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Abstract

Any self-adjoint extension of a (singular) Sturm–Liouville operator bounded from below uniquely leads 
to an associated sesquilinear form. This form is characterized in terms of principal and nonprincipal so
lutions of the Sturm–Liouville operator by using generalized boundary values. We provide these forms in 
detail in all possible cases (explicitly, when both endpoints are limit circle, when one endpoint is limit cir
cle, and when both endpoints are limit point).
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1. Introduction

The traditional three-coe�icient Sturm–Liouville (generalized eigenvalue) problem on an ar
bitrary open interval (a, b) ⊆ R is of the form

−(p(x)f ′(x))′ + q(x)f (x) = zr(x)f (x) for a.e. x ∈ (a, b), z ∈C, (1.1)

where the coefficients p,q, r are real-valued (Lebesgue) a.e. on (a, b), p, r > 0 a.e. on (a, b), 
and p−1, q, r ∈ L1

loc((a, b);dx). In addition, z ∈ C represents a (generally, complex-valued) 
spectral parameter, and f and pf ′ are assumed to be locally absolutely continuous on (a, b); see 
Section 2 for details. More precisely, the differential expression τ underlying (1.1),

τ = 1 
r(x)

[︃
− d

dx
p(x)

d

dx
+ q(x)

]︃
for a.e. x ∈ (a, b), (1.2)

naturally leads to a minimal closed symmetric operator Tmin in the Hilbert space L2((a, b); r dx)

(cf. (2.10) and (2.12)) and its deficiency indices are then given by (0,0), (1,1), or (2,2). From 
the outset, the operator Tmin is in general not lower semibounded. However, in this paper it will 
be assumed that equation (1.1) has solutions which are nonoscillatory at the endpoints a and b
for some z ∈ R and in this case Tmin turns out to be lower semibounded. As a consequence, 
all self-adjoint extensions of Tmin in L2((a, b); r dx) are then lower semibounded, see Propo
sition 2.8. For example, in the special case of a one-dimensional Schrödinger operator where 
τ simplifies to τ = −(d2/dx2) + q(x) for a.e. x ∈ (a, b), quantum mechanical considerations 
typically lead to the requirement of lower semibounded self-adjoint extensions of Tmin and the 
characterization of the underlying quadratic forms (representing the sum of kinetic and potential 
energy) corresponding to them.

In this paper we consider the natural and nontrivial question of determining the form do
mains associated with general, that is, lower semibounded, self-adjoint, singular, three-coe�icient 
Sturm–Liouville operators associated with L2((a, b); r dx)-realizations of the differential ex
pression τ in (1.2). The corresponding sesquilinear forms are then connected to integrals of the 
form
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b∫︂
a

dx 
[︁
p(x)f ′(x)g′(x) + q(x)f (x)g(x)

]︁
(1.3)

for ``appropriate'' elements f,g ∈ L2((a, b); r dx). However, if one of the functions f or g is not 
compactly supported in (a, b), there might well be a problem with the convergence of the integral 
in (1.3). This problem will be avoided when rewriting the integral by means of the nonoscillatory 
solutions of (1.1) mentioned above. These solutions will also be used to introduce generalized 
boundary values (see Proposition 2.10) that are associated to the particular self-adjoint extension 
of Tmin under consideration. The main results in this paper are formulated in terms of proper 
interpretations of the integral (1.3) and, in particular, in terms of generalized boundary values, 
see Proposition 2.10.

The history of Sturm–Liouville problems, and, especially, the naturally associated spectral 
theory, is incredibly rich. Hence, we can only point to some of the classical contributions by 
Weyl [39--43], Titchmarsh [31--34], [35, Chs. I–VI], and Kodaira [19], [20], and, for more recent 
accounts, refer to the monographs [1, Sects. 127, 132], [3, Ch. 6], [4, Chs. 4, 6--8], [6, Ch. 9], [7, 
Sect. 13.6, 13.9, 13.10], [8, Ch. 2], [9, Sect. 3.10], [11, Chs. 4--10, 13], [13], [14, Parts II, III], 
[15, Ch. III], [21, Sect. 11.9], [22, Sect. 15-19], [24, Ch. 6], [27, Chs. 1--4, 6], [29, Ch. 15], [30, 
Ch. 9], [37, Sects. 3--7], [38, Ch. 13], [36, Sect. 8.4], [44, Ch. 5], and [45, Chs. 7--10].

The material in this paper is presented in a systematic and straightforward way. A brief review 
of Sturm–Liouville theory is given in Section 2. The description of all self-adjoint extensions 
by means of generalized boundary values can be found in Propositions 2.12, 2.13, and 2.14, 
depending on the endpoints being in the limit circle case or in the limit point case. Section 2 also 
briefly surveys the history of the notion of generalized boundary values (cf. Remark 2.15). In 
each of our principal Sections 3, 4, and 5, one can find a systematic description of the quadratic 
forms corresponding to the self-adjoint extensions in the various cases; see Theorems 3.8, 3.9, 
4.5, and 5.4. The results are obtained via integration by parts of the expression (f,Tmaxg) for 
f,g ∈ dom(Tmax), where Tmax denotes the maximal operator associated to (1.2); see Lemma 3.4
and Lemma 4.4. This yields an alternative and very explicit formulation of the results in [3, Ch. 6] 
in terms of generalized boundary values. These results generalize those of [11, Sect. 4.5] in the 
special case where τ is regular at a and b. The presentation is for the most part self-contained. For 
completeness and convenience of the reader, we identify in Appendix A the boundary triplet and 
the boundary pair used in [3] to obtain the general formulation of the main results in Sections 3
and 4. In the appendix the emphasis is on the abstract analogue of Lemma 3.4 and Lemma 4.4. 
The abstract results also lead to a description of the Friedrichs extension in each of these sections 
by means of a boundary pair.

We conclude this introduction by briefly commenting on some of the notation employed in 
the bulk of this paper: The inner product in a separable (complex) Hilbert space ℋ is denoted by 
( · , · )ℋ and is assumed to be linear with respect to the second argument. If T is a linear operator 
mapping (a subspace of) a Hilbert space into another, then dom(T ), ran(T ), and ker(T ) denote 
the domain, range, and kernel (i.e., null space) of T , respectively. The analogous conventions are 
used for linear relations and sesquilinear forms (when applicable); in particular, the multi-valued 
part of a linear relation T is denoted by mul(T ). Finally, SL(2,R) denotes the set of all 2 × 2
matrices with real-valued entries and determinant one.

3 



J. Behrndt, F. Gesztesy, S. Hassi et al. Journal of Differential Equations 462 (2026) 114131 

2. Sturm–Liouville operators, generalized boundary values, and self-adjoint realizations

The following hypothesis will be assumed throughout this paper.

Hypothesis 2.1. Let −∞ ⩽ a < b ⩽ ∞. Suppose that p, q , and r are Lebesgue measurable 
on (a, b) with p−1, q, r ∈ L1

loc((a, b);dx) and real-valued a.e. on (a, b) with r > 0 and p > 0
a.e. on (a, b).

We recall the basic construction and properties of Sturm–Liouville differential expressions 
and their associated operators. For a full treatment with proofs of the assertions in this section, 
we refer to [11, Chapter 5].

Assuming Hypothesis 2.1, we introduce the set

𝔇τ ((a, b)) = {︁
g ∈ ACloc((a, b)) ⃓⃓ pg′ ∈ ACloc((a, b))

}︁
. (2.1)

The expression

f [1] = pf ′, f ∈ 𝔇τ ((a, b)), (2.2)

is called the first quasi-derivative of f . We note that f ∈𝔇τ ((a, b)) implies f [1] ∈ ACloc((a, b)), 
so that f [1] is differentiable almost everywhere on (a, b). The differential expression τ is defined 
by

τf = 1

r

[︁ − (︁
f [1])︁′ + qf

]︁ ∈ L1
loc((a, b); r dx), f ∈𝔇τ ((a, b)). (2.3)

For each f,g ∈𝔇τ ((a, b)), the (modified) Wronskian of f and g is defined by

W(f,g)(x) = f (x)g[1](x) − f [1](x)g(x), x ∈ (a, b). (2.4)

Hence, W(f,g) is locally absolutely continuous on (a, b) and its derivative is

W(f,g)′(x) = [︁
g(x)(τf )(x) − f (x)(τg)(x)

]︁
r(x) for a.e. x ∈ (a, b). (2.5)

In particular, if z ∈ C, then the Wronskian of two solutions uj (z, · ) ∈ 𝔇τ ((a, b)), j ∈ {1,2}, of 
τu = zu on (a, b) is constant. Moreover, W(u1(z, · ), u2(z, · )) ≠ 0 if and only if u1(z, · ) and 
u2(z, · ) are linearly independent.

Definition 2.2. The differential expression τ is said to be regular on (a, b) if −∞ < a < b < ∞
(i.e., a and b are finite) and p−1, q, r ∈ L1((a, b);dx); otherwise, τ is said to be singular on 
(a, b).

If τ is regular on (a, b), then for each f ∈𝔇τ ((a, b)) the following limits exist and are finite:

f (a) := lim
x↓a 

f (x), f [1](a) := lim
x↓a 

f [1](x),

f (b) := lim
x↑b 

f (x), f [1](b) := lim
x↑b 

f [1](x).
(2.6)

4 
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The differential expression τ gives rise to linear operators in the Hilbert space L2((a, b); r dx)

equipped with the standard inner product

(f, g)L2((a,b);r dx) =
b∫︂

a

r(x) dx f (x)g(x), f,g ∈ L2((a, b); r dx). (2.7)

The maximal operator associated to τ is denoted by Tmax and is defined by

Tmaxf = τf,

f ∈ dom(Tmax) = {︁
g ∈ L2((a, b); r dx)

⃓⃓
g ∈𝔇τ ((a, b)), τg ∈ L2((a, b); r dx)

}︁
.

(2.8)

Furthermore, the Wronskian of any two functions f,g ∈ dom(Tmax) possesses finite boundary 
values at the endpoints of (a, b); that is, the following limits exist and are finite:

W(f,g)(a) := lim
x↓a 

W(f,g)(x), W(f,g)(b) := lim
x↑b 

W(f,g)(x). (2.9)

The pre-minimal operator associated to τ is denoted by 
. 
T and is defined by

. 
T f = τf,

f ∈ dom
(︁ . 
T

)︁ = {︁
g ∈ dom(Tmax) | g has compact support in (a, b)

}︁
.

(2.10)

One can show that the operator 
. 
T is densely defined and symmetric in the Hilbert space 

L2((a, b); r dx) and (︁ . 
T

)︁∗ = Tmax. (2.11)

The minimal operator associated to τ is denoted by Tmin and is defined to be the closure of the 
pre-minimal operator:

Tmin := . 
T . (2.12)

In addition, Tmin and Tmax are adjoint to one another:

T ∗
min = Tmax and T ∗

max = Tmin. (2.13)

Definition 2.3. A measurable function f : (a, b) → C is in L2((a, b); r dx) near a (resp., b) if 
χ(a,c)f (resp., χ(c,b)f ) belongs to L2((a, b); r dx) for some c ∈ (a, b).

Theorem 2.4 (Weyl’s Alternative). Assume Hypothesis 2.1. Then the following alternative holds: 
Either

(i) For every z ∈ C, all solutions u of τu = zu are in L2((a, b); r dx) near b (resp., near a),

or,

5 
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(ii) For every z ∈ C, there exists at least one solution u of τu = zu which is not in 
L2((a, b); r dx) near b (resp., near a). In this case, for each z ∈ C\R, there exists precisely 
one solution ψb (resp., ψa) of τu = zu (up to constant multiples) which lies in L2((a, b); r dx)

near b (resp., near a).

Definition 2.5. Assume Hypothesis 2.1. In case (i) in Theorem 2.4, τ is said to be in the limit 
circle case at b (resp., a). In case (ii) in Theorem 2.4, τ is said to be in the limit point case at b
(resp., a).

Remark 2.6. If τ is in the limit circle case at b (resp., a), then τ is frequently called quasi
regular at b (resp., a). If τ is in the limit circle case at both a and b, then τ is frequently also 
called quasi-regular. ⋄

We recall that Tmin is lower semibounded or bounded from below by λ0 ∈ R, and one writes 
Tmin ⩾ λ0IL2((a,b);r dx) (in this case, λ0 is called a lower bound of Tmin), if

(u,Tminu)L2((a,b);r dx) ⩾ λ0(u,u)L2((a,b);r dx), u ∈ dom(Tmin). (2.14)

In particular, the lower bound of Tmin is the largest of all the lower bounds λ0 for which (2.14)
holds.

The lower semiboundedness property of Tmin (equivalently, 
. 
T ) is connected to the existence 

of distinguished nonoscillatory solutions, the so-called principal and nonprincipal solutions, at 
the endpoints a and b (see Definition 2.9).

Definition 2.7. Assume Hypothesis 2.1 and fix c ∈ (a, b) and λ ∈ R. The differential expression 
τ − λ is called nonoscillatory at a (resp., b), if there exists a real-valued solution u(λ, · ) of 
τu = λu that has finitely many zeros in (a, c) (resp., (c, b)). Otherwise, τ −λ is called oscillatory 
at a (resp., b). If τ − λ is nonoscillatory at a and b, one calls τ − λ nonoscillatory on (a, b). In 
addition, τ − λ is called oscillatory on (a, b) if it is oscillatory at least at one of the endpoints a
or b.

Proposition 2.8. Assume Hypothesis 2.1 and let λ0 ∈ R. Then the following items (i)-- (iii) are 
equivalent:

(i) Tmin is bounded from below by λ0; that is, Tmin ⩾ λ0IL2((a,b);r dx).

(ii) For all λ⩽ λ0, τ − λ is nonoscillatory at a and b.

(iii) For all λ ⩽ λ0, τu = λu has, for some c0, d0 ∈ (a, b), real-valued nonvanishing solutions 
ua(λ, · ) and ˆ︁ua(λ, · ) in the interval (a, c0], and real-valued nonvanishing solutions ub(λ, · )
and ˆ︁ub(λ, · ) in the interval [d0, b), such that

W(ua(λ, · ),ˆ︁ua(λ, · )) = 1, ua(λ, x) = o(ˆ︁ua(λ, x)) as x ↓ a, (2.15)

W(ub(λ, · ),ˆ︁ub(λ, · )) = 1, ub(λ, x) = o(ˆ︁ub(λ, x)) as x ↑ b, (2.16)

and for all c ∈ (a, c0] and d ∈ [d0, b),

6 
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c∫︂
a

dx p(x)−1ua(λ, x)−2 =
b∫︂

d

dx p(x)−1ub(λ, x)−2 = ∞, (2.17)

c∫︂
a

dx p(x)−1ˆ︁ua(λ, x)−2 < ∞, 

b∫︂
d

dx p(x)−1ˆ︁ub(λ, x)−2 < ∞. (2.18)

In (2.15) and (2.16), we employ Landau’s little-o notation; that is, f (x) = o(g(x)) as x ↓ a

(resp., x ↑ b) means that f (x)/g(x) → 0 as x ↓ a (resp., x ↑ b). For details on principal and 
nonprincipal solutions, we refer to [11, Sect. 8.2]. In particular, for a proof of Proposition 2.8, 
see [11, Theorem 8.3.6].

Definition 2.9. Assume Hypothesis 2.1, suppose that Tmin is bounded from below by λ0 ∈ R
and let λ ⩽ λ0. Then ua(λ, · ) (resp., ub(λ, · )) in Proposition 2.8 (iii) is called a principal (or 
minimal ) solution of τu = λu at a (resp., b). A real-valued solution ˆ︁ua(λ, · ) (resp., ˆ︁ub(λ, · ))
of τu = λu linearly independent of ua(λ, · ) (resp., ub(λ, · )) is called a nonprincipal solution 
of τu = λu at a (resp., b).

Following [10] and [11, Sect. 13.4], the next result introduces generalized boundary values at 
the endpoints a and b for functions belonging to dom(Tmax).

Proposition 2.10 (Generalized boundary values). Assume Hypothesis 2.1 and let τ be in the 
limit circle case at a and b (i.e., τ is quasi-regular on (a, b)). In addition, assume that 
Tmin ⩾ λ0IL2((a,b);r dx) for some λ0 ∈ R, and denote by ut(λ0, · ) and ˆ︁ut (λ0, · ) principal and 
nonprincipal solutions of τu = λ0u on (a, b), respectively, at t ∈ {a, b} that satisfy

W(ˆ︁ua(λ0, · ), ua(λ0, · )) = W(ˆ︁ub(λ0, · ), ub(λ0, · )) = 1. (2.19)

Introducing vj ∈ dom(Tmax), j = 1,2, via

v1(x) =
{︄ˆ︁ua(λ0, x), for x near a,ˆ︁ub(λ0, x), for x near b,

v2(x) =
{︄

ua(λ0, x), for x near a,

ub(λ0, x), for x near b,
(2.20)

then for each g ∈ dom(Tmax), the following limits exist and are finite:

˜︁g(a) := −W(v2, g)(a) = −W(ua(λ0, · ), g)(a) = lim
x↓a 

g(x) ˆ︁ua(λ0, x)
,

˜︁g(b) := −W(v2, g)(b) = −W(ub(λ0, · ), g)(b) = lim
x↑b 

g(x) ˆ︁ub(λ0, x)
,

(2.21)

˜︁g ′(a) := W(v1, g)(a) = W(ˆ︁ua(λ0, · ), g)(a) = lim
x↓a 

g(x) −˜︁g(a)ˆ︁ua(λ0, x)

ua(λ0, x) 
,

˜︁g ′(b) := W(v1, g)(b) = W(ˆ︁ub(λ0, · ), g)(b) = lim
x↑b 

g(x) −˜︁g(b)ˆ︁ub(λ0, x)

ub(λ0, x) 
.

(2.22)

7 
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Definition 2.11. The quantities ˜︁g(c), ˜︁g ′(c), c ∈ {a, b}, defined by (2.21) and (2.22) are called the 
generalized boundary values of g ∈ dom(Tmax).

If τ is in the limit circle case at both endpoints of (a, b), then Tmin has deficiency indices 
(2,2). In this case, the self-adjoint extensions of Tmin are parametrized by boundary conditions 
at the endpoints of (a, b) according to the next proposition.

Proposition 2.12. Assume Hypothesis 2.1 and let τ be in the limit circle case at a and b. In 
addition, assume that Tmin ⩾ λ0IL2((a,b);r dx) for some λ0 ∈ R and that ut (λ0, · ) and ˆ︁ut (λ0, · )
are principal and nonprincipal solutions of τu = λ0u on (a, b), respectively, at t ∈ {a, b} that 
satisfy (2.19). Then, given (2.21) and (2.22), the following items (i)--(v) hold:

(i) The minimal operator is characterized by

Tminf = τf,

f ∈ dom(Tmin) = {︁
g ∈ dom(Tmax) ⃓⃓ ˜︁g(a) =˜︁g ′(a) = 0 =˜︁g(b) =˜︁g ′(b)

}︁
.

(2.23)

(ii) All self-adjoint extensions Tα,β of Tmin with separated boundary conditions are of the form

Tα,βf = τf, α,β ∈ [0,π),

f ∈ dom(Tα,β) =
{︄

g ∈ dom(Tmax) ⃓⃓⃓⃓⃓ sin(α)˜︁g ′(a) + cos(α)˜︁g(a) = 0
sin(β)˜︁g ′(b) + cos(β)˜︁g(b) = 0

}︄
.

(2.24)

(iii) All self-adjoint extensions Tφ,R of Tmin with coupled boundary conditions are of the form

Tφ,Rf = τf, φ ∈ [0,π), R ∈ SL(2,R),

f ∈ dom(Tφ,R) =
{︄

g ∈ dom(Tmax) ⃓⃓⃓⃓⃓
(︃ ˜︁g(b)˜︁g ′(b)

)︃
= eiφR

(︃ ˜︁g(a)˜︁g ′(a)

)︃}︄
.

(2.25)

(iv) Every self-adjoint extension of Tmin is either of type (ii) (i.e., with separated boundary 
conditions) or of type (iii) (i.e., with coupled boundary conditions).

(v) The operator Tα=0,β=0 is the Friedrichs extension of Tmin.

In the case when exactly one endpoint is in the limit circle case, the deficiency indices of Tmin

are (1,1). The self-adjoint extensions of Tmin are then characterized by a separated boundary 
condition at the limit circle endpoint. For simplicity of presentation, we assume in the following 
result that τ is in the limit circle case at a (the case when τ is in the limit circle case at b is 
entirely analogous).

Proposition 2.13. Assume Hypothesis 2.1 and let τ be in the limit circle case at a and in the 
limit point case at b. In addition, assume that Tmin ⩾ λ0IL2((a,b);r dx) for some λ0 ∈ R and 
that ua(λ0, · ) and ˆ︁ua(λ0, · ) are principal and nonprincipal solutions of τu = λ0u on (a, b), 
respectively, at a that satisfy (2.19). Introduce the corresponding generalized boundary values 
according to (2.21) and (2.22). Then the following statements (i)--(iii) hold:

8 
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(i) The domain of Tmin is characterized by

dom(Tmin) = {︁
g ∈ dom(Tmax) ⃓⃓ ˜︁g(a) =˜︁g ′(a) = 0

}︁
. (2.26)

(ii) All self-adjoint extensions Tα of Tmin are of the form

Tαf = τf, α ∈ [0,π),

f ∈ dom(Tα) = {︁
g ∈ dom(Tmax) ⃓⃓ sin(α)˜︁g ′(a) + cos(α)˜︁g(a) = 0

}︁
.

(2.27)

(iii) The operator Tα=0 is the Friedrichs extension of Tmin.

Results analogous to (i)--(iii) hold if τ is in the limit point case at x = a and in the limit circle 
case at x = b.

In the case when τ is in the limit point case at both a and b, the deficiency indices of Tmin are 
(0,0). In this case, T := Tmin = Tmax is self-adjoint.

Proposition 2.14. Assume Hypothesis 2.1. If τ is in the limit point case at both a and b, then 
T := Tmin = Tmax is self-adjoint.

Remark 2.15. (i) The generalized boundary values associated with the Sturm–Liouville expres
sion (2.3) as introduced in Proposition 2.10 by

˜︁g(c) = lim 
x→c

g(x) ˆ︁uc(λ0, x)
, (2.28)

˜︁g ′(c) = lim 
x→c

g(x) −˜︁g(c)ˆ︁uc(λ0, x)

uc(λ0, x) 
, (2.29)

especially, ˜︁g(c) in (2.28), at an endpoint c ∈ {a, b}, have a longer history. They were originally 
introduced by Rellich [25] in connection with coefficients p,q, r that had a very particular be
havior in a neighborhood of the endpoint c of the type

p(x) = (x − c)σ
[︁
p0 + p1(x − c) + p2(x − c)2 + · · · ]︁,

q(x) = (x − c)σ−2[︁q0 + q1(x − c) + q2(x − c)2 + · · · ]︁,
r(x) = (x − c)σ−2[︁r0 + r1(x − c) + r2(x − c)2 + · · · ]︁, (2.30)

with σ,p0,p1, . . . , q0, q1, . . . , r0, r1, · · · ∈ R, p0 ≠ 0, rk ≠ 0 for some k ∈ N0, kℓ = 0 for 
0 ⩽ ℓ ⩽ k − 1, etc. This was also recorded in [13, Ch. 15] and [15, Ch. III]. In 1951, Rellich 
[26] considerably generalized the hypotheses on p,q, r . The case of the Bessel equation was re
considered in [12], and the case of Schrödinger operators on (0,∞) with potentials q satisfying

q(x) = (︁
γ 2 − (1/4)

)︁
x−2 + ηx−1 + ωx−a + W(x) for a.e. x > 0, (2.31)

with γ ⩾ 0, η,ω ∈ R, a ∈ (0,2), and W ∈ L∞((0,∞);dx) real-valued a.e., was systematically 
treated in [5] and [18]. Under the general Hypothesis 2.1, the boundary value ˜︁g(c) in (2.28) was 
studied in detail by Kalf [16, Remark 3] and subsequently by Rosenberger in [28, Theorem 3]. 

9 
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It was systematically employed by Niessen and Zettl [23]. In this context we also refer to [3, 
Propositions 6.11.1, 6.12.1], which discusses linearly independent boundary values in terms of 
boundary triplets and Wronskians W(ˆ︁ub(λ0, · ), g)(c).

(ii) The difference quotient analogue of ˜︁g ′(c) in (2.29), on the other hand, apparently, was 
not considered in [3], [16], [23], and [28]. It is a new twist in [10] that offers an explicit de
scription of boundary conditions for lower semibounded, self-adjoint, singular (quasi-regular) 
Sturm–Liouville operators.

(iii) We recall that for an element g ∈ dom(Tmax) the conditions ˜︁g(a) = ˜︁g(b) = 0 describe the 
Friedrichs extension in Proposition 2.12, and the condition ˜︁g(a) = 0 describes the Friedrichs 
extension in Proposition 2.13. It is worthwhile to observe that for c ∈ {a, b} a condition of the 
form ˜︁g(c) = 0 is sometimes met in a different guise, such as

lim 
x→c

g(x) 
uc(λ0, x)

exists in C, (2.32)

where uc(λ0, ·) is a principal solution. For the special case of the Legendre operator see, for in
stance, [1, Sect. 132]. For the above and other alternative statements, see also [3, Corollary 6.11.9, 
Corollary 6.12.9] and [11, Sect. 13.4]. ⋄

3. Case one: two limit circle endpoints

In this section we investigate the situation when τ is in the limit circle case at both a and 
b. The main goal is to provide the sesquilinear forms corresponding to the lower semibounded 
self-adjoint extensions of Tmin with separated and coupled boundary conditions from Proposi
tion 2.12. The following hypothesis is assumed throughout this section.

Hypothesis 3.1. In addition to Hypothesis 2.1, assume that τ is in the limit circle case at a and 
b. Suppose that Tmin ⩾ λ0IL2((a,b);r dx) for some λ0 ∈ R and that ut (λ0, · ) and ˆ︁ut (λ0, · ) are 
principal and nonprincipal solutions of τu = λ0u on (a, b), respectively, at t ∈ {a, b} that satisfy 
(2.19).

Assuming Hypothesis 3.1, choose a0, b0 ∈ (a, b) such that a < a0 < b0 < b and

ua(λ0, x) ≠ 0, ˆ︁ua(λ0, x) ≠ 0, x ∈ (a, a0);
ub(λ0, x) ≠ 0, ˆ︁ub(λ0, x) ≠ 0, x ∈ (b0, b).

(3.1)

Let c ∈ (a, a0) and d ∈ (b0, b) be fixed. Introducing the differential expressions Nˆ︁ua(λ0, · ),c and 
Nˆ︁ub(λ0, · ),d by

Nˆ︁ua(λ0, · ),cf = p1/2ˆ︁ua(λ0, · )
(︃

fˆ︁ua(λ0, · )
)︃′

, f ∈ ACloc((a, c)); (3.2)

Nˆ︁ub(λ0, · ),dg = p1/2ˆ︁ub(λ0, · )
(︃

gˆ︁ub(λ0, · )
)︃′

, g ∈ ACloc((d, b)), (3.3)

one defines the symmetric sesquilinear form 𝔔c,d as follows, see, for instance, [3, Sect. 6.8], [11, 
Sect. 4.5],

10 
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dom(𝔔c,d ) = {︁
h ∈ L2((a, b); r dx)

⃓⃓
h ∈ ACloc((a, b)),

p−1/2h[1] ∈ L2((c, d);dx), Nˆ︁ua(λ0, · ),ch ∈ L2((a, c);dx), (3.4)

Nˆ︁ub(λ0, · ),dh ∈ L2((d, b);dx)
}︁
,

and

𝔔c,d (f, g) =
c∫︂

a

dx (Nˆ︁ua(λ0, · ),cf )(x)(Nˆ︁ua(λ0, · ),cg)(x)

+
b∫︂

d

dx (Nˆ︁ub(λ0, · ),df )(x)(Nˆ︁ub(λ0, · ),dg)(x)

+ λ0

c∫︂
a

r(x) dx f (x)g(x) + λ0

b∫︂
d

r(x) dx f (x)g(x)

+
d∫︂

c

dx 
[︂
p(x)−1f [1](x)g[1](x) + q(x)f (x)g(x)

]︂

+ ˆ︁u[1]
a (λ0, c)ˆ︁ua(λ0, c) 

f (c)g(c) − ˆ︁u[1]
b (λ0, d)ˆ︁ub(λ0, d) 

f (d)g(d), f,g ∈ dom(𝔔c,d ).

(3.5)

Several important properties of the sesquilinear form 𝔔c,d are collected in the following result.

Proposition 3.2. Assume Hypothesis 3.1. Let a < a0 < b0 < b with a0 and b0 chosen so that (3.1)
holds and suppose c ∈ (a, a0) and d ∈ (b0, b). Then the following statements (i)-- (iv) hold:

(i) The sesquilinear form 𝔔c,d defined by (3.4) and (3.5) is densely defined, closed, and lower 
semibounded in L2((a, b); r dx).

(ii) dom(Tmax) ⊆ dom(𝔔c,d ).

(iii) If c′ ∈ (a, a0) and d ′ ∈ (b0, b), then 𝔔c,d = 𝔔c′,d ′ . That is, the sesquilinear form defined by 
(3.4) and (3.5) is independent of the choices of c ∈ (a, a0) and d ∈ (b0, b).

(iv) If g ∈ dom(𝔔c,d ), then the following limits exist:

˜︁g(a) := lim
x↓a 

g(x) ˆ︁ua(λ0, x)
, ˜︁g(b) := lim

x↑b 
g(x) ˆ︁ub(λ0, x)

. (3.6)

In particular, the generalized boundary values ˜︁g(a) and ˜︁g(b) introduced in (2.21) for functions 
in dom(Tmax) extend to functions in dom(𝔔c,d ).

Remark 3.3. The properties of 𝔔c,d in Proposition 3.2 are discussed in detail in [3]; see [3, 
Theorem 6.10.9, Lemma 6.9.4, Corollary 6.11.2, Lemma 6.11.3]. ⋄

Lemma 3.4. Assume Hypothesis 3.1. Let a < a0 < b0 < b with a0 and b0 chosen so that (3.1)
holds and suppose c ∈ (a, a0) and d ∈ (b0, b). If f ∈ dom(𝔔c,d ) and g ∈ dom(Tmax), then

11 
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(f,Tmaxg)L2((a,b);r dx) = 𝔔c,d (f, g) + ˜︁f (a)˜︁g ′(a) − ˜︁f (b)˜︁g ′(b). (3.7)

Proof. We recall Jacobi’s factorization identity in the following form: If g,h ∈ ACloc((a, b))

and g[1], h[1] ∈ ACloc((a, b)), then

−(︁
g[1])︁′ +

(︁
h[1])︁′

h 
g = − 1 

h

[︄
ph2

(︃
g

h 

)︃′]︄′
when h ≠ 0. (3.8)

Since ˆ︁ut (λ0, · ), t ∈ {a, b}, are solutions of τu = λ0u on (a, b), one infers that:

q = λ0r +
(︁ˆ︁u[1]

a (λ0, · )
)︁′

ˆ︁ua(λ0, · ) a.e. on (a, a0); (3.9)

q = λ0r +
(︁ˆ︁u[1]

b (λ0, · )
)︁′

ˆ︁ub(λ0, · ) a.e. on (b0, b). (3.10)

To prove (3.7) one calculates for f ∈ dom(𝔔c,d ) and g ∈ dom(Tmax) as follows:

(f,Tmaxg)L2((a,b);r dx)

=
b∫︂

a

dx f
[︁ − (︁

g[1])︁′ + qg
]︁

= lim 
a′↓a

c∫︂
a′

dx f
[︃

− (︁
g[1])︁′ + λ0rg +

(︁ˆ︁u[1]
a (λ0, · )

)︁′

ˆ︁ua(λ0, · ) g

]︃
−

d∫︂
c

dx f
(︁
g[1])︁′

+
d∫︂

c

dx qf g + lim 
b′↑b

b′∫︂
d

dx f
[︃

− (︁
g[1])︁′ + λ0rg +

(︁ˆ︁u[1]
b (λ0, · )

)︁′

ˆ︁ub(λ0, · ) g

]︃

= lim 
a′↓a

c∫︂
a′

dx f

{︄
− 1 ˆ︁ua(λ0, · )

[︄
pˆ︁ua(λ0, · )2

(︃
gˆ︁ua(λ0, · )

)︃′]︄′}︄

+ λ0

c∫︂
a

r dx f g − f g[1] ⃓⃓d
c

+
d∫︂

c

dx 
(︁
p−1f [1]g[1] + qf g

)︁ + λ0

b∫︂
d

r dx f g

+ lim 
b′↑b

b′∫︂
d

dx f

{︄
− 1 ˆ︁ub(λ0, · )

[︄
pˆ︁ub(λ0, · )2

(︃
gˆ︁ub(λ0, · )

)︃′]︄′}︄
(3.11)

= lim 
a′↓a

{︄
− fˆ︁ua(λ0, · )

[︄
pˆ︁ua(λ0, · )2

(︃
gˆ︁ua(λ0, · )

)︃′]︄⃓⃓⃓⃓
⃓
c

a′

12 
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+
c∫︂

a′
dx 

(︃
fˆ︁ua(λ0, · )

)︃′
pˆ︁ua(λ0, · )2

(︃
gˆ︁ua(λ0, · )

)︃′}︄

+ λ0

c∫︂
a

r dx f g − f g[1] ⃓⃓d
c

+
d∫︂

c

dx 
(︁
p−1f [1]g[1] + qf g

)︁ + λ0

b∫︂
d

r dx f g

+ lim 
b′↑b

{︄
− fˆ︁ub(λ0, · )

[︄
pˆ︁ub(λ0, · )2

(︃
gˆ︁ub(λ0, · )

)︃′]︄⃓⃓⃓⃓
⃓
b′

d

+
b′∫︂

d

dx 
(︃

fˆ︁ub(λ0, · )
)︃′

pˆ︁ub(λ0, · )2
(︃

gˆ︁ub(λ0, · )
)︃′}︄

.

The evaluation terms at c and d in the last equation in (3.11) are

{︄
− fˆ︁ua(λ0, · )

[︄
pˆ︁ua(λ0, · )2

(︃
gˆ︁ua(λ0, · )

)︃′]︄}︄
(c)

−
{︄

− fˆ︁ub(λ0, · )

[︄
pˆ︁ub(λ0, · )2

(︃
gˆ︁ub(λ0, · )

)︃′]︄}︄
(d) − f (d)g[1](d) + f (c)g[1](c)

= − f (c)ˆ︁ua(λ0, c)

{︁
g[1](c)ˆ︁ua(λ0, c) − g(c)ˆ︁u[1]

a (λ0, c)
}︁ − f (d)g[1](d) + f (c)g[1](c)

+ f (d)ˆ︁ub(λ0, d)

{︁
g[1](d)ˆ︁ub(λ0, d) − g(d)ˆ︁u[1]

b (λ0, d)
}︁

(3.12)

= ˆ︁u[1]
a (λ0, c)ˆ︁ua(λ0, c) 

f (c)g(c) − ˆ︁u[1]
b (λ0, d)ˆ︁ub(λ0, d) 

f (d)g(d).

Applying (2.22) and (3.6), one obtains for f ∈ dom(𝔔c,d ) and g ∈ dom(Tmax),

lim 
a′↓a

[︄
fˆ︁ua(λ0, · )pˆ︁ua(λ0, · )2

(︃
gˆ︁ua(λ0, · )

)︃′]︄
(a′)

= lim 
a′↓a

f (a′)ˆ︁ua(λ0, a′)
W(ˆ︁ua(λ0, · ), g)(a′) = ˜︁f (a)˜︁g ′(a),

(3.13)

and, similarly,

lim 
b′↑b

[︄
− fˆ︁ub(λ0, · )pˆ︁ub(λ0, · )2

(︃
gˆ︁ub(λ0, · )

)︃′]︄
(b′) = − ˜︁f (b)˜︁g ′(b). (3.14)

In light of (3.12), (3.13), and (3.14), (3.11) reduces to (3.7). □
13 
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Remark 3.5. The identity (3.7) may be found written in the language of boundary triplets in [3, 
Equation (6.11.5)]; see also Appendix A. ⋄

The following infinitesimal form boundedness result is a consequence of [3, Lemma 6.10.4].

Proposition 3.6. Assume Hypothesis 3.1. For every ε > 0 there exists C(ε) > 0 such that⃓⃓ ˜︁f (t)
⃓⃓2 ⩽ ε𝔔c,d (f, f ) + C(ε)∥f ∥2

L2((a,b);r dx)
, f ∈ dom(𝔔c,d ), t ∈ {a, b}. (3.15)

Remark 3.7. It is clear that the inequality in (3.15) remains valid with 𝔔c,d(f, f ) replaced by 
|𝔔c,d(f, f )|, f ∈ dom(𝔔c,d ). In particular, the sesquilinear forms

𝔮t (f, g) = ˜︁f (t)˜︁g(t), f,g ∈ dom(𝔮t ) = dom(𝔔c,d ), t ∈ {a, b}, (3.16)

are infinitesimally bounded with respect to 𝔔c,d . ⋄

In the next theorem we provide the sesquilinear form corresponding to the self-adjoint exten
sions Tα,β , α,β ∈ [0,π), of Tmin with separated boundary conditions from Proposition 2.12 (ii).

Theorem 3.8. Assume Hypothesis 3.1. Let a < a0 < b0 < b with a0 and b0 chosen so that (3.1)
holds and suppose c ∈ (a, a0) and d ∈ (b0, b). Then the following statements (i)--(iv) hold:

(i) If α,β ∈ (0,π), then the sesquilinear form 𝔔α,β
c,d defined by

𝔔
α,β
c,d (f, g) = 𝔔c,d (f, g) + cot(β) ˜︁f (b)˜︁g(b) − cot(α) ˜︁f (a)˜︁g(a),

f, g ∈ dom
(︁
𝔔

α,β
c,d

)︁ = dom(𝔔c,d ),
(3.17)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f,Tα,βg)L2((a,b);r dx) = 𝔔
α,β
c,d (f, g), f ∈ dom

(︁
𝔔

α,β
c,d

)︁
, g ∈ dom(Tα,β). (3.18)

Hence, 𝔔α,β
c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 

form associated to Tα,β , α,β ∈ (0,π), by the First Representation Theorem (cf. [17, Theo
rem VI.2.1]).

(ii) If α = 0 and β ∈ (0,π), then the sesquilinear form defined by

𝔔
0,β
c,d (f, g) = 𝔔c,d (f, g) + cot(β) ˜︁f (b)˜︁g(b),

f, g ∈ dom
(︁
𝔔

0,β
c,d

)︁ = {︁
h ∈ dom(𝔔c,d ) ⃓⃓ ˜︁h(a) = 0

}︁
,

(3.19)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f,T0,βg)L2((a,b);r dx) = 𝔔
0,β
c,d (f, g), f ∈ dom

(︁
𝔔

0,β
c,d

)︁
, g ∈ dom(T0,β). (3.20)

Hence, 𝔔0,β
c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 

form associated to T0,β , β ∈ (0,π), by the First Representation Theorem.
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(iii) If α ∈ (0,π) and β = 0, then the sesquilinear form defined by

𝔔
α,0
c,d (f, g) = 𝔔c,d(f, g) − cot(α) ˜︁f (a)˜︁g(a),

f, g ∈ dom
(︁
𝔔

α,0
c,d

)︁ = {︁
h ∈ dom(𝔔c,d ) ⃓⃓ ˜︁h(b) = 0

}︁
,

(3.21)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f,Tα,0g)L2((a,b);r dx) = 𝔔
α,0
c,d (f, g), f ∈ dom

(︁
𝔔

α,0
c,d

)︁
, g ∈ dom(Tα,0). (3.22)

Hence, 𝔔α,0
c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 

form associated to Tα,0, α ∈ (0,π), by the First Representation Theorem.

(iv) If α = β = 0, then the sesquilinear form defined by

𝔔
0,0
c,d(f, g) = 𝔔c,d (f, g),

f, g ∈ dom
(︁
𝔔

0,0
c,d

)︁ = {︁
h ∈ dom(𝔔c,d ) ⃓⃓ ˜︁h(a) = 0 =˜︁h(b)

}︁
,

(3.23)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f,T0,0g)L2((a,b);r dx) = 𝔔
0,0
c,d (f, g), f ∈ dom

(︁
𝔔

0,0
c,d

)︁
, g ∈ dom(T0,0). (3.24)

Hence, 𝔔0,0
c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 

form associated to T0,0 by the First Representation Theorem.

Proof. (i) It is clear by inspection that 𝔔α,β
c,d is symmetric. That 𝔔α,β

c,d is densely defined, closed, 
and lower semibounded follows from Remark 3.7 (specifically, the infinitesimal form bound
edness of 𝔮t , t ∈ {a, b}, with respect to 𝔔c,d ). To establish (3.18), one applies Lemma 3.4 -- 
specifically (3.7) -- and the boundary conditions inherent in the definition of dom(Tα,β):

(f,Tα,βg)L2((a,b);r dx) = 𝔔c,d(f, g) + ˜︁f (a)˜︁g ′(a) − ˜︁f (b)˜︁g ′(b)

= 𝔔c,d(f, g) − cot(α) ˜︁f (a)˜︁g(a) + cot(β) ˜︁f (b)˜︁g(b)

= 𝔔
α,β
c,d (f, g), f ∈ dom

(︁
𝔔

α,β
c,d

)︁
, g ∈ dom(Tα,β).

(3.25)

The proofs of (ii), (iii), and (iv) are all similar. We will provide a sketch of the proof of 
the claims in (ii) and omit the details for (iii) and (iv). To prove item (ii), one notes that the 
sesquilinear form 𝔔0,β

c,d is densely defined since dom(Tmin) ⊆ dom
(︁
𝔔

0,β
c,d

)︁
and Tmin is densely 

defined. Moreover, 𝔔0,β
c,d is lower semibounded since it is a restriction of 𝔔π/2,β

c,d , and the latter 

is lower semibounded by part (i). Let 𝔔′
c,d denote the restriction of 𝔔c,d to dom

(︁
𝔔

0,β
c,d

)︁
, where 

the latter domain is defined according to (3.19). Since 𝔔0,β
c,d is an infinitesimally form bounded 

perturbation of 𝔔′
c,d by (3.15), to prove 𝔔0,β

c,d is closed, it suffices to show that 𝔔′
c,d is closed. If 

{fn}∞n=1 ⊂ dom(𝔔′
c,d ) = dom

(︁
𝔔

0,β
c,d

)︁
, ∥fn − f ∥L2((a,b);r dx) → 0 for some f ∈ L2((a, b); r dx), 
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and 𝔔′
c,d(fn − fm,fn − fm) → 0, then the fact that 𝔔c,d is closed (cf. Proposition 3.2) implies 

f ∈ dom(𝔔c,d ) and 𝔔c,d(fn − f,fn − f ) → 0. Using (3.15) one obtains

⃓⃓ ˜︁f (a)
⃓⃓2 = ⃓⃓ ˜︁fn(a) − ˜︁f (a)

⃓⃓2

⩽𝔔c,d (fn − f,fn − f ) + C0∥fn − f ∥2
L2((a,b);r dx)

, n ∈N,
(3.26)

for some scalar C0 ∈ (0,∞) that does not depend on n ∈ N . Taking n → ∞ throughout (3.26), 
one obtains ˜︁f (a) = 0. Therefore, f ∈ dom

(︁
𝔔

0,β
c,d

)︁
, and since 𝔔c,d is an extension of 𝔔′

c,d , 

𝔔′
c,d(fn − f,fn − f ) → 0. Hence, 𝔔′

c,d is closed, and it follows that 𝔔0,β
c,d is closed and lower 

semibounded. That 𝔔0,β
c,d is symmetric is clear by inspection. Finally, the verification of (3.20) is 

entirely analogous to that of (3.18) (invoking Lemma 3.4, etc.), so we omit the details. □
In the next theorem we provide the sesquilinear form corresponding to the self-adjoint exten

sions Tφ,R , φ ∈ [0,π), R ∈ SL(2,R), of Tmin with coupled boundary conditions from Proposi
tion 2.12 (iii).

Theorem 3.9. Assume Hypothesis 3.1. Let a < a0 < b0 < b with a0 and b0 chosen so that (3.1)
holds and suppose c ∈ (a, a0) and d ∈ (b0, b). If φ ∈ [0,π) and R ∈ SL(2,R), then the following 
statements (i) and (ii) hold:

(i) If R1,2 ≠ 0, then the sesquilinear form 𝔔φ,R
c,d defined by

𝔔
φ,R
c,d (f, g) = 𝔔c,d (f, g) − 1 

R1,2

{︂
R1,1 ˜︁f (a)˜︁g(a) − e−iφ ˜︁f (a)˜︁g(b)

− eiφ ˜︁f (b)˜︁g(a) + R2,2 ˜︁f (b)˜︁g(b)
}︂
,

f, g ∈ dom
(︁
𝔔

φ,R
c,d

)︁ = dom(𝔔c,d ),

(3.27)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f,Tφ,Rg)L2((a,b);r dx) = 𝔔
φ,R
c,d (f, g), f ∈ dom

(︁
𝔔

φ,R
c,d

)︁
, g ∈ dom(Tφ,R). (3.28)

Hence, 𝔔φ,R
c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 

form associated to Tφ,R by the First Representation Theorem.

(ii) If R1,2 = 0, then the sesquilinear form 𝔔φ,R
c,d defined by

𝔔
φ,R
c,d (f, g) = 𝔔c,d(f, g) − R1,1R2,1 ˜︁f (a)˜︁g(a),

f, g ∈ dom
(︁
𝔔

φ,R
c,d

)︁ = {︁
h ∈ dom(𝔔c,d ) ⃓⃓ ˜︁h(b) = eiφR1,1˜︁h(a)

}︁
,

(3.29)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f,Tφ,Rg)L2((a,b);r dx) = 𝔔
φ,R
c,d (f, g), f ∈ dom

(︁
𝔔

φ,R
c,d

)︁
, g ∈ dom(Tφ,R). (3.30)
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Hence, 𝔔φ,R
c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 

form associated to Tφ,R by the First Representation Theorem.

Proof. The proof of item (i) begins by noting that 𝔔φ,R
c,d is an infinitesimally form bounded 

perturbation of 𝔔c,d by Proposition 3.6. Hence, 𝔔φ,R
c,d is densely defined, closed, and lower 

semibounded by Proposition 3.2. To prove (3.28), let f ∈ dom
(︁
𝔔

φ,R
c,d

)︁ = dom(𝔔c,d ) and g ∈
dom(Tφ,R). Using the boundary conditions for g given in (2.25), one obtains,

˜︁g ′(a) = 1 
R1,2

[︁
e−iφ˜︁g(b) − R1,1˜︁g(a)

]︁
,

˜︁g ′(b) = eiφ
[︁
R2,1˜︁g(a) + R2,2˜︁g ′(a)

]︁
.

(3.31)

Therefore, using detC2(R) = 1 and (3.31), one computes,

˜︁f (a)˜︁g ′(a) − ˜︁f (b)˜︁g ′(b)

= ˜︁f (a)

R1,2

{︁
e−iφ˜︁g(b) − R1,1˜︁g(a)

}︁ − eiφ ˜︁f (b)
{︁
R2,1˜︁g(a) + R2,2˜︁g ′(a)

}︁
= ˜︁f (a)

R1,2

{︁
e−iφ˜︁g(b) − R1,1˜︁g(a)

}︁
− eiφ ˜︁f (b)

{︃
R2,1˜︁g(a) + R2,2

R1,2

[︁
e−iφ˜︁g(b) − R1,1˜︁g(a)

]︁}︃
= − 1 

R1,2

{︂
R1,1 ˜︁f (a)˜︁g(a) − e−iφ ˜︁f (a)˜︁g(b) − eiφ ˜︁f (b)˜︁g(a) + R2,2 ˜︁f (b)˜︁g(b)

}︂
,

(3.32)

after taking a cancellation into account. The equality in (3.28) now follows from Lemma 3.4 and 
(3.32).

To prove item (ii), one notes that dom(Tmin) ⊆ dom
(︁
𝔔

φ,R
c,d

)︁
, so 𝔔φ,R

c,d is densely defined 

since Tmin is densely defined. Let 𝔔′
c,d denote the restriction of 𝔔c,d to dom

(︁
𝔔

φ,R
c,d

)︁
, where 

the latter domain is defined according to (3.29). Since 𝔔φ,R
c,d is an infinitesimally form bounded 

perturbation of 𝔔′
c,d by (3.15), to prove 𝔔φ,R

c,d is closed, it suffices to show that 𝔔′
c,d is closed. If 

{fn}∞n=1 ⊂ dom(𝔔′
c,d ) = dom

(︁
𝔔

φ,R
c,d

)︁
, ∥fn − f ∥L2((a,b);r dx) → 0 for some f ∈ L2((a, b); r dx), 

and 𝔔′
c,d(fn − fm,fn − fm) → 0, then the fact that 𝔔c,d is closed (cf. Proposition 3.2) implies 

f ∈ dom(𝔔c,d ) and 𝔔c,d(fn − f,fn − f ) → 0. Using (3.15) one obtains⃓⃓ ˜︁f (b) − eiφR1,1 ˜︁f (a)
⃓⃓2 = ⃓⃓[︁ ˜︁fn(b) − ˜︁f (b)

]︁ − eiφR1,1
[︁ ˜︁fn(a) − ˜︁f (a)

]︁⃓⃓2 (3.33)

⩽𝔔c,d (fn − f,fn − f ) + C0∥fn − f ∥2
L2((a,b);r dx)

, n ∈ N,

for some scalar C0 ∈ (0,∞) that does not depend on n ∈ N . Taking n → ∞ throughout (3.33), 
one obtains ˜︁f (b) = eiφR1,1 ˜︁f (a). Therefore, f ∈ dom

(︁
𝔔

φ,R
c,d

)︁
, and since 𝔔c,d is an extension of 

𝔔′
c,d , 𝔔′

c,d (fn − f,fn − f ) → 0. Hence, 𝔔′
c,d is closed, and it follows that 𝔔φ,R

c,d is closed and 
lower semibounded.
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To verify (3.30), let f ∈ dom
(︁
𝔔

φ,R
c,d

)︁
and g ∈ dom(Tφ,R). Using the relations

˜︁f (b) = eiφR1,1 ˜︁f (a), ˜︁g ′(b) = eiφ
[︁
R2,1˜︁g(a) + R2,2˜︁g ′(a)

]︁
, (3.34)

and 1 = detC2(R) = R1,1R2,2, one computes:

˜︁f (a)˜︁g ′(a) − ˜︁f (b)˜︁g ′(b) = ˜︁f (a)˜︁g ′(a) − e−iφR1,1 ˜︁f (a)eiφ
[︁
R2,1˜︁g(a) + R2,2˜︁g ′(a)

]︁
= ˜︁f (a)˜︁g ′(a) − R1,1R2,1 ˜︁f (a)˜︁g(a) − R1,1R2,2 ˜︁f (a)˜︁g ′(a)

= −R1,1R2,1 ˜︁f (a)˜︁g(a).

(3.35)

The equality in (3.30) now follows from Lemma 3.4 and (3.35). □
Remark 3.10. (i) Since 𝔔c,d is independent of the choices of c ∈ (a, a0) and d ∈ (b0, b)

(cf. Proposition 3.2 (iii)), it follows that the sesquilinear forms 𝔔α,β
c,d , α,β ∈ [0,π), and 𝔔φ,R

c,d , 
φ ∈ [0,π), R ∈ SL(2,R), are also independent of c and d .

(ii) It is clear that the sesquilinear forms for Tα,β and Tφ,R in (3.17), (3.19), (3.21), (3.23), 
(3.27), and (3.29) depend on the choices of the principal and nonprincipal solutions ut(λ0, · )
and ˆ︁ut (λ0, · ), t ∈ {a, b}. However, this is to be expected, as the parametrizations of the self
adjoint extensions of Tmin given in Proposition 2.12 also depend on the choices of the principal 
and nonprincipal solutions ut(λ0, · ) and ˆ︁ut (λ0, · ), t ∈ {a, b}. ⋄

4. Case two: one limit circle endpoint

In this section we provide the sesquilinear forms corresponding to the lower semibounded 
self-adjoint realizations Tα from Proposition 2.13. We assume, in addition to Hypothesis 2.1, 
that the differential expression τ is in the limit circle case at exactly one endpoint of the interval 
(a, b) and that Tmin ⩾ λ0IL2((a,b);r dx) for some λ0 ∈ R. For simplicity, we consider the case 
when τ is in the limit circle case at a and in the limit point case at b. The situation where τ is in 
the limit point case at a and in the limit circle case at b is entirely analogous. To be precise, we 
introduce the following hypothesis.

Hypothesis 4.1. In addition to Hypothesis 2.1, assume that τ is in the limit circle case at a and in 
the limit point case at b. Suppose that Tmin ⩾ λ0IL2((a,b);r dx) for some λ0 ∈ R and that ut (λ0, · )
and ˆ︁ut (λ0, · ) are principal and nonprincipal solutions of τu = λ0u on (a, b), respectively, at 
t ∈ {a, b} that satisfy (2.19).

Assuming Hypothesis 4.1, choose a0, b0 ∈ (a, b) such that a < a0 < b0 < b and (3.1) holds. 
Let c ∈ (a, a0) and d ∈ (b0, b) be fixed. Next, we formally replace the nonprincipal solution ˆ︁ub(λ0, · ) in Section 3 with the principal solution ub(λ0, · ). More precisely, introducing the 
differential expressions Nˆ︁ua(λ0, · ),c as in (3.2) and Nub(λ0, · ),d by

Nub(λ0, · ),dg = p1/2ub(λ0, · )
(︃

g

ub(λ0, · )
)︃′

, g ∈ ACloc((d, b)), (4.1)

one defines the symmetric sesquilinear form 𝔔c,d as follows:
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dom(𝔔c,d ) = {︁
h ∈ L2((a, b); r dx)

⃓⃓
h ∈ ACloc((a, b)),

p−1/2h[1] ∈ L2((c, d);dx), Nˆ︁ua(λ0, · ),ch ∈ L2((a, c);dx), (4.2)

Nub(λ0, · ),dh ∈ L2((d, b);dx)
}︁
,

and

𝔔c,d (f, g) =
c∫︂

a

dx (Nˆ︁ua(λ0, · ),cf )(x)(Nˆ︁ua(λ0, · ),cg)(x)

+
b∫︂

d

dx (Nub(λ0, · ),df )(x)(Nub(λ0, · ),dg)(x)

+ λ0

c∫︂
a

r(x) dx f (x)g(x) + λ0

b∫︂
d

r(x) dx f (x)g(x) (4.3)

+
d∫︂

c

dx 
[︂
p(x)−1f [1](x)g[1](x) + q(x)f (x)g(x)

]︂

+ ˆ︁u[1]
a (λ0, c)ˆ︁ua(λ0, c) 

f (c)g(c) − u
[1]
b (λ0, d)

ub(λ0, d) 
f (d)g(d), f,g ∈ dom(𝔔c,d ).

Several important properties of the sesquilinear form 𝔔c,d are collected in the following result.

Proposition 4.2. Assume Hypothesis 4.1. Let a < a0 < b0 < b with a0 and b0 chosen so that 
(3.1) holds and suppose c ∈ (a, a0) and d ∈ (b0, b). Then the following statements (i)--(vi) hold:

(i) The sesquilinear form 𝔔c,d defined by (4.2) and (4.3) is densely defined, closed, and lower 
semibounded in L2((a, b); r dx).

(ii) dom(Tmax) ⊆ dom(𝔔c,d ).

(iii) If c′ ∈ (a, a0) and d ′ ∈ (b0, b), then 𝔔c,d = 𝔔c′,d ′ . That is, the sesquilinear form defined by 
(4.2) and (4.3) is independent of the choices of c ∈ (a, a0) and d ∈ (b0, b).

(iv) If g ∈ dom(𝔔c,d ), then the following limit exists:

˜︁g(a) := lim
x↓a 

g(x) ˆ︁ua(λ0, x)
. (4.4)

In particular, the generalized boundary value ˜︁g(a) introduced in (2.21) for functions in 
dom(Tmax) extends to functions in dom(𝔔c,d ). 
(v) If f ∈ dom(𝔔c,d ) and g ∈ dom(Tmax), then

lim 
b′↑b

f (b′)
ub(λ0, b′)

W(ub(λ0, · ), g)(b′) = 0. (4.5)

(vi) For every ε > 0 there exists C(ε) > 0 such that
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⃓⃓ ˜︁f (a)
⃓⃓2 ⩽ ε𝔔c,d(f, f ) + C(ε)∥f ∥2

L2((a,b);r dx)
, f ∈ dom(𝔔c,d ). (4.6)

Remark 4.3. The properties of 𝔔c,d summarized in Proposition 4.2 are discussed in detail in [3] 
(see [3, Lemma 6.9.4, Corollary 6.12.2, Lemma 6.12.3, Proof of Lemma 6.12.5]) and (4.6) is en
tirely analogous to Proposition 3.6. For the connection with [3, Sect. 6.12], see Appendix A. ⋄

Lemma 4.4. Assume Hypothesis 4.1. Let a < a0 < b0 < b with a0 and b0 chosen so that (3.1)
holds and suppose c ∈ (a, a0) and d ∈ (b0, b). If f ∈ dom(𝔔c,d ) and g ∈ dom(Tmax), then

(f,Tmaxg)L2((a,b);r dx) = 𝔔c,d (f, g) + ˜︁f (a)˜︁g ′(a). (4.7)

Proof. Repeating the calculations in (3.9)--(3.11) with ub(λ0, · ) in place of ˆ︁ub(λ0, · ), one ob
tains for f ∈ dom(𝔔c,d ) and g ∈ dom(Tmax),

(f,Tmaxg)L2((a,b);r dx)

= lim 
a′↓a

{︄
− fˆ︁ua(λ0, · )

[︄
pˆ︁ua(λ0, · )2

(︃
gˆ︁ua(λ0, · )

)︃′]︄⃓⃓⃓⃓
⃓
c

a′

+
c∫︂

a′
dx 

(︃
fˆ︁ua(λ0, · )

)︃′
pˆ︁ua(λ0, · )2

(︃
gˆ︁ua(λ0, · )

)︃′}︄

+ λ0

c∫︂
a

r dx f g − f g[1] ⃓⃓d
c

+
d∫︂

c

dx 
(︁
p−1f [1]g[1] + qf g

)︁ + λ0

b∫︂
d

r dx f g

+ lim 
b′↑b

{︄
− f

ub(λ0, · )

[︄
pub(λ0, · )2

(︃
g

ub(λ0, · )
)︃′]︄⃓⃓⃓⃓

⃓
b′

d

+
b′∫︂

d

dx 
(︃

f

ub(λ0, · )
)︃′

pub(λ0, · )2
(︃

g

ub(λ0, · )
)︃′}︄

.

(4.8)

In analogy with (3.12), the evaluation terms at c and d in (4.8) are

ˆ︁u[1]
a (λ0, c)ˆ︁ua(λ0, c) 

f (c)g(c) − u
[1]
b (λ0, d)

ub(λ0, d) 
f (d)g(d). (4.9)

Moreover, (3.13) remains valid. However, in lieu of (3.14), one now obtains, as a consequence 
of (4.5),

lim 
b′↑b

[︄
f

ub(λ0, · )pub(λ0, · )2
(︃

g

ub(λ0, · )
)︃′]︄

(b′)

= lim 
b′↑b

f (b′)
ub(λ0, b′)

W(ub(λ0, · ), g)(b′) = 0.

(4.10)
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Hence, (4.7) follows by combining (4.8), (4.9), and (4.10). □
In the next theorem we provide the sesquilinear form corresponding to the self-adjoint exten

sions Tα , α ∈ [0,π), of Tmin with a separated boundary condition from Proposition 2.13 (ii).

Theorem 4.5. Assume Hypothesis 4.1. Let a < a0 < b0 < b with a0 and b0 chosen so that (3.1)
holds and suppose c ∈ (a, a0) and d ∈ (b0, b). Then the following statements (i) and (ii) hold:

(i) If α ∈ (0,π), then the sesquilinear form 𝔔α
c,d defined by

𝔔α
c,d(f, g) = 𝔔c,d (f, g) − cot(α) ˜︁f (a)˜︁g(a),

f, g ∈ dom
(︁
𝔔α

c,d

)︁ = dom(𝔔c,d ),
(4.11)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f,Tαg)L2((a,b);r dx) = 𝔔α
c,d(f, g), f ∈ dom

(︁
𝔔α

c,d

)︁
, g ∈ dom(Tα). (4.12)

Hence, 𝔔α
c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 

form associated to Tα by the First Representation Theorem.

(ii) If α = 0, then the sesquilinear form 𝔔0
c,d defined by

𝔔0
c,d (f, g) = 𝔔c,d (f, g), f,g ∈ dom(𝔔0

c,d ) = {︁
h ∈ dom(𝔔c,d ) ⃓⃓ ˜︁h(a) = 0

}︁
, (4.13)

is densely defined, closed, symmetric, and lower semibounded. In addition,

(f,T0g)L2((a,b);r dx) = 𝔔0
c,d (f, g), f ∈ dom

(︁
𝔔0

c,d

)︁
, g ∈ dom(T0). (4.14)

Hence, 𝔔0
c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 

form associated to T0 by the First Representation Theorem.

Proof. (i) It is clear by inspection that 𝔔α
c,d is symmetric, and dom(Tmin) ⊆ dom

(︁
𝔔α

c,d

)︁
shows 

that 𝔔α
c,d is densely defined in L2((a, b); r dx). That 𝔔α

c,d is closed and lower semibounded 
follows from the infinitesimal boundedness property summarized in (4.6). If f ∈ dom

(︁
𝔔α

c,d

)︁
and g ∈ dom(Tα), then (4.7) and the boundary condition ˜︁g ′(a) = − cot(α)˜︁g(a) yield:

(f,Tαg)L2((a,b);r dx) = (f,Tmaxg)L2((a,b);r dx)

= 𝔔c,d (f, g) − cot(α) ˜︁f (a)˜︁g(a) = 𝔔α
c,d(f, g).

(4.15)

(ii) One notes that 𝔔0
c,d is densely defined since dom(Tmin) ⊆ dom

(︁
𝔔0

c,d

)︁
, and 𝔔0

c,d is 

lower semibounded since it is a restriction of 𝔔π/2
c,d , and the latter is lower semibounded by 

part (i). To prove that 𝔔0
c,d is closed, let {fn}∞n=1 ⊂ dom

(︁
𝔔0

c,d

)︁
be a sequence such that 

∥fn − f ∥L2((a,b);r dx) → 0 for some f ∈ L2((a, b); r dx) and 𝔔0
c,d(fn − fm,fn − fm) → 0. 

Since 𝔔0
c,d is a restriction of 𝔔π/2

c,d , and the latter is closed, it follows that f ∈ dom
(︁
𝔔

π/2
c,d

)︁
and 
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𝔔
π/2
c,d (fn − f,fn − f ) → 0. By (4.6), one obtains: For every ε > 0, there exists ˆ︁C(ε) > 0 such 

that ⃓⃓˜︁g(a)
⃓⃓2 ⩽ ε𝔔

π/2
c,d (g, g) + ˆ︁C(ε)∥g∥2

L2((a,b);r dx)
, g ∈ dom

(︁
𝔔

π/2
c,d

)︁
. (4.16)

In turn, (4.16) with ε = 1 yields:⃓⃓ ˜︁f (a)
⃓⃓2 = ⃓⃓ ˜︁fn(a) − ˜︁f (a)

⃓⃓2

⩽𝔔
π/2
c,d (fn − f,fn − f ) + ˆ︁C(1)∥fn − f ∥2

L2((a,b);r dx)
, n ∈N.

(4.17)

Taking n → ∞ throughout (4.17) yields ˜︁f (a) = 0, thereby implying f ∈ dom
(︁
𝔔0

c,d

)︁
. Using 

once more that 𝔔0
c,d is a restriction of 𝔔π/2

c,d , it follows that 𝔔0
c,d(fn − f,fn − f ) → 0. Hence, 

one concludes that 𝔔0
c,d is closed. Finally, (4.14) follows from (4.7) and the boundary condition ˜︁f (a) = 0. □

5. Case three: two limit point endpoints

In this final section we provide the sesquilinear form corresponding to the unique, lower 
semibounded, self-adjoint realization from Proposition 2.14. We assume, in addition to Hy
pothesis 2.1, that τ is in the limit point case at both endpoints of the interval (a, b) and that 
Tmin ⩾ λ0IL2((a,b);r dx) for some λ0 ∈R. To be precise, we introduce the following hypothesis.

Hypothesis 5.1. In addition to Hypothesis 2.1, assume that τ is in the limit point case at both 
a and b. Suppose that Tmin ⩾ λ0IL2((a,b);r dx) for some λ0 ∈ R and that ut (λ0, · ) is a principal 
solution of τu = λ0u on (a, b), respectively, at t ∈ {a, b} that satisfies (2.19).

Under Hypothesis 5.1, the operator T := Tmin = Tmax is self-adjoint (equivalently, 
. 
T is es

sentially self-adjoint) by Proposition 2.14. In particular, Tmin is self-adjoint and possesses no 
nontrivial self-adjoint extension.

Assuming Hypothesis 5.1, choose a0, b0 ∈ (a, b) such that a < a0 < b0 < b and (3.1) holds. 
Let c ∈ (a, a0) and d ∈ (b0, b) be fixed. Next, we formally replace the nonprincipal solutions ˆ︁ut (λ0, · ), t ∈ {a, b}, in Section 3 with the principal solutions ut(λ0, · ), t ∈ {a, b}. More pre
cisely, introducing the differential expressions Nub(λ0, · ),d as in (4.1) and Nua(λ0, · ),c by

Nua(λ0, · ),cg = p1/2ua(λ0, · )
(︃

g

ua(λ0, · )
)︃′

, g ∈ ACloc((a, c)), (5.1)

one defines the symmetric sesquilinear form 𝔔c,d as follows:

dom(𝔔c,d ) = {︁
h ∈ L2((a, b); r dx)

⃓⃓
h ∈ ACloc((a, b)),

p−1/2h[1] ∈ L2((c, d);dx), Nua(λ0, · ),ch ∈ L2((a, c);dx), (5.2)

Nub(λ0, · ),dh ∈ L2((d, b);dx)
}︁
,

and
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𝔔c,d (f, g) =
c∫︂

a

dx (Nua(λ0, · ),cf )(x)(Nua(λ0, · ),cg)(x)

+
b∫︂

d

dx (Nub(λ0, · ),df )(x)(Nub(λ0, · ),dg)(x)

+ λ0

c∫︂
a

r(x) dx f (x)g(x) + λ0

b∫︂
d

r(x) dx f (x)g(x)

+
d∫︂

c

dx 
[︂
p(x)−1f [1](x)g[1](x) + q(x)f (x)g(x)

]︂

+ u
[1]
a (λ0, c)

ua(λ0, c) 
f (c)g(c) − u

[1]
b (λ0, d)

ub(λ0, d) 
f (d)g(d), f,g ∈ dom(𝔔c,d ).

(5.3)

Several important properties of the sesquilinear form 𝔔c,d are collected in the following result.

Proposition 5.2. Assume Hypothesis 5.1. Let a < a0 < b0 < b with a0 and b0 chosen so that 
(3.1) holds and suppose c ∈ (a, a0) and d ∈ (b0, b). Then the following statements (i)--(iv) hold:

(i) The sesquilinear form 𝔔c,d defined by (5.2) and (5.3) is densely defined, closed, and lower 
semibounded in L2((a, b); r dx).

(ii) dom(Tmax) ⊆ dom(𝔔c,d ).

(iii) If c′ ∈ (a, a0) and d ′ ∈ (b0, b), then 𝔔c,d = 𝔔c′,d ′ . That is, the sesquilinear form defined by 
(5.2) and (5.3) is independent of the choices of c ∈ (a, a0) and d ∈ (b0, b).

(iv) If f ∈ dom(𝔔c,d ) and g ∈ dom(Tmax), then

lim 
a′↓a

f (a′)
ua(λ0, a′)

W(ua(λ0, · ), g)(a′) = lim 
b′↑b

f (b′)
ub(λ0, b′)

W(ub(λ0, · ), g)(b′) = 0. (5.4)

Remark 5.3. The proofs of items (i)--(iv) in Proposition 5.2 are entirely analogous to those of 
the corresponding facts in Proposition 4.2. ⋄

Theorem 5.4. Assume Hypothesis 5.1. Let a < a0 < b0 < b with a0 and b0 chosen so that (3.1)
holds and suppose c ∈ (a, a0) and d ∈ (b0, b). If T := Tmin = Tmax , then

(f,T g)L2((a,b);r dx) = 𝔔c,d (f, g), f ∈ dom(𝔔c,d ), g ∈ dom(T ). (5.5)

Hence, 𝔔c,d is the unique densely defined, closed, symmetric, lower semibounded sesquilinear 
form associated to T by the First Representation Theorem.

Proof. Repeating the calculations in (4.11) with ua(λ0, · ) in place of ˆ︁ua(λ0, · ), one obtains for 
f ∈ dom(𝔔c,d ) and g ∈ dom(T ),
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(f,Tmaxg)L2((a,b);r dx)

= lim 
a′↓a

{︄
− f

ua(λ0, · )

[︄
pua(λ0, · )2

(︃
g

ua(λ0, · )
)︃′]︄⃓⃓⃓⃓

⃓
c

a′

+
c∫︂

a′
dx 

(︃
f

ua(λ0, · )
)︃′

pua(λ0, · )2
(︃

g

ua(λ0, · )
)︃′}︄

+ λ0

c∫︂
a

r dx f g − f g[1] ⃓⃓d
c

+
d∫︂

c

dx 
(︁
p−1f [1]g[1] + qf g

)︁ + λ0

b∫︂
d

r dx f g

+ lim 
b′↑b

{︄
− f

ub(λ0, · )

[︄
pub(λ0, · )2

(︃
g

ub(λ0, · )
)︃′]︄⃓⃓⃓⃓

⃓
b′

d

+
b′∫︂

d

dx 
(︃

f

ub(λ0, · )
)︃′

pub(λ0, · )2
(︃

g

ub(λ0, · )
)︃′}︄

.

(5.6)

In analogy with (4.9), the evaluation terms at c and d in (5.6) are

u
[1]
a (λ0, c)

ua(λ0, c) 
f (c)g(c) − u

[1]
b (λ0, d)

ub(λ0, d) 
f (d)g(d). (5.7)

Moreover, (4.10) remains valid. In addition, as a consequence of (5.4),

lim 
a′↓a

[︄
f

ua(λ0, · )pua(λ0, · )2
(︃

g

ua(λ0, · )
)︃′]︄

(a′)

= lim 
a′↓a

f (a′)
ua(λ0, a′)

W(ua(λ0, · ), g)(a′) = 0.

(5.8)

Hence, (5.5) follows by combining (5.6), (5.7), and (5.8). □
Acknowledgments

The authors thank the referees for a very careful reading of the manuscript and various helpful 
suggestions to improve the text. J.B. is most grateful for a stimulating research stay at Baylor 
University, where some parts of this paper were written in May of 2025. F.G. and H.S. gratefully 
acknowledge kind invitations to the Institute of Applied Mathematics at the Graz University of 
Technology, Austria. This research was funded by the Austrian Science Fund (FWF) Grant-DOI: 
10.55776/P33568.

Appendix A. Approach via boundary triplets and boundary pairs

In this appendix we briefly provide the background of the results in Section 3 and Section 4 of 
this paper in terms of the boundary triplets and boundary pairs following the extensive treatment 
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in [3, Chs. 2, 5, 6]. By means of boundary pairs one can systematically treat the semibounded 
forms that are associated with the lower semibounded self-adjoint extensions of lower semi
bounded symmetric operators. In this paper inner products and sesquilinear forms are linear in 
the second entry and anti-linear in the first entry; in the references to [3] one should be aware of 
the present convention. Thus, when a sesquilinear form 𝔱 in a Hilbert space ℌ is densely defined, 
closed, and lower semibounded, then there exists a unique self-adjoint operator H in ℌ, such that

𝔱[f,g] = (f,Hg)ℌ, f ∈ dom(𝔱), g ∈ dom(H) ⊆ dom(𝔱),

by the First Representation Theorem. The notation 𝔱= 𝔱H is used to indicate the connection with 
the self-adjoint operator H .

Boundary Triplets. Let S be a closed, densely defined, symmetric operator in a Hilbert space 
ℌ and assume that the defect numbers of S are equal to (n,n), n ∈ N . A triplet {Cn,Γ0,Γ1}
is called a boundary triplet for S∗ if the linear mappings Γ0,Γ1 : dom(S∗) → Cn satisfy the 
abstract Green identity,

(f,S∗g)ℌ − (S∗f,g)ℌ = (Γ0f,Γ1g)Cn − (Γ1f,Γ0g)Cn , f,g ∈ dom(S∗),

and (Γ0,Γ1)
⊤ : dom(S∗) → C2n is onto, see [3, Definition 2.1.1]. If {Cn,Γ0,Γ1} is a boundary 

triplet for S∗, then one has

dom(S) = {︁
g ∈ dom(S∗) ⃓⃓ Γ0g = Γ1g = 0

}︁
,

and the mapping (Γ0,Γ1)
⊤ : dom(S∗) → C2n is continuous if dom(S∗) is equipped with the 

graph norm. The self-adjoint extensions AΘ of S are parametrized over the self-adjoint relations 
(multi-valued operators) Θ in Cn via

AΘg = S∗g, g ∈ dom(AΘ) = {︁
h ∈ dom(S∗) ⃓⃓ {Γ0h,Γ1h} ∈ Θ

}︁
, (A.1)

see [3, Theorem 2.1.3]. For more details on (self-adjoint) linear relations, their adjoints, and 
further operations and notions we refer to [3, Chapter 1]; the special case of self-adjoint relations 
in finite dimensional spaces will be discussed below. We also note that if Θ is a self-adjoint 
relation in Cn, then dom(Θ) = (mul(Θ))⊥ and one has the decomposition

Cn = dom(Θ) ⊕ mul(Θ).

In this context we recall that the multi-valued part mul(Θ) is given by {h ∈ Cn | {0, h} ∈ Θ}. Let 
P be the orthogonal projection onto dom(Θ) and define the orthogonal operator part Θop = PΘ. 
Then there is the componentwise orthogonal decomposition

Θ = Θop ˆ︁⊕ ({0} × mul(Θ)), (A.2)

where Θop is a self-adjoint operator in dom(Θ) and the second summand in the right-hand side 
is a purely multi-valued self-adjoint relation in mul(Θ).

Boundary Pairs. Assume in addition that the closed densely defined symmetric operator S with 
defect numbers (n,n) is lower semibounded. In this case all self-adjoint extensions of S are lower 
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semibounded. Recall that the form 𝔰[f,g] = (f,Sg), f,g ∈ dom(S), is closable and that the 
Friedrichs extension SF of S is the unique self-adjoint operator that is associated with the closure 
𝔰 (= 𝔱SF

) via the First Representation Theorem. Moreover, let S1 be a self-adjoint extension of S
which satisfies

dom(S∗) ⊆ dom(𝔱S1), (A.3)

where 𝔱S1 is the closed semibounded form associated with S1 via the First Representation Theo
rem. The condition (A.3) is equivalent to

dom(𝔱S1) = ker(S∗ − cIℌ)
. +dom(𝔱SF

), a direct sum, (A.4)

where c is below the lower bound of S1, and due to finite defect, (A.3) is also equivalent to the 
simple condition

dom(S) = dom(SF ) ∩ dom(S1),

see [3, Theorem 5.3.8]. The next lemma involves the notion of a boundary pair for S with finite 
defect numbers; see [3, Lemma 5.6.5] for the general case.

Lemma A.1. Let {Cn,Γ0,Γ1} be an arbitrary boundary triplet for S∗ and let S1 be a self
adjoint extension of S which satisfies (A.3). Let Λ : dom(𝔱S1) → Cn be a linear mapping 
which is bounded when dom(𝔱S1) is provided with the inner product associated with 𝔱S1 − c, 
where c is below the lower bound of S1. If Λ extends Γ0, then the self-adjoint extension S0, 
dom(S0) = ker(Γ0), coincides with the Friedrichs extension SF and the following equalities 
hold:

ker(Λ) = dom(𝔱SF
) and ran(Λ) = Cn.

Proof. Since Λ is an extension of Γ0, one concludes that ran(Λ) = ran(Γ0) = Cn and also 
dom(S0) = ker(Γ0) ⊆ ker(Λ). In particular, dom(S) ⊆ ker(Λ) and hence by continuity of Λ
and the definition of the Friedrichs extension SF one concludes that dom(𝔱SF

) ⊆ ker(Λ). On the 
other hand, since the sum in (A.4) is direct and dim(ker(S∗ − cIℌ)) = n < ∞ it follows that 
ker(Λ) = dom(𝔱SF

) and that Λ maps ker(S∗ − cIℌ) bijectively onto Cn. Combining this with 
the stated inclusion dom(S0) ⊆ ker(Λ) gives the inclusion dom(S0) ⊆ dom(𝔱SF

). This implies 
that S0 = SF by [3, Theorem 5.3.3]. □

The pair {Cn,Λ}, where Λ : dom(𝔱S1) →Cn is bounded in the form topology on 𝔱S1 is called 
a boundary pair for S if ker(Λ) = dom(𝔱SF

), see [3, Definition 5.6.1]. If, in addition, one has 
dom(S1) = ker(Γ1), then the boundary triplet {Cn,Γ0,Γ1} and the boundary pair {Cn,Λ} are 
compatible, see [3, Definition 5.6.4], and the identity

(f,S∗g)ℌ = 𝔱S1 [f,g] + (Λf,Γ1g)Cn , f ∈ dom(𝔱S1), g ∈ dom(S∗),

holds, see [3, Corollary 5.6.7]. Hence, Lemma A.1 offers general sufficient conditions needed 
to construct a compatible boundary pair {Cn,Λ} for S corresponding to S1. Boundary pairs 
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offer a general tool to describe forms generated by semibounded self-adjoint extensions of lower 
semibounded symmetric operators via boundary conditions.

Now let {Cn,Λ} be a compatible boundary pair corresponding to S1. Then the closed semi
bounded form 𝔱Θ associated with the self-adjoint extension AΘ in (A.1) can be expressed in 
terms of the form 𝔱S1 and the boundary pair {Cn,Λ} as follows

𝔱Θ[f,g] = 𝔱S1 [f,g] + (Λf,ΘopΛg)Cn,

f, g ∈ dom(𝔱Θ) = {︁
h ∈ dom(𝔱S1) ⃓⃓ Λh ∈ dom(Θop)

}︁
,

(A.5)

see [3, Corollary 5.6.14]. Hence, if the self-adjoint relation Θ is the graph of a matrix, then (A.5)
reads

𝔱Θ[f,g] = 𝔱S1 [f,g] + (Λf,ΘΛg)Cn, f,g ∈ dom(𝔱Θ) = dom(𝔱S1). (A.6)

Moreover, if mul(Θ) = Cn, then

𝔱Θ ⊆ 𝔱S1 , dom(𝔱Θ) = {︁
h ∈ dom(𝔱S1) ⃓⃓ Λh = 0

}︁
,

which corresponds to the Friedrichs extension. In particular, for the case n = 1 it is clear that 
Θ ∈ R∪ {∞}. One notes that for Θ ∈R the decomposition reads

𝔱Θ[f,g] = 𝔱S1 [f,g] + (Λf,ΘΛg)C, f,g ∈ dom(𝔱Θ) = dom(𝔱S1),

while for Θ = ∞ one has

𝔱Θ ⊆ 𝔱S1 , dom(𝔱Θ) = {︁
h ∈ dom(𝔱S1) ⃓⃓ Λh = 0

}︁
.

Self-adjoint Linear Relations in Cn. The structure of the self-adjoint extensions in (A.1) is 
clarified next. It follows from [3, Theorem 1.10.5, Corollary 1.10.8, Proposition 1.10.3] that any 
self-adjoint relation Θ in Cn can be expressed as

Θ = {︁{u,v} ∈ Cn ×Cn
⃓⃓
ℬu = 𝒜v

}︁
, (A.7)

where the n × n matrices 𝒜 and ℬ satisfy

𝒜ℬ∗ = ℬ𝒜∗, rank(ℬ 𝒜) = n, (A.8)

and (ℬ 𝒜) stands for the n × 2n matrix of the columns of ℬ and 𝒜. The multi-valued part of Θ
is given by

mul(Θ) = {︁
v ∈ Cn

⃓⃓
𝒜v = 0

}︁ = ker(𝒜),

so that it follows from (A.2) and (A.7) that

ℬu = 𝒜Θopu, u ∈ dom(Θ) = (mul(Θ))⊥ = (ker(𝒜))⊥ = ran(𝒜∗). (A.9)
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Therefore, Θop can be expressed as

Θop = 𝒜[−1]ℬ ↾ ran(𝒜∗), (A.10)

where 𝒜[−1] stands for the Moore–Penrose inverse of 𝒜. Hence, if ker(𝒜) = {0}, then one has 
dom(Θ) = Cn and Θ = 𝒜−1ℬ is an n × n self-adjoint matrix. Moreover, if ker(𝒜) = Cn, then 
dom(Θ) = {0} and Θ is a purely multi-valued self-adjoint relation in Cn given by Θ = {0}×Cn.

In the case n = 2 and dim(ker(𝒜)) = 1 the selfadjoint operator Θop, acting in the invariant 
one-dimensional subspace dom(Θ), is multiplication by the unique real number cΘ given by

ℬu = cΘ𝒜u, u ∈ dom(Θ) = (ker(𝒜))⊥, u ≠ 0. (A.11)

In the case n = 1 the self-adjoint relation Θ can be expressed as

Θ = {︁{u,v} ∈C ×C 
⃓⃓

cos(γ )u + sin(γ )v = 0
}︁
, (A.12)

with γ ∈ [0,π). If γ = 0, then one has mul(Θ) = C and Θ = {0} × C, whereas if γ ≠ 0, then 
one has mul(Θ) = {0} and Θ = Θop is multiplication by − cot(γ ).

Summarizing, for a pair of n×n matrices 𝒜 and ℬ satisfying (A.8) and Θ given by (A.7), the 
self-adjoint extension AΘ of S in (A.1) is given by

AΘg = S∗g, g ∈ dom(AΘ) = {︁
h ∈ dom(S∗) ⃓⃓ ℬΓ0h = 𝒜Γ1h

}︁
. (A.13)

In this case the formula (A.5) can be written as

𝔱Θ[f,g] = 𝔱S1 [f,g] + (︁
Λf,𝒜[−1]ℬΛg

)︁
Cn,

f, g ∈ dom(𝔱Θ) = {︁
h ∈ dom(𝔱S1) ⃓⃓ Λh ∈ (ker(𝒜))⊥

}︁
.

(A.14)

The expression (A.14) can be further simplified in the situations described in (A.11) and (A.12).

Two Limit Circle Endpoints. Return to the situation of Proposition 2.12. Then choose the 
boundary triplet {C2,Γ0,Γ1}, defined on dom(Tmax), by

Γ0g =
(︃˜︁g(a)˜︁g(b)

)︃
, Γ1g =

(︃ ˜︁g ′(a)

−˜︁g ′(b)

)︃
, g ∈ dom(Tmax). (A.15)

Furthermore, introduce the form 𝔱[f,g] = 𝔔c,d (f, g), f, g ∈ dom(𝔱) = dom(𝔔c,d ), as in (3.4)
and (3.5); cf. [3, Equation (6.11.2)]. Then it is easy to see that

(f,Tming)L2((a,b);r dx) = 𝔱[f,g], f ∈ dom(𝔱), g ∈ dom(Tmin) ⊆ dom(𝔱), (A.16)

see [3, Corollary 6.11.2], and

dom(Tmax) ⊆ dom(𝔱), (A.17)

see [3, Lemma 6.11.3]. Define Λ : dom(𝔱) → C2 by
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Λg =
(︃˜︁g(a)˜︁g(b)

)︃
, g ∈ dom(𝔱). (A.18)

For every ε > 0 there exists Cε > 0 such that

∥Λg∥2
C2 ⩽ ε𝔱[g,g] + Cε∥g∥2

L2((a,b);r dx)
, g ∈ dom(𝔱), (A.19)

see [3, Lemma 6.11.4]. It now follows from (A.16)--(A.19) that {C2,Λ} is a boundary pair which 
is compatible with the boundary triplet in (A.15), see [3, Lemma 6.11.5]. Thus we can apply 
(A.5), see [3, Theorem 6.11.6]. Note that 𝔔c,d = 𝔱S1 , where dom(S1) = ker(Γ1); cf. (A.15). The 
self-adjoint extensions of Tmin are parametrized via (A.13), given (A.7) and (A.8). As before, 
our treatment will distinguish between separated and coupled boundary conditions.

First, consider the case of separated boundary conditions in Theorem 3.8, where 𝒜 and ℬ are 
2 × 2 matrices of the form

𝒜 =
(︃− sin(α) 0

0 sin(β)

)︃
, ℬ =

(︃
cos(α) 0

0 cos(β)

)︃
. (A.20)

Note that (A.8) is satisfied. There are three subcases to be discussed. First, consider the case 
α ≠ 0 and β ≠ 0. Then 𝒜 is invertible and it follows from (A.20) that Θ is given by

Θ = 𝒜−1ℬ =
(︃− cot(α) 0

0 cot(β)

)︃
. (A.21)

Substitution of (A.18) and (A.21) into (A.14) leads to (3.17) in Theorem 3.8. The second case 
is that either α = 0 or β = 0 (without equality simultaneously). Assume α = 0. Then ker(𝒜) is 
one-dimensional and, in fact, it follows from mul(Θ) = ker(𝒜) and dom(Θ) = (mul(Θ))⊥ that

mul(Θ) = lin. span

(︃(︃
1
0

)︃)︃
, dom(Θ) = lin. span

(︃(︃
0
1

)︃)︃
.

Therefore, one sees from

ℬu =
(︃

0
cos(β)

)︃
, 𝒜u =

(︃
0

sin(β)

)︃
, u =

(︃
0
1

)︃
,

together with (A.11), that cΘ = cot(β). Hence the operator Θop acting in dom(Θ) = lin. span(u)

is given by

Θop = cot(β), dom(𝔱Θ) = {︁
h ∈ dom(𝔱) ⃓⃓ ˜︁h(a) = 0

}︁
.

This together with (A.14) and (A.11) leads to (3.19). Likewise, when β = 0, then cΘ = − cot(α)

and hence

Θop = − cot(α), dom(𝔱Θ) = {︁
h ∈ dom(𝔱) ⃓⃓ ˜︁h(b) = 0

}︁
,

and this leads to (3.21). The third case concerns α = β = 0. Then mul(Θ) = ker(𝒜) = C2 and 
dom(Θ) = {0}. Thus Θop is trivial and

29 



J. Behrndt, F. Gesztesy, S. Hassi et al. Journal of Differential Equations 462 (2026) 114131 

𝔱Θ ⊆ 𝔱, dom(𝔱Θ) = {︁
h ∈ dom(𝔱) ⃓⃓ ˜︁h(a) = 0 =˜︁h(b)

}︁
,

see (3.23), which corresponds to the Friedrichs extension. This treats all cases of Theorem 3.8.
Secondly, consider the case of coupled boundary conditions in Theorem 3.9, where 𝒜 and ℬ

are 2 × 2 matrices of the form

𝒜 = −
(︃

eiφR1,2 0
eiφR2,2 1

)︃
, ℬ =

(︃
eiφR1,1 −1
eiφR2,1 0

)︃
, (A.22)

and hence (A.8) is satisfied. There are two subcases to be discussed.
The first subcase is when R1,2 ≠ 0. Then 𝒜 is invertible and it follows from (A.22) and 

detC2(R) = 1, that Θ is given by

Θ = 𝒜−1ℬ = − 1 
R1,2

(︃
R1,1 −e−iφ

−eiφ R2,2

)︃
. (A.23)

It follows from (A.5) and the expression in (A.23) that

(Λf,ΘΛg)C2 = − 1 
R1,2

(︃ ˜︁f (a)˜︁f (b)

)︃∗ (︃
R1,1 −e−iφ

−eiφ R2,2

)︃(︃˜︁g(a)˜︁g(b)

)︃
, f,g ∈ dom(𝔱).

Together with (A.14) this implies Theorem 3.9 (i).
The second subcase occurs when R1,2 = 0, which implies that 1 = detC2(R) = R1,1R2,2. 

Then one has that ker(𝒜) is one-dimensional and, in fact, it follows from mul(Θ) = ker(𝒜) and 
dom(Θ) = (mul(Θ))⊥ that

mul(Θ) = lin. span

(︃(︃
1

−eiφR2,2

)︃)︃
, dom(Θ) = lin. span

(︃(︃
e−iφR2,2

1

)︃)︃
.

Therefore, one sees from

ℬu =
(︃

R1,1R2,2 − 1
R2,1R2,2

)︃
, 𝒜u =

(︃
0

−R2
2,2 − 1

)︃
, u =

(︃
e−iφR2,2

1

)︃
,

together with (A.11), that

cΘ = − R2,1

R1,1 + R2,2
. (A.24)

Thus by (A.5) and the expression in (A.24) it is clear that

(Λf,ΘopΛg)C2 = −R1,1R2,1 ˜︁f (a)˜︁g(a),

f, g ∈ dom(𝔱Θ) = {︁
h ∈ dom(𝔱) ⃓⃓ ˜︁h(b) = eiφR1,1˜︁h(a)

}︁
.

Together with (A.14) this implies Theorem 3.9 (ii).

One Limit Circle Endpoint. Return to the situation of Proposition 2.13. Choose the boundary 
triplet {C,Γ0,Γ1}, defined on dom(Tmax), by
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Γ0g =˜︁g(a), Γ1g =˜︁g ′(a), g ∈ dom(Tmax). (A.25)

Furthermore, introduce the form 𝔱[f,g] = 𝔔c,d (f, g), f,g ∈ dom(𝔱) = dom(𝔔c,d ), as in (4.2)
and (4.3); see [3, Equation (6.12.2)]. Then it is easy to see that

(f,Tming)ℌ = 𝔱[f,g], f ∈ dom(𝔱), g ∈ dom(Tmin) ⊆ dom(𝔱), (A.26)

see [3, Corollary 6.12.2], and

dom(Tmax) ⊆ dom(𝔱), (A.27)

see [3, Lemma 6.12.3]. Define Λ : dom(𝔱) → C by

Λg =˜︁g(a), g ∈ dom(𝔱). (A.28)

For every ε > 0 there exists Cε > 0 such that

∥Λg∥2
C ⩽ ε𝔱[g,g] + Cε∥g∥2

L2((a,b);r dx)
, g ∈ dom(𝔱), (A.29)

see [3, Lemma 6.12.4]. It now follows from (A.26)--(A.29) that {C,Λ} is a boundary pair which 
is compatible with the boundary triplet in (A.25), see [3, Lemma 6.12.5]. Thus we can apply 
(A.5), see [3, Theorem 6.12.6]. Note that 𝔔c,d = 𝔱S1 , where dom(S1) = ker(Γ1); see (A.25).

The self-adjoint extensions of Tmin are now parametrized via (A.12)

cos(α)Γ0g + sin(α)Γ1g = 0, g ∈ dom(Tmax),

over α ∈ [0,π), and denoted by Tα , see Proposition 2.13. Therefore, one has for α ∈ (0,π), that

𝔱α[f,g] = 𝔱[f,g] − cot(α)(Λf,Λg)C, f,g ∈ dom(𝔱α) = dom(𝔱).

Moreover, if α = 0, then

𝔱α ⊆ 𝔱, dom(𝔱α) = {︁
h ∈ dom(𝔱) ⃓⃓ ˜︁h(a) = 0

}︁
,

which corresponds to the Friedrichs extension. This implies Theorem 4.5, cf. [3, Theo
rem 6.12.6].

For a succinct treatment of boundary triplets and Weyl–Titchmarsh functions tailored towards 
ordinary differential operators (a.k.a., ``boundary triplets in a nutshell''), see also [11, App. D.7]. 
Likewise, a treatment of boundary pairs, going back to [2], can be found in [3, Ch. 5].

Data availability

No data was used for the research described in the article.
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