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Abstract. In this paper we study the self-adjoint Krein–von Neumann
realization AK of the perturbed Laplacian −∆ + V in a bounded Lips-
chitz domain Ω ⊂ Rn. We provide an explicit and self-contained descrip-
tion of the domain of AK in terms of Dirichlet and Neumann boundary
traces, and we establish a Weyl asymptotic formula for the eigenvalues
of AK .
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1. Introduction

The main objective of this note is to investigate the self-adjoint Krein–von
Neumann realization associated to the differential expression −∆ + V in
L2(Ω), where Ω ⊂ Rn, n > 1, is assumed to be a bounded Lipschitz domain
and V is a nonnegative bounded potential. In particular, we obtain an explicit
description of the domain of AK in terms of Dirichlet and Neumann boundary
traces, and we prove the Weyl asymptotic formula

N(λ,AK) =
λ→∞

(2π)−nvn|Ω|λn/2 +O
(
λ(n−(1/2))/2

)
. (1.1)

Here N(λ,AK) denotes the number of nonzero eigenvalues of AK not exceed-
ing λ, vn is the volume of the unit ball in Rn, and |Ω| is the (n-dimensional)
Lebesgue measure of Ω.
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Let us first recall the definition and some properties of the Krein–von
Neumann extension in the abstract setting. Let S be a closed, densely de-
fined, symmetric operator in a Hilbert space H and assume that S is strictly
positive, that is, for some c > 0, (Sf, f)H > c‖f‖2H for all f ∈ dom(S). The
Krein–von Neumann extension SK of S is then given by

SKf = S∗f, f ∈ dom(SK) = dom(S) +̇ ker(S∗), (1.2)

see the original papers Krein [48] and von Neumann [62]. It follows that SK is
a nonnegative self-adjoint extension of S and that for all other nonnegative
self-adjoint extensions SΘ of S the operator inequality SK 6 SΘ holds in
the sense of quadratic forms. As ker(SK) = ker(S∗), it is clear that 0 is an
eigenvalue of SK (except if S is self-adjoint, in which case SK = S∗ = S).
Furthermore, if the self-adjoint Friedrichs extension SF of S has purely dis-
crete spectrum then the same is true for the spectrum of SK with the possible
exception of the eigenvalue 0, which may have infinite multiplicity. For fur-
ther developments, extensive references, and a more detailed discussion of
the properties of the Krein–von Neumann extension of a symmetric operator
we refer the reader to [2, Sect. 109], [3], [4]–[6], [7, Chs. 9, 10], [8]–[13], [14],
[15], [16], [17], [19], [27], [28], [29], [32, Sect. 15], [33, Sect. 3.3], [36], [38], [39,
Sect. 13.2], [40], [41], [50], [55], [57], [58, Ch. 13], [59], [60], [61], [64], [65],
[66], and the references cited therein.

In the concrete case considered in this paper, the symmetric operator
S above is given by the minimal operator Amin associated to the differential
expression −∆ + V in the Hilbert space L2(Ω), that is,

Amin = −∆ + V, dom(Amin) = H̊2(Ω), (1.3)

where H̊2(Ω) denotes the closure of C∞0 (Ω) in the Sobolev space H2(Ω), and
0 6 V ∈ L∞(Ω). It can be shown that Amin is the closure of the symmetric
operator −∆ + V defined on C∞0 (Ω). We point out that here Ω is a bounded
Lipschitz domain and no further regularity assumptions on ∂Ω are imposed,
thus it is remarkable that the functions in dom(Amin) possess H2-regularity.
The adjoint A∗min of Amin coincides with the maximal operator

Amax = −∆ + V,

dom(Amax) =
{
f ∈ L2(Ω)

∣∣−∆f + V f ∈ L2(Ω)
}
,

(1.4)

where ∆f is understood in the sense of distributions. From (1.2) and (1.3) it
is clear that the Krein–von Neumann extension AK of Amin is then given by

AK = −∆ + V, dom(AK) = H̊2(Ω) +̇ ker(Amax). (1.5)

In the present situation Amin is a symmetric operator with infinite defect
indices and therefore ker(A∗min) = ker(Amax) is infinite-dimensional. In par-
ticular, 0 is an eigenvalue of AK with infinite multiplicity, and hence be-
longs to the essential spectrum. It is also important to note that in gen-
eral the functions in ker(AK) do not possess any Sobolev regularity, that is,
ker(AK) 6⊂ Hs(Ω) for every s > 0. Moreover, since Ω is a bounded set, the
Friedrichs extension of Amin (which coincides with the self-adjoint Dirichlet
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operator associated to −∆ + V ) has compact resolvent and hence its spec-
trum is discrete. The abstract considerations above then yield that with the
exception of the eigenvalue 0 the spectrum of AK consists of a sequence of
positive eigenvalues with finite multiplicity which tend to +∞.

The description of the domain of the Krein–von Neumann extension AK
in (1.5) is not satisfactory for applications involving boundary value problems.
Instead, a more explicit description of dom(AK) via boundary conditions
seems to be natural and desirable. In the case of a bounded C∞-smooth
domain Ω, it is known that

dom(AK) =
{
f ∈ dom(Amax)

∣∣ γNf +M(0)γDf = 0
}

(1.6)

holds, where γD and γN denote the Dirichlet and Neumann trace operator,
respectively, defined on the maximal domain dom(Amax), and M(0) is the
Dirichlet-to-Neumann map or Weyl–Titchmarsh operator for −∆ + V . The
description (1.6) goes back to Vĭsik [67] and Grubb [37], where certain classes
of elliptic differential operators with smooth coefficients are discussed in great
detail. Note that in contrast to the Dirichlet and Neumann boundary condi-
tions the boundary condition in (1.6) is nonlocal, as it involves M(0) which,
when Ω is smooth, is a boundary pseudodifferential operator of order 1. It is
essential for the boundary condition (1.6) that both trace operators γD and
γN are defined on dom(Amax). Even in the case of a smooth boundary ∂Ω,
the elements in dom(AK), in general, do not possess any Hs-regularity for
s > 0, and hence special attention has to be paid to the definition and the
properties of the trace operators. In the smooth setting the classical analysis
due to Lions and Magenes [49] ensures that γD : dom(Amax) → H−1/2(∂Ω)
and γN : dom(Amax) → H−3/2(∂Ω) are well-defined continuous mappings
when dom(Amax) is equipped with the graph norm.

Let us now turn again to the present situation, where Ω is assumed
to be a bounded Lipschitz domain. Our first main objective is to extend the
description of dom(AK) in (1.6) to the nonsmooth setting. The main difficulty
here is to define appropriate trace operators on the domain of the maximal
operator. We briefly sketch the strategy from [18], which is mainly based
and inspired by abstract extension theory of symmetric operators. For this
denote by AD and AN the self-adjoint realizations of −∆ + V corresponding
to Dirichlet and Neumann boundary conditions, respectively. Recall that by
[43] and [31] their domains dom(AD) and dom(AN ) are both contained in
H3/2(Ω). Now consider the boundary spaces

GD(∂Ω) :=
{
γDf

∣∣ f ∈ dom(AN )
}
,

GN (∂Ω) :=
{
γNf

∣∣ f ∈ dom(AD)
}
,

(1.7)

equipped with suitable inner products induced by the Neumann-to-Dirichlet
map and Dirichlet-to-Neumann map for −∆ + V − i, see Section 3 for the
details. It turns out that GD(∂Ω) and GN (∂Ω) are both Hilbert spaces which
are densely embedded in L2(∂Ω). It was shown in [18] that the Dirichlet trace
operator γD and Neumann trace operator γN can be extended by continuity
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to surjective mappings

γ̃D : dom(Amax)→ GN (∂Ω)∗ and γ̃N : dom(Amax)→ GD(∂Ω)∗, (1.8)

where GD(∂Ω)∗ and GN (∂Ω)∗ denote the adjoint (i.e., conjugate dual) spaces
of GD(∂Ω) and GN (∂Ω), respectively. Within the same process also the Dirichlet-
to-Neumann map M(0) of −∆ + V (originally defined as a mapping from

H1(∂Ω) to L2(∂Ω)) admits an extension to a mapping M̃(0) from GN (∂Ω)∗

to GD(∂Ω)∗. With the help of the trace maps γ̃D and γ̃N , and the extended

Dirichlet-to-Neumann operator M̃(0) we are then able to extend the descrip-
tion of the domain of the Krein–von Neumann extension for smooth domains
in (1.6) to the case of Lipschitz domains. More precisely, we show in Theo-
rem 3.3 that the Krein–von Neumann extension AK of Amin is defined on

dom(AK) =
{
f ∈ dom(Amax)

∣∣ γ̃Nf + M̃(0)γ̃Df = 0
}
. (1.9)

For an exhaustive treatment of boundary trace operators on bounded Lip-
schitz domains in Rn and applications to Schrödinger operators we refer to
[17].

Our second main objective in this paper is to prove the Weyl asymptotic
formula (1.1) for the nonzero eigenvalues of AK . We mention that the study of
the asymptotic behavior of the spectral distribution function of the Dirichlet
Laplacian originates in the work by Weyl (cf. [68], [69], and the references
in [70]), and that generalizations of the classical Weyl asymptotic formula
were obtained in numerous papers - we refer the reader to [20], [21], [22],
[23], [24], [25], [26], [56], [63], and the introduction in [16] for more details.
There are relatively few papers available that treat the spectral asymptotics of
the Krein Laplacian or the perturbed Krein Laplacian AK . Essentially these
considerations are inspired by Alonso and Simon who, at the end of their
paper [3] posed the question if the asymptotics of the nonzero eigenvalues
of the Krein Laplacian is given by Weyl’s formula? In the case where Ω is
bounded and C∞-smooth, and V ∈ C∞(Ω), this has been shown to be the
case three years later by Grubb [38], see also the more recent contributions
[52], [53], and [40]. Following the ideas in [38] it was shown in [14] that for
so-called quasi-convex domains (a nonsmooth subclass of bounded Lipschitz
domains with the key feature that dom(AD) and dom(AN ) are both contained
in H2(Ω)) the Krein–von Neumann extension AK is spectrally equivalent to
the buckling of a clamped plate problem, which in turn can be reformulated
with the help of the quadratic forms

a[f, g] :=
(
Aminf,Aming

)
L2(Ω)

and t[f, g] :=
(
f,Aming

)
L2(Ω)

, (1.10)

defined on dom(Amin) = H̊2(Ω). In the Hilbert space (H̊2(Ω), a[·, ·]) the form
t can be expressed with the help of a nonnegative compact operator T , and
it follows that

λ ∈ σp(AK)\{0} if and only if λ−1 ∈ σp(T ), (1.11)

counting multiplicities. These considerations can be extended from quasi-
convex domains to the more general setting of Lipschitz domains, see, for
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instance, Section 4 and Lemma 4.2. Finally, the main ingredient in the proof
of the Weyl asymptotic formula (1.1) for the Krein–von Neumann extension
AK of −∆ + V on a bounded Lipschitz domain Ω is then a more general
Weyl type asymptotic formula due to Kozlov [46] (see also [45], [47]) which
yields the asymptotics of the spectral distribution function of the compact
operator T , and hence via (1.11) the asymptotics of the spectral distribution
function of AK . This reasoning in the proof of our second main result Theo-
rem 4.1 is along the lines of [14, 15], where the special case of quasi-convex
domains was treated. For perturbed Krein Laplacians this result completes
work that started with Grubb more than 30 years ago and demonstrates
that the question posed by Alonso and Simon in [3] regarding the validity
of the Weyl asymptotic formula continues to have an affirmative answer for
bounded Lipschitz domains – the natural end of the line in the development
from smooth domains all the way to minimally smooth ones.

2. Schrödinger Operators on Bounded Lipschitz Domains

This section is devoted to a study of self-adjoint Schrödinger operators on
a nonempty, bounded Lipschitz domain in Rn (automatically assumed to be
open). We shall make the following general assumption.

Hypothesis 2.1. Let n ∈ N\{1}, assume that Ω ⊂ Rn is a bounded Lipschitz
domain, and suppose that 0 6 V ∈ L∞(Ω).

We consider operator realizations of the differential expression −∆ + V
in the Hilbert space L2(Ω). For this we define the preminimal realization Ap
of −∆ + V by

Ap := −∆ + V, dom(Ap) := C∞0 (Ω). (2.1)

It is clear that Ap is a densely defined, symmetric operator in L2(Ω), and
hence closable. The minimal realization Amin of −∆ + V is defined as the
closure of Ap in L2(Ω),

Amin := Ap. (2.2)

It follows that Amin is a densely defined, closed, symmetric operator in L2(Ω).
The maximal realization Amax of −∆ + V is given by

Amax := −∆+V, dom(Amax) :=
{
f ∈ L2(Ω)

∣∣−∆f+V f ∈ L2(Ω)
}
, (2.3)

where the expression ∆f , f ∈ L2(Ω), is understood in the sense of distribu-
tions.

In the next lemma we collect some properties of the operators Ap, Amin,
and Amax. The standard L2-based Sobolev spaces of order s > 0 will be
denoted by Hs(Ω); for the closure of C∞0 (Ω) in Hs(Ω) we write H̊s(Ω).

Lemma 2.2. Assume Hypothesis 2.1 and let Ap, Amin, and Amax be as in-
troduced above. Then the following assertions hold:

(i) Amin and Amax are adjoints of each other, that is,

A∗min = A∗p = Amax and Amin = Ap = A∗max. (2.4)
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(ii) Amin is defined on H̊2(Ω), that is,

dom(Amin) = H̊2(Ω), (2.5)

and the graph norm of Amin and the H2-norm are equivalent on the
domain of Amin.

(iii) Amin is strictly positive, that is, for some C > 0 we have

(Aminf, f)L2(Ω) > C‖f‖2L2(Ω), f ∈ H̊2(Ω). (2.6)

(iv) Amin has infinite deficiency indices.

One recalls that the Friedrichs extension AF of Amin is defined by

AF := −∆ + V, dom(AF ) :=
{
f ∈ H̊1(Ω)

∣∣∆f ∈ L2(Ω)
}
. (2.7)

It is well-known that AF is a strictly positive self-adjoint operator in L2(Ω)
with compact resolvent (see, e.g. [30, Sect. VI.1]).

In this note we are particularly interested in the Krein–von Neumann
extension AK of Amin. According to (1.2), AK is given by

AK := −∆ + V, dom(AK) := dom(Amin) u ker(Amax). (2.8)

In the following theorem we briefly collect some well-known properties
of the Krein–von Neumann extension AK in the present setting. For more
details we refer the reader to the celebrated paper [48] by Krein and to [3],
[4], [11], [14], [15], [16], [40], and [41] for further developments and references.

Theorem 2.3. Assume Hypothesis 2.1 and let AK be the Krein–von Neumann
extension of Amin. Then the following assertions hold:

(i) AK is a nonnegative self-adjoint operator in L2(Ω) and σ(AK) consists
of eigenvalues only. The eigenvalue 0 has infinite multiplicity,

dim(ker(AK)) =∞,

and the restriction AK |(ker(AK))⊥ is a strictly positive self-adjoint oper-

ator in the Hilbert space (ker(AK))⊥ with compact resolvent.
(ii) dom(AK) 6⊂ Hs(Ω) for every s > 0.

(iii) A nonnegative self-adjoint operator B in L2(Ω) is a self-adjoint exten-
sion of Amin if and only if for some (and, hence for all ) µ < 0,

(AF − µ)−1 6 (B − µ)−1 6 (AK − µ)−1. (2.9)

We also mention that the Friedrich extension AF and the Krein–von
Neumann extension AK are relatively prime (or disjoint), that is,

dom(AF ) ∩ dom(AK) = dom(Amin) = H̊2(Ω). (2.10)

For later purposes we briefly recall some properties of the Dirichlet and
Neumann trace operator and the corresponding self-adjoint Dirichlet and
Neumann realizations of −∆ + V in L2(Ω). We consider the space

H
3/2
∆ (Ω) :=

{
f ∈ H3/2(Ω)

∣∣∆f ∈ L2(Ω)
}
, (2.11)
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equipped with the inner product

(f, g)
H

3/2
∆ (Ω)

= (f, g)H3/2(Ω) + (∆f,∆g)L2(Ω), f, g ∈ H3/2
∆ (Ω). (2.12)

One recalls that the Dirichlet and Neumann trace operators γD and γN de-
fined by

γDf := f �∂Ω and γNf := n · ∇f �∂Ω, f ∈ C∞(Ω), (2.13)

admit continuous extensions to operators

γD : H
3/2
∆ (Ω)→ H1(∂Ω) and γN : H

3/2
∆ (Ω)→ L2(∂Ω). (2.14)

Here H1(∂Ω) denotes the usual L2-based Sobolev space of order 1 on ∂Ω; cf.
[51, Chapter 3] and [54]. It is important to note that the extensions in (2.14)
are both surjective, see [36, Lemma 3.1 and Lemma 3.2].

In the next theorem we collect some properties of the Dirichlet realiza-
tion AD and Neumann realization AN of −∆ + V in L2(Ω). We recall that
the operators AD and AN are defined as the unique self-adjoint operators
corresponding to the closed nonnegative forms

aD[f, g] := (∇f,∇g)(L2(Ω))n + (V f, g)L2(Ω), dom(aD) := H̊1(Ω),

aN [f, g] := (∇f,∇g)(L2(Ω))n + (V f, g)L2(Ω), dom(aN ) := H1(Ω).
(2.15)

In particular, one has AF = AD by (2.7). In the next theorem we collect some
well-known facts about the self-adjoint operators AD and AN . The H3/2-
regularity of the functions in their domains is remarkable, and a consequence
of Ω being a bounded Lipschitz domain. We refer the reader to [35, Lemma 3.4
and Lemma 4.8] for more details, see also [42, 43] and [31].

Theorem 2.4. Assume Hypothesis 2.1 and let AD and AN be the self-adjoint
Dirichlet and Neumann realization of −∆ + V in L2(Ω), respectively. Then
the following assertions hold:

(i) The operator AD coincides with the Friedrichs extension AF and is given
by

AD = −∆ + V, dom(AD) =
{
f ∈ H3/2

∆ (Ω)
∣∣ γDf = 0

}
. (2.16)

The resolvent of AD is compact, and the spectrum of AD is purely dis-
crete and contained in (0,∞).

(ii) The operator AN is given by

AN = −∆ + V, dom(AN ) =
{
f ∈ H3/2

∆ (Ω)
∣∣ γNf = 0

}
. (2.17)

The resolvent of AN is compact, and the spectrum of AN is purely dis-
crete and contained in [0,∞).
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3. Boundary conditions for the Krein–von Neumann
realization

Our goal in this section is to obtain an explicit description of the domain of
the Krein–von Neumann extension AK in terms of Dirichlet and Neumann
boundary traces. For this we describe an extension procedure of the trace
maps γD and γN in (2.14) onto dom(Amax) from [18]. We recall that for
ϕ ∈ H1(∂Ω) and z ∈ ρ(AD), the boundary value problem

−∆f + V f = zf, γDf = ϕ, (3.1)

admits a unique solution fz(ϕ) ∈ H3/2
∆ (Ω). Making use of this fact and the

trace operators (2.14) we define the Dirichlet-to-Neumann operator M(z),
z ∈ ρ(AD), as follows:

M(z) : L2(∂Ω) ⊃ H1(∂Ω)→ L2(∂Ω), ϕ 7→ −γNfz(ϕ), (3.2)

where fz(ϕ) ∈ H3/2
∆ (Ω) is the unique solution of (3.1). It can be shown that

M(z) is an unbounded operator in L2(∂Ω). Moreover, if z ∈ ρ(AD) ∩ ρ(AN )
then M(z) is invertible and the inverse M(z)−1 is a bounded operator defined
on L2(∂Ω). Considering z = i, we set

Σ := Im (−M(i)−1). (3.3)

The imaginary part ImM(i) of M(i) is a densely defined bounded operator
in L2(∂Ω) and hence it admits a bounded closure

Λ := Im(M(i)) (3.4)

in L2(∂Ω). Both operators Σ and Λ are self-adjoint and invertible with un-
bounded inverses. Next we introduce the boundary spaces

GD(∂Ω) :=
{
γDf

∣∣ f ∈ dom(AN )
}

(3.5)

and

GN (∂Ω) :=
{
γNf

∣∣ f ∈ dom(AD)
}
. (3.6)

It turns out that

GD(∂Ω) = ran
(
Σ1/2

)
and GN (∂Ω) = ran

(
Λ1/2

)
, (3.7)

and hence the spaces GD(∂Ω) and GN (∂Ω) can be equipped with the inner
products

(ϕ,ψ)GD(∂Ω) :=
(
Σ−1/2ϕ,Σ−1/2ψ

)
L2(∂Ω)

, ϕ, ψ ∈ GD(∂Ω), (3.8)

and

(ϕ,ψ)GN (∂Ω) :=
(
Λ−1/2ϕ,Λ−1/2ψ

)
L2(∂Ω)

, ϕ, ψ ∈ GN (∂Ω), (3.9)

respectively. Then GD(∂Ω) and GN (∂Ω) both become Hilbert spaces which
are dense in L2(∂Ω). The corresponding adjoint (i.e., conjugate dual) spaces
will be denoted by GD(∂Ω)∗ and GN (∂Ω)∗, respectively. The following result
can be found in [18, Section 4.1].
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Theorem 3.1. Assume Hypothesis 2.1. Then the Dirichlet trace operator γD
and Neumann trace operator γN in (2.14) can be extended by continuity to
surjective mappings

γ̃D : dom(Amax)→ GN (∂Ω)∗ and γ̃N : dom(Amax)→ GD(∂Ω)∗ (3.10)

such that ker(γ̃D) = ker(γD) = dom(AD) and ker(γ̃N ) = ker(γN ) = dom(AN ).

In a similar manner the boundary value problem (3.1) can be considered
for all ϕ ∈ GN (∂Ω)∗ and the Dirichlet-to-Neumann operator M(·) in (3.2)
can be extended. More precisely, the following statement holds.

Theorem 3.2. Assume Hypothesis 2.1 and let γ̃D and γ̃N be the extended
Dirichlet and Neumann trace operator from Theorem 3.1. Then the following
are true:

(i) For ϕ ∈ GN (∂Ω)∗ and z ∈ ρ(AD) the boundary value problem

−∆f + V f = zf, γ̃Df = ϕ, (3.11)

admits a unique solution fz(ϕ) ∈ dom(Amax).
(ii) For z ∈ ρ(AD) the Dirichlet-to-Neumann operator M(z) in (3.2) admits

a continuous extension

M̃(z) : GN (∂Ω)∗ → GD(∂Ω)∗, ϕ 7→ −γ̃Nfz(ϕ), (3.12)

where fz(ϕ) ∈ dom(Amax) is the unique solution of (3.11).

Now we are able to state our main result in this section: A description
of the domain of the Krein–von Neumann extension AK in terms of Dirichlet
and Neumann boundary traces. The extended Dirichlet-to-Neumann map at
z = 0 will enter as a regularization parameter in the boundary condition.
For C∞-smooth domains this result goes back to Grubb [37], where a certain
class of elliptic differential operators with smooth coefficients is discussed
systematically. For the special case of a so-called quasi-convex domains The-
orem 3.3 reduces to [15, Theorem 5.5] and [36, Theorem 13.1]. In an abstract
setting the Krein–von Neumann extension appears in a similar form in [18,
Example 3.9].

Theorem 3.3. Assume Hypothesis 2.1 and let γ̃D, γ̃N and M̃(0) be as in
Theorem 3.1 and Theorem 3.2. Then the Krein–von Neumann extension AK
of Amin is given by

AK = −∆ + V,

dom(AK) =
{
f ∈ dom(Amax)

∣∣ γ̃Nf + M̃(0)γ̃Df = 0
}
.

(3.13)

Proof. We recall that the Krein–von Neumann extension AK of Amin is de-
fined on

dom(AK) = dom(Amin) u ker(Amax). (3.14)

Thus, from Lemma 2.2 (ii) one concludes

dom(AK) = H̊2(Ω) u ker(Amax,Ω). (3.15)
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Next, we show the inclusion

dom(AK) ⊆
{
f ∈ dom(Amax)

∣∣ γ̃Nf + M̃(0)γ̃Df = 0
}
. (3.16)

Fix f ∈ dom(AK) and decompose f in the form f = fmin + f0, where

fmin ∈ H̊2(Ω) and f0 ∈ ker(Amax) (cf. (3.15)). Thus,

γDfmin = γ̃Dfmin = 0 and γNfmin = γ̃Nfmin = 0, (3.17)

and hence it follows from Theorem 3.2 (ii) that

M̃(0)γ̃Df = M̃(0)γ̃D(fmin + f0) = M̃(0)γ̃Df0 = −γ̃Nf0 = −γ̃Nf. (3.18)

Thus, γ̃Nf + M̃(0)γ̃Df = 0 and the inclusion (3.16) holds.

Next we verify the opposite inclusion

dom(AK) ⊇
{
f ∈ dom(Amax)

∣∣ γ̃Nf + M̃(0)γ̃Df = 0
}
. (3.19)

We use the direct sum decomposition

dom(Amax) = dom(AD) +̇ ker(Amax), (3.20)

which is not difficult to check. Assuming that f ∈ dom(Amax,Ω) satisfies the
boundary condition

M̃(0)γ̃Df + γ̃Nf = 0, (3.21)

according to the decomposition (3.20) we write f in the form f = fD + f0,
where fD ∈ dom(AD) and f0 ∈ ker(Amax). Thus, γDfD = γ̃DfD = 0 by
Theorem 3.1 and with the help of Theorem 3.2 (ii) one obtains

M̃(0)γ̃Df = M̃(0)γ̃D(fD + f0) = M̃(0)γ̃Df0 = −γ̃Nf0. (3.22)

Taking into account the boundary condition (3.21) one concludes

− γ̃Nf = M̃(0)γ̃Df = −γ̃Nf0, (3.23)

and hence

0 = γ̃N (f − f0) = γ̃NfD. (3.24)

Together with Theorem 3.1 this implies fD ∈ ker(γ̃N ) = ker(γN ) = dom(AN ).
Thus, one arrives at

fD ∈ dom(AD) ∩ dom(AN ) = dom(Amin) = H̊2(Ω), (3.25)

where (2.10) and AD = AF was used (cf. Theorem 2.4 (i)). Summing up, one
has

f = fD + f0 ∈ H̊2(Ω) u ker(Amax) = dom(AK), (3.26)

which shows (3.19) and completes the proof of Theorem 3.3. �
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4. Spectral asymptotics of the Krein–von Neumann extension

As the main result in this section we derive the following Weyl-type spectral
asymptotics for the Krein–von Neumann extension AK of Amin.

Theorem 4.1. Assume Hypothesis 2.1. Let {λj}j∈N ⊂ (0,∞) be the strictly
positive eigenvalues of the Krein–von Neumann extension AK enumerated in
nondecreasing order counting multiplicity, and let

N(λ,AK) := #
{
j ∈ N : 0 < λj 6 λ

}
, λ > 0, (4.1)

be the eigenvalue distribution function for AK . Then the following Weyl as-
ymptotic formula holds,

N(λ,AK) =
λ→∞

vn |Ω|
(2π)n

λn/2 +O
(
λ(n−(1/2))/2

)
, (4.2)

where vn = πn/2/Γ((n/2) + 1) denotes the (Euclidean ) volume of the unit
ball in Rn (with Γ(·) the classical Gamma function [1, Sect. 6.1]) and |Ω|
represents the (n-dimensional) Lebesgue measure of Ω.

The proof of Theorem 4.1 follows along the lines of [14, 15], where the
case of quasi-convex domains was investigated. The main ingredients are a
general Weyl type asymptotic formula due to Kozlov [46] (see also [45], [47] for
related results) and the connection between the eigenvalues of the so-called
buckling operator and the positive eigenvalues of the Krein–von Neumann
extension AK (cf. [15], [16]). We first consider the quadratic forms a and t

on dom(Amin) = H̊2(Ω) defined by

a[f, g] :=
(
Aminf,Aming

)
L2(Ω)

, f, g ∈ dom(a) := H̊2(Ω), (4.3)

t[f, g] :=
(
f,Aming

)
L2(Ω)

, f, g ∈ dom(t) := H̊2(Ω). (4.4)

Since the graph norm ofAmin and theH2-norm are equivalent on domAmin =
H̊2(Ω) by Lemma 2.2 (ii), it follows that W := (dom(a); (·, ·)W), where the
inner product is defined by

(f, g)W := a[f, g] =
(
Aminf,Aming

)
L2(Ω)

, f, g ∈ dom(a), (4.5)

is a Hilbert space. One observes that the embedding ι : W → L2(Ω) is
compact; this is a consequence of Ω being bounded. Next, we consider for
fixed g ∈ W the functional

W 3 f 7→ t[ιf, ιg], (4.6)

which is continuous on the Hilbert space W and hence can be represented
with the help of a bounded operator T in W in the form

(f, Tg)W = t[ιf, ιg], f, g ∈ W. (4.7)

The nonnegativity of the form t implies that T is a self-adjoint and non-
negative operator in W. Furthermore, one obtains for f, g ∈ W from (4.4)
that

(f, Tg)W = t[ιf, ιg] =
(
ιf, Aminιg

)
L2(Ω)

=
(
f, ι∗Aminιg

)
W , (4.8)



12 J. Behrndt, F. Gesztesy, T. Micheler and M. Mitrea

and hence,
T = ι∗Aminι. (4.9)

In particular, since Aminι :W → L2(Ω) is defined on the whole spaceW and
is closed as an operator from W to L2(Ω), it follows that Aminι is bounded
and hence the compactness of ι∗ : L2(Ω)→W implies that T = ι∗Aminι is a
compact operator in the Hilbert space W.

The next useful lemma shows that the eigenvalues of T are precisely the
reciprocals of the nonzero eigenvalues of AK . Lemma 4.2 is inspired by the
connection of the Krein–von Neumann extension to the buckling of a clamped
plate problem (cf. [15, Theorem 6.2] and [14, 16, 38]).

Lemma 4.2. Assume Hypothesis 2.1 and let T be the nonnegative compact
operator in W defined by (4.7). Then

λ ∈ σp(AK)\{0} if and only if λ−1 ∈ σp(T ), (4.10)

counting multiplicities.

Proof. Assume first that λ 6= 0 is an eigenvalue of AK and let g be a corre-
sponding eigenfunction. We decompose g in the form

g = gmin + g0, gmin ∈ dom(Amin), g0 ∈ ker(Amax) (4.11)

(cf. (2.8)), where gmin 6= 0 as λ 6= 0. Then one concludes

Amingmin = AK(gmin + g0) = AKg, (4.12)

and hence,

Amingmin−λgmin = AKg−λgmin = λg−λgmin = λg0 ∈ ker(Amax), (4.13)

so that
AmaxAmingmin = λAmaxgmin = λAmingmin. (4.14)

This yields

(f, λ−1gmin)W = a[f, λ−1gmin]

=
(
Aminf, λ

−1Amingmin
)
L2(Ω)

=
(
f, λ−1AmaxAmingmin

)
L2(Ω)

=
(
f,Amingmin

)
L2(Ω)

= t[f, gmin]

= (f, Tgmin)W , f ∈ W,

(4.15)

where, for simplicity, we have identified elements inW with those in dom(a),
and hence omitted the embedding map ι. From (4.15) we then conclude

Tgmin =
1

λ
gmin, (4.16)

which shows that λ−1 ∈ σp(T ).
Conversely, assume that h ∈ W\{0} and λ 6= 0 are such that

Th =
1

λ
h (4.17)
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holds. Then it follows for f ∈ dom(a) from (4.5) and (4.7) that

a[f, h] = a[f, λTh] = (f, λTh)W = t[f, λh] =
(
f, λAminh

)
L2(Ω)

. (4.18)

As a consequence of the first representation theorem for quadratic forms [44,
Theorem VI.2.1 (iii), Example VI.2.13], one concludes that AmaxAmin is the
representing operator for a, and therefore,

h ∈ dom(AmaxAmin) and AmaxAminh = λAminh. (4.19)

In particular, h ∈ dom(Amin) and

Amax(Amin − λ)h = AmaxAminh− λAmaxh
= AmaxAminh− λAminh
= 0.

(4.20)

Let us define

g :=
1

λ
Aminh = h+

1

λ

(
Amin − λ

)
h. (4.21)

As h ∈ dom(Amin) and (Amin−λ)h ∈ ker(Amax) by (4.20), we conclude from
(2.8) that g ∈ domAK . Moreover, g 6= 0 since Amin is positive. Furthermore,

AKg = Amaxg =
1

λ
AmaxAminh = Aminh = λg, (4.22)

shows that λ ∈ σp(AK). �

Proof of Theorem 4.1. Let T be the nonnegative compact operator in W de-
fined by (4.7). We order the eigenvalues of T in the form

0 6 · · · 6 µj+1(T ) 6 µj(T ) 6 · · · 6 µ1(T ), (4.23)

listed according to their multiplicity, and set

N (λ, T ) := #
{
j ∈ N : µj(T ) > λ−1

}
, λ > 0. (4.24)

It follows from Lemma 4.2 that

N (λ, T ) = N(λ,AK), λ > 0, (4.25)

and hence [46] yields the asymptotic formula,

N(λ,AK) = N (λ, T ) =
λ→∞

ω λn/2 +O
(
λ(n−(1/2))/2

)
, (4.26)

with

ω :=
1

n(2π)n

ˆ
Ω

( ˆ
Sn−1

[ ∑n
j=1 ξ

2
j∑n

j,k=1 ξ
2
j ξ

2
k

]n
2

dωn−1(ξ)

)
dnx

=
vn |Ω|
(2π)n

.

(4.27)

�

For bounds on N( · , AK) in the case of Ω ⊂ Rn open and of finite
(n-dimensional) Lebesgue measure, we refer to [34].
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Vol. 59, Birkhäuser, Basel, 1992, pp. 328–347.



18 J. Behrndt, F. Gesztesy, T. Micheler and M. Mitrea
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