We conclude this introduction by briefly commenting on some of the notation employed in
the bulk of this paper: The inner product in a separable (complex) Hilbert space H is denoted by
(-, - ) and is assumed to be linear with respect to the second argument. If 7T is a linear operator
mapping (a subspace of) a Hilbert space into another, then dom(T'), ran(T'), and ker(7T) denote
the domain, range, and kernel (i.e., null space) of T, respectively. The analogous conventions are
used for linear relations and sesquilinear forms (when applicable); in particular, the multi-valued
part of a linear relation T is denoted by mul(7"). Finally, SL(2, R) denotes the set of all 2 x 2
matrices with real-valued entries and determinant one.
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2. Sturm-Liouville operators, generalized boundary values, and self-adjoint realizations
The following hypothesis will be assumed throughout this paper.
Hypothesis 2.1. Let —oo < a < b < co. Suppose that p, g, and r are Lebesgue measurable
on (a,b) with p~',q,r € L}, ((a,b); dx) and real-valued a.e. on (a,b) with r > 0 and p > 0
a.e.on (a, b).
We recall the basic construction and properties of Sturm—Liouville differential expressions
and their associated operators. For a full treatment with proofs of the assertions in this section,

we refer to [11, Chapter 5].
Assuming Hypothesis 2.1, we introduce the set

D:((a,b)) = {g € ACloc((a, b)) | pg' € ACioc((a, b))}. 2.0

The expression
fM=pf. feDi((a.b)), (2.2)
is called the first quasi-derivative of f. We note that f € D, ((a, b)) implies fI'l € ACoc((a, b)),

so that £ is differentiable almost everywhere on (a, b). The differential expression 7 is defined
by

— 1 _(FO1y 1 .
of =—[= (M) +af] € Lipe(@,b)irdx),  f €De((a,b)). (2.3)
For each f, g € ®;((a, b)), the (modified) Wronskian of f and g is defined by
W(f, &)@ = fe"w — Mg, xe@,b). (2.4)
Hence, W (f, g) is locally absolutely continuous on (a, b) and its derivative is
W(f,8) (x) =[g)(f)(x) — f(x)(1g)(x)]r(x) forae. x € (a,b). (2.5)
In particular, if z € C, then the Wronskian of two solutions u ;(z, -) € D:((a, b)), j € {1,2}, of
Tu = zu on (a, b) is constant. Moreover, W (u1(z, -), ua2(z, -)) # 0 if and only if u;(z, -) and
uy(z, -) are linearly independent.
Definition 2.2. The differential expression t is said to be regular on (a, b) if —oo <a <b < 00
(i.e., a and b are finite) and p_l, q,r € L'((a, b); dx); otherwise, t is said to be singular on
(a,b).

If 7 is regular on (a, b), then for each f € ©.((a, b)) the following limits exist and are finite:

f(@:=lim [ (). M) = lim M),
(2.6)
1 [1] NERT [1]
f@O =lim ). 1) =Tlim ).

4
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The differential expression T gives rise to linear operators in the Hilbert space L>((a, b); r dx)
equipped with the standard inner product

b
(ﬁgnqwm,wy=/r@nu7iﬁﬂm, f g € L*((a, b); r dx). 2.7)

a

The maximal operator associated to t is denoted by T}, and is defined by

Tmuxf = Tf’

2 ) (2.8)
f edom(Tipax) = {g € L“((a, b); rdx) |g €®:((a,b)), g e L ((a, b); rdx)}.

Furthermore, the Wronskian of any two functions f, g € dom(7,,,,) possesses finite boundary
values at the endpoints of (a, b); that is, the following limits exist and are finite:

W(f. g)(a) = }clil; W(f. o)), W(f, 8)b):= ng} W(f. &) ). 2.9)

The pre-minimal operator associated to t is denoted by T and is defined by

Tf=tf,

) (2.10)
f €dom(T) = {g € dom(Tqx) | g has compact support in (a, b)}.

One can show that the operator T is densely defined and symmetric in the Hilbert space
L?((a, b); rdx) and

(T)* = Tnax- (2.11)

The minimal operator associated to 7 is denoted by 7,,;, and is defined to be the closure of the
pre-minimal operator:

Tonin :=T. (2.12)
In addition, 7,,;; and T, are adjoint to one another:

T =Tmax and T, = Toin. (2.13)

max

Definition 2.3. A measurable function f : (a, b) — C is in L*>((a, b); r dx) near a (resp., b) if
X(a,e) [ (xesp., X(,p) f) belongs to L?((a, b); rdx) for some ¢ € (a, b).

Theorem 2.4 (Weyl’s Alternative). Assume Hypothesis 2.1. Then the following alternative holds:
Either

(i) For every z € C, all solutions u of tu = zu are in L*((a, b); r dx) near b (resp., near a),

or,
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(ii) For every z € C, there exists at least one solution u of tu = zu which is not in
L%*((a, b); rdx) near b (resp., near a). In this case, for each z € C\R, there exists precisely
one solution Yy, (resp., Ya) of Tu = zu (up to constant multiples) which lies in L*((a, b); r dx)
near b (resp., near a).

Definition 2.5. Assume Hypothesis 2.1. In case (i) in Theorem 2.4, t is said to be in the limit
circle case at b (resp., a). In case (ii) in Theorem 2.4, 7 is said to be in the limit point case at b
(resp., a).

Remark 2.6. If 7 is in the limit circle case at b (resp., a), then t is frequently called quasi-
regular at b (resp., a). If T is in the limit circle case at both a and b, then 7t is frequently also
called quasi-regular. ¢

We recall that T,;, is lower semibounded or bounded from below by Ao € R, and one writes
Tnin 2 Aolp2¢a.py:rdx) (in this case, Ag is called a lower bound of T,;,), if

W, Tonin) 12((a,b):r dx) Z A0 W 12((a.byirdx)ys U E dOM(Tipin). (2.14)

In particular, the lower bound of T,,;, is the largest of all the lower bounds A¢ for which (2.14)
holds. .

The lower semiboundedness property of T;,;, (equivalently, T') is connected to the existence
of distinguished nonoscillatory solutions, the so-called principal and nonprincipal solutions, at
the endpoints a and b (see Definition 2.9).

Definition 2.7. Assume Hypothesis 2.1 and fix ¢ € (a, b) and A € R. The differential expression
T — A is called nonoscillatory at a (resp., b), if there exists a real-valued solution u (A, -) of
Tu = Au that has finitely many zeros in (a, c) (resp., (c, b)). Otherwise, T — A is called oscillatory
at a (resp., b). If T — A is nonoscillatory at a and b, one calls T — A nonoscillatory on (a, b). In
addition, T — A is called oscillatory on (a, b) if it is oscillatory at least at one of the endpoints a
or b.

Proposition 2.8. Assume Hypothesis 2.1 and let Ao € R. Then the following items (i)— (iii) are
equivalent:

(@) Tonin is bounded from below by Ly, that is, Tyin = Aolr2(apy:r dx)-
(ii) For all & < Ao, T — X is nonoscillatory at a and b.

(iii) For all A < Ao, Tu = Au has, for some cg, dy € (a, b), real-valued nonvanishing solutions
ug(h, -) and uy(A, -) in the interval (a, col, and real-valued nonvanishing solutions up(X, -)
and up (1, -) in the interval [dy, b), such that

Wug(h, ), udgh, D=1, us(r,x)=o0(,(r,x))asx ]| a, (2.15)
Wupr, ), up(A, ) =1, up(r,x) =o0(p(r,x))asx 1 b, (2.16)

and for all ¢ € (a, co] and d € [dy, b),



J. Behrndt, F. Gesztesy, S. Hassi et al. Journal of Differential Equations 462 (2026) 114131

c b
/dxp(x)_lua(A,x)_2 =/dxp(x)—1ub(,\,x)—2 =00, (2.17)
a d

c b
/dx ) a0, x) 72 < 00, /dx p) M (h, x) 72 < 00. (2.18)
a d

In (2.15) and (2.16), we employ Landau’s little-o notation; that is, f(x) =o0(g(x)) as x | a
(resp., x 1 b) means that f(x)/g(x) — 0 as x | a (resp., x 1 b). For details on principal and
nonprincipal solutions, we refer to [11, Sect. 8.2]. In particular, for a proof of Proposition 2.8,
see [11, Theorem 8.3.6].

Definition 2.9. Assume Hypothesis 2.1, suppose that 7},;, is bounded from below by Ao € R
and let A < Ag. Then u, (X, ) (resp., up(X, -)) in Proposition 2.8 (iii) is called a principal (or
minimal ) solution of Tu = Au at a (resp., b). A real-valued solution z, (A, -) (resp., up(A, -))
of tu = Au linearly independent of u, (X, -) (resp., up(A, -)) is called a nonprincipal solution
of tu = Au at a (resp., b).

Following [10] and [11, Sect. 13.4], the next result introduces generalized boundary values at
the endpoints a and b for functions belonging to dom(7},4y)-

Proposition 2.10 (Generalized boundary values). Assume Hypothesis 2.1 and let T be in the
limit circle case at a and b (i.e., T is quasi-regular on (a,b)). In addition, assume that
Tnin 2 20112 ((a,b):r dx) for some Ly € R, and denote by u; (Lo, -) and u;(rg, -) principal and
nonprincipal solutions of Tu = Aou on (a, b), respectively, at t € {a, b} that satisfy

W (da(ho, -), ua(ro, -)) = W(p(ho, -), up(ho, -)) = 1. (2.19)

Introducing v; € dom(Ty4x), j = 1,2, via

uy(ho,x), forx neara, uq(ro, x), forx neara,
vi(x) =1~ v (x) = (2.20)
up(ro, x), forx nearb, up(ho, x), forx nearb,

then for each g € dom(T),,y), the following limits exist and are finite:

g(a) = _W(U27 g)(a) = _W(ua()"09 . ), g)(d) e hm/\gL,
xla uq (Ao, x) 221)

S(h) — — _ . e 8 '
gb) :=—W(v2, g)(b) = —W(up(ho, -), g)(b) _?ﬁﬁ—b(xo,x)’
3'(@) = W(v1, 2)(@) = W(ia O, -), g) (@) = lim $) —8(@tat0. 1)

xla lia (0, X) .
3 (b) = W (o1, 2)(B) = W (@ (o, -). 8)(b) = lim E&5L— 8 Dp (0. X)

*1b 1y (b0, X)

7
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Definition 2.11. The quantities g(c), g’ (c), ¢ € {a, b}, defined by (2.21) and (2.22) are called the
generalized boundary values of g € dom(T},4y).

If 7 is in the limit circle case at both endpoints of (a, b), then T,,;, has deficiency indices
(2, 2). In this case, the self-adjoint extensions of 7,;, are parametrized by boundary conditions
at the endpoints of (a, b) according to the next proposition.

Proposition 2.12. Assume Hypothesis 2.1 and let T be in the limit circle case at a and b. In
addition, assume that T,,;, > 20112 by:r dx) for some Ly € R and that u,;(rg, -) and u,(rg, -)
are principal and nonprincipal solutions of tu = ,lou on (a, b), respectively, at t € {a, b} that
satisfy (2.19). Then, given (2.21) and (2.22), the following items (i)—(v) hold:

(i) The minimal operator is characterized by

Tminf = va

~ - - - (2.23)
f edom(Tyyin) = {g € dom(Tyax) | 3(a@) =8/ (@) =0=2(b) =3 (b)}.

(ii) All self-adjoint extensions Ty g of Tnin with separated boundary conditions are of the form
Ta,ﬁfsz, O(,ﬂE[O,?T),

fedom(Typ) = {g e dom(Tax)

sin(a)g”(a) + cos(a)g(a) =0 (2.24)
sin(B)g’(b) +cos(B)g(b) =0 |~

(iii) All self-adjoint extensions Ty g of Tin with coupled boundary conditions are of the form
Torf=1f, ¢e€l0,m), ReSL2,R),

§B)\ _ ipp( 8@ (2.25)
(2) - R(gma))]'

(iv) Every self-adjoint extension of Ty is either of type (ii) (i.e., with separated boundary
conditions) or of type (iii) (i.e., with coupled boundary conditions).

fedom(Ty Rr) = {g € dom(T}qx)

(v) The operator Ty—o, g0 is the Friedrichs extension of Tyjp.

In the case when exactly one endpoint is in the limit circle case, the deficiency indices of Ty,
are (1, 1). The self-adjoint extensions of T,;, are then characterized by a separated boundary
condition at the limit circle endpoint. For simplicity of presentation, we assume in the following
result that 7 is in the limit circle case at a (the case when t is in the limit circle case at b is
entirely analogous).

Proposition 2.13. Assume Hypothesis 2.1 and let t be in the limit circle case at a and in the
limit point case at b. In addition, assume that Tpin 2 201124 p):rax) JOr some Ao € R and
that ugz (Mo, -) and u, (Mo, -) are principal and nonprincipal solutions of Tu = Aou on (a, b),
respectively, at a that satisfy (2.19). Introduce the corresponding generalized boundary values
according to (2.21) and (2.22). Then the following statements (i)—(iii) hold:

8
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(i) The domain of Ty, is characterized by
dom(Tuin) = {g € dom(Tynax) | §(a) =" (@) = 0}. (2.26)
(ii) All self-adjoint extensions Ty of Tyin are of the form

Tof=1tf, a€l0,m),

. ~ - 2.27)
f edom(Ty) = {g € dom(Tyuay) | sin(@)g’(a) + cos(w)g(a) = 0}.

(iii) The operator Ty—g is the Friedrichs extension of Tyin.

Results analogous to (i)—(iii) hold if T is in the limit point case at x = a and in the limit circle
case at x =b.

In the case when 7 is in the limit point case at both a and b, the deficiency indices of T,,;, are
(0,0). In this case, T := T,yin = Tnax is self-adjoint.

Proposition 2.14. Assume Hypothesis 2.1. If T is in the limit point case at both a and b, then
T := Timin = Tinax is self-adjoint.

Remark 2.15. (i) The generalized boundary values associated with the Sturm—Liouville expres-
sion (2.3) as introduced in Proposition 2.10 by

o 8M)

glc)= )}me o) (2.28)
o 8() = g(o)uc(Ro, x)

= G 229

especially, g(c) in (2.28), at an endpoint ¢ € {a, b}, have a longer history. They were originally
introduced by Rellich [25] in connection with coefficients p, g, r that had a very particular be-
havior in a neighborhood of the endpoint ¢ of the type

px)=(x—0)[po+pix —c)+ palx —)* + -],
@)= -0 *[go+q1(x — )+ qa(x =) +---], (2.30)
r@) == [rn+rnx—o+nx—c+--]
with O, P0s Ply+--5490,915--.,70,71, "+ € R, Po ;ﬁ 0, 'k 75 0 for some k e No, kg = 0 for
0 < ¢ <k —1,etc. This was also recorded in [13, Ch. 15] and [15, Ch. III]. In 1951, Rellich

[26] considerably generalized the hypotheses on p, g, r. The case of the Bessel equation was re-
considered in [12], and the case of Schrodinger operators on (0, co) with potentials ¢ satisfying

g() = (y? = (1/9)x 2+ nx "' + ox™* + W(x) forae. x >0, (2.31)
withy >0, n,w e R, a € (0,2),and W € L*((0, 00); dx) real-valued a.e., was systematically
treated in [5] and [18]. Under the general Hypothesis 2.1, the boundary value g(c) in (2.28) was
studied in detail by Kalf [16, Remark 3] and subsequently by Rosenberger in [28, Theorem 3].

9



J. Behrndt, F. Gesztesy, S. Hassi et al. Journal of Differential Equations 462 (2026) 114131

It was systematically employed by Niessen and Zettl [23]. In this context we also refer to [3,
Propositions 6.11.1, 6.12.1], which discusses linearly independent boundary values in terms of
boundary triplets and Wronskians W (15 (Ao, +), £)(¢).

(i) The difference quotient analogue of g’(c) in (2.29), on the other hand, apparently, was
not considered in [3], [16], [23], and [28]. It is a new twist in [10] that offers an explicit de-
scription of boundary conditions for lower semibounded, self-adjoint, singular (quasi-regular)
Sturm-Liouville operators.

(iii) We recall that for an element g € dom(7},,,) the conditions g(a) = g(b) = 0 describe the
Friedrichs extension in Proposition 2.12, and the condition g(a) = 0 describes the Friedrichs
extension in Proposition 2.13. It is worthwhile to observe that for ¢ € {a, b} a condition of the
form g(c) = 0 is sometimes met in a different guise, such as

i g(x)
1m

exists in C, (2.32)
x=¢ uc(ro, X

where u. (Ao, ) is a principal solution. For the special case of the Legendre operator see, for in-
stance, [1, Sect. 132]. For the above and other alternative statements, see also [3, Corollary 6.11.9,
Corollary 6.12.9] and [11, Sect. 13.4]. <

3. Case one: two limit circle endpoints

In this section we investigate the situation when t is in the limit circle case at both a and
b. The main goal is to provide the sesquilinear forms corresponding to the lower semibounded
self-adjoint extensions of 7y,;, with separated and coupled boundary conditions from Proposi-
tion 2.12. The following hypothesis is assumed throughout this section.

Hypothesis 3.1. In addition to Hypothesis 2.1, assume that t is in the limit circle case at a and
b. Suppose that T,,;, > )‘OILZ((a,b);rdx) for some Ao € R and that u,;(Ag, -) and u; (Ao, -) are
principal and nonprincipal solutions of tu = Aou on (a, b), respectively, at ¢ € {a, b} that satisfy
(2.19).

Assuming Hypothesis 3.1, choose ag, by € (a, b) such that a < ag < by < b and

Ma()”va)#Os ﬁa()"()?x)#Os xe(aaao);

~ 3.1
up(ro, x) #0, up(ro,x) #0, x € (bo, D).
Let ¢ € (a, ap) and d € (by, b) be fixed. Introducing the differential expressions N7, (i, -),c and
Niy(no.-).a DY
f /
Nz,Gao, e f = P Tia (o, ><A—) . f €ACi((a, 0)); (3.2)
Ug ()"01 )
g /
Nﬁb()xo, )dg = pl/z’u\b()\'o’ . ) (/\—> ) 8 € AClUC((d’ b))’ (33)
up(ro, )

one defines the symmetric sesquilinear form £, 4 as follows, see, for instance, [3, Sect. 6.8], [11,
Sect. 4.5],

10
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dom(Qe,q) = [h € L*((a, b); r dx) | h € ACjoe((a, b)),
p~ 20N € L2((c, d); dx), Nay o, -).ch € L*((a, ¢); dx), (3.4)
Nay o, 1.ah € L*((d, b); dx) },

and

c

Qealf.8) = /dx (N2, 60, ), X (N, 0, ),c8) (X)

a

b
+/d)€ (N/u\[,()»(),4),df)(x)(Nit\b(k0,-),dg)(x)
d

Cc

b
+ho / r(x) dx T(0g () + Ao f r(x0) dx F0g(x) (3-5)
d

d
+ / dx [ p) ™ T80 + g () g () |

i (o, O)—— M (o, d) —
+ mf(c)g(c) - mf(d)g(d), f»g €dom(Qq).

Several important properties of the sesquilinear form £, 4 are collected in the following result.

Proposition 3.2. Assume Hypothesis 3.1. Let a < ag < bg < b with ag and by chosen so that (3.1)
holds and suppose c € (a, ap) and d € (by, b). Then the following statements (i)— (iv) hold:

(i) The sesquilinear form Q. 4 defined by (3.4) and (3.5) is densely defined, closed, and lower
semibounded in L*((a, b); r dx).

(”) dom(Tmax) - dom(gc,d)-

(@ii) If ¢’ € (a,a0) and d' € (bo, b), then Q. q = Q. 4. That is, the sesquilinear form defined by
(3.4) and (3.5) is independent of the choices of ¢ € (a, ag) and d € (by, b).

(iv) If g € dom(Q. 4), then the following limits exist:

g(a) :=1lim — 8(x) g(b) :=1lim _8w

: — . (3.6)
xla uq(ho, x) x1b Up (Ao, X)

In particular; the generalized boundary values g(a) and g(b) introduced in (2.21) for functions
in dom(Tyyqy) extend to functions in dom(Q. 4).

Remark 3.3. The properties of £, 4 in Proposition 3.2 are discussed in detail in [3]; see [3,
Theorem 6.10.9, Lemma 6.9.4, Corollary 6.11.2, Lemma 6.11.3]. ¢

Lemma 3.4. Assume Hypothesis 3.1. Let a < ag < by < b with ay and by chosen so that (3.1)
holds and suppose c € (a, ag) and d € (by, b). If f € dom(Q..q4) and g € dom(Tyax), then

11
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(f: Tnax®) 12 (apyir dv) = Qed (f. §) + F @7 (@) — F (DT ().

3.7

Proof. We recall Jacobi’s factorization identity in the following form: If g, h € ACj,.((a, b))

and g, hM € ACoc((a, b)), then

/

[1] / /
—(g[”)/_,_ (n )g=—l|: hz(%):| when h #£ 0.

h h

Since u; (Ag, -), t € {a, b}, are solutions of Tu = Agu on (a, b), one infers that:

@ (o, )’

=lor + — a.e. on (a, ap);
K a(ho: )
1] '
uy (Ao, -
q =Aor + (,11(70)) a.e. on (bg, b).
up(ro, )

To prove (3.7) one calculates for f € dom(Q. 4) and g € dom(T}4y) as follows:

(f, Tmaxg)Lz((a,b);r dx)
b
ety
a

c

lim [ d ?[ (g™) +rorg + (@' 00, ) } /dd F(sMy
= lim X — r -— o — X
a'la § ors g (Mo, ) 8 8
a’ c
d b
*/"”7“;9‘%2/‘”7[‘(g'l')/+korg+
d

c

=lim | dx f —% piiq(ro, -)2<AL)/
ala) g (Mo, +) uq (Ao, *)

c

(@, 0o, )’ ]
up(ho, +)

a

b

. _ 1 ~ 2 g T
i "”[‘m[”‘m K (W>] }

Ctiml - T o (]
_l}’fli ﬁaao,-)[’””“(“’ )(ﬁaao,-)”

12

a’

d b
J— J— d 10 J— J—
+ko/rdxfg—fg[”|c +/dx (p 'f'l'g[”Jrqu)Jrko/rdeg
c d

(3.8)

(3.9)

(3.10)

(3.11)
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i f N ) g !
Jor (s # (i) )

a/

c d b

J— J— d _ —_— J— —
+kofrdeg—fg[”|c +/dx (p 1f[”g[”Jrqu)Jr/\o/rcleg
a c d

b

: f ~ 2 8 '
Wﬁi W, ) [”“MO’ K (ﬁb(xo, ~>> }

FER PP of 8 Y
+dfdx (ﬁbao, -)) piGo. ) (%(xo, -)) }

The evaluation terms at ¢ and d in the last equation in (3.11) are

T e, (2
{ ﬁa<xo,~)[p”““°’ )(ﬁaao,-))”@

[m’(“’ P(5) “(d) ~ F@@) + 7" o)

d

7
up(ro, +) up(ro, +)

iG)
T Wa(ho,0)

fd)
up(ro, d)

(gt (o, ) = (@) (ho, )} = F@gM ) + Ferg" ()

+ [N @iy (ro, d) — gy (ro, )} (3.12)

g (Mo, ©) — i, (oo d)———
= 72 (h0. ) flogle) — mf(d)g(d)-

Applying (2.22) and (3.6), one obtains for f € dom(Q. 4) and g € dom(Tyqx),

. f ~ 2 § ' /
Ha [ﬁauo, yPHato. ) (ﬁa(xo, ->> ](a)

(3.13)
—tim =LY W@,60, ). @) = F@F (@),
a/»l/a Ug ()\'0’ (,l/)
and, similarly,
im | — —L i ho, -)2(%)/ ) = —F(B)Z'(b). (3.14)
b'1b wp(ro, +) up(ro, )

In light of (3.12), (3.13), and (3.14), (3.11) reduces to (3.7). O

13
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Remark 3.5. The identity (3.7) may be found written in the language of boundary triplets in [3,
Equation (6.11.5)]; see also Appendix A. ¢

The following infinitesimal form boundedness result is a consequence of [3, Lemma 6.10.4].
Proposition 3.6. Assume Hypothesis 3.1. For every & > 0 there exists C (&) > 0 such that
~ 2
|FOF <eQeafs )+ CONaqpyran: [ EdomQea). 1 €lab). (315

Remark 3.7. It is clear that the inequality in (3.15) remains valid with Q. 4(f, f) replaced by
[Qc.a(f, )], f €dom(Q, 4). In particular, the sesquilinear forms

au(f.8)=f"g@), f g€dom(q)=dom(Qca), ! €{a, b}, (3.16)

are infinitesimally bounded with respect to Q. 4. ©

In the next theorem we provide the sesquilinear form corresponding to the self-adjoint exten-
sions Ty g, o, B € [0, ), of Tp;, With separated boundary conditions from Proposition 2.12 (i7).

Theorem 3.8. Assume Hypothesis 3.1. Let a < ag < by < b with aog and by chosen so that (3.1)
holds and suppose c € (a, ag) and d € (by, b). Then the following statements (i)—(iv) hold:

@) If o, B € (0, ), then the sesquilinear form Q‘;’f defined by

Q%E(f, ) = Qe.a(f. 8) + cot(B) F (D)F(B) — cotle) F(@)F (@),

3.17)
f» g € dom (fo) =dom(Q, 4),
is densely defined, closed, symmetric, and lower semibounded. In addition,
(. Tap® L2apyrar) = 20 (f.9),  f €dom (Q%F), g € dom(Ty p). (3.18)

Hence, Q?’g is the unique densely defined, closed, symmetric, lower semibounded sesquilinear
form associated to Ty g, o, B € (0,7), by the First Representation Theorem (cf. [17, Theo-
rem VI1.2.1]).

(@1) Ifa =0 and B € (0, ), then the sesquilinear form defined by

QY0 (. 8) = Qe.a(f. ) +cot(B) F(B)Z(b),

N (3.19)
f.g €dom (Q0%) = {h € dom(Q.q) | (@) =0},
is densely defined, closed, symmetric, and lower semibounded. In addition,
(f. To.8) 12 (@yirdwy = Q05 (f.8),  f €dom (20F), g € dom(Tp p). (3.20)

Hence, Qg’dﬂ is the unique densely defined, closed, symmetric, lower semibounded sesquilinear
form associated to Ty g, B € (0, ), by the First Representation Theorem.

14
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(@ii) If « € (0, w) and B =0, then the sesquilinear form defined by

99(f.8) = Qc.a(f. g) — cot(e) f(@)F (@),

N (3.21)
f,g €dom (Q%9) = {h € dom(Qc.a) | h(b) =0},
is densely defined, closed, symmetric, and lower semibounded. In addition,
(f7 T(X,Og)Lz((a,b);rdx) = Q?:g(fv g)’ f € dom( ?:2)1 8 € dom(TOl,O)' (322)

Hence, Q‘Z’g is the unique densely defined, closed, symmetric, lower semibounded sesquilinear
Sform associated to Ty o, a € (0, w), by the First Representation Theorem.

(iv) If « = B =0, then the sesquilinear form defined by

Qg:g(f’ g) = Qc,d(fv g)v

N N (3.23)
f.g €dom (Q%)) = {h € dom(Qe.q) | (@) =0 =T (b))},
is densely defined, closed, symmetric, and lower semibounded. In addition,
(f T0.08) L2(@byrdny = Q0g(f.8).  f €dom(Q0Y), g edom(Tp o).  (3.24)

Hence, D?’S is the unique densely defined, closed, symmetric, lower semibounded sesquilinear
Sform associated to Ty o by the First Representation Theorem.

Proof. (i) Itis clear by inspection that Q%F c.q 1s symmetric. That Qr c.q 1s densely defined, closed,
and lower semibounded follows from Remark 3.7 (specifically, the infinitesimal form bound-
edness of q,, ¢ € {a, b}, with respect to Q. 4). To establish (3.18), one applies Lemma 3.4 —
specifically (3.7) — and the boundary conditions inherent in the definition of dom(7,g):

(f Tup®) L2 (ayirav) = Qed(f2 8) + T @7 (@) — F(D)F'(b)

=9,.4(f. &) — cot(e) [ (@)Z(a) + cot(B) F(H)Z (b) (3.25)
= Qﬂ‘;ﬁ (f.g), fedom (Qf”g), g € dom(Ty g).

The proofs of (ii), (iii), and (iv) are all similar. We will provide a sketch of the proof of
the claims in (ii) and omit the details for (iii) and (iv). To prove item (ii), one notes that the
sesquilinear form Do’g is densely defined since dom(7},;,) € dom (Do’dﬁ ) and Ty,;, is densely
defined. Moreover, D d is lower semibounded since it is a restriction of D /2.p , and the latter
is lower semibounded by part (i). Let Q' v.q denote the restriction of Q. 4 to dom (Q?g) where
the latter domain is defined according to (3. 19) Since Qo’dﬂ is an infinitesimally form bounded
perturbation of Q 4 by (3.15), to prove QC 17 is closed, it suffices to show that Q] c.q 18 closed. If

{fn}?,il Cdom(Q d) _dom( ) ”fn f”Lz((a,b);rdx) g OfOr some f € L2 (a’b)vrd-x),

15
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and D; 4(fn = fms fu — fm) — 0, then the fact that Q¢,q 18 closed (cf. Proposition 3.2) implies
f edom(Q. q) and Q. 4(f, — f, fn — f) — 0. Using (3.15) one obtains

|F@| =|/@ - Ff@|

(3.26)
Qealfo=Fo o= D +Colfo = Fl2apyrany " EN

for some scalar C € (0, oo) that does not depend on n € N. Taking n — oo throughout (3.26),
one obtains f(a) = 0. Therefore, f € dom (Q?:g ), and since Q. 4 is an extension of QC 4

Q. 4(fu = f, fa — ) — 0. Hence, 9, is closed, and it follows that D 4 1s closed and lower

semibounded. That Q ¢ 1s symmetric is clear by inspection. Finally, the verification of (3.20) is
entirely analogous to that of (3.18) (invoking Lemma 3.4, etc.), so we omit the details. O

In the next theorem we provide the sesquilinear form corresponding to the self-adjoint exten-
sions Ty g, ¢ € [0,7), R € SL(2,R), of T,,;, with coupled boundary conditions from Proposi-
tion 2.12 (iii).

Theorem 3.9. Assume Hypothesis 3.1. Let a < ag < by < b with ayg and by chosen so that (3.1)

holds and suppose c € (a, ag) and d € (by, D). If ¢ € [0, w) and R € SL(2, R), then the following
statements (i) and (ii) hold:

(i) If R1,2 # 0, then the sesquilinear form Df”f defined by

1 _— R
QR (f,8) =Qcalfg) - E{Rl,lf(a)g@ — e Fla)z )

I FOF@ + R 0RB)], 2D
f, g € dom (Dﬁ’j) =dom(Q.,q),

is densely defined, closed, symmetric, and lower semibounded. In addition,

R R
(/- Ty &) 2@ pyirary = Q04 (f.8).  f € dom (QFF). g € dom(Ty,p). (3.28)
Hence, Q‘p 4 s the unique densely defined, closed, symmetric, lower semibounded sesquilinear

form assoczated to Ty g by the First Representation Theorem.

(1) If R1,2 =0, then the sesquilinear form Qf,’; defined by

Q08 (f.9)=Qca(f.8) = Ri1Ro1 Fl@)3 (@),

_ ‘ _ (3.29)
f.g €dom (Q¥F) = {h € dom(Q.q) | I(b) = ¢ Ry 1H(a)},
is densely defined, closed, symmetric, and lower semibounded. In addition,
(f To.R8) L2 (abyrdxy = 204 (f18).  f €dom (Q%F), g € dom(T} k). (3.30)

16
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Hence, Qf’j is the unique densely defined, closed, symmetric, lower semibounded sesquilinear
form associated to T, g by the First Representation Theorem.

Proof. The proof of item (i) begins by noting that Qf,’j is an infinitesimally form bounded
perturbation of 9.4 by Proposition 3.6. Hence, Qf’j is densely defined, closed, and lower

semibounded by Proposition 3.2. To prove (3.28), let f € dom (Qf”f ) =dom(Q.4) and g €
dom(T,, ). Using the boundary conditions for g given in (2.25), one obtains,

1 .
IS U S U
g'(a)= R [e7E(b) — Ri,18(@)],

(3.31)
g'(b) =€'?[R2,18(a) + R2 28 (a)].
Therefore, using detc2(R) =1 and (3.31), one computes,
F@Z (@) — fF(B)F'(b)

—f(a){—iw“’b R113 i@ F(b)|R213(@) + Ran%’

= Ri» e7Z(b) — R1,1Z(@)} — €' f () {R218(a) + R228 " (a) )

= @ —93(h) — Pl

= Ria {e7'%%(b) — R1,18(a)} (3.32)

o - R L -
- e”ﬂf(b){Rz,lgm) + ﬁ[e w3 (b) - Rl,lg(a>]}
1 o~ [— I o~
=~ {Rl,lf(cog(a) — e Y F@)3b) — ¢ F(b)3(a) + Rz,zf(b>g<b>},

after taking a cancellation into account. The equality in (3.28) now follows from Lemma 3.4 and
(3.32).
To prove item (ii), one notes that dom(7,;,) < dom (Qf,’f ), SO Qf,’j is densely defined

since T),;, is densely defined. Let Q/c 4 denote the restriction of Q.4 to dom (Qf’j), where
the latter domain is defined according to (3.29). Since Qf”f is an infinitesimally form bounded
perturbation of Q' , by (3.15), to prove Qf”f is closed, it suffices to show that Q' is closed. If

(/)32 C dom(Q, ;) = dom (Qf;f), I f = FlL2((a.0):r ax) = O for some f € L?((a, b); r dx),
and Q/C’ 4(fn = fms Ju — fm) — 0, then the fact that Q. 4 is closed (cf. Proposition 3.2) implies
f edom(Q, q) and Q. 4(f, — f, fu — f) — 0. Using (3.15) one obtains

7 6) = Ria F@f = |[7a®) = F®)] = Ria[ful@) - F@)][* (333)
<Qea(fo = fi fo = D+ Coll fo = o apyrary 1EN
for some scalar Cyp € (0, oo) that does not depend on n € N. Taking n — oo throughout (3.33),

one obtains f(b) =el? Ry 1 f(a). Therefore, f € dom (Qf’; ), and since Q. 4 is an extension of

v Qi g(fu = fo fa — f) — 0. Hence, 9, , is closed, and it follows that Df"f is closed and
lower semibounded.

17
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To verify (3.30), let f € dom (Df’j) and g € dom(7y, g). Using the relations

f)=e“Riif(@), Z'(b)=eY[RyiZ@)+ Ro2Z (@)], (3.39)

and 1 =detc2(R) = R1,1 R2,2, one computes:

T@z @ — T(0)F' b) = [@37 @) — e Ry1 @) [Ry13(a) + RyaZ(@)]
= T@7 @ — R Rt F@F(@ — RiiRop @7 (@) 339
= —Ri1R1 f(@)F(@).

The equality in (3.30) now follows from Lemma 3.4 and (3.35). O

Remark 3.10. (i) Since 9. 4 is independent of the choices of ¢ € (a,ap) and d € (b, b)
(cf. Proposition 3.2 (iii)), it follows that the sesquilinear forms Qf”f ,a, B €[0,7), and Q7R

c,d”’
¢ e€[0,m), Re SL(2,R), are also independent of ¢ and d.

(@i) It is clear that the sesquilinear forms for T, g and T, g in (3.17), (3.19), (3.21), (3.23),
(3.27), and (3.29) depend on the choices of the principal and nonprincipal solutions u;(Ag, -)
and u; (Ao, -), t € {a, b}. However, this is to be expected, as the parametrizations of the self-
adjoint extensions of T},;, given in Proposition 2.12 also depend on the choices of the principal
and nonprincipal solutions u;(Ag, -) and iy (Ao, +), f € {a,b}. ©

4. Case two: one limit circle endpoint

In this section we provide the sesquilinear forms corresponding to the lower semibounded
self-adjoint realizations 7T, from Proposition 2.13. We assume, in addition to Hypothesis 2.1,
that the differential expression 7 is in the limit circle case at exactly one endpoint of the interval
(a,b) and that T,,;;, > )‘OILZ((a,b);rdx) for some 1o € R. For simplicity, we consider the case
when 7 is in the limit circle case at a and in the limit point case at b. The situation where 7 is in
the limit point case at @ and in the limit circle case at b is entirely analogous. To be precise, we
introduce the following hypothesis.

Hypothesis 4.1. In addition to Hypothesis 2.1, assume that 7 is in the limit circle case at a and in
the limit point case at b. Suppose that Tyin = 20112 ((4,p):r ax) fOr some Ao € R and that u; (2o, -)
and %, (Ao, -) are principal and nonprincipal solutions of Tu = Aou on (a, b), respectively, at
t € {a, b} that satisfy (2.19).

Assuming Hypothesis 4.1, choose ag, by € (a, b) such that a < ap < by < b and (3.1) holds.
Let ¢ € (a,ap) and d € (bo, b) be fixed. Next, we formally replace the nonprincipal solution
up(Lo, -) in Section 3 with the principal solution up(Ag, -). More precisely, introducing the
differential expressions N7, (i, -),c @s in (3.2) and Ny, (5, -),a bY

g )> . g€ ACie((d. b)), @1

N, . = p'2up(n ) ———
up(ro,).d8 = P " “up(ro, -) PR

one defines the symmetric sesquilinear form Q. 4 as follows:

18
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dom(Q..4) = {h € L*((a, b); rdx) | h € ACjoc((a, b)),
p~ V20 € L2((c, d); dx), Nz, ).ch € L2 ((a, ©); dx), “4.2)
Nuy(ro,-1.ah € L*((d, b); dx)},

and
C

Qealf.8) = /dx (N (0. ). D) Nty (29, ).c8) (X)

a

b

+ / dx N e d D Ny 9.8 ()
d

c

b
0 / F(x) dx Fg () + ko / F(x) dx T g () 43)
d

—+

°\m

ax [ peo ™" MG @)+ (@) Fg )]

ﬁ“ (A0, €) uM g, d)

_ W N0, d) s
T e o L@@ = @), f.g € dom(@e,a).

Several important properties of the sesquilinear form Q. 4 are collected in the following result.

Proposition 4.2. Assume Hypothesis 4.1. Let a < ag < by < b with ag and by chosen so that
(3.1) holds and suppose c € (a, ap) and d € (by, b). Then the following statements (i)—(vi) hold:

(i) The sesquilinear form Q. 4 defined by (4.2) and (4.3) is densely defined, closed, and lower
semibounded in L*((a, b); r dx).

(”) dom(Tmax) - dom(gc,d)-

@ii) If ¢’ € (a,a0) and d' € (bo, b), then Q. q = Q. 4. That is, the sesquilinear form defined by
(4.2) and (4.3) is independent of the choices of ¢ € (a, ag) and d € (by, b).

(iv) If g € dom(Q. 4), then the following limit exists:
gx)

ga):= }cmal Wy (ho, x) *+4)

In particular, the generalized boundary value g(a) introduced in (2.21) for functions in
dom(7T},4x) extends to functions in dom(Q. q).
(v) If f edom(Q,q4) and g € dom(Ty4y), then

lim &W(ub(ko, ), 8)') =0. (4.5)
b'1b up(ho, b')
(vi) For every € > 0 there exists C(e) > 0 such that
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|F@ <eQealfs )+ CONagupyrary | €dOmEea). 4.6)

Remark 4.3. The properties of Q. 4 summarized in Proposition 4.2 are discussed in detail in [3]
(see [3, Lemma 6.9.4, Corollary 6.12.2, Lemma 6.12.3, Proof of Lemma 6.12.5]) and (4.6) is en-
tirely analogous to Proposition 3.6. For the connection with [3, Sect. 6.12], see Appendix A. <

Lemma 4.4. Assume Hypothesis 4.1. Let a < ay < bg < b with ag and by chosen so that (3.1)
holds and suppose c € (a, ag) and d € (by, b). If f € dom(Q..q4) and g € dom(Tyay), then

(f. Twax8) 12 (abyer dwy = Qed (f ) + F@F' (@). 4.7)

Proof. Repeating the calculations in (3.9)—(3.11) with up (Ao, -) in place of up(Xg, -), one ob-
tains for f € dom(Q. 4) and g € dom(Typ4y),

(f, Tmaxg)Lz((a,h):rdX)

T DR A ISR Y
_i}lir;{ ﬁa()"O» ')[pua(}\‘o, ) (ﬁa()‘OV '))]

c

o\ . of s\
+/dx (ﬁauo, -)) pitatGo. ) (ﬁaao, -)) }

a’

c

a

c d b
+kofrdx?g—?g[l]|f+/dx (p_lmg[l]+q7g)+kofrdx?g 4.8)
a c d
7 als
. 8
+1lim { — ———| pup (1o, -)2<7>
b/Th{ up(ro, ) [p b0 up(ro, ) J
o) ron 7 (5)
4+ | dx| —— ) pup(rg, )| ————— .
d/ (ub(xo, ) PO o, )
In analogy with (3.12), the evaluation terms at ¢ and d in (4.8) are
~[1] (1]
u(l ()\.(),C)— ub ()\,O,d)—
—— f(0)glc) — ———- f(d)g(d). 4.9)
Zath0,0) 1 O Uy T8

Moreover, (3.13) remains valid. However, in lieu of (3.14), one now obtains, as a consequence
of (4.5),

. 7 2 8 ' ’
117% |:ub(/\o, -)pub(ko’ ) (Mb()»o, ')) ](b)

f(®)

=lim ————
b'1b up(ho, b')

4.10)
W (up (Ao, -), g)(B") =0.
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Hence, (4.7) follows by combining (4.8), (4.9), and (4.10). O

In the next theorem we provide the sesquilinear form corresponding to the self-adjoint exten-
sions T, o € [0, ), of T,,;, with a separated boundary condition from Proposition 2.13 (ii).

Theorem 4.5. Assume Hypothesis 4.1. Let a < ag < by < b with ag and by chosen so that (3.1)
holds and suppose c € (a, ag) and d € (by, b). Then the following statements (i) and (ii) hold:

(@) If « € (0, ), then the sesquilinear form Q‘C’, 4 defined by

Q2 (f.8) =Qe.a(f. 8) — cot(@) @) (@),

“4.11)
fa g € dOm( g,d) = dom(ﬂc,d)ﬂ
is densely defined, closed, symmetric, and lower semibounded. In addition,
(f, Ta®) 12((a,b);r dx) = Q?,d(f, g, [ €dom (D?’d)s g € dom(7y,). (4.12)

Hence, Q% q 1S the unique densely defined, closed, symmetric, lower semibounded sesquilinear
form assoczated to T, by the First Representation Theorem.

(ii) If o« = 0, then the sesquilinear form Qc,d defined by

Q0 (f.8)=Qca(f.8), f gedom(Ql )= {hedom(Qca)|h(a)=0}, (4.13)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f. To®) 12(apyrdx) = Qg (f.8).  f €dom(QY,), g € dom(Tp). (4.14)

Hence, Q? 4 s the unique densely defined, closed, symmetric, lower semibounded sesquilinear
form associated to Ty by the First Representation Theorem.

Proof. (i) Itis clear by inspection that Q% 4 is symmetric, and dom(7};,) € dom ()3“ ) shows
that QF ; is densely defined in L?((a,b); rdx). That QF 4 is closed and lower semibounded
follows from the infinitesimal boundedness property summarized in (4.6). If f € dom (Q% ;)
and g € dom(T,), then (4.7) and the boundary condition g'(a) = — cot(a)g(a) yield:

f, Totg)Lz((a,b);rdx) =(f, Tmaxg)Lz((a,b);rdx)

v 4.15)
=Qc.a(f, g) —cot(e) f(a)g(a) = Qg 4 (f, &)

(ii) One notes that Dod is densely defined since dom(7,;,) € dom (Q ) and QU ed is
lower semibounded since it is a restriction of QC d, and the latter is lower semibounded by
part (i). To prove that QC’ 4 is closed, let {f,}°°, C dom (QO ) be a sequence such that
1fn = Fll22(apyerdxy — O for some f € L2((a,b); rdx) and Q0 ,(fu = fu: fo — fu) = 0.

Since QO d is a restriction of QC d , and the latter is closed, it follows that f € dom (Qz/j) and
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”/z(fn f, fu — f) = 0. By (4.6), one obtains: For every ¢ > 0, there exists 6(5) > 0 such
that

~ 2 b4 T
B@]” <eQl// (2, 8) + C@NgI 2 pyirary &€ dom (QLF). (4.16)

In turn, (4.16) with ¢ = 1 yields:

\f<a)!2= |fut@) - F@

a2 R 4.17)
(f"_f’f”_f)+C(1)”f”_f||L2((ab)rdx)’ neN

Taking n — oo throughout (4.17) yields f(a) = 0, thereby implying f € dom (DS’ d)- Using
once more that QO . 1s arestriction of Qc d , it follows that D?.’ 4 = fs fu — ) = 0. Hence,
one concludes that DC, 4 18 closed. Finally, (4.14) follows from (4.7) and the boundary condition

f@)=0. O
5. Case three: two limit point endpoints

In this final section we provide the sesquilinear form corresponding to the unique, lower
semibounded, self-adjoint realization from Proposition 2.14. We assume, in addition to Hy-
pothesis 2.1, that t is in the limit point case at both endpoints of the interval (a, b) and that
Tnin 2 2o112((a,b):r dx) for some Ag € R. To be precise, we introduce the following hypothesis.

Hypothesis 5.1. In addition to Hypothesis 2.1, assume that t is in the limit point case at both
a and b. Suppose that T,,;, > 20112 ((a.by:r dx) for some Ag € R and that u; (A, -) is a principal
solution of Tu = Agu on (a, b), respectively, at t € {a, b} that satisfies (2.19).

Under Hypothesis 5.1, the operator T := T,i, = Tnax is self-adjoint (equivalently, T is es-
sentially self-adjoint) by Proposition 2.14. In particular, T},;, is self-adjoint and possesses no
nontrivial self-adjoint extension.

Assuming Hypothesis 5.1, choose ag, by € (a, b) such that a < ap < by < b and (3.1) holds.
Let ¢ € (a, ap) and d € (bp, b) be fixed. Next, we formally replace the nonprincipal solutions
u; (Lo, -), t € {a, b}, in Section 3 with the principal solutions u;(Ag, -), t € {a, b}. More pre-
cisely, introducing the differential expressions N, (5, )4 as in (4.1) and N, 5, -),c by

/
8
Nua()\() ),c8 = P MaO»O» )(—> 5 gGACl()C((avc))v (51)
Uqg ()"07 : )
one defines the symmetric sesquilinear form Q. 4 as follows:

dom(Q..4) = {h € L*((a, b); rdx) | h € ACioc((a, b)),
p~ 120 e L2((c, d); dx), Nu,o.).ch € L%((a, c); dx), (5.2)
NuyGrp. .ah € L*((d, b); dx)},

and
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Cc

Qea(fog) = / dx Moo D N i 9.08) ()

a

b

+ / dx Mo 0 a DO Ny .08) ()
d
c b

20 [ e dx g0 + o [ 700 dx Tl
a d
d
+ [ ax [pe TG00 + 0 F o)

c

ul (ro, ) — N) —
+ mf(c)g(c) - Wf(d)g(d), f, g € dom(Q¢ q).

(5.3)

Several important properties of the sesquilinear form £, 4 are collected in the following result.

Proposition 5.2. Assume Hypothesis 5.1. Let a < ap < by < b with ag and by chosen so that
(3.1) holds and suppose c € (a, ap) and d € (by, b). Then the following statements (i)—(iv) hold:

(i) The sesquilinear form Q. q defined by (5.2) and (5.3) is densely defined, closed, and lower
semibounded in L2((a, b); r dx).

(ii) dom(Tyax) < dom(Dc,d)-

(i) If ¢’ € (a,ap) and d’ € (by, b), then Q. 4 = Qo 4. That is, the sesquilinear form defined by
(5.2) and (5.3) is independent of the choices of c € (a, ag) and d € (by, b).

(iv) If f edom(Qc q) and g € dom(Tyqx), then

lim MW(% (Ao, +), g)(@) =1lim &

a'la g (ho,a’) b'tb up(ho, b') Wl Go. ). 9)(¢) =0 G4

Remark 5.3. The proofs of items (i)—(iv) in Proposition 5.2 are entirely analogous to those of
the corresponding facts in Proposition 4.2. ¢

Theorem 5.4. Assume Hypothesis 5.1. Let a < ag < by < b with ag and by chosen so that (3.1)
holds and suppose c € (a, ag) and d € (by, b). If T := Tyyin = Tinax, then

(f, Tg)LZ((a,b);rdx) =9Qca(f. 8, fedom(Qcyq), g €dom(T). (5.5)

Hence, Q. 4 is the unique densely defined, closed, symmetric, lower semibounded sesquilinear
form associated to T by the First Representation Theorem.

Proof. Repeating the calculations in (4.11) with u, (Ao, -) in place of %, (A9, -), one obtains for
f edom(Q. 4) and g € dom(T),
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(fs Tmaxg)Lz((a,b);rdx)

Cim] (s
_3}?3{ uauo,-)[””“(“’ )<ua<xo,~)>}

c

_ )2 g /
+/dx<ua<xo, -)) pratio. ) (uaao, ))}

a/

c

a/

c d b
- = IR — — 5.6
+Ao/rdxfg—fg[”\f+fdx (p lf“]g[”+f1fg)wtkofrdeg 60
a c d
7 als
. g
+lim { — ———| puy (o, -)2<7>
mb{ up(ro, ) [” wGo, ) ||,
b/ 7 /! g /
+ [ dx <7> up(Aro, -)2(—> .
d/ up(ro, ) pviro up(ro, +)
In analogy with (4.9), the evaluation terms at ¢ and d in (5.6) are
[1] [1]
()"Ovc) b ()"05(1)—
(©)g(c) = ——— f(d)g(d). (5.7)
el PRI R
Moreover, (4.10) remains valid. In addition, as a consequence of (5.4),
? 2( 8 )/ /
m | ——— puy(ro, - _— a
o'l [uu(xo, HPao I\ e ) | @
(5.8)
- f@)
=1 w A0, =
o G d) (q(ho, ), g)(a") =

Hence, (5.5) follows by combining (5.6), (5.7), and (5.8). O
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Appendix A. Approach via boundary triplets and boundary pairs

In this appendix we briefly provide the background of the results in Section 3 and Section 4 of
this paper in terms of the boundary triplets and boundary pairs following the extensive treatment
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in [3, Chs. 2, 5, 6]. By means of boundary pairs one can systematically treat the semibounded
forms that are associated with the lower semibounded self-adjoint extensions of lower semi-
bounded symmetric operators. In this paper inner products and sesquilinear forms are linear in
the second entry and anti-linear in the first entry; in the references to [3] one should be aware of
the present convention. Thus, when a sesquilinear form t in a Hilbert space $) is densely defined,
closed, and lower semibounded, then there exists a unique self-adjoint operator H in §), such that

tf.gl=(f Hg)y, [edom(t), g€dom(H) < dom(t),
by the First Representation Theorem. The notation t = tg is used to indicate the connection with
the self-adjoint operator H.

Boundary Triplets. Let S be a closed, densely defined, symmetric operator in a Hilbert space
$ and assume that the defect numbers of S are equal to (n,n), n € N. A triplet {C", g, I'1}
is called a boundary triplet for S* if the linear mappings I'g, I’y : dom(S*) — C" satisfy the
abstract Green identity,

(f’ S*g)fJ - (S*fs g)fJ = (rofv Flg)(C" - (Flfv Fog)(C"v f! g€ dom(S*)»

and (Tg, T'1) " : dom($*) — C?" is onto, see [3, Definition 2.1.1]. If {C”, Ty, I'} is a boundary
triplet for S*, then one has

dom(S) = {g € dom(S*) | g =T'1g =0},

and the mapping (I'o, I'1) T : dom(S*) — C?" is continuous if dom(S*) is equipped with the
graph norm. The self-adjoint extensions Ag of S are parametrized over the self-adjoint relations
(multi-valued operators) ® in C" via

Aeg=S*g, gedom(Ae)={hedom(S*)|{Toh,T'1h} € O}, (A1)

see [3, Theorem 2.1.3]. For more details on (self-adjoint) linear relations, their adjoints, and
further operations and notions we refer to [3, Chapter 1]; the special case of self-adjoint relations
in finite dimensional spaces will be discussed below. We also note that if ® is a self-adjoint
relation in C”, then dom(®) = (mul(®))~ and one has the decomposition

C" =dom(®) ® mul(®).
In this context we recall that the multi-valued part mul(®) is given by {h € C" | {0, h} € ©}. Let

P be the orthogonal projection onto dom(®) and define the orthogonal operator part Oy, = PO.
Then there is the componentwise orthogonal decomposition

© = Oop @ ({0} x mul(®)), (A.2)

where ®p, is a self-adjoint operator in dom(®) and the second summand in the right-hand side
is a purely multi-valued self-adjoint relation in mul(®).

Boundary Pairs. Assume in addition that the closed densely defined symmetric operator S with
defect numbers (n, n) is lower semibounded. In this case all self-adjoint extensions of S are lower
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semibounded. Recall that the form s[f, g] = (f, Sg), f, g € dom(S), is closable and that the
Friedrichs extension Sr of S is the unique self-adjoint operator that is associated with the closure
5 (= tg,.) via the First Representation Theorem. Moreover, let S; be a self-adjoint extension of S
which satisfies

dom(S™) € dom(ts,), (A.3)

where tg, is the closed semibounded form associated with Sy via the First Representation Theo-
rem. The condition (A.3) is equivalent to

dom(ts,) = ker(S* — cI;J)-I— dom(ts,), adirect sum, (A4)

where c is below the lower bound of S;, and due to finite defect, (A.3) is also equivalent to the
simple condition

dom(S) =dom(Sg) Ndom(Sy),

see [3, Theorem 5.3.8]. The next lemma involves the notion of a boundary pair for S with finite
defect numbers; see [3, Lemma 5.6.5] for the general case.

Lemma A.l. Let {C", T, "1} be an arbitrary boundary triplet for S* and let S| be a self-
adjoint extension of S which satisfies (A.3). Let A : dom(ts,) — C" be a linear mapping
which is bounded when dom(ts,) is provided with the inner product associated with ts, — c,
where c is below the lower bound of S1. If A extends T'q, then the self-adjoint extension Sy,
dom(Sy) = ker(I'p), coincides with the Friedrichs extension S and the following equalities
hold:

ker(A) =dom(ts,) and ran(A) =C".

Proof. Since A is an extension of I'g, one concludes that ran(A) = ran(I'g) = C” and also
dom(Sp) = ker(I'g) € ker(A). In particular, dom(S) C ker(A) and hence by continuity of A
and the definition of the Friedrichs extension Sr one concludes that dom(ts, ) € ker(A). On the
other hand, since the sum in (A.4) is direct and dim(ker(S* — cly)) = n < oo it follows that
ker(A) = dom(ts,,) and that A maps ker(S* — cIy) bijectively onto C". Combining this with
the stated inclusion dom(Sp) C ker(A) gives the inclusion dom(Sp) € dom(ts, ). This implies
that So = SF by [3, Theorem 5.3.3]. O

The pair {C", A}, where A : dom(ts,) — C" is bounded in the form topology on tg, is called
a boundary pair for S if ker(A) = dom(ts,.), see [3, Definition 5.6.1]. If, in addition, one has
dom(S;) = ker(I'), then the boundary triplet {C”, I"g, 'y} and the boundary pair {C", A} are
compatible, see [3, Definition 5.6.4], and the identity

(f.$%9)g =ts,[f. 8]+ (Af.T19)cn,  f €dom(ts)), g € dom(S™),

holds, see [3, Corollary 5.6.7]. Hence, Lemma A.1 offers general sufficient conditions needed
to construct a compatible boundary pair {C", A} for S corresponding to S;. Boundary pairs
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offer a general tool to describe forms generated by semibounded self-adjoint extensions of lower
semibounded symmetric operators via boundary conditions.

Now let {C", A} be a compatible boundary pair corresponding to S;. Then the closed semi-
bounded form tg associated with the self-adjoint extension Ag in (A.l) can be expressed in
terms of the form tg, and the boundary pair {C", A} as follows

t@[fv g] = tSl[fa g] + (Af7 ®opAg)(C",

(A.5)
f. g € dom(te) = {h € dom(ts,) | Ah € dom(Oyp)},

see [3, Corollary 5.6.14]. Hence, if the self-adjoint relation ® is the graph of a matrix, then (A.5)
reads

tolf, gl =ts,[f, g1+ (Af,©Ag)cn, [, g € dom(te) =dom(ts,). (A.6)
Moreover, if mul(®) = C", then
to Cts,, dom(te) = {h € dom(ts)) | Ah =0},

which corresponds to the Friedrichs extension. In particular, for the case n = 1 it is clear that
® € R U {00}. One notes that for ® € R the decomposition reads

t@[f’ g] = tS] [f7 g] + (Af’ @Ag)(C’ f’ RS dom(t@)) = dom(tS])a

while for ® = oo one has

to Cts,, dom(te) = {h € dom(ts,) | Ah =0}.

Self-adjoint Linear Relations in C”. The structure of the self-adjoint extensions in (A.1) is
clarified next. It follows from [3, Theorem 1.10.5, Corollary 1.10.8, Proposition 1.10.3] that any
self-adjoint relation ® in C” can be expressed as

©={{u,v} e C" x C" | Bu= Av}, (A7)
where the n x n matrices A and B satisfy
AB* =BA*, rank(B A) =n, (A.8)

and (B A) stands for the n x 2n matrix of the columns of 55 and .A. The multi-valued part of ®
is given by

mul(®) = {ve C" | Av=0} =ker(A),
so that it follows from (A.2) and (A.7) that
Bu=AB,u, uedom(®)=(mul(®)" = (ker(A))* =ran(A*). (A.9)
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Therefore, ®op can be expressed as

Oop = ATB [ ran(A4*), (A.10)
where AL~ stands for the Moore—Penrose inverse of A. Hence, if ker(A) = {0}, then one has
dom(®) =C” and ® = A~ B is an n x n self-adjoint matrix. Moreover, if ker(A) = C", then
dom(®) = {0} and O is a purely multi-valued self-adjoint relation in C” given by ® = {0} x C".

In the case n = 2 and dim(ker(A)) = 1 the selfadjoint operator ®,y, acting in the invariant
one-dimensional subspace dom(®), is multiplication by the unique real number cg given by

Bu=coAu, uedom(®)=(ker(4A)*, uz£0. (A.11)

In the case n = 1 the self-adjoint relation ® can be expressed as

© = {{u, v} € C x C | cos(y)u+sin(y)v=0}, (A.12)
with y € [0, ). If y =0, then one has mul(®) = C and ® = {0} x C, whereas if y # 0, then
one has mul(®) = {0} and ©® = O, is multiplication by — cot(y).

Summarizing, for a pair of n x n matrices .A and B satisfying (A.8) and ® given by (A.7), the
self-adjoint extension Ag of S in (A.1) is given by

Agg =S*g, gedom(Ag)= {h € dom(S™) | BLoh = AFlh}. (A.13)

In this case the formula (A.5) can be written as

tolf. gl =ts,[f. g1+ (Af. ATBAG) ..

(A.14)
f. g € dom(te) = {h € dom(ts,) | Ah € (ker(A)*}.

The expression (A.14) can be further simplified in the situations described in (A.11) and (A.12).

Two Limit Circle Endpoints. Return to the situation of Proposition 2.12. Then choose the
boundary triplet {(Cz, [0, "1}, defined on dom(7},4y), by

(g _( g
log = <§ ) , I'g= <—§’(b)> , g edom(Tyuy). (A.15)

Furthermore, introduce the form t[f, gl = Q. 4(f, &), f, g € dom(t) = dom(Q, 4), as in (3.4)
and (3.5); cf. [3, Equation (6.11.2)]. Then it is easy to see that

(f: Twin®) 12(@byiraw) =t 81, f € dom(b), g € dom(Tpuin) € dom(t), (A.16)
see [3, Corollary 6.11.2], and
dom(7},qx) € dom(t), (A.17)
see [3, Lemma 6.11.3]. Define A : dom(t) — C? by
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Ag= (i“”), g € dom(t). (A.18)
For every ¢ > 0 there exists C; > 0 such that

1AgIEa < etle, g1+ Cellgl 7oy pyirary & € dom(b), (A.19)

see [3, Lemma 6.11.4]. It now follows from (A.16)—(A.19) that {(Cz, A} is a boundary pair which
is compatible with the boundary triplet in (A.15), see [3, Lemma 6.11.5]. Thus we can apply
(A.5), see [3, Theorem 6.11.6]. Note that Q. 4 = ts,, where dom(S;) = ker(I"1); cf. (A.15). The
self-adjoint extensions of 7,,;, are parametrized via (A.13), given (A.7) and (A.8). As before,
our treatment will distinguish between separated and coupled boundary conditions.

First, consider the case of separated boundary conditions in Theorem 3.8, where A and B are
2 x 2 matrices of the form

_ [ —sin(a) 0 _ [ cos(a) 0
A= ( 0 sin(,B)) » B= ( 0 cos(ﬁ)) ’ (A.20)

Note that (A.8) is satisfied. There are three subcases to be discussed. First, consider the case
a # 0 and B # 0. Then A is invertible and it follows from (A.20) that ® is given by

i1 [ —cot(a) 0
e=A B—< 0 cot(ﬁ))' (A.21)

Substitution of (A.18) and (A.21) into (A.14) leads to (3.17) in Theorem 3.8. The second case
is that either « = 0 or 8 = 0 (without equality simultaneously). Assume o = 0. Then ker(A) is
one-dimensional and, in fact, it follows from mul(®) = ker(A) and dom(®) = (mul(©))' that

mul(®) = lin. span ((é)) , dom(®) = lin. span ((?)) .

Therefore, one sees from

0 0 0
Bu= (cos(ﬂ))’ Au = (sin(ﬁ))’ u= <1>

together with (A.11), that cg = cot(8). Hence the operator ®,, acting in dom(®) = lin. span(u)
is given by

Oop =cot(B), dom(te) = {h € dom(t) |i(a) = 0}.

This together with (A.14) and (A.11) leads to (3.19). Likewise, when 8 = 0, then cg = — cot(«)
and hence

Opp = —cot(ar), dom(te) = {h € dom(t) | Z(b) = 0},

and this leads to (3.21). The third case concerns & = g = 0. Then mul(®) = ker(A) = C? and
dom(®) = {0}. Thus Oy, is trivial and
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to Ct, dom(te) = {h € dom(t) | hi(a) =0 =h(b)},

see (3.23), which corresponds to the Friedrichs extension. This treats all cases of Theorem 3.8.
Secondly, consider the case of coupled boundary conditions in Theorem 3.9, where A and B
are 2 x 2 matrices of the form

A=_<61¢R1’2 0), B:(WR“ _1), (A.22)

einz’z 1 ei(pRz’] 0

and hence (A.8) is satisfied. There are two subcases to be discussed.
The first subcase is when Ry # 0. Then A is invertible and it follows from (A.22) and
detc2(R) =1, that © is given by

1 (R —e i
Al _ 1,1
O=A B__—Rl,z(—eiw Ra ) (A.23)

It follows from (A.5) and the expression in (A.23) that

_ 1 (J@\ (Riy —e §(a>>
(Af,OAg)C2 = Ria (f(b)) (_e,(p Ros )(E(b) , f,g €edom(t).

Together with (A.14) this implies Theorem 3.9 (7).

The second subcase occurs when Rj > = 0, which implies that 1 = detc2(R) = Ry, 1Rz 2.
Then one has that ker(.A) is one-dimensional and, in fact, it follows from mul(®) = ker(.A) and
dom(®) = (mul(®))~ that

L 1 L e ¥Ry
mul(®) = lin. span ((—ei‘pRz,z>) ,  dom(®) = lin. span (( | )) .

Therefore, one sees from

Ri 1Ry —1 0 e YRy
Bu= A , Au= , u= <,
< Ry 1Ry > (—R%Z —1 1

together with (A.11), that

R
co=———2l (A.24)
Ri1+Rap

Thus by (A.5) and the expression in (A.24) it is clear that
(Af. OgpAg)c2 =—R1 1Ry f@)Z(a).
f. g € dom(te) = [h € dom(t) | h(b) = €' Ry 1h(a)).

Together with (A.14) this implies Theorem 3.9 (ii).

One Limit Circle Endpoint. Return to the situation of Proposition 2.13. Choose the boundary
triplet {C, Iy, I'1 }, defined on dom(7};,4y), by
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log=2(@, Tig=g'(@), gedom(Tpax). (A.25)

Furthermore, introduce the form t[ f, g1 = Qc.4(f, &), f, g € dom(t) = dom(Q, 4), as in (4.2)
and (4.3); see [3, Equation (6.12.2)]. Then it is easy to see that

(fv Tming)i) = t[f’ g], f € dom(t), 8 € dom(Tpin) € dom(t), (A26)
see [3, Corollary 6.12.2], and
dom(7},qy) € dom(t), (A.27)

see [3, Lemma 6.12.3]. Define A : dom(t) — C by

Ag=3%(a), gedom(t). (A.28)

For every ¢ > 0 there exists C; > 0 such that

IAgIE < etlg, 814 Cellglya g pyrar: & € dom(), (A.29)
see [3, Lemma 6.12.4]. It now follows from (A.26)—(A.29) that {C, A} is a boundary pair which
is compatible with the boundary triplet in (A.25), see [3, Lemma 6.12.5]. Thus we can apply

(A.5), see [3, Theorem 6.12.6]. Note that . 4 = ts,, where dom(S;) = ker(I';); see (A.25).
The self-adjoint extensions of 7j,;, are now parametrized via (A.12)

cos(a)Tpg +sin(x)T"'1g =0, g edom(Tyax),

over « € [0, ), and denoted by T, see Proposition 2.13. Therefore, one has for « € (0, ), that

tulf, gl =tLf, gl —cot(@)(A f, Ag)c, f, g € dom(ty) =dom(}).

Moreover, if @ = 0, then

ty Ct,  dom(ty) = {h € dom(t) | h(a) =0},
which corresponds to the Friedrichs extension. This implies Theorem 4.5, cf. [3, Theo-
rem 6.12.6].

For a succinct treatment of boundary triplets and Weyl-Titchmarsh functions tailored towards
ordinary differential operators (a.k.a., “boundary triplets in a nutshell”), see also [11, App. D.7].
Likewise, a treatment of boundary pairs, going back to [2], can be found in [3, Ch. 5].

Data availability

No data was used for the research described in the article.
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