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ABSTRACT. We develop a sharp boundary trace theory in arbitrary bounded
Lipschitz domains which, in contrast to classical results, allows “forbidden”
endpoints and permits the consideration of functions exhibiting very limited
regularity. This is done at the (necessary) expense of stipulating an additional
regularity condition involving the action of the Laplacian on the functions in
question which, nonetheless, works perfectly with the Dirichlet and Neumann
realizations of the Schrédinger differential expression —A + V. In turn, this
boundary trace theory serves as a platform for developing a spectral theory
for Schrédinger operators on bounded Lipschitz domains, along with their
associated Weyl-Titchmarsh operators. Overall, this pushes the present state
of knowledge a significant step further. For example, we succeed in extending
the Dirichlet and Neumann trace operators in such a way that all self-adjoint
extensions of a Schrédinger operator on a bounded Lipschitz domain may be
described with explicit boundary conditions, thus providing a final answer to a
problem that has been investigated for more than 60 years in the mathematical
literature. Along the way, a number of other open problems are solved. The
most general geometric and analytic setting in which the theory developed
here yields satisfactory results is that of Lipschitz subdomains of Riemannian
manifolds and for the corresponding Laplace-Beltrami operator (in place of the
standard flat-space Laplacian). In particular, such an extension yields results
for variable coefficient Schrodinger operators on bounded Lipschitz domains.
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1. INTRODUCTION

Given an open set Q C R", let H*(Q) denote the L?-based Sobolev space of
(fractional) order s € R in Q. When Q = R""! @ R, the upper half-space,
starting from the realization that C*°(Q) N H1(€) is dense in H(Q) (as may be
seen via translation and a standard mollifying argument) and the restriction-to-
the-boundary map C*°(Q) 3 u — f := u(-,0) € C®(R"!) satisfies || f||2rn-1) <
Crlul| 1 () for each u € C°°(Q)NH' (), one concludes that the assignment u — f
extends uniquely to a linear and bounded mapping, henceforth referred to as the
Dirichlet boundary trace operator vp, from H'(Q) into L?(R"~!). This trace
operator is not surjective, since N. Aronszajn [12] (see also [I43]) has noted that
its image may be described as

(Y () = {f e 2R

/RH EIFEPamte < oo} (1.1)

where “hat” stands for the Fourier transform in R"~!. This result has been sub-
sequently extended by E. Gagliardo, whose work in [6I] marks the beginning of a
flurry of activities concerning trace theory which, in turn, has firmly established
this topic in the present day mathematical landscape.

For example, we now know that if 2 C R"™ is a bounded Lipschitz domain then
the restriction-to-the-boundary map C*(Q) 3 u — f = u|0§2 € C°(09) extends
uniquely to a linear and continuous operator

vp : H*(Q) — H*=(/2(5Q) whenever 1/2 < 5 < 3/2. (1.2)

Furthermore, the Dirichlet trace operator vp is surjective in the above context and,
in fact, admits a continuous linear right-inverse.

The study of trace operators like interfaces tightly with the issue of ex-
tending functions from Sobolev spaces (and other smoothness scales) defined in-
trinsically in €2 to the entire Euclidean space R™ with preservation of class. More
generally, given a set F' C R™ which is d-dimensional in a certain sense for some
d € (0,n], the question arises whether it is possible to extend any function f be-
longing to a Besov space By"(F'), suitably defined on F, to a function in BEP(R")
where the smoothness exponents «, 8 satisfy o = 5+ [(n — d)/p]. As far as traces
are concerned, in place of one may ask if the trace on F' of any function from
BEP(R™) lies in BP(F). For example, such an extension/restriction problem has
an affirmative solution if F is a d-dimensional plane in R, say F :=R? x {0}"~4,
for any d € {1,...,n}.
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The extension/restriction problems leading to this and other related results have
been studied by many authors. Early contributors include N. Aronszajn, F. Mulla,
and P. Szeptycki [13], O. V. Besov [25], [26], V. I. Burenkov [39], A. P. Calderén
[40], E. Gagliardo [61], J. L. Lions and E. Magenes [89]-[95], P. I. Lizorkin [96],
J. Necas [127], S. M. Nikol’skif [129], [I30], E. M. Stein [144], [145], and M. H.
Taibleson [I46], and S. V. Uspenskii [I57], among others. Let us also note that
the case when F' is a surface in R™ satisfying a local Lipschitz condition has been
studied by O. V. Besov in [27], [28], [29], while extension and restriction problems
for F' an arbitrary d-dimensional closed subset of R™ (see below) have been
investigated by D. R. Adams [3], A. Jonsson [79], J. Petree [131], T. Sjodin [142],
and H. Wallin [I61].

In [80] A. Jonsson and H. Wallin have initiated a breakthrough, proving a very
general extension/restriction theorem on the Besov scale for d-sets. We recall that
a closed set F' C R is said to be a d-set for some d € (0, n], provided there exists
some finite constant C' > 1 with the property that

C~rt < AN B(z,r)NF) < Cr?, Yz € F, 0<r < diam (F), (1.3)

where % is the d-dimensional Hausdorff measure in R”. (For example, the closure
Q of a Lipschitz domain  C R” is an n-set, while its topological boundary 95 is
an (n — 1)-set; parenthetically, we also note that the boundary of Koch’s snowflake
in R? is a d-set with d := In(4)/In(3).) In this context, a brand of Besov spaces has
been introduced by A. Jonsson and H. Wallin in [80] as follows. Given p € [1,00)
and s € (0,00)\N, define the Besov space B?P(F) as the collection of families f =
{fa}jal<(s) (where [s] denotes the integer part of s), whose components are -
measurable functions on F' with the property that if for each multi-index o € Njj
with |a| < [s] one introduces

_ )8
Ro(z,y) = fa(z) — Z ufmrg(y) for #4-ae. x,yc F, (1.4)
|BI<[s]—]e] A
then HJ.‘HBg,p(F) < 400, where
H}HB?P(F) = / | fa |pd<7fd) (1.5)

lel<[s

1/p

Z Z 2](5 la|)p+id // iL' y |pd%d( )d%d(y)

7=0 |a|<]s] z,yeF
lo—y|<277
The following fundamental result regarding traces and extensions on (and from)
arbitrary d-sets in R™ has been proved by A. Jonsson and H. Wallin in [80, Main
Theorem, p. 146].

Theorem 1.1 (Jonsson-Wallin Trace/Extension Theory). Assume F' C R™ is a
given d-set for some d € (0,n]. Fiz a number k € Ny along with some integrability
exponent p € [1,00). Also, select two smoothness exponents o, B satisfying

Be(kk+1) and a=B+[n—d)/p. (1.6)
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Finally, it is agreed that a barred integral sign denotes an integral average.
Then, for every scalar function uw € BEP(R™), the vector-valued limit

(%g,k)u) (z) ;=< lim ][ (0%u)(y)d™y exists at H%-a.e. x € F
r—0+ B(z,r)
|| <k—1
(1.7)
and, defined as such, this higher-order trace operator on F induces a well defined,
linear, and bounded mapping

#Y) : BEP(R™) — BYP(F). (1.8)
In the converse direction, there exists a linear and bounded operator
k n
&) BYP(F) — BRP(R™) (1.9)
with the property that
%}k) o cg’}k) =1, the identity on BRP(F). (1.10)

Subsequently, the program initiated in [80] has been amply expanded by A.
Jonsson and H. Wallin in their monograph [81]. The body of work described so far
in the introduction is of immense practical value and various refinements (allowing
two integrability exponents p # ¢, other scales of spaces measuring smoothness,
alternative proofs, etc.) have since come to light. See, for instance, [4], [37], [43],
[44), [@5], [60, [77, [8), [82], [@9], [100], [101], [102], [103], [104], [109], [I12I,
[126], [134], [135], [136], [138], [139], [141], [151], [152], [153], [154], [155], and the
references therein. This is but an indicative sample of a large body of works on the
subject of traces and extensions, which remains an active topic of research to date.

Note that the well definiteness, boundedness, and surjectivity of the trace oper-
ator vp in is a very special case of Theorem when s # 1 (corresponding
top=2and d =n—1). Indeed, if Q is a Lipschitz domain then any function in
H*(Q) with s € (3, 3)\{1} may be extended to H*(R") = B2%(R") and (L.7)—(L3)
apply to this extension, bearing in mind that F := 9 is an (n — 1)-set. The case
when () is a Lipschitz domain and s = 1 may be reduced to the situation when
Q =R" ! ®R,, the upper half-space, via a simple localization and a bi-Lipschitz
change of variables flattening the boundary.

For a bounded Lipschitz domain 2 C R™, the end-point cases s = 1/2 and
$=3/2in are problematic. As regards the limiting value s = 1/2, it has been
pointed out in the last paragraph of [77, p. 180] that C§°(f) is dense in H'/2(Q).
Consequently, the restriction-to-the-boundary map

C®(Q) 3 u— ul,, € C°(09Q) (1.11)

vanishes identically on a dense subspace of H'/ 2(Q), so its unique extension to
H'2(Q) is the trivial map vp(u) = 0 for all u € H/2(Q). The space vp(H*/%(Q)),
identified in [81], has a rather technical description. Even in the case of a bounded
C'-domain  this space looks very different from the natural candidate in the
smooth case (when {2 is a bounded C*°-domain, the Dirichlet boundary trace maps
H3/2(Q) continuously onto H'(99)). Hence, in sharp contrast with the C™ case,
there is a substantial change in the character of the trace operator on the boundary
of a bounded C'-domain corresponding to s = 3/2. In fact, in [77, Proposition 3.2,
p. 176] a bounded C*-domain © C R? and a function u € H3/%(Q) are constructed
with the property that ypu ¢ H'(9€). This goes to show that, corresponding to
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the limiting value s = 3/2, the range of the Dirichlet trace operator in is
strictly larger than H'(9Q).

In the present work we succeed in incorporating the end-points {%, %} in the
range of indices for which the Dirichlet trace operator behaves naturally, in a given
bounded Lipschitz domain 2 C R™. As is apparent from our earlier discussion,
for this to happen we need to restrict yp to a smaller domain than H?®(€2) with
s € [%, %], that is, demand that vp acts from a subspace of H*(2) consisting of
functions satisfying further regularity assumptions. The novel idea is that, starting
with v € H*(Q) for some s € [%, %], if Awu is slightly more regular than typical ac-
tion of the Laplacian on functions from H*(f2), that is, more regular than H*2(Q),
then we may meaningfully define its Dirichlet boundary trace ypu for the full range

s€[3:3]
Simply put, if the function v € H®*(2) with s € [%, %] has a “better-than-

expected” Laplacian (in the sense of membership to a certain smoothness scale) then
ypu is well defined in H*~(1/2)(9€2). An embodiment of this principle on the scale
of Sobolev spaces is Theorem [3.6] which states that if 2 C R™ is a bounded Lipschitz
domain and € > 0 is arbitrary, then the restriction-to-the-boundary operator
induces a unique, well defined, linear, surjective, continuous map

o {u€ HY(Q)|Aue H2T(Q)} —» H-W/D(9q), Vse[L,3], (L12)

if the space on the left is equipped with the norm u — [Ju| g=(q) + [|Aul| ga-2+2 ()
For example, this implies that for each € > 0,
{ue H2(Q) | Aue H-M/2DF=(Q)} 5 u s yp(Vu) € [L*(0Q)]" (1.13)

is a well defined, linear, and bounded operator. In this context, it is also significant

to observe that the domain of the Dirichlet trace operator in (1.12)) embeds (strictly)
in certain Triebel-Lizorkin spaces. Specifically, as noted in (3.31), we have the

continuous strict embeddings
{ue H Q)| Au e H72T5(Q)} — F29(Q) — H*(Q)

%,%]7 any € >0, and any ¢ € (0,2).

1.14

for any s € [ ( )
Thus, the demand that Au € H*2+¢(Q) improves the regularity of u € H*(Q),
albeit in a subtle fashion.

Employing Besov spaces allows us to express in an even more precise fashion the
amount of regularity one needs to impose on Aw in order to be able to allow the
end-points s € {,2} in (1.2). Concretely, given any bounded Lipschitz domain
Q C R”, the restriction-to-the-boundary operator (1.11) induces a unique, well
defined, linear, surjective, continuous map

vh {ue H*(Q)|Aue B2L,(Q)) — H=W/2(09), vse[},3], (115
where, this time, the space on the left-hand side of (|1.15) is equipped with the
norm u +— ||ull gsq) + ||Au|\Bz,712(Q). Reassuringly, the sharp Dirichlet trace 'yﬁ

from ((1.15]) is compatible with yp in (1.12). Also, from (1.15)) (with s = 1/2) we

see that for each ¢ > 0 we have a well defined, linear, and bounded operator
{ue B> Q)| Aue B2} ,()} 3 u = v} (Vu) € [L*(9Q)]". (1.16)

See Theorem [3.§] for a more expansive and nuanced result of this flavor. In par-
ticular, it has been noted in (3.89) that the domain of the sharp Dirichlet trace
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operator in (|1.15) embeds (strictly) in certain Triebel-Lizorkin spaces. Specifically,
we have the continuous strict embeddings

{ue H Q)| Au e B2,(Q)} — F21(Q) — H*(Q), se[L,3]. (1.17)

In addition to the results for the Dirichlet boundary trace operator, we develop
in Section [5| a similar theory for the Neumann boundary trace operator yy in the
context of Sobolev spaces in a given bounded Lipschitz domain 2 C R". More
specifically, the Neumann trace map originally defined as u — v - (Vu)|sq for
functions v € C*°(Q), where v denotes the outward unit normal to 2, extends
uniquely to linear, continuous, surjective operators

i {ue H Q)| Aue L2(Q)} — HB/2(00), se (i, 2], (1.18)

that are compatible with one another, when the space on the left-hand side of
is equipped with the natural graph norm u = |[ul|g=(q) + [[Aul/z2(q). See
Theorem and Corollary in this regard. Here we only wish to mention that,
with v denoting the outward unit normal vector to €2,

if uc H*?(Q) has Au € L*() then yyu = v - vp(Vu) € L*(9Q)

1.19)
with the Dirichlet trace taken in the sense of (|1.12]). (

It is remarkable that vy in acts on a class of functions u for which the
notion of the “classical” Neumann trace of v - vp(Vu) is utterly ill defined. To
illustrate this via an example, take Q := B(0,1) the unit ball in R” and for each
a € (0,1) consider uy(z) := (1 — |x]?)® for each € . Then u, € H*(Q) for each
s < a+(1/2), yet Vu, blows up (in the limit) at each boundary point x € 9.

Compared to earlier work, the crucial new ingredient here is the use of well-
posedness results for the L? Dirichlet, Neumann, and Regularity boundary value
problems in bounded Lipschitz domains in which the size of the solution is mea-
sured using the nontangential maximal operator and boundary traces are taken in
a nontangential pointwise sense. In this regard, we heavily rely on the basic work in
[0, [76], [122], [124], [125], [158]. We also make essential use of solvability results
and estimates for the corresponding inhomogeneous problems from [57], [77], [123].

One of the primary motivations for developing a sharp boundary trace theory in
bounded Lipschitz domains (which now includes the traditionally forbidden end-
points 1/2 and 3/2) is because this provides a platform for the study of Schrodinger
operators in this class of domains. The format of our brand of trace theorems
(cf. ) is perfectly suited for such a study, which we take up in Section@ There,
among a variety of topics, we discuss the self-adjoint Friedrichs extension and the
self-adjoint Dirichlet and Neumann realizations of —A + V' where the potential
V is a real-valued essentially bounded function. We then proceed to introduce
z-dependent Dirichlet-to-Neumann maps, otherwise known as Weyl-Titchmarsh
operators, for Schrodinger operators on bounded Lipschitz domains in Section [7]
In turn, these results are used in Section [8] to construct what we call maximal
extensions of the Dirichlet and Neumann trace operators on arbitrary bounded
Lipschitz domains in R".

More specifically, the goal in Section [§] is to further extend the Dirichlet trace
operator , and its Neumann counterpart vy, by continuity onto the domain
of Apaz.0, the maximal realization of —A+V defined as (with all derivatives taken
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in the sense of distributions)
Amazg =04V, dom(Apasa) = {f € L*(Q)|Af € L*()}. (1.20)

To describe the said extensions of the Dirichlet and Neumann traces, we bring to
the forefront the spaces

95 (00) := ran (’YD’dom(AN,u)) and ¥y (09) :=ran (’VN’dom(AD,n)% (1.21)
where
Apao=—-A+YV,
X , (1.22)
dom(Apq) = {f € H(Q) | Af e L*(Q) and ypf = O},
and
Avao=—-A+YV,
(1.23)

dom(Ano) = {f € H'(Q)|Af € L*(Q) and yn f =0},

are, respectively, the Dirichlet and Neumann self-adjoint realizations of the differ-
ential expression —A + V in the Lipschitz domain Q (studied in Section @ In
the rough setting considered here, the spaces ¥p(99), ¥n(092) turn out to be the
correct substitutes for H3/2(9Q) and, respectively, H'/2(9€), to which they reduce
if @ were to be a bounded C*°-domain. Indeed, work in [65] shows that

G (0Q) = H*?(0Q) and 9y (09) = HY?(09)

1.24
when © is a bounded C*"-domain with r > 1/2 (1.24)

(where the parameter r refers to the Holder regularity of the first order derivatives
of the functions whose graphs locally describe 9Q). In fact, (cf. [65]),

whenever () is some bounded open convex set, or some
bounded C'"-domain for some r > 1/2, it follows that
dom(Ap q),dom(Ayq) C H?(2) and the Dirichlet trace
operator vp : H2(Q) — H3/2(0Q) as well as the Neumann
trace operator vy : H?(Q) — H'/?(99) are both well de-
fined, bounded, and onto.

As such, the duals ¥p(0Q)*, ¥n(0Q2)* should be thought of as natural substitutes
for H=3/2(08) and, respectively, H~/2(9f2), in the rough setting considered here.
See also [22] in this regard.

The following theorem, which presents the most complete result along the lines
of work in [22], [63], [65], is one of the central results in this work.

(1.25)

Theorem 1.2. Assume that Q C R™ is a bounded Lipschitz domain, and that the
potential V- € L*>(Q) is a real-valued function. Then the following statements hold:

(i) The spaces 9Gp(00),9n(0Q) carry a natural Hilbert space structure (see item
(vi) below for equivalent norms) and the Dirichlet trace operator vp (from (L.12))
along with its counterpart, the Neumann trace operator yn (from ), extend
by continuity to continuous surjective mappings

p : dom(Apaz.0) = 9In(00)",

_ (1.26)
An s dom(Apaz.0) = Yp(0Q)7,
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where dom(Apaz,0) is endowed with the graph norm of Amaz.o, and 9p(0)*,
YN (0Q)* are, respectively, the adjoint (conjugate dual) spaces of 9p(0), Yn(09)
carrying the natural topology induced by the said Hilbert space structure.

(i1) These extensions satisfy
ker(9p) = dom(Ap ) and ker(Yn) = dom(An ). (1.27)
Also, for each s € [0, 1] there exists a constant C' € (0, 00) with the property that
f € dom(Apmarq) and Apf € H(ORQ) imply f e HT/2(Q)

N (1.28)
and || fllgra+asm @y < C(IIAfllL2@) + IFD f]

He(09))5
and
f e dom(Apmarq) and Fxf € H5(0Q) imply f e H*TE/2(Q)
and || fllg-s+@20) < C(Iflz2) + 1Af L2 + [Fn flr-(o0))-

(751) With I?[z(Q) denoting the closure of C§°(Q) in H?(QY) and with yp,yn as in
(1.26]), one has

H2(Q) = {f € dom(Apmaz.0) |FDf =0 in Gn(0Q)*
and Anf =0 in 9p(0Q)"}. (1.30)

(1.29)

(iv) The manner in which the mapping Yp in operates is as follows: Given
f € dom(Anar) and some arbitrary ¢ € Gy (0SY), there exists g € H3/2(Q) N
dom(Amaz,q) such that ypg =0 and yng = @, and the functional Yp f € Gn(0Q)*
acts (in a coherent fashion) on the given ¢ according to

on (00 {TDf-0) g 00y = ([, A9)12(0) — (DS 9)12(0)- (1.31)
As a consequence, the following Green’s formula holds:
gn 0 {IDf 7N9>gN(aQ) = ([, Ag)r2) — (Af, 9)r2(0), (1.32)
for each f € dom(Aesq) and each g € dom(Ap q).

(v) The mapping YN in operates in the following fashion: Given a func-
tion f € dom(Amaz,0) along with some arbitrary ¢ € Yp(0NY), there exists g €
H3/2(Q) N dom(Amazs,q) such that yng = 0 and ypg = ¥, and the functional
ANS € 9p(0Q)* acts (in a coherent fashion) on the given ¢ according to

%(an)*@zvf,@%(ag) = —(f,Ag)r2) + (Af, 9)2(0)- (1.33)
In particular, the following Green’s formula holds:
@p 09 (IN T 7D9>%(69) =—(f,Ag)r2) + (Af,9)12(0), (1.34)
for each f € dom(Apazq) and each g € dom(An ).
(vi) The operators
vp s dom(Ay o) = H3?(Q) N dom(Amaz.) Nker(yn) — %p(09), (1.35)
yx s dom(Ap o) = H¥?(Q) Ndom(Amas.) Nker(vp) — 9 (89), (1.36)
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are well defined, linear, surjective, and continuous if for some s € [0,3/2] both

spaces on the left-hand sides of (1.35), (L1.36) are equipped with the norm f +—
I fllezs o) + [|AfllL2() (which are all equivalent). In addition,

the kernel of yp and vy in (1.35)—(1.36) is ﬁQ(Q) (1.37)
Moreover,
1¢llwp a0y ~ feHm(Q);E(f)m(Amm (I fllezsr20) + 1AFll L2y

YN f=0, ypf=¢

~ inf 2 + ||A 2
FeH2(Q)Ndom(Amaz.) (Hf”L @ H fHL (Q))
YN f=0, YD f=¢

~ inf +||A , 1.38
fedorr}&mwvn) (Hf||L2(Q) I fHL?(Q)) ( )
AN f=0, yp f=¢
uniformly for ¢ € Yp(01), and
a ~ inf f + [|A
9]l (02 S SN (gl 520 + 1189l L2(2))
Yp9=0, yng=1

~ inf +[|A

g€H??(Q)Ndom(Amaw,0) (||gHL2(Q) | g||L2(Q))
Yp9=0, YN g=¢

~ inf A
gedoml(Izl“mam,sz) (||g||L2(Q) + H g||L2(Q))
Ypg=0, Ing=?

~ inf Agllrz2cq), 1.39
gedom(Apas ) [Agllz2(0) ( )
Apg9=0, INg=7

uniformly for ¢ € Yn(0Q). As a consequence,
Gp(09Q) — H'(02) — L*(99Q) — H1(9Q) — 9p(9Q)*,

(1.40)
G (09) — L2(09) — Dn (9Q)",

with all embeddings linear, continuous, and with dense range. Moreover, the duality
pairings between ¥p(0) and Gp(0N)*, as well as between Yy (0) and Gn(02)*,
are both compatible with the inner product in L*(02).

(vii) For each z € p(Apq), the boundary value problem
(—A+V =2)f=01inQ, fecdom(Anwa),
Apf =¢ inDn(00)*, ¢ e In(0N)*,

is well posed. In particular, for each z € p(Ap q) there exists a constant C' € (0,00),
which depends only on 2, n, z, and V, with the property that

[ fllz2) < ClAp fllgy o)+ for each f € dom(Amaz.n)

(1.41)

with (—A+V —2)f =0 in Q. (142)
Likewise, for each z € p(An q), the boundary value problem
{(—A +V—=2)f=0inQ, [fedom(4nuan) (1.43)
—INf=¢ inGp(0Q)*, ¢ € Gp(0Q),
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is well posed. In particular, for each z € p(An,q) there exists a constant C' € (0,00),
which depends only on 2, n, z, and V, with the property that

Ifll2) < ClAN fllgpa0)- for each f € dom(Amazn)

_ , (1.44)
with (FA+V —2)f =0 in Q.

The powerful machinery developed in Theorem allows us to settle a number
of outstanding issues. First of all, this allows us to address the following question
posed (to the current last-named author) by G. Uhlmann in 2004 ([156]):

“If Q is a bounded Lipschitz domain in R™ and f is in HY/?(0S),
there exists a unique harmonic function u in Q with [Dirichlet] trace
[, and u satisfies |ullgiq) < Cllfllgr/200)- Is it also true that
ullz@) < Cllfllm-172(80) ¢ This holds for smooth domains.”

Specifically, since in the case V' = 0 we have 0 € p(Ap ), one concludes from (1.42)
that

ullr22) < ClFpullgy @0)+ for each harmonic function u € L*(€2). (1.45)

In fact, given the boundedness of 4p in the context of (|1.26)), the opposite inequality
in ([1.45) also holds so that, ultimately,

lull L2() = Vpullwy (o0)+ uniformly in u € L*(Q) a harmonic function. (1.46)

In view of the fact that ¥p from (1.26) is an extension of the ordinary Dirichlet
trace operator vp (from (1.12))), we therefore have

ull2() < Cllvpullgy @a)- for each harmonic function u € H'(Q). (1.47)

Moreover, combining (1.24)) with (1.45) yields that

whenever () is a bounded C*"-domain with r > 1/2, one has (1.48)

[ull2(0) < Clypull-1/2(80) for each harmonic function u € L3(Q). '
More generally, in the case when the potential V' satisfies L>(Q2) > V > 0 at
a.e. point in the bounded Lipschitz domain Q C R", we continue to have 0 &€

p(Apq) so yields

[ullz2() < Cl[pullgyoa)- for each u € L*(Q) with (—A+V)u=0 in Q.
(1.49)
Upon recalling that p is compatible with the ordinary Dirichlet trace vp from
and keeping in mind the identifications in (1.24)), these considerations provide
a satisfactory answer to G. Uhlmann’s question formulated above. The subtle
aspect in this context is that while measuring the size of the Dirichlet trace in the
space H~1/2(9Q) is inadequate within the class of Lipschitz domains, the correct
substitute which does the job is precisely our space ¥n(99)*.
In addition, similar results are valid for our generalized Neumann trace operator

An (cf. (1.26), (1.44)), namely, whenever L>*(2) > V > 0 at a.e. point in the
bounded Lipschitz domain Q C R"™, one has

lullz2() < Cllnullg,oa)- for each u € L*(Q) with (~A+V)u=0 in Q.
(1.50)
In particular,

ull 220y < C|[nullg,oa)- for each harmonic function u € L*(9), (1.51)
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which may be regarded as the analogue of G. Uhlmann’s question for the Neumann
trace operator.

Moreover, in Section[J] we rely on the power of Theorem[I.2]to describe the Krein—
von Neumann extensions of Schrodinger operators on bounded Lipschitz domains.
Our main result in this regard is Theorem stating that if Q C R™ is a bounded
Lipschitz domain, and if the potential V' € L>(Q) is real-valued a.e., then the
Krein—von Neumann extension Ax o of Ay,in o (the minimal realization of —A+V/,
defined as the closure in L?*(Q) of —A + V acting from C§°(f2)) is given by

Agao=-A+V,

dom(Ag,0) = {f € dom(Amaze) | Inf + Ma(0)7pf = 0},

where 7p,7n are the maximal extensions of the Dirichlet and Neumann trace op-
erators defined as in , and where Mq(-) is (up to a sign) a spectral parameter
dependent extended Dirichlet-to-Neumann map, or Weyl-Titchmarsh operator for
the for Schrodinger operator (cf. the discussion in Section .

The concrete description of dom(Ag o) in has the distinct advantage of
making explicit the underlying boundary condition. Nonetheless, as opposed to the
classical Dirichlet and Neumann boundary condition, this boundary condition is
nonlocal in nature, as it involves Mq(-). When Q is smooth and V = 0, Mq(-) is
a boundary pseudodifferential operator of order 1, and becomes the appro-
priate rigorous interpretation in a very general geometric setting of the informal
philosophy, outlined by A. Alonso and B. Simon in [§], asserting that the Krein
Laplacian is realization of the Laplacian with the non-local boundary condition

8, f = d,H(f) on 09, (1.53)

where 9, = v -V, with v denoting the outward unit normal to €2, is the normal
directional derivative and, given a sufficiently nice function f in §2, the symbol H(f)
denotes the harmonic extension to 2 of the trace of f on 9. Near the end of their
paper [§], A. Alonso and B. Simon also raise the following issue:
“It seems to us that the Krein extension of —A, that is, —A with the
boundary condition , is a natural object and therefore worthy
of further study. For example: Are the asymptotics of its nonzero
eigenvalues given by Weyl’s formula?”
In the case where Q is bounded and C*°-smooth, and V € C> (), this has been
shown to be the case three years later by G. Grubb [70]. More specifically, in [70]
Grubb has proved that if N(\, Ax q) denotes the number of nonzero eigenvalues
Aj of Ak o not exceeding A € R,

(1.52)

NN\ Ak o) =#{j e NJO < )X; <A}, VA€eR, (1.54)
then
Qe C® and V € C®(Q) imply
1.55
N\ Age) = (21) "0, |Q A2 4+ O(A=9/2) (1.55)
A— 00
where
0 := max {% —e, %H}, with € > 0 arbitrary. (1.56)

In fact, Grubb considers the case of strongly elliptic differential operators of order
2m, m € N, strictly positive, with smooth coefficients, though we here restrict
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our discussion to the case m = 1. The methods used by Grubb rely on pseudo-
differential operator techniques (which are not applicable to the minimally smooth
case we are aiming at in this work). See also [105], [106], and most recently, [72],
where the authors derive a sharpening of the remainder in to any 6 < 1.

To prove 7, Grubb showed that the eigenvalue problem

(—A+V)f=Af, fedom(Ara), A>0, (1.57)
is spectrally equivalent to the following fourth-order pencil eigenvalue problem
(A +V)?w=A-A+V)w in Q,
w € dom ((—Ama,J,Q)(—Ame)), A > 0.
This is closely related to the so-called problem of the buckling of a clamped plate,
—A?’w=XAw in Q, w € dom ((_Amaw,ﬂ)(_Amin,Q))a A> 0, (1.59)

to which (L.58)) reduces when V' = 0. In particular, this permits one to allude to the
theory of generalized eigenvalue problems, that is, operator pencil problems of the
form Tu = A Su, where T and S are linear operators in a Hilbert space. However,

given the present low regularity assumptions (cf. (1.65)—(1.66) below) we find it
more convenient to appeal to a version of this pencil problem which emphasizes the
role of the following symmetric forms in L?(£2),

aK,Q(fag) = ((—A+V)fv(_A+V)g)L2(Q)7 Vg€ FOI2(Q)7 (1.60)

bK,Q(fa g) = (Vfa VQ)LQ(Q)" + (V1/2f7 V1/2g)L2(Q)7 vfag € ﬁ2(9)7 (161)

(1.58)

and hence focus on the problem of finding f € bis 2(Q) satisfying
axa(f.9) = Abxalf.g), Vge HQ). (1.62)

This type of eigenvalue problem, in the language of bilinear forms associated with
differential operators, has been studied by V. A. Kozlov in a series of papers [84],
[85], [86]. In particular, in [86], Kozlov has obtained Weyl asymptotic formulas
for @ in the case where the underlying domain € is merely Lipschitz and V €
L>(Q).

For rough domains 2, matters are much more delicate as the nature of the
boundary trace operators and the standard elliptic regularity theory are both fun-
damentally affected. Following work in [65], the class of quasi-conver domains was
considered in great detail in [14]. The latter is a subclass of bounded, Lipschitz
domains in R™ where only singularities pointing in the outward direction are per-
mitted. For example, the class of of quasi-convex domains includes all bounded
(geometrically) convex domains, all bounded Lipschitz domains satisfying a uni-
form exterior ball condition (which, informally speaking, means that a ball of fixed
radius can be “rolled” along the boundary), and all bounded domains of class C1"
for some r > 1/2. One of the key features of this class of quasi-convex domains is
the fact that the classical elliptic regularity property

dom(Ap o) C H*(Q), dom(Anq)C H?*(Q), (1.63)
holds (this property, however, is known to fail for general bounded Lipschitz do-
mains; for example, work in [48] imply the existence of a bounded Lipschitz domain

 and f € dom(Ap o) with second-order derivatives not in L?(Q2) for any p > 1).
It was recognized in [I4] that Kozlov’s analysis can be applied to the spectral
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asymptotics of perturbed Krein Laplacians. The main result proved in [14] then
established the Weyl-type spectral asymptotics
N\ Akq) = (2m) " ulQ] A2 4 O(A=(1/2)/2) (1.64)

— 00

for the Krein—von Neumann extension, denoted by A q, of the perturbed Laplacian
(A +V)|cge(q) in the case where 0 < V' € L>(2) and 2 C R" is a quasi-convex
domain.

Another principal goal of the current work is to take the final step in this devel-
opment and prove the Weyl-type spectral asymptotics for Ax o in the case
where again

0<VeL>®), (1.65)
and
2 C R"™ is a bounded Lipschitz domain. (1.66)

We emphasize that the potential coefficient V' is permitted to be nonsmooth and
that the underlying domain €2 is allowed to have irregularities of a more general
nature than the class of quasi-convex domains discussed above. The methods em-
ployed in this work rely on the spectral equivalence to the underlying buckling
problem (see [I5] for an abstract approach), on the use of spectral parameter de-
pendent Dirichlet-to-Neumann map (the Weyl-Titchmarsh operator), and on ap-
propriate Gelfand triples defined in terms of the Dirichlet and Neumann boundary
trace maps. What underpins this entire approach is a sharp boundary trace theory,
that continues to be effective outside of the traditional settings.

Indeed, one of the challenges in the nonsmooth setting considered here pertains
to the lack of H?(Q)-regularity (L.63), which will be replaced by H*/2(Q)-regularity.
It has long been understood that this regularity issue is intimately linked to the
analytic and geometric properties of the underlying domain €. To illustrate this
point, we briefly consider the case when 2 C R? is a polygonal domain with at least
one re-entrant corner. In this scenario, let wy,...,wy be the internal angles of )
satisfying m < w; < 27, 1 < j < IV, and denote by Pi,..., Py the corresponding
vertices. Then (cf., e.g., [87]) the structure of a generic function u belonging to
dom(—Ap.q) is

N
u:Z)\jvj—i—w, for some A\; € R, 1 <j <N, (1.67)

j=1
where w € H?(2) N POII(Q) and, for each j € {1,..., N}, the function v; exhibits a
singular behavior at the vertex P; of the following nature. Given j € {1,..., N},

choose polar coordinates (7;,0;) taking P; as the origin and so that the internal
angle is spanned by the half-lines #; = 0 and 6; = w;. Then

vi(r5,05) = ¢;(r;,0;) 7“7 sin(n6; /w;), 1< j <N, (1.68)
where ¢; is a C*° cut-off function of small support, which is identically one near P;.
In this scenario, v; € H*(Q) for every s < 1 + (m/w;), though v; ¢ H*(™/«i)(Q)

(see Proposition in this regard). This analysis implies that the best regularity
statement regarding a generic function u € dom(Ap ) is

™

u € H*(Q) for every s <1+ (1.69)

max {w1,...,wN}
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and this membership fails for the above critical value of s. We note that

3/2,2) (1.70)

T+ max {w1,...,wN} €
and, in particular, this provides a geometrically quantifiable way of measuring the
failure of the inclusion dom(Apq) C H?(Q) in even for piecewise C°°-
domains exhibiting inwardly directed irregularities. This being said, from (|1.69))—
(1.70) (and a similar type of analysis corresponding to Neumann boundary condi-
tions) we do have

dom(Ap o) C H¥?(Q), dom(Axgq) C H?(Q) (1.71)

for this type of domains, and the exponent 3/2 is sharp. We shall see later that this
sharp regularity result holds in the more general class of arbitrary bounded Lipschitz
domains. The fact that downgrades, in the said class of domains, to just
(1.71)) creates significant difficulties as, for example, the Dirichlet boundary trace
operator fails to map H3/2(Q) into H*(99). One of the key ingredients in dealing
with in lieu of is devising a boundary trace theory which, in addition
to making optimal use of the regularity (measured on the scale of Sobolev spaces)
exhibited by functions belonging to dom(Ap o) and dom(Ay q), also employs the
PDE aspect inherent to a such membership. See Theorem Theorem [5.4] and
Theorem [84] in this regard, which rely heavily on the theory of boundary value
problem for the Laplacian in Lipschitz domains developed in [57], [77], [122]-[125].

Yet another fundamental application of Theorem is the classification of all
self-adjoint extensions of the minimal Schrédinger operator in an arbitrary bounded
Lipschitz domain 2 C R™. The aforementioned family is parametrized in terms of
closed subspaces 2" C ¥n(0Q)* and self-adjoint operators T : & D dom(T) — Z™*
in the manner described in Theorem [I0.1} Specifically, for every closed subspace
Z C 9n(09)* and every self-adjoint operator T' : 2" O dom(T) — Z™* the
operator

Aro=-A+YV,
dom(Ar,q) = {f € dom(Apaz,0) ‘Tﬁpf =Py ip}

is a self-adjoint extension of A,in.0 in L2(£2), where Py« denotes the orthogonal
projection in ¥y (0€2) onto Z* (cf. (10.9)) and, for some fixed p € p(Apa) NR,
we have decomposed (see (10.1)) each f € dom(Amaz,0) as

f=fp+ f, with f € dom(Apq) and f, € ker(Amaz,0 — 1)- (1.73)

Conversely, for every self-adjoint extension A of A0 in L?(Q) there exists a
closed subspace 2~ C ¥y (0Q)* and a self-adjoint operator T': 2" O dom(T) — 2™
such that A = A7 q, that is,

A=—A+V,
dom(A) = {f € dom(Apas0) | T3pf = Par-nfp}-

A key feature of this result is the fact that all said extensions are characterized via
explicit boundary conditions. Of course, the Dirichlet and Neumann self-adjoint
realizations of —A 4 V are among these, but the said family also includes self-
adjoint realizations of the Schrodinger operator with exotic boundary conditions of
a non-local nature, as in the case of the Krein-von Neumann extension Ag o of
Apin,q described in . This provides a most satisfactory answer to a problem

(1.72)

(1.74)
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that has been investigated for more than 60 years in the mathematical literature
(starting with the pioneering works of M. I. Visik and G. Grubb). In addition, this
extends and unifies fundamental results going back to J. L. Lions and E. Magenes,
as well as D. Jerison and C. Kenig.

Finally, in Section [11| we initiate a treatment of variable coefficient second-order
elliptic operators (in place of the ordinary Laplacian). While this topic is worth
pursuing further, here we lay the foundations by demonstrating how the bulk of
the material in Sections extends to the Laplace—Beltrami operator (perturbed
by a scalar potential V') on a compact boundaryless Riemannian manifold.

Our principal result in Section [I1]is the version of Theorem in the aforemen-
tioned geometric setting (see Theorem . In Subsection we also indicate
how to recast such results in the language of ordinary (Euclidean) elliptic differ-
ential operators with variable coefficients, of class C*!', on the closure a bounded
Lipschitz domain © C R™. A benefit of developing the aforementioned machin-
ery for the Laplace—Beltrami operator on Riemannian manifolds is that we may
painlessly reformulate results proved earlier in Subsections [11.1H11.3| in the lan-
guage of variable-coefficient differential operators. Given their intrinsic importance,
we close Section by elaborating on the variable-coefficient versions of our ear-
lier Euclidean trace results (from Theorem Theorem and Theorem in

Theorem [11.24] and Corollary [11.25| for the Dirichlet trace, and in Theorem
and Corollary [11.28] for the Neumann trace.

The layout of the manuscript is as follows. Section [2]is devoted to Sobolev and
Besov spaces on Lipschitz domains. After a thorough review of Lipschitz domains
2 C R™, and nontangential maximal functions we turn to fractional Sobolev and
Besov spaces on  and 9Q. In Section [3] we take up the task of developing, in a
systematic manner, a sharp Dirichlet boundary trace theory in bounded Lipschitz
domains in R™ involving Sobolev and Besov spaces that is particularly well-suited
for the goals we have in mind in this work. Our main results there are Theorems|3.6
[3:8 with a brand of Dirichlet boundary trace operators which continue to remain
meaningful in limiting cases when their ordinary versions fail to apply. Section []
employs the Dirichlet boundary trace operator introduced in Section [3] to derive
far-reaching divergence theorems culminating in Theorem Given Sections
and [4] we are in position to develop a sharp Neumann boundary trace theory on
bounded Lipschitz domains in R™ involving Sobolev spaces, the principal result
on the weak boundary trace map being recorded in Theorem Section [6] dis-
cusses Schrodinger operators and their Dirichlet and Neumann realizations (also,
the Friedrichs extension of an appropriate minimal Schrédinger operator realiza-
tion) in arbitrary nonempty open sets @ C R™ as well as on bounded Lipschitz
domains. Section [7] is devoted to a study of Weyl-Titchmarsh operators Mq(-),
that is, spectral parameter dependent Dirichlet-to-Neumann maps, associated with
Schrédinger operators on bounded Lipschitz domains. The principal objective of
Section [§ is to extend the Dirichlet and Neumann traces by continuity onto the
domain of the underlying maximal Schrédinger operator on bounded Lipschitz do-
mains. The Krein—von Neumann extension of Schrédinger operators on bounded
Lipschitz domains is the principal object of Section [0} We identify the nonlocal
boundary condition characterizing the perturbed Krein Laplacian in terms of an
appropriate extension of Mg (0), and invoking the spectral equivalence between
the buckling problem (with potential V') and the perturbed Krein Laplacian, and,
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with the help of Kozlov’s analysis of Weyl asymptotics for the buckling problem
on Lipschitz domains, we derive the Weyl spectral asymptotics for the perturbed
Krein Laplacian in bounded Lipschitz domains in Theorem A description of
all self-adjoint extensions of the minimal Schrodinger operator and Krein-type re-
solvent formulas in connection with bounded Lipschitz domains are the subject of
Section [I0] Our final Section [I1] offers a glimpse at the case of variable coefficient
operators and treats Laplace—Beltrami operators perturbed by scalar potentials on
boundaryless Riemannian manifolds. This section (a substantial one), initiates such
a treatment and points the way to future research in this direction. In Section
we also present variable-coefficient versions of our earlier Euclidean trace results.

We conclude this introduction by summarizing the notation used in this work.
Throughout, the symbol H is reserved to denote a separable complex Hilbert space
with (-, - )% the scalar product in H (linear in the second argument), and I3 the
identity operator in H. Next, let T be a linear operator mapping (a subspace of)
a Banach space into another, with dom(7") and ran(7") denoting the domain and
range of T. The closure of a closable operator S is denoted by S. The kernel
(null space) of T is denoted by ker(T"). The spectrum, point spectrum (i.e., the
set of eigenvalues), discrete spectrum, essential spectrum, and resolvent set of a
closed linear operator in H will be denoted by o(-), 0,(-), da(:), Tess(-), and p(-),
respectively. The symbol s-lim abbreviates the limit in the strong (i.e., pointwise)
operator topology.

The Banach space of bounded linear operators on H is denoted by B(#H). The
analogous notation B(X;, X>) will be used for bounded operators between two Ba-
nach spaces X7 and X5. Moreover, X} — X5 denotes the continuous embedding of
the Banach space X into the Banach space X5. In addition, Uy + U, denotes the
direct sum of the subspaces U; and Us of a Banach space X'; and V; &V, represents
the orthogonal direct sum of the subspaces V; and V5 of a Hilbert space H.

Given a Banach space X, we let X* denote the adjoint space of continuous
conjugate linear functionals on X, that is, the conjugate dual space of X (rather
than the usual dual space of continuous linear functionals on X'). This avoids the
well-known awkward distinction between adjoint operators in Banach and Hilbert
spaces (cf., e.g., the pertinent discussion in [54] pp. 3-4]).

The symbol L?(€2), with Q C R™ open, n € N\{1}, is a shortcut for L?(Q, d"z),
whenever the n-dimensional Lebesgue measure is understood. (For simplicity we
exclude the one-dimensional case n = 1 in this work as the case Q = (a,b) C R has
been treated in detail in [14, Section 10.1].) Moreover, if 2 is a Lipschitz domain
in R™, L?(0N) represents the Lebesgue space of square integrable functions with
respect to the canonical surface measure on 0€). For brevity, the identity operator
in L?(Q) and L?(9€2) will typically be denoted by I if no confusion can arise. The
symbol D(Q) is reserved for the set of test functions C§°(2) on 2, equipped with
the standard inductive limit topology, and D’(2) represents its dual space, the set
of distributions in . In addition, C (resp., C_) denotes the open complex upper
(resp., lower) half-plane, while #(M) abbreviates the cardinality of the set M. We
agree to define Ny := NU{0}, so that N becomes the collection of all multi-indices
with n components. As is customary, for each o = (a1, ..., a,) € Nj we denote by
la] :== a1 + ...+ a, the length of a. Also, we shall let S"~! := {z € R"||z| = 1}
denote the unit sphere in R™ centered at the origin.
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We shall often use the common convention of denoting by the same letter C'
possibly different multiplicative constants in various inequalities throughout the
monograph. Moreover, writing “A(z) ~ B(z) uniformly in «” signifies the existence
of some number C' € (1,00) which is independent of x with the property that
A(z)/C < B(x) < CA(x) for every z.

Finally, a notational comment: For obvious reasons, which have their roots in
quantum mechanics, we will, with a slight abuse of notation, dub the expression
—-A = - 2?21 BJZ (rather than A) as the “Laplacian” in this work. When acting
on vector-valued functions (or distributions), the Laplacian is considered compo-
nentwise.

2. SOBOLEV AND BESOV SPACES ON LIPSCHITZ DOMAINS

In this section we recall a variety of background material including, a thorough
review of Lipschitz domains in R™, nontangential maximal functions, fractional
Sobolev and Besov spaces on arbitrary open sets and on bounded Lipschitz domains
in R™, as well as on the boundaries of bounded Lipschitz domains, and Sobolev
regularity in terms of nontangential maximal functions.

2.1. The class of Lipschitz domains. The reader is reminded that a function
(acting between two metric spaces) is called Lipschitz if it does not distort dis-
tances by more than a fixed multiplicative constant. We begin by giving the formal
definition of the category of Lipschitz domains (cf., e.g., [IT1], for more on this
topic).

Definition 2.1. Let Q be a nonempty, proper, open subset of R™,

(i) Call 2 a Lipschitz domain near xg € 9 if there exist r,7 € (0,00) with the
following significance. For some choice of an (n — 1)-dimensional plane H C R™
passing through the point xg, some choice of a unit normal vector N to H, the
cylinder Cp r(xo, N) :={a' +tN |z’ € H, |z’ —xo| < r, |t| < T} (called coordinate
cylinder near xo) has the property that

Crr(xo, N)NQ =C, - (zo, N)N {2’ +tN |2’ € H, t > o(z')}
={2'+tN|z' € H, |2 —zo| <r, t € (p(z),T)}, (2.1)

for some Lipschitz function ¢ : H — R (called the defining function for 02 near
xo), satisfying
o(x9) =0 and |p(z")| <71 if |[2" — x| < 7. (2.2)

Collectively, the pair {CTvT(xo,N),ga} will be referred to as a local chart near x,
whose geometrical characteristics consist of v, T, and the Lipschitz constant of .

(i) Call Q a locally Lipschitz domain if it is a Lipschitz domain near every
point x € OS).

(#i7) Call Q a Lipschitz domain if  is a locally Lipschitz domain and at each
boundary point there exists a local chart whose geometrical characteristics are in-
dependent of the point in question (collectively, the said geometrical characteristics
are going to be referred to in the future as the Lipschitz character of ).

(iv) The category of C*-domains with k € NU{oo} is defined analogously, requiring
that the defining functions ¢ are of class C*.
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We emphasize that no topological conditions are placed on the class of bounded
Lipschitz domains considered here; in particular, the boundaries of the domains in
question are allowed to be disconnected.

A few useful observations related to the property of an open set Q2 C R™ of
being a Lipschitz domain near a point xg € 92 are collected in the lemma below
(proved in [9, Proposition 2.8]). The reader is reminded that the complement of a
set E C R", relative to R”, is denoted by E¢ := R™\E. In addition, by E° and
E we shall denote the interior and closure of E in the standard topology of R™,
respectively.

Lemma 2.2. Assume that Q is a nonempty, proper, open subset of R™, and fix
some point xg € 0.

(i) If Q is a Lipschitz domain near zo and if {Cy(zo, N), ¢} is a local chart near
xo (in the sense of Definition then, in addition to (2.1]), one also has

Crr(xo, N)NON =Cp (2o, N)N{z' +tN |2’ € H, t = p(a')}, (2.3)

Cr (20, N) N (Q)° =Cpr(mo, N)N {2 +tN |2’ € H, t < p(z')}. (2.4)
Furthermore,

Crr(x0, N)NQ =C,r(xo, N)N{a' +tN |2' € H, t > p(a')}, (2.5)

Cror (20, N) N (Q)° = Cror (w0, N) N {2/ + N | € H, t > p(a')). (2.6)

(i1) Suppose there exist an (n — 1)-dimensional plane H C R™ passing through the
point xg, a choice of a unit normal vector N to H, an open cylinder C, -(zo, N) =
{/ +tN |2’ € H, |2’ —xo| < r, |t| < 7} and a Lipschitz function ¢ : H — R
satisfying such that holds. Then, assuming xo ¢ (Q)°, it follows that Q
is a Lipschitz domain near xg.

Definition and item () in Lemma show that if Q@ C R"™ is a Lipschitz
domain near a boundary point zy then, in a neighborhood of xg, the topological
boundary 02 agrees with the graph of a Lipschitz function ¢ : R*~! — R, consid-
ered in a suitably chosen system of coordinates (which is isometric with the original
one). Then the outward unit normal v = (v1,va,...,v,) to © has an explicit for-
mula in terms of V’¢, the (n — 1)-dimensional gradient of . Specifically, if J#"~!
stands for the (n—1)-dimensional Hausdorff measure in R™, then in the new system
of coordinates we have
V(x/7 L,O(.T/)) _ ((8190)(xl)7 ) (8,1,1(,0)(‘%/), _1)

L+ |(Vig)(a)[?
(V'¢) ('), ~1)

= for #" '-a.e. 2’ near ), (2.7)
VIHI(Ve) ()2
where (V'p)(z') := ((819)(2), ..., (On—19)(a')) exists for A" 1-ae o' € R*!
thanks to the classical Rademacher theorem (in this vein, see, e.g., [59]).
For a Lipschitz domain €2 in R™ the surface measure on 0f2 is defined via the
formula

o= "1 00. (2.8)
As a consequence, the outward unit normal v to Q exists o-a.e. on 9§2. We also
note here that locally, near any boundary point zg € 012, identifying 02 with the
graph of a Lipschitz function ¢ : R"! — R (in a suitable system of coordinates,
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isometric with the original one) permits us to express the surface measure in this
new system of coordinates as

d"ro(z) = 1+ |(V'e)(a)]2d" 2 for z = (2/, o(2')) near x. (2.9)

The theorem below, established in [0, Theorem 2.10], formalizes the idea that
a connected, proper, open subset of R™ whose boundary is a compact Lipschitz
surface is a Lipschitz domain. Before stating this fact, we note that the connectivity
assumption is necessary since, otherwise, 1 := {z € R"||z| < 2 and |z] # 1}
would serve as a counterexample.

Theorem 2.3. Let Q be a nonempty, connected, proper, open subset of R™, with
00 bounded. In addition, suppose that for each xy € O there exist an (n — 1)-
dimensional plane H C R"™ passing through o, a choice N of the unit normal to
H, an open cylinder Cy r(xo, N) = {2/ +tN |2’ € H, |2/ —zo| <, |t| <7} and a
Lipschitz function ¢ : H — R satisfying such that holds. Then € is a

Lipschitz domain.

The proof of the above result relies on Lemma and the generalization of
the Jordan-Brouwer separation theorem for arbitrary compact topological hyper-
surfaces in R™ noted in [7, Theorem 1, p. 284]. To proceed, we make the following
definition.

Definition 2.4. (i) A nonempty set Q@ C R™ is called starlike with respect
to xg € Q if Z(z,x09) C Q for every x € Q, where I(x,xq) denotes the open line
segment in R™ with endpoints x and xg.

(73) A nonempty set @ CR™ is called starlike with respect to a ball if there
exists a ball B C Q with the property that Z(x,y) C Q for every x € Q and every
y € B (that is, Q is starlike with respect to any point in B).

It turns out that local Lipschitzianity may be characterized in terms of local
starlikeness (with respect to balls), in the precise sense described in the theorem
below, proved in [9 Theorem 3.9].

Theorem 2.5. Let £ be an open, proper, nonempty subset of R™. Then € is a
locally Lipschitz domain if and only if every point o € 0§ has an open neighborhood
O C R™ with the property that QN O is starlike with respect to a ball.

Moreover, any nonempty bounded convex open set is a Lipschitz domain.

Next, we discuss various types of cone properties possessed by locally Lipschitz
domains. By an open, truncated, one-component circular cone in R™ we shall
understand a set of the form

Uo.n(20,v) = {x € R™| cos(0/2) |z — wo| < (x — x0) - v < h}, (2.10)

where xy € R” is the vertex of the cone, v € S*™! is the direction of the axis,
0 € (0,7) is the (full) aperture of the cone, h € (0,00) is the height of the cone,
and where “dot” denotes the standard inner product in R™.

Here is a characterization of local Lipschitzianity in terms of a two-sided cone
condition from [9, Proposition 3.7].

Theorem 2.6. Assume that Q@ C R"™ is a nonempty, proper, open set and fix a
point xg € 02. Then § is a Lipschitz domain near xq if and only if there exist a
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height h € (0,00), an angle 8 € (0,7), along with a radius r € (0,00) and a function
v B(zo,7) NOQ — S"~1 which is continuous at o and with the property that

Uy n(x,v(x)) CQ and U n(x,—v(z)) CR"\Q, Vze B(xg,r)NoQ. (2.11)

The global two-sided cone property for bounded Lipschitz domains recorded
below is a direct consequence of Theorem [2.6]

Corollary 2.7. Let Q C R™ be a bounded Lipschitz domain. Then there exist a
height h € (0,00), an angle 6 € (0,7), and a continuous function v : 9Q — S"~!
such that

Yo p(z,0(x)) CQ and U p(z,—v(xz)) CR™\Q, Ve . (2.12)

In fact, it is possible to characterize local Lipschitzianity in terms of one-sided
cone conditions. The case of an exterior cone condition is described in the next
theorem, proved in [9, Proposition 3.5].

Theorem 2.8. Let ) be a proper, nonempty open subset of R™ and fix xo € 0S2.
Then the set § is a Lipschitz domain near xo if and only if there exist two numbers
r,h € (0,00), an angle 0 € (0,), along with a function v : B(xg,r) N JQ — S"~1
which is continuous at xqg and such that

Uo p(z,v(z)) CR™Q, Ve B(zg,r)N O (2.13)

Finally, a characterization of local Lipschitzianity in terms of an interior cone
condition is contained in the theorem below (taken from [J, Proposition 3.6]).

Theorem 2.9. Assume that Q C R"™ is an open set and suppose xg € 0. Then Q
is a Lipschitz domain near xo if and only if there exist two numbers r,h € (0,00),
an angle 6 € (0,7), and a function v : B(zg,r) N QY — S"~1 which is continuous
at xo and such that

B(zg,7) N OQ = B(zg,r) NA(Q) and

(2.14)
Uy n(x,v(x)) CQ, Vae B(xg,r)N o

Next, we recall several basic definitions. Given a bounded Lipschitz domain )
in R™ and some fixed & € (0, 00), for each x € 90 we first define the nontangential
approach region with vertex at x and aperture parameter x by setting

Ti(z) = {y € Q|z —y| < (14 r)dist (y, 00)}. (2.15)
Results in [I11I] prove that

x € 'y(x) for o-a.e. x € ON. (2.16)

Second, given an arbitrary u : 2 — C, we define its nontangential maximal function
and its pointwise nontangential boundary trace at x € 92, respectively, as

(M) () := sup {|u(y)| |y € Tu(z)} € [0,00], (2.17)
and
(u g;}'t') (x) == Fﬂ(ii)gzﬁﬁ u(y), (2.18)

whenever the above limit exists. In this connection remark that by the
nontangential convergence I'y(z) 3 y — « in makes sense for o-a.e. x € 0.

These definitions readily adapt to vector-valued functions, in a natural fashion
(interpreting |u(y)| as norm in (2.17), and considering uu;;l‘t' componentwise). In



SHARP BOUNDARY TRACE THEORY AND SCHRODINGER OPERATORS 21

the sequel, we shall make no notation distinction between the scalar-valued and the

vector-valued case. Clearly,
Kk—n.t.

] 5,

It turns out that A u is a lower semi-continuous function on 9f, hence Lebesgue

measurable. In addition, the parameter s plays a somewhat secondary role, since

for any k1, k2 € (0,00) and p € (0,00) there exists C = C(k1, k2,p) € (1,00) with

the property that, for each u : Q@ — C,

C_lHNfﬂ“HLP(aQ) S HN”2U|’LP(SQ) < OV,

| < N.u pointwise on 9. (2.19)

uHLP(aﬂ). (2.20)

Also, whenever u : Q — C is such that N,u € LP(9Q) for some > 0 and p € (0, 00)
for any aperture parameters k1, ke € (0, 00) it follows that

K1—n.t. . . .
exists o-a.e. on Of) if and only if

o0 Ko—n.t. . (221)
20 exists o-a.e. on Of).

We shall need two additional properties of the nontangential maximal operator
(i.e., the mapping v — N,u). First, as proved in [I19, Proposition 2.3], for any
p € (0,00) there exists Cp, € (0,00) with the property that for every measurable
function u :  — C one has

Neu € LP(9Q) implies u € L™/ ("=D(Q) (2.22)
and |ul| prp/ -1 () < CpllNwul| Lr a0

The second property alluded to above is contained in the lemma below.

Lemma 2.10. For any bounded Lipschitz domain Q C R™ there exists a compact
set K C  with the property that for each p € (0,00) and £ > 0 one can find a
constant C € (0,00) such that

HNN“HLr»(aQ) S C(HNN(vu)HLP(BQ) + g 4 u(z)]), (2.23)

for every function u € C1(Q).

Proof. Given a bounded Lipschitz domain  C R™, pick the parameters h € (0, 00),
6 € (0,7), and the continuous function v : 9Q — S"~! as in Corollary Then,
for a suitably small r > 0, define K := {z € Q|dist (z,09) > r}. Specifically, we
select r > 0 such that for every x € 00 the entire flat portion of the boundary of
the truncated circular cone % ,(z,v(z)) is contained in K.

Next, we pick an arbitrary point x € 9Q along with some y € % j,(z,v(x)), and
consider

h

(y—x)-v(x)
Then the fact that (z — x) - v(x) = h places the point z on the flat portion of the
boundary of % »(z,v(z)). In particular, z € K. Keeping this in mind, it follows
that for every function u € C(2) we may estimate (using the Mean-Value Theorem
and the fact that % 5 (x,v(z)) is a convex subset of Q)

lu(y)l < fuy) = u(2)| + |u(z)] <y —z[ sup [(Vu)(€)]+ sup [u(C)]
€€ly,2] CEK

z:=x +t(y — ), where t := (2.24)

< Co.nsup{|(Vu) ()| [§ € . n(x,v(x))} + sup [u(O)]; (2.25)
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for some constant Cpj € (0,00). These considerations suggest introducing the
following version of the nontangential maximal operator

(/\~/'g,hw) (z) :==sup{|lw(¥)| |y € % n(z,v(x))}, VzedQ, (2.26)
where w is an arbitrary (possibly vector-valued) continuous function defined in Q.
In this notation, ([2.25)) yields

(Nonw) () < Copn(Nyn(Va)) (2) + sup lu(Q)], Ve on, (2.27)

hence, further,

’|N9,hu||Lp(aQ) g O(H-/,\?@,h(vu)HLp(@Q) + Sup |U(C)|)’ (228)
CeEK

for every function u € C1(£2). Having established (2.28)), Proposition 2.2 in [119]
and the remark following its proof (where the two brands of nontangential maximal

operators, J\~fg7h and N, are compared) then allow us to conclude that (2.23)) holds
for every function u € C1(€Q). O

Both the notion of nontangential maximal function and the notion of nontan-
gential boundary trace are pivotal in the formulation of the following version of the
divergence theorem recorded below. This is a particular case of a result established
in [I11] (see also [I10]) for a more general category of sets than the class of Lipschitz
domains.

Theorem 2.11. Let Q C R™ be a bounded Lipschitz domain and denote by v
the outward unit normal to 2, which is well defined o-a.e. on 0S), where o is the
canonical surface measure defined as in . Also, fix some aperture parameter
k > 0. Then for every vector field satisfying

Fe [Llloc(Q)]n, the nontangential trace ﬁ‘g;n't' exists o-a.e. on 0L, (2.20)
2.29
Ni(F) belongs to L'(0Q), and divF belongs to L' ()

(with the divergence taken in the sense of distributions in Q), one has
1 = |k—n.t. _
/ divE dnz = / V- (F . )d” lo, (2.30)
Q aQ
where, as before, “dot” denotes the standard inner product in R™. As a corollary

of this and ([2.16)),
/ divF d"z = / V- (F|BQ) d" Yo for every
Q o0
vector field F € [CO(Q)]n with divF € L*(Q) (2.31)
(hence, in particular, for every F € [Cl(ﬁ)]n)

In the next lemma we record an approximation procedure developed in [41],
[113], [117], [158).

Lemma 2.12. Given a bounded Lipschitz domain 2 C R", there exists a family
{Q}oen of domains in R™ satisfying the following properties:

(1) Each Qy is a bounded Lipschitz domain, with Lipschitz character bounded uni-
formly in € € N.

(ii) For every £ € N one has Qy C Qpy1 C Q, and Q = Uren -
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(73t) There exist k € (0,00) and bi-Lipschitz homeomorphisms Ay : 0Q — 08,
¢ € N, such that for every x € 9Q one has Ay(x) = x as £ — oo, and Ag(x) € T (x)
for each £ € N.

(iv) If for each £ € N we let v° be the outward unit normal to Qy and if v denotes
the outward unit normal to Q, then vtoAy — v as £ — oo both pointwise o-a.e. and
n [LQ((?Q)TL.

(v) There exist non-negative, measurable functions we on O which are bounded
away from zero and infinity uniformly in £ € N, converge pointwise o-a.e. to 1 as
£ — oo, and which have the property that for each integrable function g : 9y — R
the following change of variable formula holds

/ gdn_lUg = / gOAg Wy d”_la, (2.32)
0Qy o
where oy is the canonical surface measure on 0.

We shall use the notation Q, 7 Q as ¢ — oo to indicate that the family {Q}ren
approximates 2 in the manner described in Lemma above.

2.2. Fractional Sobolev, Besov, and Triebel-Lizorkin spaces in arbitrary
open sets. Given a nonempty open set @ C R", we denote by H*(2) the scale of
L?-based Sobolev spaces of (fractional) order s € R in Q. More specifically, with
S'(R™) and % denoting, respectively, the space of tempered distributions and the
Fourier transform in R”, for each s € R set

H*(R"):= {f € S'R") | (1 + [¢[*)"*F f € L*(R™)}, (2.33)
equipped with the natural norm

1y = 10+ 1 P2 DO 2

= ([ a+eprieneras) " (2.34)
Then define
H*(Q) = {f € D'(Q) | there exists g € H*(R") such that f = g|a}, (2.35)
where g|o € D/(Q) stands for the restriction of the distribution g € D'(R™) to the
open set €2, and endow the space (2.35) with the norm

s(q) = inf s(rny, Vf€HQ). 2.36
£l (Q) g H (™) lgll e (R™) f () ( )

f=gla
The above definition allows for more or less directly transferring a number of prop-
erties of the scale of fractional Sobolev spaces in R™ to the corresponding version
of that scale considered in an arbitrary open subset €2 of the Euclidean space. For

example, we have
H'(Q) — H*(Q) continuously, if s1,s2 € R, $1 > 59, (2.37)
and
0% : H*(Q) — H*~1°/(Q) continuously, for each a € NJ and s € R. (2.38)
Furthermore, if we set

(@) = {¢lo | ¢ € CFPR™)} (2.39)
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then
C>(Q) — H*(Q2) densely, for every s € R, (2.40)

and

for every 1) € C°°(Q) and every s € R, the assignment

2.41
H?(Q) > ur ypu € H°(Q) is well defined, linear, and bounded. (2:41)

Given an open set & C R™ and some p € (0,00), we use Lj, () to denote
the space of functions which are locally p-th power integrable in 2. We shall also
occasionally work with the local version of the scale (2.35)), defined for s € R as

H; () :={f € D'(Q)|(f € H*(Q) for every ¢ € C3°(Q)}. (2.42)

In addition, for each s € R, by H 5(Q) we shall denote the closure of C5°(f2) in
H5(Q), that is,
o —_H*(Q)
H?(Q) .= C§°(Q) , VseR (2.43)
Finally, we consider L2-based Sobolev spaces of integer order, that is, W¥(Q)
with k € Ny, intrinsically defined in 2 as

WH(Q) := {u € Li,.(Q) | 0%u € L*(Q) for each o € Nj with |a| <k}, (2.44)
and equipped with the natural norm
lullwey =3 [0%ullz2), YueWH(Q). (2.45)
o] <k
Furthermore, given k € Ny set

Q) = ) @, (2.46)

While for arbitrary open sets  C R™ one only has H*(Q) ¢ W*(Q) for each
k € Ny, equality actually holds in the class of bounded Lipschitz domains (to be

discussed later; cf. (2.78)).

Fix a family of Schwartz functions {(; 20 C S(R™) possessing the following
properties:

(a) there exist constants a,b, ¢ € (0,00) such that

supp (Go) C {z € R"[[z] < a}, (2.47)
supp (¢;) C {z € R" 6277 < |z| < 2771} for each j € N; -

(b) for every multi-index a € Nj there exists a number C,, € (0, 00) such that

sup sup 2/119°¢; (x)| < Cu; (2.48)
z€R™ jEN

(c) for every x € R™ one has
> Gl =1. (2.49)
=0

Then the standard Besov scale in R™ consists of spaces B24(R™) defined for each
p,q € (0,00] and s € R as

BPU(R™) := {f e S'(R™) Z ||2sjg—1(gjyf)||%p(w) < oo}. (2.50)

Jj=0
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Each such space is equipped with the natural quasi-norm

BRARY) 3 £ Wl = (127 GE Dl ) (251)
7=0

rendering BP*9(R™) a quasi-Banach space (which is actually a genuine Banach space
in the range 1 < p,q¢ < o0). We mention that a different choice of a family of
functions {¢;}52, C S(R™) satisfying (a)-(c) in (2.50)(2.51) yields the same vector
space, which is now equipped with an equivalent quasi-norm. We note also that for
0 < p,q < oo and s € R the class of Schwartz functions in R™ is dense in B?*4(R"™).
There is a wealth of material pertaining to Besov spaces in the Euclidean setting
and the interested reader is referred to the monographs [24] by J. Bergh and J.
Lofstrom, [I35] by T. Runst and W. Sickel, and [149] by H. Triebel.

Moving on, having fixed an arbitrary open set  C R™, whenever 0 < p,q < oo
and s € R it is meaningful to define

BP(Q) := {f € D'(Q) | there exists g € BYY(R") such that glo = f}, 252)
2.52
/] pragny |9 € BYIR"), gla=f}, Vfe Br(Q).

This definition permits transferring with ease a number of properties shared by
Besov spaces in the Euclidean setting (cf., e.g., the discussion in [135, Section 2.2])
to arbitrary open subsets of R", such as

pra(q) = inf {|lg]

B*%(Q) = H*(Q) for each s € R, (2.53)

(identical vector spaces with equivalent norms) and, with continuous inclusions,
By (Q) = BEA(Q) if s> 51, 0<p,q< oo, (2.54)
BP0 (Q) — BE1(Q) if 0<qgo<q1 <00, 0<p<oo, seR. (2.55)

Moreover, we note that (2.55) (used with g1 := oo and s := s¢) together with (2.54))
(used with ¢ := ¢1) imply

BP0 (Q) — BEI(Q) if s9 > 51 and 0 < p,qo,q1 < 0. (2.56)
In addition, for each multi-index o € N, the partial derivative operator

9“ : BP1(Q) — Bf’_qlal(Q) is well defined and bounded

(2.57)
whenever 0 < p,qg < oo and s € R.

In particular, from (2.53) and (2.56)) one concludes that for any open set Q C R"
one has the continuous inclusion (to be relevant shortly)

H*(Q) = B?{;z(Q) — B2'(Q) whenever sy > s;. (2.58)

Finally, for each ¢ € C5°(R™), the operator of multiplication by ¢ (in the sense of
distributions)

BP(Q) 3 u+— pu € B29(Q) is well defined and bounded

(2.59)
whenever 0 < p,g < oo and s € R.

The scale of Triebel-Lizorkin spaces in R™ may be introduced in a similar fashion
(using the same approach based on Littlewood—Paley theory). Specifically, having
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fixed a family {(;}52, satisfying properties (a)-(c) listed in (2.47)~(2.49), for each
s € R and 0 < g < oo, define the Triebel-Lizorkin space FS’”‘?(R") as

(Z |29 F~1 )|q> v € L”(R”)} (2.60)

FPa(R") = { feS (R

and equip it with the semi-norm

FPa(R™) (2.61)

)=

o0 . 1/q
(Z 25ﬂf-1<<jfff>|Q)
Jj=0 LP(R™)

See [59] for a precise definition of F2°:¢(R™) (cf. also [I35]). Then, as is well-known,
FP49(R™) is a quasi-Banach space whenever s € R, 0 < p < oo, and 0 < ¢ < o0,
which is actually a Banach space if 1 < p < 0o and 1 < ¢ < co. In all cases,

S(R™) — FPY(R") — S'(R™). (2.62)
Also, given s € R along with 0 < p < oo,
S(R™) — FP4(R") densely, if and only if ¢ < co. (2.63)

For further reference we also point out that, for each 0 < p < o0 and s € R, one
has (cf., e.g., [139]):

FPO(R™) — FP9(R™) whenever 0 < gp < ¢1 < 00. (2.64)
Also, for each 0 < p,q < 00, s € R, and m € N,
FPUR™) = {f € S'(R")[8*f € F"? (R") for all o € Nj with |oo| < m}

={feF (R")|0“f € F' (R") for all o € Nj with |a| =m},
(2.65)

and

)~ Z HaafHFffm(Rn)

lo|<m

~
~

y+ Y 0% Fllpra g, (2.66)

lae|=m

uniformly in f € FP?(R™). In particular, for each multi-index o € N{}, one has the
well defined, linear, and bounded operator

8% : FP4(R™) —s FP9 (R™). (2.67)

s—|al
Furthermore, one has continuous embeddings (cf., e.g., [135], p. 30])
Bpmin{pa(R1) —y FPA(R™) s BPMaX{PaH(R™) for 0 < p,q < oo, s € R. (2.68)
In particular,
FPP(R™) = BPP(R™) for 0 <p< oo, sER (2.69)
(identical vector spaces with equivalent quasi-norms).

As in the case of Besov spaces, given an arbitrary open set {2 C R"™, whenever
0<p,qg<ooand s € R, we define

FP(Q) == {f € D'(Q) | there exists g € FP9(R™) such that glo = f},

(2.70)
Vg€ FPAR™), glo = f}, Vfe FPiQ).
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As in the past, this allows us to readily transfer various properties enjoyed by
Triebel-Lizorkin spaces in the Euclidean setting (cf., e.g., [I35, Section 2.2]) to
arbitrary open subsets of R”. For instance, for each ¢ € C§°(R™), the operator of
multiplication by ¢ (in the sense of distributions)

FPI(Q) 5 ur— pu € FP(Q) is well defined and bounded

(2.71)
whenever 0 < p,q < oo and s € R,
and one has the continuous inclusions
F0oo(Q) = FPU(Q) if s9>s1, 0<p,q< oo, (2.72)
FPao(Q) — FP(Q) if 0<qgo< g1 <00, 0<p<oo, seR. (2.73)

Moreover,

the inclusion in (2.72) is strict, and so (2.74)
is the inclusion in (2.73)) if g¢o < ¢1. '

In particular, (2.73) (used with ¢ := oo and s := s¢) together with (2.72)) (used
with ¢ := ¢1) imply

FPao(Q) — FP(Q) if s > s and 0 < p,qo,q1 < 0. (2.75)
Finally, implies
Brin{pal(Q) <y FPa(Q) s BEax{Pa(Q) for 0 < p,g< oo, s€R.  (2.76)
As a consequence,
FPP(Q)=BPP(Q) for 0<p<oo, seR (2.77)
(identical vector spaces with equivalent quasi-norms).

2.3. Fractional Sobolev and Besov spaces in Lipschitz domains. Hence
forth, unless otherwise mentioned, 2 C R™ is a bounded Lipschitz domain. In such
a setting, one has

H?(Q) =W?*(Q) (hence also ISIQ(Q) = V(f/g(Q))7 for each s € Ny, (2.78)
in the sense that H*(Q2) and W#(£2) coincide as vector spaces, and the norm on

H?*(Q) (from (2.36))) is equivalent with
[ Z 0% fll L2y, V. f € H(Q). (2.79)

lal<s

Continue to assume that 2 C R™ is a bounded Lipschitz domain and, for each
s € R, define

H§(Q) == {f € H*(R") [supp f C O }

(2.80)
viewed as a closed subspace of H*(R").
Then (2.37) (used with Q := R™) implies
Hi;' () — HF?(Q)) continuously, if s1,s2 € R, s1 > so. (2.81)

—_~—

In addition, if C§°(£2) denotes the set of functions from C§°(£2) extended to all of
R™ by zero outside their supports, then (cf. [(7, Remark 2.7, p. 170])

—_~—

C§°(Q) — H{(Q) densely for each s € R. (2.82)
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For each s € R, it is of interest to also introduce
H:(Q) := {u € D'(Q) | there exists f € Hj(Q) with f|, =u},

lallms oy 1= inf {Ifllseeny | £ € HG(Q), flgy = u}, Vi€ H2(Q).
In particular,
H;(Q) = {f|Q | f€H;(Q)} C H*() and the inclusion
H;(Q) — H®(Q) is continuous for each s € R.

(2.83)

(2.84)

As is apparent from definitions, the operator of restriction (in the sense of distribu-
tions) H*(R™) 3 f — flo € H*(Q) maps H§(Q2) continuously onto H:(2) for each
s € R. Together with (2.82) this implies that

C5o(Q) — HZ(Q) densely, for each s € R. (2.85)
We also record the identification (cf. the discussion in [77], [I19])
(H*(Q))" = Hy*(Q), VseR, (2.86)

where each V' € H;*(1) is identified with the functional
(HS(Q))* S U+ V(u) = (Hs(Q)* <V’U>H~(Q) (287)

acting on an arbitrary v € H*(2) according to the (unambiguous, due to (2.82))
recipe:

(HS(Q))*<V7 u>Hs(Q) = Hfs(Rn)<V, U>H5(Rn)’ where U is (258)
any distribution in H*(R"™) such that U’Q = u,

where Hfs(Rn)<', > He (R is the canonical duality pairing between distributions in

H~%(R™) and, respectively, H*(R") = (H*(R"))*. Moreover, if ¢ € C*°(Q) and
u € HE(Q) for some s € R, then ¢u := Pu (considered in the sense of distributions),
where ¥ € C*°(R") is any smooth extension of v, is unambiguously defined (due

to (2.82), belongs to H§(£2), and for every v € H*(§2) one has
HS(Q)<1/’“’”>H—5(Q) = H3(9)<U7EU>H—S(Q)' (2.89)

Since H*() is a reflexive Banach space for each s € R (again, see the discussion
in [77], [119]), from (2.86) we also conclude that

(H3(Q)) = H™*(Q), VseR. (2.90)
For future use we note the identification
(HS(Q))* = H *(Q), whenever —1 <s< 1, (2.91)

in the sense that

(H*(Q))" = Hy*(Q) > ur ul, € H*(Q) 2.9
2.92
is an isomorphism whenever — % <s< %

Furthermore, if tilde denotes the extension of a function to the entire Euclidean
space by zero outside its original domain, then

for each s € (— 3, 1), the inclusion C§°(Q2) < H*(Q2) has dense range,
and the assignment C>(Q) > ¢ — ¢ € H(Q) extends by density to a
linear and bounded isomorphism from H?*(€2) onto H§(2), which is the

inverse of the restriction map Hg(€) 3 u — u|, € H*(Q) (cf. (2.92)).

(2.93)
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It has been shown in [I19] that

H*(Q) = H(Q) whenever s > —3 and s — % ¢ No. (2.94)
As a consequence of this and (2.83)), one therefore has
H(Q) = {fla|f € Hy(Q)} if s> —1 and s — L ¢ N. (2.95)

From Lemma 2.2 in [I21] it follows that if s € (— 1, 1) then for each u € H*(Q2)
and v € H*(R™) one has

HS(Rn) (ﬂ, 'U>H—5(Rn) = Hs(Q) <u, U|Q>H—S(Q) . (296)
Together, (2.43)), the first line in (2.93)), and (2.95)) also imply that
H*(Q) = H*(Q) = H(Q) for each s € (- 3,1). (2.97)

Later on, we shall use the fact that
{ue H*(R") |suppu C 9Q} = {0} whenever s > —1. (2.98)
In addition, we shall need the following lifting result, valid for each s > 0:

u € H'¥(Q) if and only if u € L*(Q) and Vu € [HS(Q)]H,
S (2:99)
and |lul| gi+s () = [JullL2@) + ||VUH[HS(Q)]"’ uniformly in u.
See, for instance, [77, [104] 119, 153] for these and other related properties. We also
note that when € is a bounded Lipschitz domain in R™ and s € (0,1), then there
exists C € (1,00) such that for every f € H*(2) there holds

F@) = f@P .\
'fx)_wﬁﬁs'd i) <Clflaeo.

(2.100)

See [53], [119, Proposition 2.28, pp. 51-52] for more general results of this nature.

We continue by discussing a very useful density result, refining work in [46], [67]
Lemma 1.5.3.9, p. 59], [05, Theorem 6.4, Chapter 2].

C M e < Lo + ( /
QJQ

Lemma 2.13. Let 2 C R™ be a bounded Lipschitz domain, and fix two arbitrary
numbers s1,s2 € R. Define

HZ],SQ (Q) — {u e H*(Q) ‘ Au € 0% (Q)} (2.101)

and equip this space with the natural graph norm w — |[u| gs1 () + [|Aullge2(0)-
Then HA"% () becomes a Banach space and

C>®(2) C HYX**(Q) densely. (2.102)

Proof. To check that HX"**(€) is complete, assume {u;}jen € HR'*?(Q) is a
Cauchy sequence (with respect to the graph norm described in the statement).
Then {u;};jen is a Cauchy sequence in H*' () and {Awu, }jen is a Cauchy sequence
in H%2(€)). Since both H*1(2) and H*®2(f2) are complete, this implies that there
exist u € H°*(Q) and w € H**(2) such that {u;};en converges to u in H*'(12)
and {Au;}jen converges to w in H%?(Q2). Given that both H* (Q) and H*2(2)
embed continuously into D'(Q2) (itself, a Hausdorff topological vector space), and
that A : D'(Q) — D'(Q) is continuous, we may then conclude that Au = w in
D'(€2). Hence, u € HY"*(Q) and {u;};en converges to u in Hx""**(€). This proves
that H{"**() is indeed a Banach space when equipped with the graph norm.
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Moving on, in the case when s; — so > 2 it follows from — that
H%(Q) and H* () coincide as vector spaces and have equivalent norms. Hence,
in this scenario, the claim in is a direct consequence of .

Next, consider the situation where s1,ss € R satisfy s; — s9 < 2. To proceed,
define the isometric embedding

S1,82 s1 D)
.. {HA () — H () & H**(2), (2.103)
u = o(u) = (u, Au),

and note that its image, ran(t), is a closed subspace of H*1(Q2) @ H*2(Q). In
particular, ¢ : HX"**(Q2) — ran(:) is a continuous isomorphism, and we denote by
o1 iran(l) — HAU*?(Q) its inverse. Let now A : H3""(2) — C be an arbitrary
continuous functional. Then Ao. ™! is a continuous functional on the closed subspace
ran(¢) of the Banach space H*(Q) @ H®2(Q2). As such, the Hahn—-Banach theorem
ensures that this extends to a functional (cf. (2.86))

Ae (H*(Q) @ H>(Q) = (H* ()" ® (H*=(Q)"

= H;*'(Q) & Hy *(Q). (2.104)
Together with 7, this implies that there exist
hi € Hy®(Q) and he € Hy % (Q) (2.105)
with the property that for each u € HX'"**(Q2) one has
A(u) = o1 gy (ha, F>H51(R”) + g-s2 ) (ha, G>H52(R”)7 (2.106)
whenever
F e H°*(R") and G € H*?(R") satisfy F}Q =u, G’Q = Au. (2.107)

To proceed, we consider an arbitrary ¢ € C5°(R™) and note that (2.106)—(2.107)
applied with u := ¢|, € HA"™(Q), F := ¢ € H*(R"), and G := Ap € H**(R"),
yields

Alelg) = - (@m (b, (*0>H51(]R") + -2 ey (ha, A<'0>H52(]R")

= pr(rn)(h, 90>D(Rn) + prrny (B2, A‘P>D(Rn) (2.108)
which ultimately leads to the conclusion that
A(elg) = pr@ny(hy + Ah2, 0) gy, Vo € CF(R™). (2.109)
Next, make the assumption that
A(v) = 0 for each v € C*°(9Q), (2.110)
and note that, by virtue of , this forces
hi + Ahy =0 in D'(R™). (2.111)

Hence, Ahy = —hy € H=*1(R") so hy € H*>~*1(R") by elliptic regularity. Moreover,
since hy € Hy *2() entails supp (ho) C Q, one actually has hy € Hg *'(Q). This
fact and imply the existence of a sequence {¢;};en C C§°(Q) with the
property that

é; — hy in H>1(R") as j — oo, (2.112)
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where tilde denotes the extension by zero outside the support to the entire R™. In

turn, from (2.112)), (2.38), and (2.111)) one deduces that
Ag; = A(g;) = Ahy = —hy in H™*1(R") as j — oo. (2.113)

In addition, our assumption s; —sy < 2 implies H2~%1(R") < H—%2(R") (cf. (2.37))
which, together with (2.112)), also implies

¢; = hy in H*2(R") as j — oo. (2.114)

Pick now an arbitrary u € Hx'"*?(Q2) and let F, G be as in (2.107). Then based on
[2.106), ([@-113)(2.114), and (2.107), one can write

A(u) = H’Sl(R”)<El7F>H81(R'z) + H*S2(R")<E2,G>H32 (R™)

= {H_Sl(R")< -85 F>H51(R") tHe (R")<¢T’ G>Hsz (R")}

= Jlggg {p@n (- A?’j’ F>D’(]R") + D(R")@% G>D’(]R")}

= lim {p@) (= A5 Flo)piq) + (85 Clo)p ) }

= ]1520 {p@)( — Adj, u>’D’(Q) + (o) (45, AU>D’(Q)}

= 0. (2.115)

This shows that any linear and continuous functional A on HX'"**(Q2) satisfying
(2.110) ultimately vanishes identically, from which the claim in (2.102) readily
follows. This finishes the proof of Lemma O

For later purposes a variant of Lemma with the Sobolev space H?®2(Q)
replaced by a suitable Besov space will be useful.

Lemma 2.14. Let Q C R™ be a bounded Lipschitz domain, and fix an arbitrary
number s € R. Define the hybrid space

HBA(Q) == {u € H*(Q)| Au € B>',(Q)} (2.116)

and equip it with the natural graph norm u — ||ul|gs o) + HAUHBZ’_IQ(Q)' Then
C>(Q) C HBA(Q) densely. (2.117)

Proof. Pick an arbitrary function v € HB% () and extend Au € B>',(Q) to a
compactly supported distribution U € B>',(R"). Let Ey denote the standard
fundamental solution for the Laplacian in R™, that is,

1
— x>, if n>3,
Wn—1(2 —n)

Eo(x) == Yz € R™\{0}, (2.118)

1

—1 if n=2

5 n|z|, if n ,

where w,_1 is the surface measure of the unit sphere S*~! in R™. Classical
Calder6n—Zygmund theory gives that the operator of convolution with Eqy is (lo-
cally) smoothing of order two on the fractional Besov scale (see, e.g., the discussion
in [82] Section 4]). Hence, considering, n := (Ep * U)|q then

ne B21(Q) € B22(Q) = H*(%) (2.119)
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and An = (AEy«xU)lq = Ulq = Au in Q. Considering v := u —n, then v € H*(Q)
and Av =0 in €. In the notation introduced in , this implies
ve HY™(Q) for each s, € R. (2.120)
To proceed, fix a real number s, satisfying
Sy >5—2 (2.121)

and invoke Lemma to produce a sequence {v;};en C C°°(Q) with the property
that

v; > v in H*(Q) and Av; — 0 in H**(Q), as j — oo. (2.122)
In light of (2.121]) and ([2.58)), the last convergence above also implies
Avj — 0 in B2',(Q), as j — cc. (2.123)

On the other hand, from ([2.59)), the fact that U is a compactly supported dis-
tribution in R”, and S(R™) c B>',(R") densely, one deduces that there exists a

sequence {@; }jen C C5°(R™) with supports contained in a common compact subset
of R™ and such that

¢; = U in B2,(R") as j — . (2.124)

If for each j € N we now define 7, := (Ep * ¢;)|q, then n; € C*(Q) and

n; = (Eo* ¢)la =n in B2*(Q), hence (2.125)

also in B22(Q) = H*(Q), as j — oo.
In addition,
An; = (AEy * ¢5)la

= ¢jla = Ula = Au in B>',(Q) as j — oc. (2.126)
Next, consider 9; := v; +n; € C°°(Q) for each j € N. Then from and
one concludes that

Yy > v+n=uin H(Q) as j — oo, (2.127)

while from (2.123) and (2.126)) one infers that
At = Avj 4+ An; — Au in B2',(Q) as j — 0. (2.128)
In view of the nature of the norm on the space HBX (€2), this finishes the proof of
E117). 0

Loosely speaking, the result in the proposition below may be interpreted as
saying that, for a function u belonging to a Triebel-Lizorkin space in a bounded
Lipschitz domain, having a “better-than-expected” Laplacian Au (again, measured
on the Triebel-Lizorkin scale) translates into better regularity for the function u
than originally assumed.

Proposition 2.15. Let Q2 C R™ be a bounded Lipschitz domain and fix some inte-
grability exponents 0 < p, qo, q1 < 0o along with a smoothness index s € R. Suppose
u € FP(Q) is a function with the property that Au € F?% (). Then u belongs
to FP1(Q) and there exists a constant C € (0,00) which is independent of u such
that

[[u] FPi(Q) S C(||U||F§"q0(n) + ||AUHF§;§1 (Q))' (2.129)
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Proof. Since for qo < ¢i the desired conclusions follow directly from (2.73), it
remains to treat the case ¢; < gp. In view of , , it is possible to extend
Au € FPT(Q) to a compactly supported distribution U € FP% (R™) satisfying
Ul pray ny < CllAul|prar gy for some C' € (0,00) independent of u. Let Ep
denote the standard fundamental solution for the Laplacian in R™ (cf. (2.118)).
Then the operator of convolution with Fy is (locally) smoothing of order two on
the Triebel-Lizorkin scale (cf., e.g., [82 Section 4]). As such, if we consider w :=
(Ep +U)|q then

w € FPa(Q) — FPo(Q), (2.130)

with the continuous inclusion provided by (2.73), and

[w][ 90 () < Cllw|| proon () < ClIU | proay gy < CllAu pra (- (2.131)
In addition, one has Aw = (AEy xU)|q = Ulg = Au in Q. Consequently, if we

introduce v := u — w, then v € FP%(Q) satisfies Av =0 in Q and

[l

Ff'“O(Q))
< C(”U”F?‘IO (Q) + ||Au||FSP;<121 (Q)) (2132)

FP(Q) S C(|lul Frao ) + [|lw]
Next, we recall from [82], Theorem 1.6] that

the space of harmonic functions in FP4(Q) is actually in-
dependent of the index ¢ € (0,00) and all quasi-norms

| - |l ppaq) with g € (0,00) are equivalent when considered (2.133)
on the space of harmonic functions in €.
We then conclude that v belongs to FP9(Q) and satisfies
[0l o1 (@) < Cllvll oo - (2.134)

Hence, u = v+ w € FP1(Q) and (2.132)), (2.134), (2.131) prove that (2.129)
holds. O

Our next lemma brings to light the compatibility of the Sobolev space pairing
with the ordinary integral pairing, when both turn out to be meaningful. Given an
open set 2 C R", we denote by L{< (2) the space of measurable functions defined
in € which become essentially bounded when restricted to compact subsets of €.
In addition, for each p € (0,00], we let LZ,  (£2) stand for the subspace of LP(2)
consisting of functions with compact support in €.

Lemma 2.16. Assume that Q is a bounded Lipschitz domain in R™ and fiz some
s € (— %,%) Then

He(Q) <u,v>H,S(Q) = /Q@v(x) d"x (2.135)
provided either
u € H¥(Q)N L (Q) and v e H*(Q) N LX,, (), (2.136)
or
w € H*(Q) N Ly (Q) and v e H5(Q) N L% (). (2.137)
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Proof. Let n € C§°(R™) be a real-valued, even function, satisfying n = 1 on B(0, 1),
n = 0 outside B(0,2), [p.n(x)d"z = 1. In addition, for each t > 0, set n,(z) :=
t~"n(z/t) for each x € R™. For each t > 0, consider the operator

I, :D'(R") —» C®(R"), Lu:=wux*xn, VYueDR"). (2.138)

Then I; is bounded on L?(R™) for each t > 0 with operator norm controlled inde-
pendently of ¢, and for each u € L?(R"™) one has Iyju — u as t — 0, in L?(R").
Moreover, given any k € N, if u € H*(R") and « is a multi-index of length at most
k, then
O%(Iyu) = (0%u) *m; — 0% as t — 04 in L*(R™). (2.139)

As a consequence, it follows that I; is bounded on H¥(R™) for each ¢ > 0 with
operator norm controlled independently on ¢t. Hence, by interpolation, for each
t > 0 the operator I; is bounded on any H*(R™) with s > 0, with operator norm
controlled independently of .

Next, consider an arbitrary number s > 0 and pick k € N, k > s, and 6 € (0,1)
such that s = k. Then for every u € C§°(R™), the interpolation inequality

e = ey < W =l Mo = ey (2140
ultimately proves (in light of the density of C§°(R") in H*(R™)) that if s > 0 then
Liu—wu as t — 04 in H'(R™), VYue H’(R"). (2.141)

Moreover, for each u,v € C§°(R™) one has Iyu, I;v € C§°(R™) and, given any s > 0,
one can write (since 7; is even)

#- @) (Iet, U>HS(]R") = @) ( L, v>D(]Rn)

~ [ @ de = [ W@ @ d
= D/(Rn)<ﬂ, ItU>D(]R”) = H*S(Rn)<U7]tU>Hs(Rn)~ (2.142)
From one then concludes that
for any s € R the operator I; induces a linear and bounded
mapping on H*(R™) for each t > 0, with operator norm (2.143)
controlled independently of ¢.
One notes that also implies that for each u,v € C§°(R™) and each s > 0

one has

H_S(R")<u — Itu, ,U>HS(]R") = H—s(Rn)<U, v — ItU>H5(]R")' (2144)

On account of (2.144)), (2.143), and the density of C§°(R") in H*(R™), it follows
that

(2.141) actually holds for any s € R. (2.145)

Next, let 17 be as in the first part of the proof. For each fixed ¢ > 0, we now
introduce the operator J; assigning to each ¢ € L'(Q) the function

Jp = (@xm)|, € CF(Q) C L=(Q) (2.146)
where, as usual, tilde denotes the extension to R™ by zero outside 2. Then

Jio =@ in LY(Q) as t - 0., VYeeL'(Q), (2.147)
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and one can easily check that, for each ¢ > 0, the operator J; satisfies
[Ue@i@ e = [ p@u@as vever@. )
)
In addition, by (2.93) and (2.145)),

Jiu—u as t — 04 in H*(Q), Vue H*(Q) with se (—3,1). (2.149)

202
Assume that s € ( — 5, %) and fix u,v as in (2.136)). Pick a real-valued function
¢ € C§°(€) such that ¢ = 1 in a neighborhood of supp (v). Given that Jyv € C§° ()

for t > 0 sufficiently small, and (u,v € L1(£2), one can write (here ([2.89) is relevant)
HS(Q)<U’7U>H—S(Q) = HS(Q)<“7C”>H—5(Q) = HS(Q)<C“»”>H—5(Q)
= hm HS(Q)<C’U' Jt'U> -s(Q) — 1_1>m D'(Q) <@, Jtv>D(Q)

t—0

hm / (Cu)(z)(Jw)(z) d"x = tl_i>r51+/QJt(Cu)(as)v(a?) d"z
/({u)(x)v(m) d"m:/mv(x) d"z, (2.150)
Q Q

as wanted. In the case when u, v are as indicated in (2.137)), pick some real-valued
function ¢ € C§°(€Q2) with ¢ = 1 in a neighborhood of supp (u). Observing that
Ji(¢v) € C§°(Q) for t > 0 sufficiently small, and u,(v € L1(£2), then permits us to
write

HS(Q)<U7U>H*S(Q) = () {Cu ) -5(Q) = mo(@){u. Cv) ()

= lim Hs(Q)<U,Jt(C’U)> —s()

R hm D/(Q)<U Jt(é’v)>D(Q)

t—

Jim [ G@nco@ e = in [ Ta@c) e

t—04 o)

- [i@@)@ e = [ W@ da, (2.151)
Q Q
once again as desired. O

We continue with a result complementing (2.41)). To state it, let Lip(€2) stand
for the space of Lipschitz functions in €.

Lemma 2.17. If Q is a bounded Lipschitz domain, then for every s € [—1,1]
it follows that multiplication with a function from Lip(Q) induces a well defined,
linear, and bounded operator from H*®(Q)) into itself.

Proof. The case when s € [0, 1] is seen via interpolation between s = 0 and s = 1.
Furthermore, since pointwise multiplication with a function does not increase the
support, pointwise multiplication by a Lipschitz function also preserves H§(£2), for
each s € [0,1]. Hence, by duality, this also preserves (H§ (Q))* = H~5(Q) for every
s €[0,1]. O

We conclude this subsection with a discussion aimed at identifying the amount
of smoothness, measured on the scales of fractional Sobolev spaces, possessed by
certain functions defined in bounded Lipschitz domains. Here is our first concrete
result in this regard.
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Lemma 2.18. Fiz 3 € (%, 1) and consider the planar open set
Qp:={z€C|0<|z|<1 and 0 <argz < 7/fB}. (2.152)

Suppose w € C1(Qp) is a function with the property that there exists some constant
C € (0,00) such that

lw(z)] < Clz’~! and |(Vw)(z)| < Clz|P~2 for each x € Qp. (2.153)
Then w belongs to the Sobolev space H®(Qg) whenever s < (.
Proof. First, one observes that the first inequality in (2.153)) implies

Jwla, <€ [ 222 %
{zeR?||z|<1}

1
= C/ p?P~dp < 0. (2.154)
0

Next, elementary geometry shows that
B(z,7) N Qg is a convex set for each x € Qg and r € (0, |z]). (2.155)
To proceed, given any = € R? and h € R?\{0}, define the first-order difference
w(z+h) —w(x) ifzreQgandz+heQg,
(Bpw)(a) = { W@ TR —wl@) e e ’
0 if either = ¢ Qg or z 4+ h ¢ Qg.
Suppose x € R? and h € R?\{0} are such that z € Qg, z+h € Qg, and |z| > 2|A|.
Denote by (x,z + h) the open line segment with endpoints = and x + h and pick an

arbitrary point y belonging to (z,z+h). Then |x —y| < |h| which, in turn, permits
us to estimate

(2.156)

2| <z =yl + lyl < Bl +lyl <27 || + Jyl. (2.157)
This ultimately implies
27 2| < |y| for each y € (z,z + h). (2.158)

One also observes that since both = and x +h belong to B(z, |h|) N, the property
recorded in ensures that (z,z + h) C B(x, |h|) N Qg C Qs. Granted these
facts, one invokes the Mean Value Theorem which, in view of (2.153) and (2.158),
permits one to estimate
[(Apw)(2)| = [w(z +h) —w(@)]| < |h|  sup  |[(Vw)(y)]
ye(w’$+h)

<Clhl sup |yl < Clhllx|?, (2.159)
yE€(z,z+h)

for some constant C' € (0,00) which depends only on w and . Consequently, for
each given h € R*\{0}, we may rely on (2.159) to write (keeping in mind that
26-3<-1)

/ (Anu)(a) Pz < Clnf | 227 a2
{z€Qp] |z|>2|h[}

{zeR?| |z|>2]h|}

=C|n|? /2h p*P=3dp = C|h|??, (2.160)

for some constant C' € (0, 00) independent of h.
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Next, assume that € R? and h € R*\{0} are such that x € Qg, z + h € Qg,
and |z| < 2|h|. From (2.153) we know that

[(Apw)(@)] < [w(@)] + [w(z + h)]
< Clx|P~t + Clo + n|PL (2.161)
As such,

/ l(Apw)(x)|? d?c <T+1I (2.162)
{zeQp| |z|<2|h[}
where, for some constant C € (0, c0) independent of h,

2h|
I.=C |z|?P =2 d?x = c/ p*P~tdp = C|n?P, (2.163)
{z€R?| |2|<2|h[} 0

and

II:=cC |z 4 h|?P 2 &%z
{zeR?] |=|<2[h}

<C |z 4+ |22 &%z
{z€R?| |z+h|<3[h|}

=C ly[*7 % d?y
{yeR?| |y|<3|h[}

3/l
= C/ p?P~Ydp = C|n|?”. (2.164)
0

Collectively, the estimates established in (2.160) and (2.162)-(2.164) imply that

there exists some constant C' € (0, 00) with the property that

/ |(Apw)(z)|* d*x < C|h|*? for each h € R%. (2.165)
Qp
In turn, this allows us to conclude that
sup ||Ahw\|%2(95) < Ct? for each t € (0, 00), (2.166)
[h|<t
hence, further,
1 din1/2
(/ t72 sup HAhU/”%z(Q )7) < oo for each s € (0, 5). (2.167)
0 |h|<t ot

Since from [53, Theorem 3.18, p. 30] we know that for each s € (0,1) the norm of
w in B2?(Qg) = H*(Qp) is equivalent to
1
_ dt\1/2
Jullzaian + ([ 7 sup [Anwlan, T )
0 |h|<t

(2.168)

one finally concludes from (2.154)) and (2.167]) that w belongs to the Sobolev space
H*(Q3) whenever s < f3. O

In turn, Lemma [2.18] is an ingredient in the proof of the following regularity
result (answering a question which arose in discussions with Volodymyr Derkach).
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Proposition 2.19. For some fixed g € (%, 1), consider the planar open set Qg as
in (2.152) and define the function ug(z) := Im (27) for each z € Qg or, in polar
coordinates,

ug(p,0) = p” sin(B0) for each z = pe’ € Q. (2.169)
Then the function ug belongs to the Sobolev space H*(lg) whenever s < 1+ 3,

however, ug ¢ H'*P(Qp). Consequently, for each cutoff function ¢ € C§°(R?) with
supp (¢) C B(0,1/2) and ¢ = 1 near the origin one has

ou € HY(Q5) N H(Q for each s <143, but pug ¢ HTP(Qp). (2.170)
B B B B B

Proof. First we show that ug € H*(€23) whenever s < 1+ . In view of the mono-
tonicity property of the fractional Sobolev scale (cf. (2.37)) it suffices to consider
the case 1 < s < 1+ f3. Since clearly ug € L*(Q3), from the lifting result recorded
in (presently used with s replaced by s — 1) we know that ug belongs to the
Sobolev space H®(£23) if and only if

w; := Ojug belongs to H* '(Qp) for each j € {1,2}. (2.171)

Given that fact, as seen from (2.169)), for each j € {1,2} one has w; € C'(€3) and
there exists some constant C' € (0, 00) such that

w;(x ngB*I and |[(Vw;)(x ngﬁ*Q for all x € Qg, 2.172
J J B

Lemma applies and leads to the conclusion that w; € H'(23) whenever ¢ < 3
for each j € {1, 2}, which then establishes . In turn, this completes the proof
of the fact that ug € H*(Qg) whenever s < 1 + f3, as claimed.

Next, we turn our attention to the task of showing that ug ¢ H'*#(Qp). Because
of , this boils down to proving that we cannot have

w;j = djug € H?(Qp) for each j € {1,2}. (2.173)

Arguing by contradiction, we assume that (2.173)) holds. Then, with the first-order
difference operator defined as in (2.156)), we may invoke [53, Theorem 3.18, p. 30]
to conclude that

2! dt
Z/ =28 sup ||Ahwj||%2(ﬂﬁ)7 < 0. (2.174)
=0 |h|<t

Since in polar coordinates one has

w1 (p, 0) = cos GM - lsiné’M

ap P 00
= Bp”~*(sin(B0) cos § — cos(36) sin 0)
= Bp°~Lsin(B0 - 0), (2.175)

and

_ oo gOulp,0) 1 Ou(p,0)
wa(p, ) = sind o +pcos€ 20

= Bp”~*(sin(B0) sin @ + cos(36) cos 0)
= Bp"~ ! cos(B0 — 0), (2.176)
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one concludes that

2
Z lwj(z)|? = B%x|* 72 for each z € Qg. (2.177)

Jj=1

In addition, let us observe that if € 5 has |z| < 1/2 then also 2z € Qg and one
obtains w;(2z) = 2°~1w;(z) for each j € {1,2}. Consequently, for each ¢ € (0,1/2),
one estimates

2
S sup [ Anws e, = 3 sup /{ BN IR
T /3 x

j=1lhIst j=1lhI<t

2
=Y/ fy (20) — w, () P
{z€Qp| |z|<t}

j=1

— (-2 /{ S fuy (@) da

€Qpl |o|<t} ;1

_ 62(1 _ 25—1)2/ |x|25—2 d2.1‘
{zeQp| |z|<t}

t
—mp -2 [
0

= 2(1 — 2f=1)2428 (2.178)

However, this implies

2 1 1/2

_ dat _ « _ _ dt
> / t72F sup ||Ahwj||%2(95)7 > 5(1—2/3 1)2/ t 2575267
=0 0

[n|<t

1/2 dt
- 3(1 - 25*1)2/0 —=o0,  (2179)

contradicting . In turn, this contradiction shows that ug ¢ H'*(Qg).

It remains to justify the claims made in . To this end, fix a cutoff function
¢ € C§°(R?) with supp (¢) C B(0,1/2) and ¢ = 1 near the origin. From and
what we have proved already, we see that ¢ ug € H*(Qg) for each s <1+ 5. One
notes that ug in is designed so that it extends continuously to the closure
of Qs and this extension vanishes on {z € 90z |argz € {0,7/8}}. Granted these
properties, and Lemmathen imply that ¢ ug € ﬁIl(Qg). Next, observe that
(1 — ¢)ug is of class C*° and has bounded derivatives of any order in 3. As such,
(1—¢)ug belongs to any Sobolev space in 5. In particular, (1—¢)ug € H*P(Qp).
Since we already know that ug ¢ H'*#(Qp), this ultimately implies that actually
pup does not belong to HT4(Qp). O

2.4. Fractional Sobolev spaces on the boundaries of Lipschitz domains. In
a first stage, assume that 0 C R" is the domain lying above the graph of a Lipschitz
function p: R"~! — R, and let 0 < s < 1. Then the Sobolev space H*(92) consists
of functions f € L2(09) such that f(z’,o(z')), as a function of 2’ € R"~1, belongs
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to H*(R™™'). To define H*(99), let Lip,,p,,(0€2) be the space of compactly sup-
ported Lipschitz functions on 9Q (equipped with the usual inductive limit topol-
ogy). Then a functional f € (Lipgqpmp (89))* is said to belong to H*(92) provided

VIHI(Ve)()Pf(e(-) € H*(R™). Here, /1+[(Vi@)(+)2f(+,0(+)) is

understood as the distribution in R®~! acting according to
00 n—1 o
CO (R ) = '(/) — Lipcomp(aQ) <wa f>(Lipcomp(aﬂ))* Where,
given any ¢ € C5°(R" 1), the function ¢ € LiPcomp (0€2) (2.180)
is given by () := 1(2') for each z = (2, p(2')) € ON.

Next, to define H*(0Q) for —1 < s < 1, when 2 is a Lipschitz domain with
compact boundary, we use a smooth partition of unity to reduce matters to the
graph case just discussed. More precisely, if 0 < s < 1 then f € H®(99) if
and only if f € L*(99) and the assignment R"™! > 2/ — ((f)(z/,¢(2")) is in
H*(R"1) whenever ¢ € C§°(R") and ¢: R""! — R is a Lipschitz function with
the property that if ¥ is an appropriate rotation and translation of the graph
{(@',¢(z") € R* |2’ € R}, then (supp (¢) N 9) C X. Then Sobolev spaces
with a negative amount of smoothness are defined in an analogous fashion.

From the above characterization of H*®(9) it follows that properties of Sobolev
spaces H*(R"!) with s € [~1,1] which are invariant under multiplication by
smooth, compactly supported functions, as well as composition by bi-Lipschitz
maps, readily extend to the setting of H*(9Q) (via localization and pullback). In
particular,

(Hs(aQ))* = H°(09), whenever —1<s<1, (2.181)
and one has a continuous (in fact compact) and dense embedding
H?®2(08)) — H*(0Q), whenever —1 < 51 < s2 < 1. (2.182)
In addition, if € is a bounded Lipschitz domain in R™ then
C“(R”)‘BQ — H®(0R) densely, Vs e [-1,1]. (2.183)

See, for instance, [77], [I04, Chapter 3|, [119].

Later on, we shall employ the following characterization of the Sobolev space of
order one on the boundary of a Lipschitz domain; see [119, Propositions 2.8-2.9,
p. 33] for a proof.

Lemma 2.20. Let Q C R™ be a bounded Lipschitz domain, with outward unit
normal v = (v1,...,v,) and surface measure o. Then H*(0Q) is the collection of
functions ¢ € L?(0Q)) with the property that there exists a constant C' € (0, 00) such
that

Z ‘/(952<p87jkwdn_la‘ < CH¢|39HL2(OQ)7 Vi € C5°(R™), (2.184)
=1

where

07 b = (5‘k¢)|aﬂ — Vk(8j¢)|aﬂ for each j, ke {l,...,n}. (2.185)
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In addition,

n

lelmon = lelzom + s § | [ pojuaiolh, (@150)
YECE (R™) =, Joa
l¥loall L2 a0y <1

uniformly for ¢ € H'(92).

In closing, we note that if 2 C R™ is a bounded Lipschitz domain then for any
j,k € {1,...,n} the first-order tangential differential operator 9, , extends to a
well defined, linear and bounded mapping in the context

Oy - HH(0Q) = H*1(0Q), 0<s<1, (2.187)

This is proved by interpolating the case s = 1 and its dual version. In fact, the
following more general result (extending Lemma|2.20)) is true. Specifically, assuming
that Q C R™ is a bounded Lipschitz domain, for every s € [0, 1] one has

jk

H*(0Q) = {f € L*(09) | 0., f € H*'(09), 1 < j, k < n} (2.188)
and
£l o) = I fllL2(00) + Z 107, fll s -1 (00), (2.189)
jk=1

uniformly for f € H?(0N) (see the discussion in [63]).

2.5. Sobolev regularity in terms of the nontangential maximal function.
We begin by recalling a standard elliptic regularity result to the effect that

Q CR"open, V € LY. (Q) with p >n/2

loc

ue L2 () with (~A+V)u=0in

loc

See, e.g., [116], [123] Proposition 3.1], [147], [I4]] in this regard.

In the class of functions that are null-solutions of zeroth-order perturbation of
the Laplacian in a bounded Lipschitz domain 2 C R", the relationship between
membership to Sobolev spaces in {2, on the one hand, and the membership of the
nontangential maximal function to Lebesgue spaces on the boundary 92, on the
other hand, becomes rather precise. First, one has the following characterization:

if 0 <V € LP(Q) with p > n and v € C*(Q) with (~A +V)u =0 in Q,

} = uc CY(Q). (2.190)

(2.191)
then N,u € L*(09Q) if and only if u € HY?(Q),
with naturally accompanying estimates, namely,
HNnuHLz(aQ) ~ ||U||H1/2(Q)7 (2.192)

uniformly for u as . See [B0], [77], [II8], for V' = 0, and [123] for the

general case. From ([2.191]), @D, and iterations, one deduces that

it V € ]0,00) is constant, k € Ny, and v € C°(Q) with (—A + V)u =0 in , then
Ny (%) € L2(09) for |a| < k if and only if v e H**(1/2(Q), (2.193)

with the naturally accompanying estimates

D INK (@) 2200y = ull grrsara o, (2.194)

|l <k
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uniformly for u as in (2.193]). In this regard, we also record the following Fatou-type
result (cf. [I25, Proposition 3.1], [124, Proposition 4.7, Proposition 5.6]):

if u e CH(Q) with (~A +V)u =0 in Q for some 0 < V € L>(Q), then

-t

Niu € L*(09) implies u|g;1't' exists o-a.e. and u‘ggn Te LA(09),  (2.195)

while N, (Vu) € L*(99) implies (Vu)|g;ﬂ't' exists o-a.e. and in [L*(99)]".

3. A SHARP DIRICHLET TRACE INVOLVING SOBOLEV AND BESOV SPACES

The prime object in this section will be a detailed treatment of the Dirichlet trace
operator vp: H*(Q) — H*~(1/2)(9Q) associated with bounded Lipschitz domains
Q C R™, at first studied for all s € (1/2,3/2). Upon noticing the difficulties
extending the Dirichlet trace to the endpoints s = 1/2 and s = 3/2, we employ
additional regularity of the Laplacian in Section and to arrive at sharp
Dirichlet trace results in the Sobolev and Besov space context for the full scale
s€[1/2,3/2].

3.1. A first look at the Dirichlet trace. Let {2 be a bounded Lipschitz domain
in R”. In this context, the Dirichlet boundary trace map f +— f | o originally
considered for functions f € C°°(Q), extends to operators (compatible with one
another)

vt HY(Q) — H=/2(09), Vse (3,3) (3.1)
(see also [45, Lemma 3.6]), that are linear, continuous, surjective, and whose op-
erator norm depend on the underlying Lipschitz domain only via the Lipschitz
character of the latter. (We agree that for vector-valued functions the Dirichlet
trace is applied componentwise.) In fact, there exist linear and bounded operators

Op : H= W2 (00) - H(Q), Vse(L,3), (3.2)
which are right-inverses for those in (3.1), that is,
wWpf)=f VfeH MD0Q), Vse(3,3). (3.3)

As a consequence,

given any s € (3, 3) there exists a constant C € (0,00) with the

property that for every f € H*~(1/2)(9Q) there exists u € H*(Q) (3.4)
satisfying ypu = f on 0Q and |[ul| g+ () < Csl| fl| gra—ar2) (90)-
Moreover,
o (Pu) = (®|,,)vpu, Yue€ H*(Q) with s € (3,3), VO eC®(Q). (3.5
While the Dirichlet trace operator fails to be bounded in the context of in the
limiting case s = 1/2, one still obtains that

vp : HY/2+(Q) - L*(0Q) is well defined, linear, and bounded, (3.6)

for every ¢ > 0. For future reference we also note that for any bounded Lipschitz
domain 2 C R™ one has (see (2.94)) for the first equality)

H3(Q) = H3(Q) = {ue H*(Q)|ypu=0}, Vse (L 32). (3.7)
See [77], [100], [IT19] for general results of this type; cf. also the discussion in [63].
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It turns out that the Dirichlet trace operator vp from (3.1)) and the pointwise
nontangential boundary trace from (2.17)) are compatible, in the sense that they
agree a.e., whenever they both exist:

Lemma 3.1. Let Q C R™ be a bounded Lipschitz domain, and fiz some aperture
parameter £ > 0. Then

whenever u € H*(Q) for some s € (3,3) and u|ggn't‘ exists (58)
3.8
at o-a.e. point on 0S), then u|ggn't‘ = ~vpu € H*=1/D(9Q).

Proof. From [37, Theorem 8.7(iii)] (cf. also [37, Corollary 5.7]) one knows that if
u € H*(Q) for some s € (3, 2) then its trace ypu € H*~(1/2)(9Q) has the property
that
(vpu)(xz) = lim {][ u(y) dy} at o-a.e. x € 99, (3.9)
Ty (x)NB(z,r)

r—04

where the barred integral, , indicates the mean average. Finally, whenever

(u|g§nt)(x) exists at some point z € 9 it is given by the limit in the right-hand
side of (3.9)), hence the desired conclusion follows. d

The end-point s = 1 is naturally excluded in (3.1) since it turns out that C§°(€2)
is dense in H'/2(Q) (cf. the discussion at the bottom of p. 180 in [77]). The Dirichlet
trace operator (3.1)) also fails to be well defined corresponding to the end-point case

s = 2 although, of course, (3.1)) implies that for each & € (0,1) the operator
vp : H32(Q) — H'5(99Q) is well defined, linear, and bounded, (3.10)

(though, does not hold with e = 0). Indeed, in [77, Proposition 3.2, p. 176]
an example of a bounded C'-domain (hence, also Lipschitz) in R? and of a function
u € H3?(Q) are given with the property that ypu ¢ H'(09Q). Hence, what goes
wrong when s = % is that in the class of bounded C' and Lipschitz domains €2,
the Dirichlet boundary trace operator vp, when applied to H3/? (), has a larger

range than the usual range H'(99). Nonetheless, the Dirichlet traces of smoother
functions in © do belong to H!(92) as our next result shows.

Lemma 3.2. Let Q C R” be a bounded Lipschitz domain. Then, for each € > 0,
the Dirichlet trace operator

vp : HO/DTE(Q) — HY(9Q) is well defined, linear, and bounded. (3.11)

Proof. In the justification of (3.11)) we shall employ the characterization of H*(9)
from Lemma Regarding the tangential derivatives 0., defined in (2.185]) one

notes that for every function ® € C°°(Q2), the divergence theorem (see the last part

of Theorem [2.11)) yields
/ 9, 2d" o = / [0(0k®)| 0, — i (5®)] ) o
a0 o0

= /Q {ajakq) —8k61<1>}d"x

= 0. (3.12)
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Suppose now that some ¢, ¢ € C°°(Q2) have been given, and use the product rule to
expand

aT]k(Cf) = (€|BQ)aTjkC + (C|BQ)8Tjk£' (313)

Combining (3.12)) (written for ® := (&) and (3.13]) one therefore arrives at the
identity

/m (§|89)8Tj,€(d"’1a:—/m (Clyo)Orp€d™ Yo, ¥CE€C®@).  (3.14)

Considering an arbitrary function n € H®/2%¢(Q), then there exists a sequence
{Nm }men € C=(Q) such that 1, — 1 in HG3/2+5(Q) as m — co. In particular,
Vi — Vn in [H(1/2)+E (Q)}n as m — oo which, together with the continuity of
(3-1), further implies V77m|aQ — vp(Vn) in [Hs(aQ)}n, hence also in [L2(8Q)]n,
as m — oo. We also note that n,,|an — ypn in L2(0Q) as m — co. Based on
these facts and the identity in (3.14)), given any ¢ € C§°(R™), for each m € N and
j,ke{l,...,n}, one estimates

oo = o || i

m—r o0

= lim ‘/BQ {Vk(ajnm)‘ag VY (87’9777")’69} (w‘ag)dn_la‘

m—o0

< CJEHOO H(V”m)’aQH[m(aQ)]nHw’aﬂﬂLz(aQ)

= CH’YD(VW)”[P(@Q)]" ¢|aQHL2(aQ)

< Cllvp (V) [l ias o0y 1/J|89HL2(3Q)

< ClIVnlligarm+s@yn H¢|BQHL2(8Q)

< Clnllaems @[]0l 12 o0

< Clnll e @Yool 22a0y: (8.15)

where 0 < § < min{e, 1}. In light of Lemma this proves that ypn € H*(99).
Moreover, (2.186]) and (3.6) imply that there exists a constant C' € (0, 00), inde-
pendent of 7, with the property that

Ivonllaroa) < C(llvpnllz2oe) + 10l reoveq))
< C(lInllgarm+e@y + 1l remeeq))
< Clnllgerteq)- (3.16)
The proof of is therefore complete. ([l

A useful consequence of (3.1) and Lemma is recorded below.

Corollary 3.3. Assume that Q C R™ is a bounded Lipschitz domain. Then, for

each s € [%, %] and & > 0 with € # % — s, the Dirichlet trace operator

D Hs+E(Q) N Hmin{l,s+€—(l/2)}(aﬂ)

(3.17)
is well defined, linear, and bounded.
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The following technical lemma is going to play a role in the proof of the version
of the divergence theorem discussed later, in Theorem [4.2,

Lemma 3.4. Assume Q C R™ is a bounded Lipschitz domain, and suppose that
Q S Q as L — oo, in the sense described in Lemma [2.12] For each { € N, denote
by ve,p the Dirichlet boundary trace operator (3.1)) associated with the domain Q.
Then for any u € FOIS(Q), with s € (%,1), it follows that u|m € H*(Sy) for each
{eN and

Jim 7.0 (ulg,) ||Hs—<1/2>(am) =0 (3.18)

Proof. Fix some function u € H*(Q), with s € (3,1). That u}m € H*(Qy) for each
¢ € N follows directly from definitions. Next, fix an arbitrary function v € C§°(Q).
Making use of the fact that dependence on the underlying Lipschitz domain of the
operator norm of the Dirichlet boundary trace operator manifests itself only via its
Lipschitz character one obtains

hﬁi‘ip [ 7.0 (U|Qz) HHs—u/z)(an) = h?ﬁgp [[ve.p ((u— ”)|Qz) HHS—(l/Z)(@Qg)

< Ch?isogp [(u — ’U)‘Q[HHS(Q@)

< Cllu — vl gs(a), (3.19)
where the last inequality is a consequence of (2.100). With (3.19) in hand, the
desired conclusion follows from (2.43)). d

Admitting the full scale of Besov spaces instead of Sobolev spaces permits the
consideration of the Dirichlet boundary trace operator in a more general context
than before. Specifically, one has the following result which, in contrast to yp in
(3.1), allows including the end-points of the interval (%, %)

Proposition 3.5. Let Q2 C R™ be a bounded Lipschitz domain, and fix an aperture
parameter £ > 0. Then the mapping

(Tru)(z) := lim u(y) d™y, for o-a.e. x € 99, (3.20)
=0+ /B(z,r)NQ
induces a well defined, linear, and bounded operator in the context
Tr: B2Y(Q) — H~W/2(09), Vse [L, 3], (3.21)
which is compatible both with the Dirichlet trace operator yp considered in (3.1)
and with the nontangential boundary trace u — u’g;n‘t' whenever the latter exists.

Proof. This follows directly from [119, Proposition 2.61 on p. 107, Remarks (i)—(ii)
on p. 90-91] specialized to the case p = 2. O

In relation to it is worth pointing out that, as seen from 7, one
has
BN (Q) € B2*(Q) = H(Q), Vse€ [3,35]. (3.22)
Thus, compared to , in we are now permitted to include the end-points
of the interval (%, %), the price to be paid is the consideration of the strictly smaller
Besov space B21() in place of the Sobolev space H*(Q2) as the domain on which
the trace operator now acts.
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3.2. A sharp Dirichlet trace involving Sobolev spaces. Let (2 be a bounded
Lipschitz domain in R™. As already mentioned in the context of Sobolev spaces,
the Dirichlet trace operator fails to be well defined for the end-point cases
s € {%, %} A remedy that allows the inclusion of these prohibitive limiting values
is to restrict yp to a suitably smaller space.

Specifically, starting with u € H*(2) for some s € [, 2], if Au is slightly more
regular than the typical action of the Laplacian on functions from H*(2), that is,
more regular than H*~2(2), then one can meaningfully define its trace ypu for the
full range s € [%, %}

Here is the theorem about this extended trace result for functions with a better-
than-expected Laplacian (in the sense of membership to the Sobolev scale). The
reader is alerted to the fact that having a better-than-expected Laplacian forces

the function to be more regular than originally assumed, in the manner indicated
in (3.31) below.

Theorem 3.6. Assume that Q C R™ is a bounded Lipschitz domain and fix an
arbitrary € > 0. Then the restriction of the boundary trace operator (3.1) to the
space {u € H*(Q2) | Au € H*72T¢(Q)}, originally considered for s € (é,gmduces
a well defined, linear, continuous operator

v {u€ HY Q)| Aue H2T(Q)} —» H-W2(9q), Vse[L,3], (3.23)
(throughout, the space on the left-hand side of (3.23)) is equipped with the natural
graph norm w v ||u| gs Q) + || Aul|| grs—2+<(q)), which continues to be compatible with
(3.1) when s € (%,%) Thus defined, the Dirichlet trace operator possesses the
following additional properties:

(i) The Dirichlet boundary trace operator in (3.23) is surjective. In fact, there exist
linear and bounded operators

Yp: H=WD(0Q) » {ue H Q)| Aue L*(Q)}, se[L 3], (3.24)

272
which are compatible with one another and serve as right-inverses for the Dirichlet
trace, that is,

yo(Tpy) =4, Vi€ H/D(0Q) with s € [1,3]. (3.25)
In fact, matters may be arranged so that each function in the range of Tp is har-
monic, that is,

A(Tpy) =0, Ve H YD) with s € [, 2] (3.26)

272
(#3) The Dirichlet boundary trace operator (3.23) is compatible with the pointwise
nontangential trace in the sense that, given any aperture parameter K > 0,

if u € H*(Q) has Au € H* **5(Q) for some s € [3, 3],

and ifu’g;n't‘ exists o-a.e. on 09, then u’ggn‘t' =~ypu € H*=/2(90).
(3.27)
(¢4i) The Dirichlet boundary trace operator YD in (13.23)) is the unique extension by
continuity and density of the mapping C*°(Q) > f — f|aQ.
(iv) For each s € [%, %] , the Dirichlet boundary trace operator satisfies
vp(Pu) = (<I>|8Q)'yDu at o-a.e. point on 0N, for all

_ 3.28)
u € H*(Q) with Au € H**Y4(Q) and all ® € C™(Q). (
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(v) For each s € [%, %}, and each € > 0 such that € # % — s, the null space of the
Dirichlet boundary trace operator (3.23) satisfies

ker(yp) C H ™inls+=3/2k (), (3.29)

In fact, the inclusion in (3.29) is quantitative in the sense that, whenever s € [%, %]
and € > 0 is such that ¢ # % — s, then there exists a constant C € (0,00) with the
property that

if u € H*(Q) satisfies Au € H**T(Q) and ypu =0
then the function u belongs to H ™™53/2(Q) and (3.30)
l[ull g minore.ar2y (@) < C(Jull s ) + | AUl ra—2re(0)) -
(vi) For each s € [%, %] , the space on the left-hand side of (3.23)) (equipped with the
natural graph norm) embeds continuously into the Triebel-Lizorkin space F29(Q)
for any q € (0,00). In particular, one has the continuous strict embeddings

{ue H(Q)| Au e H*?5(Q)} — F29(Q) — H*(Q) (
3.31
for any s € [3,3] and any q € (0,2). )

(vit) The operator
{ue H?2(Q) | Au e H_(1/2)+E(Q)} > u s yp(Vu) € [L*(0Q)]™ (3.32)

(with the Dirichlet trace acting componentwise, in the sense of (3.23) with s :=
1/2), is well defined, linear, and bounded.

Proof. We split the proof of the claims in the opening part of the statement of the
theorem into the following three cases:

Case 1: Assume s € (3,32). Since {u € H*(Q) | Au € H*=2T¢(Q)} C H*(2), we
let vp in act in the same manner as the trace operator from . This, by
design, ensures that vp is well defined, linear, continuous, and compatible with its
restrictions defined previously.

Case 2: Assume s = 3. Given that {u € H3/2(Q) | Au € H-(/2*(Q)} c H'(Q),
we once again let yp in act in the same fashion as the trace operator from
(3.1) (when s = 1). Of course, this choice ensures linearity and compatibility. We
claim that there exists a constant C' € (0, 00) with the property that

if u e H*?(Q) has Au € H~1/2%¢(Q) for some ¢ > 0, then actually

. (3.33)
ypu € HH(89Q) with [|vpullgraa) < C(|ull garzq) + AUl g-a/r2+eq)) -
To justify this claim, let u be as in the first line of (3.33]) and solve
Av=Au in Q, wve H3?(Q),
(3.34)
vpv =0 on 09,

by proceeding as follows. First, it is possible to extend Au € H_(1/2)+5(Q) to
a compactly supported distribution U € H*(l/z)“(R”) such that, for some con-
stant C' € (0, 00), independent of u, one has [|U|| g-a/2)+e@n) < C|Aullg-a/2+2(q)
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(cf. (2.35)). Asin (2.118) let Ey denote the standard fundamental solution for the
Laplacian in R™, that is,

1
mh}ﬁin, if n = 3,
Eo(z) = 1"*1 Vo e R™\{0}, (3.35)
%lnm, if n=2,

where w,_1 is the surface measure of the unit sphere S*~! in R™. Classical
Calder6n—Zygmund theory gives that the operator of convolution with Fy is (lo-
cally) smoothing of order two on the fractional Sobolev scale. Hence, considering
n = (EO * U)‘Q, then n S H(3/2)+E(Q) and ||77HH(3/2)+5(Q) < C||U‘|H7(1/2)+5(Rn).
Moreover, An = (AEy x U)lg = Ulg = Au in Q. In addition, by (3.11), one has
vypn € H'(99Q) and [|[vpnl a1 a0) < Clnllge/2+:q)- Second, from [76], [I58], one
knows that for each aperture parameter x > 0 the boundary value problem

{Ah =01inQ, N.h N.(Vh) e L*(09),

h|ggn.t.

3.36
= ypn o-a.e. on O, ( )

has a unique solution, satisfying the naturally accompanying estimate
[N ‘Lz(aﬂ) + HNN(Vh)HLz(aQ) < Cllypnlla o0, (337)

for some constant C' € (0,00) independent of 7. Due to (2.193)-(2.194) (with
k = 1) one concludes that h € H3/2(Q), and from and (3.37) one obtains
the estimate ||k gs/2(q) < Cllypnl a1 (a0)- Keeping in mind (3-8), one then deduces
that the function v := (n — h) € H*2(Q) solves (3:34). For later reference we note
that

vl zrsr20) < Il a2y + 1Bl gsrz )
< C(HU”H*U/?HE(R") + ||’YD77HH1(89))
< C(lAull gr-ar2+e )y + Inllgemre @)
< Cl|Aull g-a/2+e - (3.38)
Next, with v as in (3:34), consider w := u — v € H3/2(Q) and note that Aw =

Au — Av = 0 in Q. In particular, w € C*°(Q) by elliptic regularity. Given these
facts, it follows from (2.193) and (2.195)) that

K—n.t.

Naw, N (Vw) € L*(09) and both w|
o-a.e. point on 9N and lie in L?(952) and [LQ(GQ)TL, respectively.

Kr—n.t.
and Vw exist at
o0 (3.39)

Moreover, (3.38) and the definition of w imply
Wl za/2(0) < llullgarzo) + 10l a2 (o)

< C(HUHHS/z(Q) + ||Au||H7<1/2>+E(Q)). (340)

Next, fix j,k € {1,...,n} along with some arbitrary ¢ € C5°(R"), and consider
the vector fields defined in € as

F = w1 ej — w0 ey, G:= Y ojwer — Y Opwey, (3.41)
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where {e,, }1<m<n 1S the standard orthonormal basis in R”. From (3.39)), (3.41),
and (2.22)), one deduces that

F,G € [Liyo()]" and N (F),N,.(G) € L*(99) C L'(99),

k—n.t.

F| o é|g;“' exist o-a.e. on 90 and lie in [L*(9Q)]" c [L'(09)]", (3.42)

div F,divG e L*/=1(Q) c L'(Q) and divF =divG in Q.

Based on these facts and Theorem [2.11], one computes

‘ / (vpu) Or,, dn_lU‘ = / (ypw) (Vj (8’€¢) |aQ Vi (8J’w) |aQ> A" o

o0 o0

_ AR | = /d' Fd»
/(991/ ( |8Q ) 0" ‘ o 1v X

—| [ divGdiz| = (G| ant
/Q 1V X ‘/BQZ/ ( ’89 ) ag

= /an |:l/k ((c%-w) ggn't‘) —vj ((akw) gén't')] (1]y0) d* o

k—n.t.
S CHVw oQ [L2(8Q)] w|99HL2(89)
< CHN/{(VU})HLZ(BQ) H¢’39HL2(39)

S C||wHH3/2(Q)Hw‘BQHLQ({)Q)
< C(||UHH3/2(Q) + ”Au”H*(l/QHE(Q))Hw|6ﬂ||L2(BQ)7 (3.43)
where the second inequality comes from (2.19), and the penultimate inequality

uses (2.194). In light of the characterization of H'(9Q) proved in Lemma
(cf. (2.184)) and (3.6)), estimate (3.43) shows that the claim in (3.33) holds. In

turn, this implies that the operator vp in (3.23)) is well defined and continuous
3

when s = 3.
Case 3: Assume s = 5. In this scenario, {u € H'/?(Q)|Au € H-G/2+=(Q)} is
not included in U%<S<% H*(Q), so we start by assigning a meaning to the action of
the Dirichlet trace vp in when s = % Specifically, assume that v € HY/?(Q)
satisfies Au € H~G/2+¢(Q) for some € € (0,1) (which suffices for our purposes).

Invoke [77, Theorem 0.5(b), pp. 164-165] to solve
Av=Auc H-G/2*(Q) in Q, ve HI/+(Q), (3.44)
vpv =0 on 09, '

with the Dirichlet trace understood in the sense of (3.1). The solution v is unique
and satisfies a naturally accompanying estimate, namely

[Vl sz (@) < CllAU|| g-6/2+ (@) (3.45)
for some C € (0, 00) independent of u,v. To proceed, consider
w:=u—uv in Q. (3.46)

Then, by design, w € H'/?(Q) and Aw = 0in Q, (hence also w € C>°(Q), by elliptic
regularity). Given these facts, (2.191) implies that N,w € L?(92). Together with
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the Fatou-type result recorded in (2.195)) this ensures that

w gg_ln‘t' exists at o-a.e. point on 9 and w’ggn't' € L*(99). (3.47)

Then we define the action of the Dirichlet trace operator vp from (3.23)) when s =
on the function u to be precisely the nontangential pointwise trace of w, that is,

1

2
K—n.t.

VDU = w‘an . (3.48)

The operator just introduced is well defined, linear, and continuous since, thanks

to (3.48), @.19), (2.192), (3.46), [@.37), and (3.45), we have

Kk—n.t.

IvpullL200) = ||w|8§2 ||L2(69) S HanHLz(aQ)

< Cllwllgirzq) < Cllullgiiz) + Cllvll gz @)
< Ollullgrrez ) + Cllvl zarm+e

< C(llull gz + 1Aull g-cr2+e @), (3.49)

for some C € (0,00) independent of u. To show that this operator is compatible
with the Dirichlet trace from (3.1)), assume that u € H*(Q) for some s € (3, 3)
satisfies Au € H~3/2+¢(Q) for some ¢ > 0. Then, following the same procedure
as above that has led to the definition in , one observes that the function
w now exhibits better regularity on the Sobolev scale, namely w € H(®/ 2)'*‘5(9),
where ¢ := min{e, s — (1/2)} > 0. Granted this fact, and employing (3.47)), one can
invoke for w in order to conclude that

K—n.t.

Ypw = w‘aﬂ . (3.50)
Since by design u = w + v in Q and ypv = 0, it follows from (3.50) that vpu
considered in the sense of (3.1]) is consistent with our definition in ([3.48)

We now address the claims made in itemized portion of the statement of the theo-
rem:

Proof of (i). Given any s € [%, %}, consider the operator

Yp: H™WD(0Q) — {uec H' Q)| Au=0 in Q} (3.51)

given by Y py := u, where u is, respectively, the unique solution of

Au=0inQ, wueH*(Q),
(3.52)
Ypu = on 99, € H*~1/2(9Q),
if s € (%, %), of
Au=0in Q, N,u € L*(99Q),
— (3.53)
U‘BQ = p o-a.e. on 0f),
if s = %, and of
Au=0 in Q, Nyu,N,(Vu) € L*(99Q),
k—n.t. (354)
u|aQ = ¢ o-a.e. on 01},

if s = % That the above Dirichlet boundary value problems are indeed well posed
has been proved in [57, Theorem 10.1] (for 1 < s < 2) and [158] (for s € {3,321,

utilizing (2.191)) and (2.193))) via boundary layer potential methods. As such, Yp is
well defined, linear, and bounded. In addition, when considered as a family indexed



SHARP BOUNDARY TRACE THEORY AND SCHRODINGER OPERATORS 51

by the parameter s € [4,3], the operators T p act in a coherent fashion. Then from

(3-8) and ( one deduces that
’}/D(TDQO) =9, Voe H™W2(90) with s € [3.3], (3.55)

proving . Of course, this also shows that the Dirichlet boundary trace operator
~vp is surjective in the context of .

Proof of (ii). We start by considering the case where the function v € HY?(Q)
satisfies Au € H~G/2+(Q), and assume that ul, " " exists at o-a.e. point on
0. In addition, we recall the function v from and the function w from
. In particular, it follows from and the current assumptions on u that
U‘g;n't' exists at o-a.e. point on 9. Since v € H(/2+(Q), this further implies (by
Lemma that v|g;ﬂ't' = ~pv = 0 at o-a.e. point on 0f). Granted this fact, one
writes (upon recalling the definition of vp from in the case s = % ; cf. )

Kk—n.t. k—n.t. K—n.t. k—n.t

Uy =W  FU|hq =W = DU (3.56)

as wanted. To complete the proof of - there remains to observe that when
s € (2, 2} the desired compatibility property follows from the manner in which the
Dirichlet trace has been defined in and Lemma
Proof of (iii). That yp in (3.23) is the unique extension by continuity and density
of the mapping C>*(Q) > f — f‘asz follows from Lemma and ((3.27)).
; : s o 5—2 . 13

Proof of (iv). Pick u € Hi(Q) satisfying Au € H72%¢(Q) for some s € 3 3],
along with some ® € C>°(9). By the density result proved in Lemma [2.13| there
exists a sequence {u;};eny C C*°(Q2) with the property that

u; —u in H5(Q) and Au; — Au in H*2T5(Q), as j — oo. (3.57)

In particular, ®u; — ®u in H*(Q) and A(Pu;) — A(Pu) in H*724(Q) as j — oo.
On account of the continuity of the Dirichlet trace operator, this permits us to
write, in the sense of H*~(1/2)(9Q),

vp(Pu) = hrn ’YD(‘buj) = hrn (Duj) |aQ

jlirr)ro (¢’|89)7Du] = (I)‘as) Ypu, (3.58)
as wanted.
Proof of (v). Fix s € [, 3] such that € # 2 — s, and choose some
u € H*(Q) with Au € H*"?7(Q) and ypu = 0. (3.59)

Next, consider a compactly supported distribution U € H®~27¢(R") with the
property that U|Q = Au and such that ||U| gs—2+<@n) < Cl|Au||gs- 2+E(Q) where
C € (0,00) is a constant independent of u. Then, with Ey as in (3.35), define
v = (Ep x U)lq € H*4(Q2) and note that this entails Av = Au as well as
lvllgste@) < ClU||gs—2te@n) < Cl|Au|gs—2+(q) again with C' € (0,00) inde-
pendent of u. Hence, introducing h := v — u, it follows from , , ,

and Corollary that, for some constant C' € (0, c0), independent of u,
h e HS(Q) satisfies ||h||H9(Q) < C(HuHHs(Q) + ||Au||Hs—2+s(Q)),

. (3.60)
has Ah =0 in Q, and yph = ypv € H™n{s+e=(1/2)1} (H(),
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The regularity results for the Dirichlet problem for the Laplacian from [57], [77],

and [I58] (cf. also (2.193)) then imply

h e H™ns+3/21(Q) and, for C € (0, 00), independent of &, (3.61)
3.61
||hHHmin{s+€,3/2}(Q) < C(Hh”Hs(Q) + ||’}/DhHHmin{s+s—(1/2),1}(89)).
In turn, this forces u = v — h € H™s+23/21(Q) and, making use of (3.17) as well
as ([3.60)), one estimates

([wll zr mintste.ar2r () SN0l mingsve.srzr (@) + (Al g mingore 323 ()

< Cl|Aull ga—2+=(0) + C(IIhll g () + DAl g mintere—a/2113 (90))

= C||Aul| gs-2+< ) + C (17l a2 () + 17DV g mintere—ar213 50y

< CllAul gs—2te () + C (1Ml ge ) + [0l move @)

< CllAufgs-2+<(q) + Cl|h|| zs(a)

< C(I[ull -y + 1Al oo (@), (3.62)
for some constant C' € (0, 00), independent of u. This justifies (3.29)), as well as the
claim in (3.30)).

Proof of (vi). Fix ¢ € (0,00), assume s € [1,2] and u € H*(Q2) is such that
Au € H*72T¢(Q). Since H*(Q) = B2?(Q) = F2%(Q) (with equivalent norms) and

H72(Q) = B, (Q) = FI5 [(Q) = FESL.(Q) < F5%(Q), (3.63)
(cf. 253), @.77), and (2.72)), one concludes that u € F22(Q), Au € F>%(5), and

there exists C' € (0, 00), independent of u, such that
lull gy < Cllulliec@y, [ Aullpne ) < ClAulreseey.  (3.64)

Granted these facts, Proposition applies and yields that u belongs to F2:9(Q)
and

||U||p3ﬂ(g) < C(”“HHS(Q) =+ ||Au||HS*2+E(Q))- (3.65)

This proves that the space on the left-hand side of (3.23)), equipped with the natural
graph norm, embeds continuously into F2:4(Q2) (from which also follows).
That the first embedding in is strict whenever ¢ € (0, 2) is a consequence of
the fact that there exist functions u € F29(Q) with Au ¢ H*~2%¢(Q). For example,
one may start with w € F2% (R™)\ F2? +-(R™) which has compact support (which
may be always arranged via a suitable truncation), then take u := (Ep * w)| Q’
with Ej as in . Finally, the fact that the second embedding in is strict
whenever ¢ € (0,2) is seen from ([2.74), ([2.77), and (2.53).
Proof of (vii). Pick some function u € H3/2(Q) satisfying Au € H~(1/2+¢(Q) and
fix an arbitrary index j € {1,...,n}. Then implies that 9;u € H'/2(Q) and
195ull gr2/2(0) < Cllull gr3/2(g) for some constant C' € (0, 00) independent of u. From
and the assumptions made one also infers that

A(dju) = 3;(Au) € H-®/D+=(Q) and

(3.66)
”A(aju)”H*@/?HE(Q) < C||AU||H7<1/2>+E(Q)
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again, with C' € (0,00) independent of u. Together with the fact that (3.23)) is
well defined and bounded when s = %, these properties then imply that vp(9;u)
belongs to L?(09Q) and

C(105ull grr2i) + 1A@ju)ll g-er2+2 @)
C(HUHHs/z(Q) + ||Au||H7(1/2)+a(Q)). (367)

All together, this shows that the operator (3.32)) is indeed well defined, linear, and
bounded. |

70 (0u) | L2(00) <
<

For simplicity of notation, we will use the same symbol vp in connection with
either or (3.23)), as the setting in which this is used will always be clear from the
context. Furthermore, we will continue to employ the symbol vp for vector-valued
functions (in which case the Dirichlet trace is applied componentwise).

The following special case of Theorem [3.6]is particularly useful in applications.

Corollary 3.7. Suppose Q C R"™ is a bounded Lipschitz domain. Then the restric-
tion of the operator (3.1]) to {u € H°(Q) | Au € L2(Q)}, originally considered for
s € (%, %), induces a well defined, linear, continuous operator

o {ue H(Q)|Aue L*(Q)} — H-/2D(9Q), Vse [3,3], (3.68)

(throughout, the space on the left-hand side of being equipped with the natural
graph norm u — |lullgs(q) + |Aullz2(q)), which continues to be compatible with
when s € (%, %), and also with the pointwise nontangential trace, whenever
the latter exists.

Moreover, the following additional properties are true:

(i) The Dirichlet boundary trace operator in (3.68) is surjective and, in fact,
there exist linear and bounded operators

Yp: H=WD0Q) - {ue H'(Q) | Aue L*(Q)}, se[L 3], (3.69)

which are compatible with one another and serve as right-inverses for the
Dirichlet trace, that is,

yo(Tpy) =2, Ve H2(9Q) with s € [§,2]. (3.70)

272
Actually, matters may be arranged so that each function in the range of T p
is harmonic, that is,

A(Ypy) =0, VyeH YD (00) with s € [§,3]. (3.71)

(i) For each s € [%, %] , the null space of the Dirichlet boundary trace operator

(13.68)) satisfies

ker(yp) C H3/%(Q). (3.72)
In fact, the inclusion in (3.72) is quantitative in the sense that there exists
a constant C' € (0,00) with the property that

whenever u € HY?(Q) with Au € L*(Q) satisfies ypu = 0, then (3.73)
3.73
u e H3/2(Q) and ||UHH3/2(Q) < C(HUHLz(Q) + ||AU||L2(Q))
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(i4i) Regarding the domain of the Dirichlet trace operator in (3.68|), one has the
continuous strict embedding

{ue H Q)| Au € L2(Q)} — F21(Q)

for any s € [%, %] and any q € (0, 00). (3.74)
(iv) The operator
{ue H?(Q) | Au e L*(Q)} 5 u s vp(Vu) € [L*(09)]" (3.75)

(with the Dirichlet trace considered in the sense of (3.68) with s := 1/2),
s well defined, linear, and bounded.

Proof. All claims, up to (and including) (3.72)), as well as (3.74) and (3.75)), are

particular cases of the corresponding statement in Theorem (3.6 choosing € = 2 —s.
To prove (3.73), assume that u € H'/?(Q) satisfies Au € L*(Q2) and ypu = 0. From

(13.30) with s = % and € = % it follows that

we H¥2(Q) and [l o2y < C([ull gz + 1Au]|2(q)) (3.76)
for some constant C' € (0, 00), independent of w. In view of (3.7) one therefore has
u e Hl(Q) N H3/2(Q) and ||u||H3/2(Q) < C(HUHHI(Q) + ||Au||L2(Q)). (3.77)

From ([2.43) one knows that there exists a sequence {¢;}jen C C§°(Q2) with the
property that

;= u in H'(Q) as j — oo. (3.78)

Thus, one can write

(Au,u)rz() = lim (Au, ) r2@) = Im pr(@)(Bu, i) pq)

=~ ; /(@) ( Okt Okf )

n

= fim ; (O, 0k 120
= —[[Vullfpzyn- (3.79)
This fact and the Cauchy—Schwartz inequality imply

VU2 e < [(Au,u)r2i0)| < [JAull 2o l[ullz2 @)

2
< (1Aull o) + llullL2)) (3.80)
and hence, for some dimensional constant C' € (0, c0),
[ull 1) < C(llull 2@ + [1Aul| L2 (o)) (3.81)
When used back in (3.77)), this yields the estimate in (3.73)). O

Once again, we will continue to employ the same symbol vp as before in con-
nection with the operator in (3.68).
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3.3. A sharp Dirichlet trace involving Besov spaces. We are now ready to
study the Dirichlet boundary trace operator in the Besov space context. In a
nutshell, the next theorem asserts that given any bounded Lipschitz domain €2 in
R™, the Dirichlet boundary trace operator vp considered in Theorem |3.6|extends to
a linear and bounded mapping on the hybrid space HBA (€2) defined in Lemmam
for each s € [%, %}, while at the same time retaining all the nice features shared
by vp in the previous smaller setting. Indeed, for each s € [3,2] and & > 0 one
obtains

{ue H*(Q)|Aue H**T(Q)} C HBA(Q) (3.82)

since by one has

H*~2+5(Q) € B>%,(Q). (3.83)
So, while Theorem [3.6] pertaining to the nature of vp is optimal as far as the Sobolev
scale is concerned, the consideration of the hybrid scale HBX (£2), involving Besov
spaces, opens the door for pushing this theory to its natural limit. Specifically,
we have the following result about what we shall refer to as the sharp Dirichlet
boundary trace operator 'yg.

Theorem 3.8. Let Q@ C R" be a bounded Lipschitz domain. Then the boundary
trace operator (3.23|) extends to a well defined, linear, continuous mapping

vh {ue H Q)| Aue B2, ()} — H=/D(09), Vse[L 3],  (3.84)
when the space on the left-hand side of (3.84) is equipped with the natural graph
norm u = ||ul|gsq) + ||Au||Bz,_12(Q). Defined as such, this sharp Dirichlet trace
operator is compatible with (3.23) for each € > 0 (hence also with (3.1) when

s € (%, %)), and possesses the following additional properties:

(i) The sharp Dirichlet boundary trace operator (3.84) is surjective. In fact, there
exist linear and bounded operators

Yp: H=WD0Q) » {ue H(Q) | Au=0}, se [ 3] (3.85)

which are compatible with one another and serve as right-inverses for the Dirichlet
trace, that is,

VH(Tpy) =, Yo e H VD) with s € [L,3]. (3.86)

(i4) The sharp Dirichlet boundary trace operator (3.84)) is compatible with the point-
wise nontangential trace in the sense that:

if u e H*(Q) has Au € B>',(Q) for some s € [3.2] and if
(3.87)

k—n.t.

sa | = vgu e H=(/2(HQ).

K—n.t. .
u|(m exists o-a.e. on O0S), then u|

(¢4i) The sharp Dirichlet boundary trace operator vg in (3.84)) is the unique exten-

sion by continuity and density of the mapping C>°(Q) > f f‘(,m.

(iv) For each s € [%, %] , the sharp Dirichlet boundary trace operator satisfies
'yﬁ((bu) = (<I>|(,m)’ypu at o-a.e. point on 0N, for all

o (3.88)
we H*(Q) with Au e B>',(Q) and all ® € C=(Q).
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(v) For each s € [%, %], the space on the left-hand side of (3.84)) (equipped with the
natural graph norm) embeds continuously into the Triebel-Lizorkin space F>' ().
In particular, one has the continuous strict embeddings

{ue H*(Q) | Aue B2,(Q)} — F21(Q) — H*(Q), se[3,3] (3.89)
(vi) The operator
{ue H*(Q)| Aue B2 ,()} 3 ur 5 (Vu) € [L2(00)]" (3.90)

(with the sharp Dirichlet trace acting componentwise, in the sense of (3.84) with
s:=1/2), is well defined, linear, and bounded.

Proof. We split the proof of the claims in the opening part of the statement of the
theorem into three cases, starting with:

Case 1: Assume s € (3,2). Since {u € H*(Q)|Au € BifQ(Q)} C H*(Q), we

272
let 'yﬁ in (3.84) act in the same manner as the trace operator from (3.1). This, by
design, ensures that ’yﬁ is well defined, linear, continuous, and compatible with its
restrictions defined previously.

Case 2: Assume s = 3. Given that {u € H*/?(Q) | Au € Bz’ll/Q(Q)} C HY(Q), we
once again let Vﬁ in (3.84)) act in the same fashion as the trace operator from (3.1
(when s = 1). Of course, this choice ensures linearity and compatibility. We claim

that there exists a constant C' € (0, 00) with the property that

if ue H3? (Q) has the property that Au € Bi’ll/Q (Q) then actually

4 X s (3.91)
Ypu € H(99) with [hullmi o) < C(ullmoz) + [Aullg21 (o))-

To justify this claim, fix a function v € H3/2(Q) with Au € Bi’ll/Q (©) and solve

{AU—AU in Q, ve H2(Q), (3.92)

vpv =0 on 01,

by proceeding as follows. First, it is possible to extend Au € lel /Q(Q) to a
compactly supported distribution U € Bz; /Q(R") such that, for some constant
C € (0,00), independent of u, one has ||U||Bi'11/2(11§n) < C’HAuHBi,llﬁ(Q) (cf. (2.52)).
We recall that Ey denotes the standard fundamental solution for the Laplacian in
R™ defined in (3.35). Calderén—Zygmund theory then gives that the operator of
convolution with Ey is locally smoothing of order two on the Besov scale (see, e.g.,
[82]). Hence, considering n := (Ey * U)|q, then

n € BY4(Q) C B (Q) = H?(Q), (3.93)

and ”77”32’/1(9) < C’||U||B2,1/ gy Moreover, An = (AEp * U)lg = Ula = Au
3/2 —-1/2
in Q. In addition, Proposition (cf. (3:20), (3:21)) used with s = 2 ensures
that Trn € H'(0Q) and || Try g1 a0) < C’||7]||Bz,/1 (q)- Second, from [76], [158],
3/2

one obtains the existence of some constant C' € (0,00) with the property that the
boundary value problem

{Ah =0inQ, N.h,N.(Vh) e L*(09),

h|g£;n.t.

(3.94)
= Trn o-a.e. on 09,
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has a unique solution, satisfying the naturally accompanying estimate
HNﬁhHLZ(aQ) + HN”(Vh)HLZ(GQ) < O Trnll i o0)- (3.95)

Due to (2.193)(2.194) (with & = 1) one concludes that h € H3/2(Q), and from
(2.194) and (3.95) one obtains the estimate ||h|| gs/2(q) < C||Trn| g1 (90). Keeping
in mind , the compatibility properties of Tr recorded in Proposition and
(3-93), one then deduces that the function v :=n — h € H*?(Q) solves (3.92). For
later reference we note that

[0l sz ) < Inllmsrz o) + 10l g3z @)

NN

C”””ij/lz(g) + 2l sz

N

C(HU||B§11/2(R7L) + 1T 9l 11 00)

N

C(HAUHBE’II/Z(Q) + ||77||B§/12(Q))
< CllAulpzr () (3.96)

Next, with v as in (3.92), one considers w := (u — v) € H*?(Q) and note that
Aw = Au—Av=0in Q, and ypw = ypu = ’yﬁu, (3.97)

where the last equality is a consequence of the manner in which vﬁu has been
defined in the current case. Moreover, (3.96) and the definition of w imply

1wl a2y < Nlull gsreay + 10l a3z @)
< C(HUHHs/z(Q) + ||Au||327,:/2(9)). (3.98)

Applying (3.97) and (3.33)) in connection with the function w one then concludes
that

~Bu = ypw € H'(8Q) (3.99)
and
IvBull o) = VoWl 6e) < Cllwl| g2

< C(lull ey + 18ullg21 ), (3.100)

for some constant C' € (0, c0) independent of w. This finishes the proof of the claim

in (3.91). In turn, (3.91) implies that the operator ’yﬁ in (3.84) is well defined and

continuous when s = %

Case 3: Assume s = 1. In this scenario, {u € HY?(Q)|Au € Bi’;/Q(Q)} is
not included in (J1_, s H*(£2), so we start by assigning meaning to the action of
the sharp Dirichlet trace 'yﬁ in (3.84) when s = % Specifically, assuming that

u € HY?(Q) satisfies Au € Bz’é/Q(Q), we extend the latter distribution in €2 to

a compactly supported distribution Ue Bi; /Q(R”) such that, for some constant

C € (0,00), independent of u, one has ||[7||Bz,1/ ®) S C’HAUHB2,1/ () (cf. (2.52)).
—3/2 —3/2

Considering 77 := (Ep x U)|q, then

7€ By y(Q) C By (Q) = H/?(), (3.101)



58 J. BEHRNDT, F. GESZTESY, AND M. MITREA
and ||77||Bl2}12(9) < C”UHB%;M(Rn)- Also,

A= (AEy+ U)o = Ulg = Au in Q. (3.102)

Moreover, Proposition [3.5{used with s = 1 ensures that Tr 7 belongs to L?(9€2) and

Tr 7| 22(00) < C||77HBz,/1 (). Second, from [76], [158], one knows that there exists
1/2
some constant C' € (0, 00) with the property that the boundary value problem

Ah=0inQ, N.he L*(09),
T |k—n.t (3103)
h‘BQ " =Trn o-a.e. on 0f,

has a unique solution, satisfying the naturally accompanying estimate
HNKhHL?(aQ) < Ol Tr 1| z2(a0).- (3.104)

Due to (2.193)—(2.194) (with k& = 0) one concludes that h e H'2(Q), and from
(2.194) and (3.104) one obtains the estimate ||h| g1/2(q) < C||Tr|L2(50). In turn,

from this estimate, (3.101]), (3.102]), our earlier estimates for 7, U , and the bound-
edness of Tr corresponding to s = % in Proposition one then deduces that the
function

7= (7—h) € H/*(Q) (3.105)

satisfies the estimate
B 21720y < 7l 2oy + 1Bl a2
< C||77HBf~/12(Q) + HE”HU?(Q)
S C(H(}”Bﬁ;/z(w) + [ Te 77l 22 (o02))

< 1 1l g2
< C(||Au||33,3/2(9) + ||77||va/2(9))

< Cllaulgz (3.106)
for some constant C' € (0, 00), independent of u, and satisfies

Av = Au in Q. (3.107)
To proceed, one considers

w:=u—70 in Q. (3.108)

Then, by design, @ € H/?(Q) and Aw = 0 in Q. Given these facts, ([2.191)) implies
that NV,w € L?(952). Together with the Fatou-type result recorded in (2.195) this
ensures that

the nontangential trace 1ﬂ|g;n't' exists at o-a.e. point on 02,

the function @’g;}n't' belongs to L*(99), and one has (3.109)

Kk—n.t.

w o2 L2(0%) KW L2(09) X w H/2(Q)-
[5]50" " | 2oy < CIN@| < O||@|

Then we define the action of the sharp Dirichlet trace operator 'yﬁ from ((3.84)

when s = % on the function u to be precisely the nontangential pointwise trace of
w, that is,
vhu =[5 (3.110)
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The operator just introduced is well defined, linear, and continuous since there
exists some C € (0, 00) independent of u for which one can write

Kk—n.t.

||7§U||L2(69) = |lo| 5, HLQ(aQ) < ClJw]| g2y
< Cllullgirzy + Cllvl gz
< Ollullnraay + HA“HBE’Q/z(Q))- (3.111)

To show that the operator defined in is compatible with the Dirichlet trace
from (3.1)), assume that v € H*(Q) with s € (3,3). Then Au € H-G/2%¢(Q)
for some sufficiently small £ > 0. Without loss of generality one can assume that
e € (0,1). Then the functions 7, h, v, and w now exhibit better regularity on the
Sobolev scale than in the previous case. Specifically, in place of one now
has 77 € H(1/2+£(Q), which further translates into Tr7y € H*(9€). When the latter
function is regarded as the boundary datum in the Dirichlet problem , this
extra regularity forces the solution h to be correspondingly more regular. Indeed,
since the solution of that Dirichlet problem is constructed via boundary layer po-
tentials, the mapping properties of these integral operators on fractional Sobolev
spaces established in [57], [123] then imply that h € H(*/2*(Q). Ultimately, this

guarantees that the function ¥ := 77 — h belongs to H(1/2+£(Q) and
~ ~ T ~ T |k—n.t. ~ ~
VDU = ypi] — yph = ypi — h|n, = pi — Trij =0, (3.112)

by Lemmam (applied to ?L), the boundary condition in , and the compatibil-
ity of Tr with «p described in Proposition Next, following the same procedure
as above that has led to the definition in , one observes that the function
@ now exhibits better regularity on the Sobolev scale, namely w € H(/2+9(Q),
where § := min{e,s — (1/2)} > 0. Granted this fact and ([3.109), one then invokes
for w to conclude that

(3.113)
Since by design v = w + v in §, it follows from (3.112) and (3.113) that vpu
3.110).

considered in the sense of (3.1]) is consistent with our definition in (
We now address the claims made in the itemized portion of the statement of the
theorem.

Proof of (i). Fix s € |3, %} Since, obviously, {u € H*(f) | Au = 0} is a subspace

of {u € H*(Q) ’ Au € B§f2 (Q)}, the same operator Tp as in (3.51)—(3.54) may be

employed as a right-inverse for 'yg (since the compatibility of the present sharp trace

operator fyﬁ with vp from (3.23)), has already been established). As a corollary,
this also proves that the sharp Dirichlet boundary trace operator 77:% is surjective

in the context of (3.84).

Proof of (ii). Fix a function v € H'Y?(Q) satisfying Au € 33’5/2(9) and such that
K—n.t.

u|ggn't' exists at o-a.e. point on 0€). Since by (3.109) one knows that @|69
also exists at o-a.e. point on 052, one concludes from (3.108)) that 5‘;;“’ exists at

o-a.e. point on 0. Together with (3.105)) and the fact that, by design, %’g;}nt

does exist at o-a.e. point on 92, this implies that 77| g;"t' exists at o-a.e. point on
0f). Having established this fact, the compatibility of Tr with the nontangential
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boundary trace guaranteed by Proposition [3.5] then forces
7 =Trn o-a.e. on 0Q. (3.114)
Consequently, on account of (3.114) and the boundary condition in ((3.103), one

can write

’/{ n.t.

k—n.t. k—n.t. k—n.t.
ulpg = Ulag  + )5
_w|n n.t. + |/§ n.t. h|n n.t.
—’LU|R n.t. —|—TI‘7} h|l€ n.t.
=}hu, (3.115)

as wanted. To complete the proof of - there remains to observe that when
s € (2, 2} the desired compatibility property follows from the manner in which the
sharp Dirichlet trace has been defined in and Lemma
Proof of (iii). That 'yﬁ in ((3.84)) is the unique extension by continuity and density
of the mapping C*>°(2) > f — f|89 follows from Lemma and (3.87).
Proof of (iv). Pick u € H*(Q) satisfying Au € B>',(Q) for some s € [2, 3], along
with some ® € C*°(Q). By the density result proved in Lemma [2.14] there exists a
sequence {u;}jen C C*°(Q) with the property that

uj —u in H*(Q) and Auj — Au in B>,(Q), as j — oo. (3.116)

In particular, ®u; — ®u in H5(Q) and A(Pu;) — A(Pu) in B>,(Q) as j — oo.
On account of the continuity of the sharp Dirichlet trace operator, this permits us
to write, in the sense of H*~(1/2)(9Q),

’yﬁ(@u) hm 'yD(<I>uj) = hm (Puy) ‘89

jlglgo (¢|39)7D“J = (¢|BQ)7§”’ (3.117)
as wanted.
Proof of (v). Suppose that s € [, 2] and u € H*(2) is such that Au € B>, (Q).
Since H*(Q) = B22(Q2) = F22(Q) (with equivalent norms) and

BYL,(Q) — F2,(Q) (3.118)

(cf. (253), , and ([2.68)), it follows that u € F22(Q2), Au € F>%(Q), and

there exists some constant C' € (0, 00), independent of u, such that
[ull p22 () < Cllullms ), [Aullp2r o) < CllAul g2 (o) (3.119)

With these in hand, one can invoke Proposition to conclude that u belongs to
F21(Q) and that

lull g2 () < Cllull (@) + 1Aull g2 (q))- (3.120)

Hence, the space on the left-hand side of , equipped with the natural graph
norm, embeds continuously into F2'(Q). This implies that the embeddings in
are well defined mappings. The fact that said embeddings are strict is then
justified much as in the case of .

Proof of (vi). Consider a function u € H3/2(Q) with Au € B}

1/2(9) and fix some
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arbitrary index j € {1,...,n}. Based on the assumptions made and (2.38) one
concludes that d;u € H/2(€) and [|0;jull g1/2(0) < Cllul|gs/2(q) for some constant
C € (0,00) independent of u. Due to (2.57) and the assumptions made, one also
has

A(9ju) = 9;(Au) € B ,(Q) and

1A 522 ) < ClliAUlp21 (),

with C' € (0,00) independent of u. Upon recalling that (3.84]) is well defined and
bounded when s = 3, these properties guarantee that yﬁ(aju) belongs to L2(92)
and

(3.121)

v (0u) L2 (a0) < C(195ull 120y + 1A W)l )

(||u||H3/2(Q) + ||Au||Bi’11/2(Q))' (3.122)
Hence, the operator (3.90) is well defined, linear, and bounded. The proof of
Theorem [3.8]is therefore complete. O

4. DIVERGENCE THEOREMS WITH SOBOLEV TRACES

The goal in this section is to test the versatility of the brand of the Dirichlet
boundary trace developed in Theorem [3.6]in the context of the divergence theorem.

A first result of this nature is presented in Theorem [{:2] As a preamble, we first
deal with the weaker result below.

Lemma 4.1. Let Q& C R" be a bounded Lipschitz domain, and fix some open
neighborhood O of 1, along with some number € > 0. In addition, assume that the

vector field G € [H(1/2)+6((9)]" satisfies divG € L _(O). Then, if v and o are,

loc loc
respectively, the outward unit normal and surface measure to 02, it follows that

/ divGd'a = / v-ypGd* o, (4.1)

Q a0

where the Dirichlet boundary trace operator acts componentwise.

Proof Consider a function n € C§°(R™) such that n = 1 on B(0,1), n = 0 outside
)s Jann(x)d"x =1 and, for each ¢t > 0, set n(x) := t~"n(x/t) for x € R".

Next, ﬁx a cutoﬁ function ¢ € C§°(O) with the property that ¢ = 1 near ) and,
for each ¢ > 0, consider the operator

Tyu == [y * (Cu) ]|Q € C™(Q) for uc L (0). (4.2)
Then for each u € L (O) one has Tyu — u’Q as t — 04 in L*(Q). Moreover, if
€ HE (O) for some k € N and if « is a multi-index of length at most &, then

9 (Tyu) = [ne * (0°(Cw))]|,, = 0%ul, as t = 04 in L*(Q). (4.3)
Next, consider an arbitrary number s > 0 and pick k € N, k > s, and 0 € (0,1)
such that s = 0k. Then for every u € C*°(0), the interpolation inequality
)
| Teu — u|Q||Hs(Q) < || T — “|Q||Hk(9)||Ttu “|Q||L2(Q (4.4)

proves that
T,gu—>u|Q as t = 04 in H*(Q), VYueC®0). (4.5)

To proceed, select a bounded Lipschitz domain Q whose closure is contained in
O and such that supp (¢) C Q. When viewed as an operator acting from H* (1),
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k € NU{0}, via the same recipe as in (4.2)), the same type of argument as in
shows that T} is bounded into H*(), uniformly in ¢ > 0. Hence, by interpolation,
T; is bounded from H* ((NZ) into H*(Q2) for each s > 0, uniformly in ¢ > 0.

At this point, consider an arbitrary v € H (O) and pick some arbitrary § > 0.

Then there exists v € C>°(O) such that |u|g — v|§||HS(§) < 6. Then
||Ttu — u|QHH5(Q) <|NTi(uw—v) || o) + HTtv — v’QHHs(Q) + H'LL|Q — v\QHHS(Q)

< Cfulg - ”|§||Hs(§) + [T - U|Q||HS(Q) +0

< C6 + || Tow = v]g | 2 (- (4.6)
Together with (4.5)) this ultimately proves that
Tiu — u‘ﬂ as t — 04 in H®(Q), for every u € Hy (O). (4.7

Next, we extend the definition of T} by allowing it to act componentwise (as in
[@-2)) on vector fields. In this regard, we note that if F € [Llloc((’))]n is such that
divF € L}, (O) then

div(TiF) = [ * (div(¢F))] |, = [me * (CAivF)]|, + [ne = (V- F)]|,  (4.8)
hence, in this case,

div(TyF) — (divF)|, in L'(Q) as ¢t — 0. (4.9)

Given a vector field G € [H(1/2)+5 ((’))]n with div G e L} .(0), one can write

loc

divGd'z = lim [ div(T,G)d"z = lim VYD (Tté) d" o

Q =0+ Jo =0+ o0

:/ v-ypGd o (4.10)
o0

Above, we used (4.9) in the first equality. The second equality is based on the
divergence theorem for the vector field T,G € [COO (ﬁ)]n The final equality relies
on the fact that (4.7) implies

T,G — G|, as t — 04 in [H/2*(Q)]", (4.11)

hence, by the continuity of the Dirichlet trace,
o (T:G) = pG as t — 04 in [H(99)]" < [L'(09)]". (4.12)
This finishes the proof of . O

We are now ready to discuss a version of the divergence theorem which makes
use of the brand of Dirichlet boundary trace from Theorem [3.6| (when s = 1/2). In
turn, results of this type are going to be instrumental in the proof of Theorem
dealing with the Neumann boundary trace operator.

Theorem 4.2. Let Q C R™ be a bounded Lipschitz domain, with surface measure
o and outward unit normal v. Then for every vector field F € [Hl/Q(Q)]n with
divE € L*(Q) and satisfying AF € [H7(3/2)+5(Q)]n for some € > 0 one has

/divﬁdnxz/ v-ypFd" o, (4.13)
Q [219]
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where the action of yp on F s considered componentwise, in the sense of
with s = 1/2 (which places ypF in [LQ(BQ)]H),

As a corollary, holds for every vector field Fe [H(1/2)+E(Q)]n for some
€ > 0 with the property that divF € L (Q) (hence, in particular, for every vector
field F e [H'(Q)]™).

Proof. To get started, one invokes [77, Theorem 0.5(b), pp. 164-165] in order to
solve the boundary value problem

AG=AF inQ, Ge [HY+(Q)]",

B (4.14)
vpG =0 on 9N.

Next, consider h := F — G in Q. It follows that Ak = 0 in €, thus & € [Cm(Q)]n

In particular, divG = divF — divh € LL (Q). Moreover, h € [HY/2(Q)]", hence

loc

by ([.191) and (2.195) one concludes that Nk € L?(09) and ﬁ|g§n't' exists o-
a.e. on 0%, and belongs to [L2(99)]". By the last condition in (£.14), this forces

’yDF" = ’yDﬁ =h Fﬁn't‘, where the last equality is a consequence of item (ii) in

Theorem (cf. (3.27))).

To proceed, we consider an approximating family Q, ~ Q as £ — oo of the sort
described in Lemma and recall that v¥ o Ay — v as ¢ — oo both pointwise
o-a.c. on 00 and in [L2(0Q)]". Moreover, the properties of the homeomorphisms

A, allow us to conclude that (mam) oAy — ﬁ|g§n't‘ as { — oo both pointwise
and in [LQ(GQ)]H, by Lebesgue’s dominated convergence theorem (with uniform
domination provided by N,.h e L?(09)). Finally, one recalls that the w,’s appearing
in the change of variable formula are uniformly bounded and converge to 1
as ¢ — oo pointwise g-a.e. on 0. Given these facts and keeping in mind that
he [CDO(Q)]", one computes

lim vt (h|8Q ) A" to,
£—00 an £

= eli}rgo 8Q(VZ oAy)- (EL,MZ) oAjwed" o

= (R gnt :/ ypFd" o, 4.15
/BQV ( |39 ) a GQV YD g ( )

On the other hand, applying the divergence theorem in each Lipschitz domain €2,
for the vector field h| a, € [C’Oo(m)]n (cf. Theorem , relying on Lebesgue’s
dominated convergence theorem, and invoking Lemma [4.1} yields

lim vt <h|am> d" oy
L— o0 aQZ

= lim divhd"z
{— 00 Q@

= lim divF d"x — lim divG d"z

{— 00 Q {— 00 Qp

:/divﬁd”x— lim v yep(Gl,,) d" o, (4.16)
o) £—00 Iy £



64 J. BEHRNDT, F. GESZTESY, AND M. MITREA

where, for each £ € N, we denoted by v, p the Dirichlet boundary trace operator
associated with the Lipschitz domain €2,. The next step in the proof is to pick a
number § € (0, min{1,e}) then estimate

‘/ ue-w,p(é’m)d”_lw
2197

S H/va(é‘Ql)H[Ll(aﬂg)}" (4.17)

S C||W,D(é|m) ||[H6(am)]n
for some constant C' € (0, 00), independent of ¢ € N. Since by and one

has G € [I?T(l/Q)‘“S(Q)]n, it follows from Lemma (used with s =1 +6 € (3,1))
that

Jim (176, (Glo,) s o =0 (4.18)
At this stage, follows from 7. O

The technical result contained in our next lemma is going to be useful shortly,
in the proof of Theorem [1.4] below.

Lemma 4.3. Let Q@ C R™ be a bounded Lipschitz domain, and consider an ap-
proximating family Qp / Q as £ — oo as described in Lemma [2.12] Assume that
feLl (Q)nH-A/2r(Q) for some e € (0,1). Then

loc
lim /S; fl@)d"x = H(1/2)—5(Q)<1, f>H—(1/2)+E(Q)’ (4.19)
i

£— 00

where 1 denotes the constant function, identically equal to 1, in §2.

Proof. For each ¢ € N denote by xq, the characteristic function of €. That is,
X, : R" — R given by xq,(z) = 1if € Qp, and xq,(z) = 0 if z € R"\Q,. By
[135, Lemma 4, p. 52] and item (4) in the proposition from [I35, pp. 29-30], for
every £ € N one has (with B?9(R™) denoting the standard scale of Besov spaces in

R™ defined in (2.50)—(2.51))

Xa, € BUS (R") <= BY, _(R") = HI/2~(R™) (4.20)
and, in fact,
sup [ xe, | gar2 -« @ny < oco. (4.21)
leN
Consequently, if one considers 1, := xq, |Q for each £ € N, it follows that
1, € HY2=2(Q) for every £ €N, and ilellg el prr/2y—e () < 00 (4.22)
We claim that actually
1, =1 in HY275(Q) as £ — oco. (4.23)
Indeed, since
C3°(Q) is dense in H~1/2+5(Q) Ve e (0,1), (4.24)

the claim in (4.23)) follows with the help of (4.22]), upon noting that for each function
v € C§° () one has

ZILIEO H1/2)—=(Q) <1Zu ¢>H7(1/2)+E(Q) = Zlir{olo D' () <127 (p>'D(Q)

= lim p(z)d "z = / o(x)d"x
oy Q

{— 00
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= H(l/z)_E(Q)<1’<‘D>H*(1/2)+E(Q)' (4.25)

Having established this fact, for every f € Li (Q) N H~(1/2+(Q) with ¢ € (0,1)
one then computes

Hm o, (x)d"z = gasm--q)(1e, f>H_<1/2>+5(Q)
= H(1/2)*5(Q)<1af>H7(1/2)+5(Q)a (4.26)
where the first equality is a consequence of Lemma [2.16] while the second one uses
(4.23]). The desired conclusion follows. O

Here is a version of the divergence theorem for vector fields whose divergence is
not necessarily an absolutely integrable function.

Theorem 4.4. Suppose 2 C R" is a bounded Lipschitz domain, with surface mea-
sure o and outward unit normal v. Let ' € [H1/2(Q)]n be a vector field with the
property that AF € [H=G/2+(Q)]" and divF € H~(/2+2(Q) for some ¢ € (0,1).
Then

H(1/2>_5(Q)<17diVﬁ>H—(1/2)+6(Q) - /BQV pFd" o, (4.27)

where 1 denotes the constant function identically to 1 in Q, and the action of yp on
F is considered componentwise, in the sense of (3.23) with s = 1/2 (which places
vpF in [L2(8Q)}n).

Proof. We shall reuse part of the proof of Theorem In particular, we let G
solve (4.14) and set h := F' — G in €. As before, this satisfies

he [C(Q)nHY2(Q)]", (4.28)
Ah=0in Q, N.he L*09), (4.29)
voF =yph = h|;,"" € [L*(09)]". (4.30)
Granted the current hypotheses, one also has
divh = divF — divG € L, .(Q)n H-1/2+=(Q). (4.31)

Since G € [1?1(1/2)*‘5(9)] " by and (3.7)), it follows that there exists a sequence
{Gi}jen C [C5e(0)]"™ with the property that
G; — G in HY2%2(Q) as j — oo. (4.32)
As a consequence,
divG; — divG in H-/2%2(Q) as j — oo, (4.33)
hence

/- () (1, div G>H7(1/2)+5(Q) = 7520 /- (o1, div Gj>H—<1/2>+E(Q)

= lim [ (div C_jj) (x)d"x

j—o0 Q

=lim [ v-(Gjl,,)d"lo=0,  (434)

ji—oo Jo0
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given that G; € [C5°(Q)]" for every j € N. This fact and (£31) then imply

-« )(1, divF>H,(1/2)+E(Q) = pas/m-<()(1,div h>H,(1/2HE(Q). (4.35)

As in the past, consider an approximating family ©Q, 2 as £ — oo (described in
Lemma [2.12)). Then one writes

H(l/?)*E(Q)<13diV}_i>H7(1/2)+s(Q) = ZILIEO o leﬁdn:L'
‘

= lim vt (h‘asz )d"_lag
L— o0 89[ 12

= / v-ypFd" o, (4.36)
o0

where the first equality is implied by Lemma and , the second equality
is a consequence of and the divergence theorem in the Lipschitz domain €2
for the vector field ‘Qz € [C> (m)]n (Theorem [2.11|is more than adequate in this
context), while the third equality is seen from (4.15]). Formula now follows
by combining and . |

It turns out that Theorem self-improves in the manner described below.

Corollary 4.5. Assume that Q C R™ is a bounded Lipschitz domain with outward
unit normal v, and fiz some € € (0,1). Let F € [HY2(Q)]" be a vector field with

the property that AF € [H=G/2+=()]" and divF € H-/2*2(Q). In addition,
consider a scalar function uw € HY/2+(Q). Then

(’VDU; v ’yDﬁ) L2(09)
= H(1/2)—E(Q)<U7 diVFﬂ>H7(1/2)+S(Q)
+ (-2t ) <Vu7 FH>[H(1/2)7E(Q)],L. (4.37)

Proof. From (2.40)) one infers that there exists a sequence {®;},;eny C C*(Q2) with
the property that

®; —u in HYP+(Q) as j — oco. (4.38)
By virtue of (3.1) and (2.38)), this implies
Yp®; = ypu in HE(9Q) — L*(0N) as j — oo,
(4.39)
V&, — Vu in [H_(1/2)+5(Q)]n as j — oo.
In addition, by (2.41)), for each j € N, the vector field 5jf7" satisfies the same

properties as the original F. As such, with o denoting the surface measure on 0%,
one can write,

(vou, v 1D F) g0y = i (105, v 9D F) 2 50

J]—00

= lim P;v- ypFd" o = lim V- "/D(ijﬁ) d" o

= Jli)l{.lo H(1/2)—a(9)<17 diV(ng)>H7(1/2)+E(Q)
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= lim gasm--)(1, VP, - F
j—ro0 H1/2) E(Q)< ) J >H7(1/2)+E(Q)
+ lim 2)— 1,9;divF
j—o00 H(1/2) E(Q)< s £g >H*<1/2>+5(Q)

= ]1520 [H—(1/2)+5(Q)]n<v¢j7 F>[H(1/2)75(Q)]n

+ jli>nolo H(1/2)*5(Q)<¢)j7 diVF>H7(1/2)+a(Q)

= [H7(1/2)+5(Q)]n <Vu, F>[H(1/2)76(Q)]n
+ H(1/2)—E(Q)<u,diVﬁ>H_(1/2)+E(Q), (4.40)

on account of Theorem [1.4] together with (£.38), ([£.39), as well as (3.28) and (2.89).
This establishes (4.37). O

It turns out that there is a more general result encompassing both Theorem
and Theorem [{.4] Stating this requires a piece of notation, clarified below. Given
a nonempty open set 2 C R™ and some s € R, both H*(2) and L'(Q2) may be
regarded as subspaces of D’(Q). In this context, it makes sense to consider their
algebraic sum

H*(Q) + L'(Q) := {u € D'() | there exist v € H*(Q) and w € L(Q)
with u =v+w in D'(Q)}. (4.41)
Equipping this with the norm associating to each u € H*(Q) + L*(2) the number

. = inf o + , 4.42
lull s ()4 L1 () . (1ol 2= 0) + llwll 1) (4.42)

vEH®(Q),weL'(Q)
turns H*(Q) + L(Q) into a Banach space, for which the natural inclusions
H*(Q) — H*(Q) + L' () < D'(Q),
LNQ) = H(Q) + L1 (Q) — D'(Q), (443

are continuous. Moreover, assuming that € is a bounded Lipschitz domain, it
follows that

Cyo () — H*(Q) + L'(Q) densely, provided s € (—1,1). (4.44)
After this preamble, here is the general result alluded to earlier.

Theorem 4.6. Let 0 C R™ be a bounded Lipschitz domain, and suppose that
F e [HI/Q(Q)]H is a vector field with the property that there exists € € (0,1) such

that AF € [H=G/2+¢(Q)]" and divF € H~(/2+2(Q) + LY(Q). Then

(H*“/"‘”E(QHLI(Q))*<1’diVﬁ>H7(1/z)+s(Q)+L1(Q) - /69 v-ypFd"lo,  (4.45)

where 1 denotes the constant function identically to 1 in Q, and the action of yp on
F is considered componentwise, in the sense of (3.23) with s = 1/2 (which places
vpF in [LZ(aQ)}”),
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Proof. We shall follow the general outline of the proof of Theorem [I.4] To get
started, let G solve (4.14) and set h := F — G in Q. Once again, this satisfies
(4.28)—(4.30). In the present setting, in place of (4.31]) one has

divh = divF — divG € Li, (Q) N (H-V/2*(Q) + L1(Q)). (4.46)
Arguing as in (4.32)-([4.34) gives
(/2 ()1 01 (@) (1, div G >H—<1/z>+e(g)+p(m =0 (4.47)
which, in light of , forces
(H-a2re @)1 i) (1 diVF:>H*(1/2)+E(Q)+L1(Q) (4.48)

= (H-A/2+e(Q)+L1(Q))* <]-a divh >H*<1/2)+E(Q)+L1(Q)'

At this stage we recall the approximating family of domains, Q; Q2 as j — oo
(cf. Lemma [2.12)). An inspection of the proof of Lemma |4.3|reveals that this easily
extends to imply

Jlggo o, fl@)d'z = (H-(1/2)+¢(Q)+L1(Q))* <1, f>H7(1/2)+E(Q)+L1(Q) (4.49)
for every function f € Ll (Q) N (H~-/2%(Q) + L1(Q)).

Indeed, the key ingredients in the justification of (4.49) are: the density result
recorded in (4.44)), along with the fact that if s € 1 1) then, with J; as in

T 202
(2.146)) (cf. also (2.93)),
Jou —u in H¥(Q) + LY Q) as t = 04, Yue H(Q)+LYQ), (4.50)

and 1; — 1 in (H*(Q) —l—Ll(Q))>k as j — oo. (4.51)

Continuing, using (€.49) for f := divh (cf. (4.46)) and then reasoning as in
(4.36]), one arrives at the conclusion that

(H=(/2)+e(Q)+ L1 (Q))* <17 div h>H—(1/2)+5(Q)+L1(Q)

. . (4.52)
= lim divhd"a::/ v-ypFd" o
o0

j—o0 Q;
Now (4.48]) and (4.52)) establish (4.45)), finishing the proof of the theorem. O

5. A SHARP NEUMANN TRACE INVOLVING SOBOLEV SPACES

Having dealt with the Dirichlet trace vp in Section [3] we now turn our attention
to the task of defining the Neumann boundary trace operator ~yy in the class of
bounded Lipschitz domains. In a first stage, we shall introduce a weak version
An of the aforementioned Neumann boundary trace operator, whose definition is
inspired by the “half” Green’s formula for the Laplacian. Specifically, we make the
following definition.

Definition 5.1. Let Q@ C R"™ be a bounded Lipschitz domain. For some fixed
smoothness exponent s € (%, %), the weak Neumann trace operator is considered
acting in the context

In A (f, F) € H(Q) x Hi2(Q) | Af = Flg in D'(Q)} — H=®/2(50). (5.1)
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Specifically, suppose a function f € H*(Q) along with a distribution F € H3 2(Q) C
H*~2(R") satisfying Af = F|q in D'(Q) have been given. In particular, [2.38) and
(2.91) entail

o f € H 1 (Q) = (H'"™(Q)", Vje{l,...,n}. (5.2)

Then the manner in which Yn(f, F) is now defined as a functional in the space
H*=G/2(0Q) = (HB®/P=2(09))" is as follows: Given ¢ € HB/D=35(dQ), then for
any ® € H*>75(Q2) such that yp® = ¢ (whose existence is ensured by the surjectivity

of B1)), set
H(3/2)*S(8Q)<¢7H’71N(fv F)>(H(3/2)7s(aﬂ))* = Z Hl—S(Q)<aj(I)7 8jf>(H175(Q))*
j=1

+H2_S(Q)<(P7F>(H275(Q))*. (53)

Regarding Deﬁnition one observes that, in the context described there, 9;® €
H'=5(Q) for each j € {1,...,n}, by ([2:38). By (5.2), this shows that the pairings
under the summation symbol in the right-hand side of are meaningful. In
addition, one can canonically identify the distribution F', originally belonging to
HE2(Q), with a functional in (H?7*(Q))* (cf. the discussion pertaining to
and ), so the last pairing in is also meaningfully defined as

HQ*S(Q)<(I)’F>(H2—5(Q))* = H278(Rn)<®7F>HS—2(RTL)

(5.4)
for any © € H*~*(R") satisfying ©|, = ® in D'(Q).

Our next theorem elaborates on the main properties of the weak Neumann trace
operator defined above.

Theorem 5.2. Let Q C R"™ be a bounded Lipschitz domain, and fix s € (%, %)
Then the weak Neumann trace mapping

v {(f,F) e HY(Q) x H2(Q) |Af = Flg in D'(Q)} — H5/2(0Q)  (5.5)

from Definition yields an operator which is unambiguously defined, linear, and
bounded (assuming the space on the left-hand side of s equipped with the nat-
ural norm (f, F) = || fllgs() + [|F||gs-2@®n)). The weak Neumann boundary trace
map possesses the following properties:

(i) The weak Neumann trace operators corresponding to various values of the pa-

rameter s € (%, %) are compatible with one another and each of them is surjective.

In fact, there exist linear and bounded operators
Tn: HOD0Q) —» {ue H (Q) | Aue L*(Q)}, se(1,3),  (5.6)

which are compatible with one another and satisfy (with tilde denoting the extension
by zero outside )

—_~—

AN (TN, A(TNY)) =4, Vi € H-B/D(0Q) with s € (3,2). (5.7)
(i) Given any two pairs,
(f,F) € H*(Q) x H;2(Q) such that Af = F|q in D'(Q),

5.8
and (g,G) € H**(Q) x Hy*(Q) such that Ag = G|q in D'(Q), (58)
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the following Green’s formula holds:

HG/2)=5(50) <7D9,5N(f, F)>(H(3/2)—S(BQ))*
— (Hs—/2)(8Q))* @N(ga G), 7Df>Hs—(1/2)(89)
= H2*S(Q)<ga F>(H2—.;(Q))* - (HS(Q))*<G’ f>Hs(Q)' (5.9)

Proof. We start by presenting the proof of the opening statement of the theorem.
Pick a pair (f, F) belonging to the domain of y in (5.I). We note that the right-
hand side of is independent of the particular extension ® of ¢, as may be seen
with the help of and (2.43). Hence, n(f, F) is well defined as a functional
in (H®/275(0Q))" and satisfies the natural estimate

1A (fs F)ll e a0y < C(If lae@) + 1 Fllgs-2@ny), (5.10)
for some constant C' € (0, 00) independent of (f, F'). Indeed,

17N (fs E) o-r200) = AN (s F)lz372)-5 (002))+
. (5.11)

= sup ‘H(3/2)*S(6Q)<¢a ﬁN(fa F)>(H(3/2)7S(BQ))*
e HB/2) =5 (5Q)
61l g (3/2)—5 90y ST

Moreover, for every ¢ € H3/2)=5(9Q) with 91l /2200y < 1, if Ip is the exten-
sion operator described in (3.2)—(3.3)) one estimates

‘H(3/2>*5(89)<¢7 ﬁN(fv F)>(H(3/2}7S(SQ))*

<

-

‘Hl-s(n)(aj(ﬁD@v %) 110y

<
I
—

+

H2-35(Q) <19D¢7 F>(H2_5(Q))*

NE

<D 0P -+ 105 f | (a1 -+ )~

1

<.
Il

+ ||19D¢||H2*S(Q)||FH(H2—5(Q))*
< ClIp@ 2= () (1f | =) + |1 F Il re-2n))
S C(If @) + 1Fllge—2(&n)), (5.12)

using (2.91)), (2.86), (2.80), (2.38), and the fact that [|Jpd|| g2-sq) < C, for some
constant C' € (0, 00) independent of f. This proves (5.10)).

We now address the claims made in itemized portion of the statement of the
theorem.

Proof of (i). That the weak Neumann trace operators corresponding to various
values of the parameter s € (%, %) are compatible with one another is implied by

the compatibility of the duality pairings intervening in (5.3)).
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Next, given any s € (1, 2), consider the operator
[ HZE2(09) » {ue H Q)| Au e L*(Q)}, (5.13)
v Y= TN = u, .
where u is the unique solution of
—A+1Du=0inQ, wue H*Q),
(~ _ ) @) (5.14)
An (u,w) = b € H=G/2(5Q).

In this regard, it is worth noting that, since s € (%, %), picking some r € ( — %, %)

(e.g., r = 0 will do) allows us to write, on account of (2.37)) and (2.93)),
we H(Q) C H(Q) = u € Hy(Q) C Hy (). (5.15)

Hence, u € HS_Q(Q) and, in addition, ﬂ’Q =u = Au in Q. This ensures that the
weak Neumann boundary trace yy (u, %) has meaning (cf. Definition[5.1)). That the
Neumann boundary value problem for the Helmholtz operator formulated in
is well posed is a consequence of work in [57], [120], [I23]. This implies that Y is
well defined, linear, and bounded. Moreover, when viewed as a family indexed by
the parameter s € (%, %), the operators T act in a compatible fashion. Then for
each ¢ € H*~(/2(0Q) with s € (3, 2) one has

proving (5.7)). Of course, this also shows that each weak Neumann trace operator
N is surjective in the context of (5.5]).

Proof of (ii). Green’s formula (5.9)) readily follows by a two-fold application of
(-3)- 0

We shall build in the direction of including the end-point cases s = % and s = %

in . As a preamble, we first define a Neumann trace operator acting from spaces
of null-solutions of the Helmholtz operator —A+1 from H'/?(Q) and H3/2(2). The
underlying reason why we prefer to work with a Helmholtz operator in place of the
Laplacian is that we employ layer potentials, and the layer potentials associated
with the Laplacian are, as opposed to those associated with the Helmholtz operator,
sensitive to the topology of the underlying domain (cf. [107] in this regard).

Lemma 5.3. Assume that Q C R™ is a bounded Lipschitz domain with outward
unit normal v. Fiz k > 0 and introduce

Y(Q):={ve H/*(Q)|(-A+1)v=0 in Q}, (5.17)
W (Q) = {we H2Q)| (-A+Dw=0 in Q}. (5.18)

Then ¥ () and # (Q) are closed subspaces of HY?(Q) and H?/?(Q), respectively.
Moreover,

V() ={veC™Q)|(-A+1)v=0 in Q and N, € L*(09Q)},
7 (Q) ={weC®Q)|(—A+Dw=0 inQ, Now,N.(Vw) € L*(0Q)},
and the Dirichlet trace induces continuous isomorphisms in the following contexts:

b V(Q) = L2(09), p: W (Q) — HL(9Q). (5.20)

(5.19)
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In addition, considering
VYV (Q) —» HH(09) = (H(09))7, (5.21)
defined by setting for each v € ¥ (Q) and each ¢ € H'(99),
H*1(89)<77\;”v¢>H1(aQ) = (ypv,v- 'YD(vw))m(aQ)’ (5.22)

where w is the unique function in # (Q) such that ypw = ¢, then the operator 77\?

in (5.21)—(5.22) is a continuous isomorphism.

Finally, the assignment

W(Q) 5w v- ((Vw) g;“) e L2(09) (5.23)

is also a continuous isomorphism.

Proof. That #(Q) and # () are closed subspaces of H'/2(Q) and H3/2(2), respec-
tively, is clear from definitions. The fact that the spaces ¥ (2), #(Q2), originally

defined as in (5.17)-(5.18) may be alternatively described as in (5.19) is a direct
)

consequence of (2.193)). Next, let Ey(-) denote the standard fundamental solution
for the Helmholtz operator —A 4+ 1 in R™, n > 2, that is,

Ey(z) = (i/4)( - 2mila))*T2H) ) o (il2l), Vo e RM{0}, (5.24)

where H /(\1)(-) denotes the Hankel function of the first kind with index A > 0 (cf.
[2l Section 9.1]). In addition, given f € L?(952), consider the integral operators

S f(x) = " Ei(z—y)f(y)d"'oly), Vzeq, (5.25)
Sf(x):= /BQ Ei(z—y)f(y)d"to(y), Yz e, (5.26)
Kf(z):= lim v(y) - (VED(xz —y)f(y)d"to(y), Vzeco (5.27)

=0+ Joa\ B(z,e)

Then from the work in [120], [123], [124], [125], it is known that for each f € L?(92)
the principal value defining K f(z) exists for o-a.e. € 99, and K is a well defined
and bounded operator both on L?(9) and on H'(99). In addition, for each
f € L?(09) one has

k—n.t.

Yf|89 (x) = Sf(z) for o-a.e. x € OQ, (5.28)
and
v(x) - (Vﬂf’ggn't') () = (— 31+ K*) f(z) for o-a.e. z € 0L, (5.29)

where K* is the adjoint of K acting on L?(99). In addition, these operators induce
continuous isomorphisms in the following contexts:

S L200) — #(Q), & :H Y0Q) — 7(Q), (5.30)
S:H Y0Q) — L*(0), S:L*09Q) — H'(09), (5.31)
+ 1l + K : L*(0Q) — L*(0Q), =+il+ K :H'(0Q)— H'(99). (5.32)

In fact, the operators in (5.31)) are adjoints to one another. In addition, the two
Dirichlet boundary traces from (5.20) coincide with the operator S o . ~!, acting
from 7(2) onto L2(9€), and from # () onto H' (), respectively. Hence, they
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induce continuous isomorphisms in the context of (5.20). Consequently, given any
¢ € HY(09Q), if w is the unique function in # () such that ypw = ¢, then nec-
essarily w = .7 (S71¢) in Q. Based on this, , and , for each function
v € ¥(§) one can then write

(vpu,v- VD(Vw))Lz(aQ) = (v, (=35 + K*)(S_1¢))L2(aﬂ)
= m-100) (S (= 31+ K)(100) s 0) 111 9oy (5:33)
In light of , this proves that
v =8-3I+ K)(ypv) for each v € ¥ (). (5.34)

From (5.31)(5.32), the fact that vp : ¥ (Q2) — L?(99) is a continuous isomorphism,
and (5.34) one concludes that the operator vX in (5.21)-(5.22) is a continuous
isomorphism.
Finally, regarding , starting from the fact that any function w € #(Q)
may be represented as w = .% (S~ ypw) in Q, one deduces from
V- ((Vw) g;"t') = (= L+ K*) (S tpw), Ywe #(Q). (5.35)

Then the claim about ([5.23) becomes a consequence of this and the fact that the
mappings in ((9.20) and (5.30)—(5.32]) are continuous isomorphisms. O

Our main result pertaining to the Neumann boundary trace operator is contained
in the theorem below. As in the case of the Dirichlet trace, by restricting ourselves
to functions with a better-than-expected Laplacian (in the sense of membership
within the Sobolev scale) we are able to include the end-point cases s = % and
s = % in (5.1). Expanding the action of the weak Neumann boundary trace map

in this fashion is going to be crucially important in our future endeavors.

Theorem 5.4. Assume that Q C R™ is a bounded Lipschitz domain. Then for
each ¢ > 0 the weak Neumann boundary trace map, originally introduced in Defini-
tion 5.1}, induces linear and continuous operators in the context
v A{(f, F) € HY(Q) x Hi7*P(Q)|Af = F|, in D'(Q)} — H*~6/2(0Q)
with s € [%, %]

(5.36)
(throughout, the space on the left-hand side of (5.36) equipped with the natural
norm (f, F) = || fll g+ () + || F'|| frs—2+<®n)) which are compatible with those in Def-
inition when s € (l §). Thus defined, the weak Neumann boundary trace map

22
possesses the following additional properties:

(i) Fach weak Neumann boundary trace map in (5.36) is surjective. In fact, there
exist linear and bounded operators

Yn:HGP00) - {ue H ()| Aue L*(Q)}, se [5,3], (5.37)

which are compatible with one another and satisfy (with tilde denoting the extension
by zero outside Q)

—~—

AN (TN, A(TNY) ) =, Yo e H 3D (0Q) with s € [L,3]. (5.38)
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(it) If e € (0,1) and s € [, 2] then for any two pairs
(f, F) € H*(Q) x H5 *"¢(Q) such that Af = F|q in D'(Q), (5.35)
5.39
and (9,G) € H*75(Q) x Hy*(Q) such that Ag = G|q in D'(Q),

the following Green’s formula holds:
H(3/2)=5(8Q) <7D97 N (fs F)>(H<3/2)7s(89))*
= (o= 09))- (I (9 C) D) e/ 90
= w2 @{9 F) (2o () — 2@ (G f) - (5.40)
(#9i) There exists a constant C € (0,00) with the property that
if f e HY*(Q) and F € H0_(3/2)+€(Q) with 0 < e < 1 satisfy
Af =F|, inD'(Q) and n(f, F) =0, then f € H/2¥=(Q) (5.41)
and || fllzasm+e ) < C(IIfllL2@) + 1Fll gr-@r2+e@ny) holds.
(iv) Denote by v the outward unit normal vector to Q). Then
if f e H¥?(Q) and F € H(;(l/QHE(Q) for some e € (0,1) satisfy
Af = F|Q in D'(Q) then, actually, x5 (f, F) € L*(0Q) and, in fact, (5.42)
AN(f, F) =v-yp(Vf) with the Dirichlet trace taken as in .

Moreover, there exists a constant C € (0,00) with the property that in the context

of one has
A~ (f, F)HLQ(@Q) S C(Iflmzr2g0) + 1 Fllgr-r2semny)- (5.43)
(v) Recall . Under the assumption that
e>0, s€[i 2], and e>3 -5, (5.44)
it follows that the mapping
I:{(f F)eH Q) x H; > (Q)|Af=F|, in D'(Q)} (5.45)
— {feH(Q): Af € H;?™(Q)}
given by
I(f,F) := f for each pair (f,F) € H*(Q) x Hi *™(Q)
with Af = F|, in D'(), (5:46)

is actually a continuous linear isomorphism. As a consequence of this and (2.97)),
under the assumption made in (5.44)) it follows that the mapping

v i=AnoTl ! (5.47)
is well defined, linear, and continuous in the context

v {f € HY Q)| Af € H:2T(Q)} — H~ /2 (9Q). (5.48)
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In view of the fact that (5.44) is satisfied if € > 0 and s = 3, this together with

(2.97) further imply that the mapping in (5.48) yields the following (well defined,
linear, continuous, surjective) brand of Neumann trace operator:

Iy A e HPPQ)|Af € H-W2F(Q)} — L2(09), An(f) =v-yp(VS),

for each e € (0,1), with the Dirichlet trace taken as in (3.23).
(5.49)

Proof. We start by considering the claims made in the opening part and in item (¢)
in the statement of the theorem. It is convenient to analyze three distinct cases,
depending on the nature of the smoothness parameter s € [%, %] For the goals we
have in mind, there is no loss of generality in assuming that € € (0,1).

Case 1: Assume s € (%, %) In this scenario, all desired conclusions follow from
Theorem (as well as its proof) simply by observing that {(f, F) e H5(Q) x
H§_2+E(Q) | Af = F|Q in D’(Q)}, the domain of 7y in , is a subspace of
{(f,F) € H*(Q) x H; *(Q)|Af = F|, in D'(Q)}, the domain of yy in (5.I). In
addition, the same operators Y from will work in the current context.

Case 2: Assume s = 3. Suppose now that some f € H3/2(Q) along with some

Fe HO_(I/QH_8 () satis?ying Af = F|Q in D’'(Q2) have been given. In particular,
Af e H- /2% () (5.50)
and, for each j € {1,...,n}, the function 9; f € H'/?(Q) satisfies
AGF) = 0(AF) = 0,(Fl,) = OF)|y € H-OD(@).  (551)
Hence, by (used with s =1/2),
vp(8; f) exists in L?(9Q) for each j € {1,...,n}. (5.52)

Pick now an arbitrary ® € C°°(Q) and set ¢ := CD’@Q. In addition, consider the
vector field B
F:=dVf in Q. (5.53)

Then implies that F € [H/2(Q)]" and
AF = (AD)Vf +IV(AS) +2(V8-VO;f) o, € [HCPH(@]",  (5.54)

as well as
divF =V®-Vf+dAf e H-W/2D*(Q). (5.55)
As such, Theorem [4.4] applies and yields, with the Dirichlet trace vp(V f) under-

stood in the sense of ([5.52) (cf. (2.89) and (3.28)),

(6. v (VD) oo = /BQ v A E A0 = oy (LAVE) i)

= H(1/2>*5(Q)<17% . Vf>H,(1/2)+6(Q) + H(1/2)—5(Q)<176Af>H7(1/2)+5(Q)

NE

H<1/2)fs(Q)<aj<I)a ajf>H—(1/2)+s(Q) + H(1/2)*5(Q)<(I), Af>H—(1/2)+E(Q)

<.
Il
—

[
NE

(aj(ba 8_]f) L2(Q) + H(1/2)—E(Q)<(I)7 F>(H(1/2)—E(Q))* (5'56)

<
Il
-



76 J. BEHRNDT, F. GESZTESY, AND M. MITREA

with v and o denoting, respectively, the outward unit normal and surface mea-
sure on 0f). Above, the last step relies on the manner in which (H(1/2~¢(Q))* is
identified with H~(1/2+2(Q) (see P

Of course, the fact that f € H entalls f € H*(Q) for any s € (%, %) and,
as such, a direct comparison of (| and reveals that

H(3/2)*5(8Q)<¢3 :YiN(fy F)> (H(B3/2)=5(9Q))* = ((by v- ’YD(vf))Lz(()Q) (5 57)
for every s € (3,32) and every¢€{<1>|ag| D e C>™()}. -

Since the latter space is dense in L?(9Q), this ultimately proves (5.42)). Moreover,
based on ([3.23) with s = 1, (2:38), the fact that Af = F|Q in D'(Q), and (2.36),

one estimates
| (f F)HLQ(BQ) S C(IV ey + AN a-cmee@yn)
S C(If ey + IAfl z-armse (@)

= C(Ifllgsr2() + 1F Nl gr-roeemny) (5.58)

for some constant C' € (0, 00), independent of (f, F').
The operator Y in (5.37) corresponding to s = % is defined as in (5.13)), in
which the boundary value problem is now understood as

ueC®(Q), (-A+1)u=0 in Q,

Nou, Nio(Vu) € L2(09), (5.59)
v- (Vu‘gg_zn't') =1 o-a.e.on 0f, € L?(09).

Work in [105], [122] Theorem 6.1], prove that the latter problem is well posed.
Moreover, since this boundary value problem as well as the one intervening in
(5.13]) are solved using the same formalism based on boundary layer potentials, it
follows that the corresponding solution operators Ty act in a coherent manner. By

(2:193), (5-42), and , one deduces that
YN (TN1/17 A(TN%//)) =1, Ve L*(09), (5.60)

justifying (5.38) in the case when s = 2. Of course, this also proves the surjectivity
of the weak Neumann trace operator in the current case.
Case 3: Assume s = % In this scenario, we begin by assigning a meaning to the
weak Neumann boundary trace ¥y (f, F') when, for some ¢ € (0,1),

f e HYV2(Q) and F € Hy ®/*7(Q) satisfy Af = F|,, in D'(92). (5.61)
Specifically, in a first stage we extend f by zero outside €2, to a function f € L*(R"),
and consider

= (E1 % (—F + )|, so that n € HI/2*<(Q) 562
5.62
with |9l ga/2+e @) < C(1flL2@) + 1F |l m-crm+e@n),

for some C € (0, 00) independent of (f, F'). We also note that
(~A+ 1)y = (~A+1)[(By  (=F + )]

(A +1)(BL+ (—F + H))]lg
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= (A +1)E) = (~F + f)]|,
= (=F+ )| in D'(Q). (5.63)

In particular, if 7 € L?(R™) is the extension by zero of i to the entire Euclidean
space, one has F' — f + 17 € HO_(?’/z)JrE(Q) and An = (F — f + 77)|Q Given these
facts, Theorem applies and gives that

v (0. F = f+77) € H(09) (5.64)
and, for some constant C' € (0,00) independent of (f, F), we have
|HN(777F - f+ﬁ)||H—1+6(89)
< C(||77||H<1/2>+E(Q) + HF - f+ ﬁHH*(3/2)+E(R”))
< C(Inllzarm ey + 1 F -2+ @n)
+ HfHH*(3/2)+E(Rn) 7 g-er2+e @n))

< C(lInllzrasoveqy + 1F | g-@ra+e @y + ||f||Lz(Rn) + 171l 22 =)

Cllnll zrarm+ey + 1Fl g-@roee@ny + 1 fllz2) + Inllz2@)

C(IIfllc2) + 1F |l g-@/2+e@ny), (5.65)

where the last inequality uses (5.62)). In a second stage, we consider the Neumann
boundary problem

{(A +1)9=0inQ, e HYDt(Q),

<
<

N o (5.66)
AN(9,9) =An(n, F — f+7) € H'12(09),

where U € L2 (R™) is the extension of ¥ by zero to R". From the work in [57], [120],
[123], it follows that this has a unique solution which, by (5.65)), satisfies

||19HH(1/2)+€(Q) < CHWN(TLF - .}?+ ﬁ) HH—H—e(aQ)

S C(Ifll2) + IF 1 m-cr2+e @ny) (5.67)
for some constant C' € (0, 00), independent of (f, F'). In a third stage, define
vi=(f—n+9) e H/*(Q) (5.68)

and note that, in the sense of distributions in €2,
(—A+1v=(-A+1)f—-(-A+1)n
= (A+1)f = (-F + )
—(CA+Df+Af— =0, (5.69)

by (5.68), (5.66)), (5.63), and the last condition in (5.61). In particular, v € ¥(Q),
the space introduced in (5.17)). Given this, it then makes sense to finally define

In(f. F) :==~kv e H(09), (5.70)

with v v defined in the sense of (5.21)—(5.22). As a consequence of this definition,
one confirms that the assignment (f, F) — Yy (f, F) is linear and

A () -1 00y < CUF vz + 1Fll-s/24e @) (5.71)
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for some constant C' € (0, 00), independent of (f,F). Indeed, on the one hand,

(5.70), the boundedness of (5.21)), and (5.68) permit us to estimate

A (f, F)[ - 10Q) ||’YN“HH 10Q) S C”UHHU?(Q)
C(If vy + 1l i@y + 191 aiz@) (5.72)
while, on the other hand, (2.37)), (5.62)), and (5.67) give
1| 512 o) S Cllnllgasme @) < C(Ifllz2) + IFl a-crmse@ny), (5.73)
()
19]] 17200 < CllONrasareeqy < C(1f L2y + IF - @r2+e mny) - (5.74)
( )

Collectively, 7- prove -

For future references, it is useful to observe that

for each v € ¥ (Q) one has n(v,7) = y4v where (5.75)
5.75
v € L*(R™) is the extension of v by zero outside Q.

Indeed, if v € () then formula (5.62)) written for f := v and F' := ¥ implies
that 7 = 0. In turn, the unique solution of the Neumann problem (5.66]) for n = 0,
f=wv, and F = 37 is ¥ = 0. Having established that n = 19 = 0 in this case, the

conclusion in is seen by appropriately translating (5.68 and -
-

Next, we shall show that the Neumann trace defined in ( ) is compatible with
the Neumann traces from Case 1. To this end, assume that one is given a function
f € H3(Q) with s € (2, 2) along Wlth some F' € Hi™ 2(Q) satisfying Af = F|Q in
D’'(Q2). Then all conditions in ) hold if one chooses

e:=s-(1/2) €(0,1). (5.76)

Next, given any function ¢ € H'(9Q) C H®/2=5(9Q), let v be as in (5.68), and take
w to be the unique function in #(Q) ¢ H3/?(Q) ¢ H?>*(Q) such that ypw = ¢.
Bear in mind that the mere membership of w to #(Q) entails Aw = w = @|Q
(where tilde denotes the extension by zero outside Q) and w € H3/2(Q) C H>~3(Q)
(in particular, w € L?(R™)). Then ) forces

('yDv, V- WD(Vw))LQ(aﬂ) =1-1I, (5.77)
where, by and Green’s formula 7
I:= (VDfaV'VD(Vw))Lz(aQ) = (WDfﬁN(wa@)Lz(aQ)
= ne-a200) YD.S AN (W, W) a1/ (962
= (H<3/2>*5(39))*<7N(f7 F)’¢>H(3/2)*S(8Q)
+ (f,w w)r2(Q) — (HZ*S(Q))*<F’ w>H2—s(Q)7 (5.78)

and where, with
= (n—9) € HY2*(Q) = H*(Q) (5.79)
(thanks to the choice of ¢ in (5.76))), we abbreviated
IT:= ('YDqu"VD(Vw))B(aQ) (vpu, I (w, w))L2(aQ)

= Hs—(1/2)(59) <7Dua YN (’LU, w)>(Hs—(l/2)(aQ))*

= (u,w)Lz(Q) - (HZ—S(Q))*<F — ‘]7-1- ”II,U}>H27S(Q)
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= (fyw)r2) — 2+ (F W) gr2-s () (5.80)

Here (5.42)) and Green’s formula 1} keeping in mind that (5.63)) and (5.66) yield
(—-A+Du=(-A+1)p=(-F+ f)|Q, one obtains

Au=(F — f +1)|,, with (F - f+1) € Hy *?* (), (5.81)
and
v, F — f+ 1) =An(u+9,F — [+ +9) —n(9,9)
=N F = f+1) = An(0. F = [ +1)
=0, (5.82)
by and . Collectively, (5.77), (5.78)), (5.80), and prove that, with

AN (f, F) interpreted in the sense discussed in Case 1,

(G2 o0))- (AN (f, F)7¢>H(3/2)—s(aﬂ) = (ypv,v- ’YD(Vw))L2(aQ)
= H-1(09Q) <7]1\;U7 ¢>H1 (99)’ (583)

which, after unraveling definitions (cf. (5.70)), shows the desired compatibility re-
sult for the two weak Neumann trace operators. Moreover, that the weak Neumann
trace operator in the current context is surjective is a direct consequence of the fact
that 'y;(f in is an isomorphism.

Corresponding to the case s = %, we shall let the operator Y in act
on a given ¢ € H~1(9N) according to YT n1 := f, where f € ¥(Q) is the unique
function with the property that v f = ¢ (cf. Lemma . Then

In(Ywd, A(TNY) ) =An (f,AF) =% f =9, (5.84)
due to the manner in which we defined the weak Neumann trace operator Yy (f, F)

with f as above and F := ANf in the present case. Indeed, this is seen from ([5.70)
since both, 1 in (5.62)) and ¥ in (5.66[), now vanish (given the choice of F'), hence v

in (5.68) is now equal to f. In turn, (5.84) justifies (5.38) in the case when s = 1

(and also proves the surjectivity of the weak Neumann trace operator in the current
case). Since, as seen from the proof of Lemma solving

feV(Q), ~if=veH 09, (5.85)

uses the same formalism based on boundary layer potentials employed in the treat-
ment of the boundary value problem intervening in (5.13), it follows that the cor-
responding solution operators T are compatible.

Proof of (ii). In a first stage we will show that, whenever s € [%, %], then for any

two functions f € H*(Q) with Af € L?(Q2) and g € H*>~%(Q) with Ag € L?(2) the
following Green’s formula holds:

H(3/2)=s(9Q) <7Dga /'\)/{N(fa Af)>(H(3/2)7s(69))*

 (Hs-(1/2)(8%))* @N(g, ANQ)a ’YDf>H57(1/2>(aQ)
= (gv Af)Lz(Q) - (Ag7 f)LZ(Q)7 (586)
where Avf, ANg € L%(R™) denote the extensions of Af, Ag € L?(Q) by zero to R™.
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To justify this particular case of formula (5.9), one invokes Lemma in order
to find two sequences {f;},en; {g;}jen C C°°(Q) with the property that, as j — oo,

fi— fin H(Q), Af; — Af in L*(Q),

_ - o (5.87)
g; —g in H*7%(Q), Ag; — Ag in L*(Q).

As a consequence of ([5.87]), the continuity of the boundary traces already proved,
and (5.42) one infers that

yofj = ypf in H=W/2(09),
v-p(Vf) = An (i, Af) = An(f, AF) in H=C/(9Q),
@

Ypg; — Ypyg in HG/2)—s Q),
v-vp(Vg;) = An (g5, Ags) = An(g, Ag) in HE2=(5Q),
as j — oo. Now (5.86) written for f,g as above follows from (5.87)), (5.88]), and

the ordinary Green’s formula for functions in C°°(€2) (itself, a consequence of The-
orem , via a limiting argument.

Going forward, having fixed some £ € (0,1) along with s € [%, 2] pick two
pairs, (f, F) € H*(Q) x H§72+5(Q) such that Af = Flg in D'(Q), and (¢9,G) €
H275(Q) x Hy ° () such that Ag = G| in D'(Q). The validity of Green’s formula
for the aforementioned pairs when s € (%, %) has been already established
in Theorem (even in the limiting case ¢ = 0). As such, there remains to
treat the situation when ¢ € (0,1) and s € {2, 2} Moreover, simple symmetry
considerations actually reduce matters to considering just one of these two extreme

1

values of s, say s = 3.

Corresponding to this choice of the parameter s, assume that € € (0,1) and that
two pairs, (f,F) € HY/?(Q) x HO_(?’/ZHE(Q) such that Af = F|q in D'(Q2), and
(9,G) € H¥?(Q) x Hg(1/2)+€(§2) such that Ag = G| in D'(Q) have been given.
Then Lemma ensures the existence of a sequence {g;}jen C C*(Q) with the
property that, as j — oo,

g; — g in HY*(Q), Ag; — Ag in H-V/2+=(Q). (5.89)
In particular, the continuity of vp in (3.23)) gives
Ypg; — ypg in H'(09) as j — oo. (5.90)

(5.88)

In addition,
Ag; — Ag=G in Hy V/PT(q) (5.91)

by (2.93) which, by virtue of the continuity of the weak Neumann trace operator,
further implies that

An (g5, Ag;) = An(g,G) in L2(99Q) as j — oc. (5.92)
Next, if v is an in (5.68)), based on (5.70), (5.75), (5.90), and (5.86) with (s = 1),

one computes

H'(09) <7DgaA'7/N(f7 F)>H71(39)

= H'(0Q) <7Dgu W%U>H*1(BQ)
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= 1102) (709N (V7)) 1 90 (5.93)

= jlggo 1 (09){1Dgj, I~ (v, Av )>H71(3Q)
= jlggo {(?N(gyv Agj)ﬁDv)Lz(aQ) + (95, Av) r2(q) — (Agj,v)w(n)}

= lim {(%V(ij KJQJ’);'VDU) r20) T (95,v)r2(0) — (Agjyv)LQ(Q)}»

J]—00

where the third equality and the last equality use the fact that Av = v (given that
v € ¥(92)). On the other hand, from (5.68) and (5.79) one concludes v = f — u,
hence for each j € N we have

(%N(gja A\g/]), 'VDU)Lz(aQ) = (7N(9j7 @)7 'VDf)Lz(EQ)
- (WN(QJ, Eé;), 7Du) L2(09)’ (594)

since we currently have yp f € L?(09Q) and ypu € L?(0Q) by (3.23). In addition,
5.42) and (5.9), used here with s = % —c€ (%, %), give, on account of (5.81) and
5.82),

(5N(gj7Agj)7'7Du)L2(BQ) = H*E(BQ)<§N(9J"Agj)?WDu>HE(BQ)

= (HQ/2)+e(Q))* (Agj, U>H(1/2>+E(Q) - H(3/2)*€(Q)<gja F—-f+ ﬂ>HO—<3/2>+s(Q)
= (Agja ’LL) L2(Q) T HGB/2)—e(Q) <g]7 F>H(;(3/2)+E(Q) + (gja U) L2(Q)" (595)
From (55.93)—(5.95) and (5.42)) one then concludes (recalling u 4+ v = f) that

H'(09Q) <’7Dg7ﬁN(f7 F)>H*1(SQ)
= jllglo {(:?N(gjv Agj)? 'YDf) L2(0Q) (Agjv f) L2(Q)
+ gem-9)(95 F>HO—<3/2>+E(Q)}
= jli>nolo {(&N(gjv Agj)a "YDf) L2(09) - Ho—(l/Z)(Q)<Agja f>H1/2(Q)

+ H(3/2)*5(Q) <gj7 F>H(;(3/2)+E(Q) }
= (:YiN(gv G)v ’YDf)LZ(HQ) - Hg(1/2)(Q) <G7 f>H1/2(Q)

+ H(3/2)75(Q)<g,F>HJ(3/2)+E(Q)’ (596)
by (5.92)), (5.91)), and (5.89). This finishes the proof of the desired version of Green’s
formula.

Proof of (iii). To treat the claim in (5.41]), we assume that some f € H'/2(Q) and
F e Hy P%(Q) with 0 < & < 1 satisfy Af = F|, in D'(Q) and Fy(f, F) = 0.
One recalls from (5.70) that the latter condition means y3v = 0 in H~(99), where

v € ¥(Q) is given in (5.68). The fact that the operator ([5.21) is an isomorphism
then forces v = 0 which, in light of (5.68)), entails

f=(n—9)e HYD+(Q), (5.97)
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given that both memberships, n € H1/2+(Q) in and ¥ € HI/2+e(Q)
in , are valid in the range 0 < ¢ < 1. Finally, the estimate in is a
consequence of the estimate in and , both of which continue to hold
for 0 < e < 1. This finishes the proof of the claim made in .

Proof of (iv). As noted earlier implies (5.42)). Finally, the estimate claimed
in has been justified in ([5.58)).

Proof of (v). Working under the assumption that - ) holds, consider f € H*(Q2)
with Af € H;72T(Q). In view of (2.84)), there exists F € Hj~ 2T€(Q) satisfying
Af = F|Q in D’(Q) This implies that Z(f, F') = f which, in turn, proves that the
mapping Z is surjective in the context of - Obviously, Z is linear. To show
that Z is also injective, assume (f, F) € H*(Q) x H3 *"5(Q) satisfy Af = F|Q
D'(?) and Z(f, F) = 0. The latter implies f = 0, hence F|Q =0 in D'(2). Since,
by design (cf. (2.80)), one has supp F' C , and one concludes that F' € H*~2"(R")
has supp F' C 992. In view of and the fact that s — 2 +¢ > —% (cf. ),
one deduces that F' = 0. Ultimately, this proves that Z is injective in the context
of . Since by design Z is also bounded, one finally concludes that Z is, in
fact, a continuous linear isomorphism. All other claims readily follow from these
facts. O

The next two remarks are designed to clarify the scope of Theorem by fur-
ther shedding light on the relationship between the weak Neumann trace operator
defined in (5.3)) and its “classical” version.

Remark 5.5. As in Theorem [5.4] assume 2 C R™ is a bounded Lipschitz domain
and denote by v the outward unit normal vector to €. In this context, suppose
some function

f e H®(Q) with s, > 3/2 (5.98)
has been given. Pick s € (3,32) Wlth s < s, and note that f € H® () — H*(Q),

while [2:38), (2-37), [2-97). and 2.84) imply that

Af € H73(Q) — HH(Q) = H;2(Q) = {ula |u € H?(Q)}. (5.99)

In particular, there exists F G HS_Q(Q) such that Af = F|Q in D'(£2). Granted
these facts, we may invoke ) to conclude that

AN F)=v-vp(Vf) € L2(6Q) with the Dirichlet trace taken as in (3.1).
(5.100)
More directly, one can invoke , with the same effect. This discussion may
be interpreted as saying that the weak Neumann trace operator (f, F) — An(f, F)
defined in is in fact compatible with the “classical” Neumann boundary trace
operator acting on arbitrary functions f as in according to f +— v - yp(Vf)
(with the Dirichlet trace understood in the sense of (3.1)). o

Remark 5.6. We wish to emphasize that the weak Neumann trace operator (f, F') —
AN (f, F) defined in is a renormalization of the “classical” Neumann boundary
trace operator f +— v -yp(Vf), which requires f to be more regular (say f €
HB/2%2(Q) for some ¢ > 0) than assumed in Theorem [5.4] relative to the extension
of Af € H*"2(Q) to a functional F in the space

(H**(Q))" = Hy™(Q) = {F € H*2(R") | supp F C Q }. (5.101)
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More specifically, suppose that f € H*(Q) with s € [5, 3] is such that there exists

some F' € (HQ_S(Q))* = Hy %(Q) with the property that for each ¢ € C§°(Q)
one has p/gn)(F, 0 )pmr) = pr()(Af, ©)p), Where ¢ is the extension of ¢ by
zero to R™. Then F is not uniquely determined by these qualities (since altering
F additively by any distribution in Hj~2(Q) supported on 9 also does the job),
and the specific choice of such an extension F' of A f strongly affects the manner in
which vy (f, F) is defined in (5.3). o

In applications, the following special case of Theorem [5.4] will play a major role.

Corollary 5.7. Assume that  C R"™ is a bounded Lipschitz domain with outward
unit normal v. Then the Neumann trace map, originally defined as u — v-(Vu)|aq
for u € C(Q), extends uniquely to linear continuous operators

i {ue HY(Q) |Aue L2 (Q)} — H /P (0Q), se [i, 2], (5.102)

(throughout, the space on the left-hand side of (5.102)) equipped with the natural
graph norm u — |[u| gs o) + [|Aul|12(q)) that are compatible with one another, as
well as surjective. In fact, there exist linear and bounded operators

Yv:HGP00) - {ue H (Q)|Aue L*(Q)}, se [4,2], (5.103)

which are compatible with one another and are right-inverses for the Neumann
trace, that is,

W(Twy) =, Yo e H =2 (9Q) with s € [1,3]. (5.104)
In addition, the following properties are valid:

(i) If s € [3,3], then for any functions f € H*(Q) with Af € L*(Q) and

272

g € H?>75(Q) with Ag € L*(2) the following Green’s formula holds:
H®B/2)=s(0Q) <’7Dga ’ny>(H(3/2)7s(aQ))*

— (Hs—(1/2)(8Q))* <’7N97 '7Df>Hsf(1/2)(3Q)

= (9, Af)r2(0) — (Ag, f)r2(0)- (5.105)

(i) For each s € [%, %] , the null space of the Neumann boundary trace operator
(5.102) satisfies

ker(yn) C H*/*(9). (5.106)

In fact, the inclusion in (5.106)) is quantitative in the sense that there exists
a constant C € (0,00) with the property that

whenever u € HY?(Q) has Au € L*(Q) and yyu = 0 then

5/ (5.107)
u€eH / (Q) and ||’u||H3/2(Q) < C(Hulle(Q) + ||Au||L2(Q)>
(iii) The following property holds:
if ue H>?(Q) has Au € L*(Q) then yyu = v - yp(Vu) (5.108)

with the Dirichlet trace taken as in (3.23)).

Proof. The key is establishing a relationship between the weak Neumann trace
operator from Theorem[5.4)and the present Neumann trace operator. To accomplish
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this, assume some s € [$, 3] has been given and choose 0 < ¢ < min{1,2 — s}. If
one denotes by

L {u € HS(Q)‘Au € L2(Q)} —

{(f,F) € H*(Q) x H *"(Q) |Af = F|, in D'(Q)} (5.109)
the continuous injection given by
v(u) = (u, Au), Vue H*(Q) with Aue L*(Q), (5.110)
(as usual, tilde denotes the extension by zero outside ), then
YN =N OL (5.111)
yields a well defined, linear, and bounded mapping in the context of (5.102). To
illustrate the manner in which y operates, consider the case where Eﬁ, %)

Then, given u € H*(Q) with Au € L?(Q), along with ¢ € H®/275(9Q) and
® € H?>75(Q) such that yp® = ¢, then the action of yyu € H5~(3/2(5Q) =
(H(3/2)*S(ag))* on ¢ € HB3/2)=5(90) is concretely given by

H(3/2)=5(5Q) <¢, ’YNU>(H<3/2>_5(69))*

= fem-s(a0) (¢ N (U, AU)>(H<3/2>75(3Q))*

= Z H1—5(9)<6jq’v aj“>(H1—s(Q))* + H2‘5(9)<(I>7 &1’>(H2*5(Q))*
j=1

= Z H1*5(9)<8]—(I)78ju>(Hl—s(Q))* + ((I), AU)L2(Q) (5112)

j=1
Next, we remark that retaining the operators YT as in (5.37) implies, in light of

). EI00). and (E39)

YN (TN) = AN (Tney, A(TNY)) = 9,
Vi e H6G/2(9Q) with s € [4,2].

272

This justifies (5.104) (which also proves the surjectivity of vy in (5.102))). More-
over, from (5.111]), (5.42), and the discussion pertaining to the nature of (3.1, one
concludes that

(5.113)

'yNuzfy'N(u,A,vu):V-(Vu)’aQ, Vue C®(Q), (5.114)

proving that, indeed, our 7y is a genuine extension of the classical (strong) Neu-
mann trace operator acting on C*°(£2). Since by Lemma the latter space is
dense in {u € H*(Q) | Au € L?(Q)}, it follows that the said extension is unique.

Next, @ is a particular case of the more general Green’s formula in . In
turn, (5.106)) and (5.107) are a direct consequence of (used here with e = 1),
keeping in mind that since L?(R™) < H~/?(R™) continuously, one has

V&l -172ny < Cll Al gy = Cll vl 2o, (5.115)

for some constant C' € (0,00), independent of u. Finally, (5.108) is implied by
(5.42). 0
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Remark 5.8. For higher-order Sobolev spaces, characterizations in the spirit of (3.7))
have been proved in [I03] and [IT9]. For us it is useful to know that

Q) = {f € HQ) |ypf = f =0} (5.116)
for any bounded Lipschitz domain  C R™. o

The result discussed in the remark below answers a question posed to us by
Selim Sukhtaiev.

Remark 5.9. Given an arbitrary bounded Lipschitz domain Q C R", abbreviate
HA(Q) := HZ’O(Q) (where the latter space is as in with s; := 1 and s3 := 0),
that is, define

HA(Q) = {ue H(Q)| Au e L*(Q)} (5.117)
equipped with the natural graph norm u — |u| g1 (o) + [|Au| r2(q). Since Corol-
lary and Corollary guarantee that the trace maps

vp : HL(Q) — HY?(8Q), (5.118)

2 HA(Q) — HY2(090), (5.119)

are well defined, linear, and continuous, it follows that the joint trace map
Y+ HAQ) — HY2(00) x H1/2(59), 5120

Y(D,NYU = ('yDu, ynu) for each u € HJ (),

is also well defined, linear, and continuous. However, while Corollary [3.7] and
Corollary [5.7] imply that the individual Dirichlet and Neumann trace maps from

(5.118)—(5.119) are surjective, we claim that the joint trace map (5.120) fails to be

surjective.

To justify this claim, observe that any function v € HA(Q) is uniquely deter-
mined by f := (~A + 1)u € L*(Q) and ¢ := ypu € H/2(9Q). Indeed, from [123]
we know that for each given f € L?*(Q) and ¢ € H'/?(99) the inhomogeneous
Dirichlet problem

~A+1Du=fin Q, wue HY(Q),

(~A+1u=f ) 5.0
ypu = ¢ on 0L,

has a unique solution, which is actually given by

w=T1f+7($7 (¢ =10 (11f)) in Q. (5.122)
Above, with the fundamental solution E; as in (5.24)),

L) — HY(Q), (5.123)
L*(Q) 3 h— (ITh)(z) := [, Er(x —y)h(y)d"y, =€,
is the volume (Newtonian) potential operator in €2, while
7 HY2(0Q) — HY(Q), (5.124)
S: H™Y2(0Q) — HY?(09), (5.125)

are, respectively, the boundary-to-domain single layer potential operator and the
boundary-to-boundary single layer potential operator associated with the Helmholtz

operator —A + 1 in Q (cf. (5.25)—(5.26))). As a consequence of work in [123], these
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operators are well defined, linear, and continuous in each of the indicated contexts.
Moreover, II in (5.123) is actually compact, as

IT maps L2(Q) continuously into H?(2), (5.126)
which further embeds compactly into H* (), '

and S in (5.125)) is actually an isomorphism. Hence, u in (5.122) is well defined
and, given that

vp =S in the setting of 7, (5.127)
it can be checked without difficulty that the function u satisfies (5.121)).

In light of this discussion, the issue whether the joint trace v(p n) in is
surjective boils down to the following question: Given an arbitrary ¢ € HY/?(99)
along with an arbitrary ¢» € H~'/2(9Q), is it possible to find some f € L*(Q) with
the property that u defined as in satisfies yyu =7

To better understand the latter property we bring in the double layer potential

operator, originally introduced in (5.32]), presently considered in the context
K : HY?(0Q) — H'/?(8Q). (5.128)

Work in [123] guarantees that this is well defined, linear, bounded, and (with I
denoting the identity) satisfies

YN = —4I+ K* as operators on H™Y2(09). (5.129)
Bearing these properties in mind, having yyu = ¥ then comes down to solving
(L) + (= 31+ K*) (S (6 =10 (11f) ) = v (5.130)
or, equivalently,
Tf=n, (5.131)
where
Tf = (1) = (= 31+ K*) (S7 (1p(11)) (5.132)
and
ni=1v—(—iI+K")(S"¢). (5.133)

In view of the compactness of and the mapping properties of vy, vp, K*,
S~ it follows that

T:L*(Q) — H'/2(8Q) (5.134)
is a linear compact operator. We also note that as ¢ and v range freely in H'/2(9Q)
and H~1/2(99), respectively, n can become any function in H~/2(99). Granted
this observation, the ability of solving hinges on whether the operator
is also surjective, which would contradict its compactness. Specifically,
if T were surjective, the Open Mapping Theorem would imply that T is open.
Hence, if Br2q) and By -1/2(9q) denote the unit balls in L?(Q) and H~/2(09Q),
respectively, we would conclude that there exists ¢ € (0, 00) such that

¢By-1/2(00) € T(Br2(q))- (5.135)

Given that T'(Brz(q)) is relatively compact in H~1/2(09), we would then be able
to conclude that By -1/2(p0) 1s a relatively compact set. However, according to

Riesz’s Theorem this would further force H~/2(9) to be a finite-dimensional
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space, which is certainly not the case. The contradiction just reached ultimately
proves that the joint trace map ([5.120)) is not surjective. o

Corollary 5.10. Let Q) C R™ be an arbitrary bounded Lipschitz domain, and recall

the space HA () defined in (5.117)). Then HA(Q) nH! (Q) becomes a Banach space
when equipped with the norm

HAQ) N HY(Q) 2w [Jullm o) + [Au 220, (5.136)

and the Neumann trace map (5.102)) induces a well defined, linear, compact opera-
tor, in the context
v T HA(Q) N HY(Q) — L*(09), (5.137)
when the space in the left-hand side is equipped with the norm (5.136)). As a corol-
lary,
v HA(Q) N big (Q) — L2(09) is not surjective. (5.138)

Proof. To justify the first claim, suppose {u; }jen is a Cauchy sequence in the space
Hi(Q)ﬂfOIl (Q), equipped with the norm (5.136). Then {u;};en is Cauchy in H' ()
and {Au;};en is Cauchy in L?*(Q2). Given that the latter spaces are complete, we
conclude that there exist u € H() along with v € L?(Q) such that, as j — oo,
u; —u in H'(Q) and Awu; — v in L*(Q). (5.139)

Then, as a consequence of and the continuity of the Dirichlet trace map
, 0 = vpu; = ypu in H/2?(0Q) as j — oco. Hence, ypu = 0 which places u
in 15’1-1(9) (cf. (3-7)). In addition, implies that u; — w in D’(Q) as j — oo,
hence also Au; — Au in D'(Q2) as j — oo, and Auj; — v in D'(Q2) as j — co. In
view of the fact that D’(Q) is a Hausdorff topological space, these properties force
Au = v € L2(Q), hence u belongs to HL (Q) as well. As such, u € HX ()N H ()
and, as seen from , the sequence {u;} jen converges to u (with respect to the
norm (5.136)). This finishes the proof of the fact that HA (€2) N H'(Q) is a Banach
space when endowed with the norm .

Let us now deal with the second claim, pertaining to the well definiteness, lin-
earity, and compactness of . To establish that this Neumann trace is a well
defined linear map we first observe from and that

HL(Q) N HY(Q) C H¥?(Q). (5.140)

Granted this, (5.102)) with s := % gives that vy is indeed a well defined linear map in
the context of . Next we shall prove that said map is also compact. To justify
this, we shall freely borrow results from, and notation employed in, Remark
To get started, define the map

L2(Q) — HA(Q) N HY(Q),

L2(Q) > frs Of = I0f — y(s—l(yD(nf))).

That this is well defined, linear, and bounded, follows from (5.126)) and the dis-
cussion in the proof of Lemma where, among other things, it was pointed out
that

(5.141)

7 L2(9Q) — H*?(Q) boundedly, (5.142)

S: L?(09Q) — H'(9Q) isomorphically. (5.143)
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We claim that © is actually an isomorphism in the context of (5.141]). To justify
that © is injective, let f € L?(Q) be such that ©f = 0. Then 0 = (-A+1)0f = f,
as wanted. The surjectivity of © follows from the observation that, for each given
f € L?(2), the boundary value problem (5.121)) written with ¢ := 0 has a unique
solution, which is actually given by th ¢ := 0, which is precisely Of.
Hence, O is an isomorphism and, according to the Open Mapping Theorem (whose
applicability is ensured by the completeness result established in the first part of
the proof), ©~! is linear and bounded.

Consequently, proving the compactness of yy in the context of is equiv-
alent to showing that

Q:=vnv 00 :L*Q) — L*(0N) is compact. (5.144)

Denote by v the outward unit normal vector to Q. From (5.141), (5.126), (5.42),
and (5.129)) we then see that for each f € L*(Q2) we have

Qf =v-p(VIIf) = (= 31+ K*) (57 (3p(11))) ). (5.145)

Since the assignment L?(Q) > f +— ~p(VILf) € HY2(99Q) is bounded, and the
embedding H/2(9Q) — L*(0Q) is compact, it follows that

L*(Q) > f + yp(VIIf) € L*(09) is compact. (5.146)

Also, bearing in mind that the Newtonian potential operator IT maps L?(£2) con-
tinuously into H2(2) which, for each fixed ¢ € (0, %), further embeds compactly
into the space {u € H3%(Q) : Au € H-1/2+5(Q)} (equipped with the natural
graph norm), we conclude from , used with s := %, that the assignment

L*(Q) 3 f > yp(Ilf) € H(99) is compact. (5.147)

Collectively, (5.145), (5.146)), (5.147), (5.143), and the fact that K is a well defined
and bounded operator on L?(9f2) then prove that the operator is indeed
compact.

At this stage, there remains to justify the claim made in For this, we
reason by contradiction, as in the last part of Remark [5.9] with natural alterations.
Specifically, if Q were surjective, the Open Mapping Theorem would imply that
Q is open. As such, if Br2q) and B2 p) denote, respectively, the unit balls in
L?(Q) and L?(99Q), we would conclude that there exists some constant ¢ € (0, c0)
with the property that

CBL2(8Q) - Q(BLZ(Q)). (5.148)
Since @ (BLZ(Q)) is relatively compact in L?(952), we would then be able to conclude
that Brz(aq) is a relatively compact set in L?(99). However, according to Riesz’s

Theorem this would further force L?(9f2) to be a finite-dimensional space, which is
clearly not the case. This contradiction ultimately establishes ([5.138)). (|

We conclude this section by establishing the counterpart of Corollary for
the Dirichlet trace map.

Corollary 5.11. Let Q) C R"™ be an arbitrary bounded Lipschitz domain, and recall
the space HA(Q) defined in (5.117). Then {u € HA(Q)|ynu = 0} becomes a
Banach space when equipped with the norm inherited from HJ (), and the Dirichlet
trace map induces a well defined, linear, compact operator, in the context

vp : {u € HA(Q)|ynvu =0} — H'(09). (5.149)
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As a consequence,
vp : {u € HA(Q)|yvu =0} — H'(0R) is not surjective. (5.150)

Proof. Lemma tells us that HA () is a Banach space, while from Corollary [5.7
we know that

v HA(Q) — H™1/2(09) is well defined, linear, bounded,

and ker(yn) = {U € Hi(Qﬂ YNU = 0} C H3/2(Q), (5.151)

Together, these properties allow us to conclude that {u € HA(Q)|yvu = 0} is a
closed subspace of HA (), hence a Banach space itself when equipped with the
norm inherited from H} (Q).

Consider next the claim regarding the well definiteness, linearity, and compact-

ness of (5.149). Granted the inclusion in (5.151)), from (3.68) with s := 3/2 we
conclude that vp is a well defined linear map in the context of ((5.149)). Let us now

show that this map is also compact. To justify this, we shall freely borrow results
and notation from Remark [5.9] and Corollary [5.10] We begin by defining

L*(Q) — {u € HA(Q)|ynu =0},
v » (5.152)
12(Q) 5 [ W) = Tf =7 ((= 31+ K7) 7 (e (1)),

That this is well defined, linear, and bounded, follows from ([5.126)) and the discus-
sion in the proof of Lemma [5.3] where it was noted that

7 L2(0Q) — H3/?2(Q) boundedly, (5.153)
— 11+ K*: L*(09) — L*(9<) isomorphically. (5.154)

We claim that ¥ is actually an isomorphism in the context of . To see
that W is injective, suppose f € L?(f2) satisfies Wf = 0. Then 0 = (-A+1)Vf = f,
as desired. To show that U is surjective, pick an arbitrary f € L?(Q2). From [123]
we know that the inhomogeneous Neumann problem

{(_A+1)u:f in Q, we H(Q),

5.155
yvu =0 on 08, ( )

has a unique solution, which is actually given by
-1
w=T1f =7 ((= 4+ K7) " (1)) = wf. (5.156)

Hence, ¥ is an isomorphism and, according to the Open Mapping Theorem (whose
applicability is ensured by the completeness result established in the first part of
the proof), U~ is linear and bounded.

As a result, proving the compactness of vp in the context of becomes
equivalent to showing that

R:=~ypoV:L*Q) = H(09) is compact. (5.157)

To proceed, denote by v the outward unit normal vector to €. From (5.152)),
(5.126), (5.42), (5.30), (5.28)), and Lemma [3.1] we then see that for each f € L*(Q)

we have

Rf =yp(f) = S((= 31+ K*) ™' (v-9p(VILf)). (5.158)
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As before (cf. (5.146)), (5.147)),

L*(Q) > f = yp(VILf) € L*(09) is compact, (5.159)
and

L*(Q) 3 f + yp(IIf) € H(99Q) is compact. (5.160)
Gathering (5.158), (5.159), (5.160), (5.154), and then establishes (5.157).

Finally, (5.150)) is justified by reasoning as in the last part in the proof of Corol-

lary [5-10] O

6. SCHRODINGER OPERATORS ON OPEN SETS AND BOUNDED LIPSCHITZ
DoMAINS

This section is devoted to a study of minimal and maximal Schrédinger operators
on nonempty open sets and bounded Lipschitz domains £ C R". Furthermore,
the self-adjoint Friedrichs extension and the self-adjoint Dirichlet and Neumann
realizations are discussed.

In the beginning of this section we make the following general assumption.

Hypothesis 6.1. Let n € N\{1}, assume that Q@ C R™ is a nonempty open set,
and suppose that V € L>(Q) is real-valued.

In the following we denote the essential infimum of V' € L>() by v_, i.e.,
v_ = essinfyeq V(2). (6.1)
We are interested in operator realizations of the differential expression —A + V
in the Hilbert space L?({2). We define the preminimal realization A, q of —A+V
by
Apa:=—A+V, dom(4,q) :=C5(Q). (6.2)
Thus, A, q is a densely defined, symmetric operator in L%(Q2), and hence closable.
Next, the minimal realization A,,;, o of —A + V is defined as the closure of A4, ¢
in L?(Q),
Amin’Q = AP,Q. (63)
It follows that A,,in.q is a densely defined, closed, symmetric operator in L?((2).
Finally, the mazimal realization A4, o of —A + V is given by

Apaz,g = —A+V, dom(Apae0) = {f € L*(Q)|Af € L*(Q)}, (6.4)

where the expression Af, f € L?(Q), is understood in the sense of distributions.
We mention that the assumption V' € L*°() in Hypothesis yields that for
f € L*(Q) one has Af € L*(Q) if and only if —Af + V f € L?(Q).

Next ,we collect some well-known properties of the operators A, o, Amin,q, and
Araz,o which follow from a standard distribution-type argument, see, for instance,
[150, Section 6.2].

Lemma 6.2. Assume Hypothesis 6.1 Let Apq, Amin, and Apazo be as intro-
duced above. Then the operators Amina and Amez.o are adjoints of each other,
that is,

:m'n,Q = A;,Q = Amam,ﬂ and Amin,Q = Ap,ﬂ = Ajnaz,ﬂﬂ (65)
and the closed symmetric operator Amin.q is semibounded from below by v_, that
18,

(Amin,ofs Nz 2 v-[Ifllf2), V[ € dom(Aning). (6.6)
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Proof. The assumption V' € L>°(Q) implies that V is a bounded operator in L?(€2).
Thus, the domains and adjoints of Ay, o, Amin.Q, and Apes o do not depend on V/
and hence one can assume without loss of generality that V' = 0 in the following.
Since Apin 0 is the closure of Aj, o in L*(£2) their adjoints A7,  and A7 o coincide.
We first establish the inclusion A* C A, az,0. For this purpose, let f E dom(A; Q)
be arbitrary. Then one has f € LZ( ) and A7 f € L?(€2), hence for each function
© € C§°(R2) one can write

D/(Q)<A;,Qfa90>p(m = (Apafe )L?(Q (f, p@‘P)Lz(Q)
= (f, —Aw)LZ(Q) = ’D/(Q)<fa —A<P>D(Q) (6.7)
= pr){ —Af, ) D)

by definition of the adjoint and (6.2) with V' = 0. Hence, in the sense of distri-
butions, one obtains —Af = A7 f € L3(Q), thus f € dom(Anar.0) and Ay of =
Amaz,of, implying A;Q C Apaz,0- Next, we verify the inclusion Ayae,0 C A;Q
Pick some f € dom(A,4z,0). Then —Af, considered in the sense of distributions,
belongs to L?(€)), and one may write

(=Af, )2 = (f, —Ap)r20) = (f, Ap.a¥) L2(0) (6.8)

for each ¢ € dom(Ap0) = C5°(R). In turn, this implies f € dom(4; ) and
Anmazaf = AL of, and hence A,,q5.0 C A% (. The reasoning so far proves the first

equality in (6.5). The second equality in (6.5) follows by taking adjoints.
It remains to show that A, o is semibounded from below by v_. Since V' > v_,
for each f € C§°(2), repeated integrations by parts yields

(Apa—v)f ez = (Af +(V - e = Z ||3jf||2Lz(Q) > 0. (6.9)
j=1

This proves that A, o — v_ is nonnegative, and the same holds for the closure
Apin,0 — v—, that is, holds. |

In the next lemma we consider the minimal realization A,;n o in the case that
Q) is a bounded open set. For the definition of the Sobolev space W?2(Q2) see (2.46)).

Lemma 6.3. Assume Hypothesis and suppose, in addition, that Q is bounded.
Then the closed symmetric operator Aqin q s given by
Aping = —A+V,  dom(Apina) = W3(9). (6.10)
Furthermore, Apinq — v— is strictly positive and Amin.o has infinite deficiency
indices,
dim (ker(AmM,Q — z[)) = dim (ker(Amaw)Q — v_)) = 00, (6.11)
for all z € C\[v_, 00).

Proof. The assumption that {2 is a bounded nonempty open subset of R guarantees
the classical Poincaré inequality holds. This readily implies that the norm

n 1/2 .
fH(IIfII%z(Q)JrZ||3j3kf||%2m)> L Ve, (6.12)

J,k=1
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is equivalent with the norm ﬁ/Q(Q) inherits from W2(Q) (cf., e.g., [165, Theo-
rem 7.6]). For any fixed f € C§°(2), successive integrations by parts yield

n

> 00kl 7oy = > 930k, 00k f) 12

jk=1 jk=1

n

Jk=1

and, as C§°(2) is dense in Vi/Q(Q), the equality of the most extreme terms in (6.13)

remains to hold for all f € ﬁ/Q(Q) Together with the earlier observation pertaining
the nature of (6.12)), this implies that the graph norm

£ (I 132y + IAF 32 % Y € W2Q), (6.14)

is equivalent with the norm ﬁ/Q(Q) inherits from W?2(Q). As such, the closure of
—Algzo(q) in L*(Q) is the operator —A with domain

——W3(Q °
e @ =i (6.15)
As the potential V' is bounded, this fact remains valid for —A+ V', and hence ([6.10))
follows.
In order to see that A0 —v— is strictly positive, one again makes use of the
classical Poincaré inequality. This permits one to estimate as in (6.9)),

(Apa —v)f, ey 2 D10 f1320) = cllf 2@ (6.16)
j=1

for some constant ¢ > 0 independent of f. This proves that A, o —v_ is strictly
positive and hence the same holds for the closure A,in 0 —v— of A, o —v_.

To show that the deficiency numbers of A,,,;,, o equal co, one can argue as follows:
First, since relatively bounded perturbations with relative bound strictly less than 1
leave deficiency indices invariant as shown in [I7], one can again assume V' = 0 (and,
hence, v_ = 0). Next, since the set Q C R™ is bounded, one can contain  in the Eu-
clidean ball B(0, R) C R™ centered at 0 € R™ and having a sufficiently large radius
R > 0. Using spherical coordinates and decomposing —A as well as L? (B (0, R))
with respect to angular momenta (cf., e.g., [I33] Appendix to Section X.1]), em-
ploying n-dimensional spherical harmonics, proves that A, B(0,R) has infinite
deficiency indices. Restricting the elements of ker(Aqz,5(0,7)) to @ C B(0, R),
and using the fact that by the unique continuation property for harmonic functions
on an open set (see, e.g., [I08, Theorems 6.25, 6.26]), arbitrary finite linear com-
binations of linearly independent harmonic functions on B(0, R) remain linearly
independent when restricted to €2, one obtains dim (ker(AmM’Q)) = 00.

Finally, follows from the fact that A,,;, o —v_ is strictly positive and the
defect indices are constant on the (connected) set of points of regular type of the
closed symmetric operator A,,in o — v—; in particular, the set of regular points of
Amin, — v— contains the set C\[v_,00) (cf. [140, Propositions 2.4 and 3.2, and
p. 39)). O

Before taking a closer look at quadratic forms associated to Schrédinger-type
operators, we briefly introduce the basic facts underlying sesquilinear forms drawing
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primarily from [83, Ch. VI]: Let D be a linear subspace of a complex, separable
Hilbert space H, then

(6.17)

JDxD—C,
(u,v) = a(u,v),

is called a sesquilinear form (in short, a form) in H if a(-, -) is linear in the
second argument and antilinear in the first; D then equals the domain of a (i.e.,
dom(a) = D). The underlying quadratic form is given by a(u,u), u € dom(a). One
calls a symmetric if a(u,v) = a(v,u)*, u,v € dom(a) (with * denoting complex
conjugation to distinguish it from the operation of closure). A symmetric form s is
called bounded from below if there exists ¢ € R such that s(u, u) > c||u||3, for every
u € dom(s). The sesquilinear form t is called closed

if {u;}jen C dom(t) u € H satisfying |lu; —ullyy — O (6.18)
j—o0
and t(u; — ug, u; — ug) " 0 implies u € dom(t) (6.19)
Jik—r00
and t(u; —u,u; —u) — 0. (6.20)
j—00

A sesquilinear form t is called closable if it has a closed extension; the smallest closed
extension of a sequilinear form a is called its closure and denoted by @. Finally, a
linear subspace Dy of H is called a core of the closed sesquilinear form ¢t if t|p, = t.

The celebrated second representation theorem (combined with a special case of
the first representation theorem) for forms then reads as follows.

Theorem 6.4. Let t be a densely defined, closed sesquilinear form bounded from
below by some ¢ € R in H. Then there exists a self-adjoint operator T in H such
that T > cly and the following properties hold:

(i) One has dom(T) C dom(t) and
t(u,v) = (u,Tv)y VYu € dom(t), Vv € dom(T). (6.21)
(#3) The linear subspace dom(T) is a core of t.
(#4i) If v € dom(t), w € H and
t(u,v) = (u, w)y (6.22)
holds for all u belonging to a core of t, then v € dom(T) and Tv = w. The self-
adjoint operator T is uniquely determined by condition ().
(iv) One has dom (|T|'/?) = dom ((T — clx)*/?) = dom(t) and
t(u,v) = ((T — cly) Y ?u, (T — CIH)l/QU)H +c(u,v)y  Vu,v € dom(t). (6.23)
Moreover, Dy C dom(t) is a core of t if and only if it is a core of (T — cly)"/?.
Another particularly useful special case of Theorem is the following result:
Theorem 6.5. Let H;, j = 1,2, be complex separable Hilbert spaces, assume that

the linear operator S maps dom(S) C Hy into Ha, and introduce the nonnegative
sesquilinear form ts via

ts(u,v) = (Su, Sv)3,, u,v € dom(ts) = dom(S). (6.24)
Then the following properties hold:
(i) The form ts is closable (resp., closed) if and only S is closable (resp., closed).
(#4) If tg is closed, then Dy C dom(ts) = dom(S) is a core of ts if and only if it is
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a core of S.

(7i1) Suppose S is densely defined and closed. Then the self-adjoint, nonnegative
operator Ts in Hi, uniquely associated to ts via Theorem 18 given by Tg =
S*S 2 0. Moreover, dom(S*S) is a core of ts and hence of S.

Item (iii) of Theorem independently proves a well-known theorem of von
Neumann [160, Satz 3] (see also [66] and the references therein).

We continue with a brief outline of the connection between the Friedrichs exten-
sion of closed, symmetric operators bounded from below and the theory of sequi-
linear forms. Let S be a densely defined, closed, symmetric, linear operator in H
satisfying S > ¢ly for some ¢ € R. Then Freudenthal’s intrinsic description (cf.
[60]) of the self-adjoint Friedrichs extension Sg of S (satisfying Sp > c¢l) is given
by

Sru = S*u for each u € dom(Sp), where

dom(SF) := {v € dom(S*)

there exists {v;}jen C dom(S) with (6.25)
jlgrolo v; — |l =0 and ((v; — vi), S(vj — vk))H — 0 as j,k— oo}.

Theorem 6.6. Suppose that S is a densely defined, symmetric, linear operator in
H bounded from below, and introduce the sesquilinear form s in H by

5(u,v) :== (u,Sv)y, wu,v € dom(s) = dom(S). (6.26)

Then the following properties hold:

(i) The form s is densely defined, symmetric, and closable. Denoting its closure by
5, the self-adjoint operator uniquely associated to s via Theorem 1s precisely the
Friedrichs extension Sg of S.

(ii) Among all self-adjoint extensions S of S bounded from below, Sg has the small-

est form domain (z’.e., the form domain dom (|SF|1/2) of the sesquilinear form of
SF is contained in the form domain dom (|§|1/2) of any §>

(#i1) The Friedrichs extension Sp of S is the only self-adjoint extension bounded
from below whose domain is contained in dom(s).

Next, retaining Hypothesis introduce the sesquilinear form
aF,Q(f7 g) = (vfa Vg) [L2(Q)]" + (f7 Vg)Lz(Q)v dOm(CleQ) = Wl(Q)v (627)

which is densely defined, closed, symmetric, and semibounded from below (by v_)
in L?(Q). Hence, it follows from the first representation theorem [83, Theorem
VI.2.1], and here recorded in Theorem (z), that there is a unique self-adjoint
operator Apq in L?() such that the identity

aF,Q(f,g) = (fa AF,QQ)Lz(Q) (628)

holds for all f € dom(ap,q) = Wi (Q) and all g € dom(Arq) C dom(arq). Making
use of (2.46) and Green’s formula it follows that

Apo=-A+V, dom(Apo)={fe W' Q)|AfeL*(Q)}, (6.29)
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and hence Apq is a self-adjoint extension of the minimal realization A, o of
—A+V defined in (6.3). By [83, Subsection VI.2.3], as recalled in Theorem [6.6](iii),
Apq represents the Friedrichs extension of A.,in 0.

The next well-known theorem collects some properties of the Friedrichs extension
Ap . in the present setting (see, for instance, [54, Section 6.1]).

Theorem 6.7. Assume Hypothesis , Then the Friedrichs extension Apgq of
Apin.g is a self-adjoint operator in L*(Q) with spectrum contained in [v_,00). If, in
addition, §) is a bounded domain then the resolvent of Ap q is compact, the spectrum
is purely discrete and contained in (v—,00). In particular, oess(Arq) = @.

Next, we study the Dirichlet and Neumann realizations of —A+V on a bounded
Lipschitz domain €2 in R”. In this context we now strengthen Hypothesis [6.1] and
use the following set of assumptions until and including Section [0}

Hypothesis 6.8. Let n € N\{1}, assume that Q@ C R™ is a bounded Lipschitz
domain, and suppose that V € L*°(Q) is real-valued.

In the setting of bounded Lipschitz domains it follows from (2.78)) and (3.7) with
s = 1 that dom(apq) = H'(Q) and the Friedrichs extension Apq coincides with
the self-adjoint Dirichlet operator

Apo=-A+YV,
dom(Ap o) = {f € H'(Q) Ndom(Apaz,0) |vpf =0} (6.30)
= {fe HY(Q)|Af € L2(2)}.
Next, we collect further properties of the self-adjoint Dirichlet operator.

Theorem 6.9. Assume Hypothesis @ and let Ap o be the Dirichlet realization of
~A+V in (6.30). Then the functions in dom(Ap.q) possess H3/?-regularity, that
is, dom(Ap o) C H/?(Q),

Apao=-A+YV,

dom(Ap) = {f € H32(Q) N dom(Apmaz.0) |’ny =0} (6.31)
= {fe B¥*Q)nH'(Q)|Af € LX)},
and on dom(Ap.q) the norms

Fe ) + 1AfllL2). s € [0, 3], (6.32)

are equivalent. In addition, Apq is self-adjoint in L*(Y), with compact resolvent,
and purely discrete spectrum, contained in (v_,00). In particular, 0ess(Ap.o) = 9.
Moreover,

dom (|Ap.ol'/?) = H'(Q). (6.33)

Proof. The additional H3/2-regularity of the function in dom(Ap q) follows from

(3.72) with s = 1, which together with (6.30) also yields (6.3I)). For s € [1, 2] the
claim in (6.32)) is a consequence of (3.73)), and for s € [0, 1] the reasoning is as
follows. For f € dom(Ap.q) and s = 1 one obtains from (5.112))

0= (v f, N2 = m/200) (D], ’YNf>H71/2(3Q)

(6.34)
= (VL VD)@ + (f Af) 2,
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which leads to
2
IV FlIEez e < Il 1AFll2@) < (1f1le2@) + 1A Fl2@) (6.35)

for f € dom(Ap,q). Therefore, || fl| g1 (o) < C(|fll2)+1Af]lL2(0)) on dom(Ap o)
which in turn implies for s € [0,1]. The remaining statements follow from
Theorem and the second representation theorem [83, Theorem VI.2.23] gives
(6:33), see also [63, Theorem 2.10] and [64, Theorem 4.6] for the case V. =0. [

Next, we introduce the sesquilinear form
ana(f,9) = (Vf,Vyg) e T V9@,  dom(ana) = H'(Q), (6.36)
which is densely defined, closed, symmetric, and semibounded from below (by v_)
in L2(2). One observes that ay g is an extension of the form apgq in since
dom(apq) = H'(Q) C H'(Q) = dom(ay.q). (6.37)

As above, it follows from the First Representation Theorem (cf., e.g., [83, Theo-
rem VI.2.1]; see also Theorem that there is a unique self-adjoint operator Ay o
in L?(Q) such that the identity

aN,Q(f7 g) = (f7 AN,Qg)Lz(Q) (638)
holds for all f € dom(ay,o) = H'(2) and all g € dom(An o) C dom(ay,q). Making
use of (6.306)), @, and (5.112)) for s = 1 one obtains

(f; Ano9)r2@) = (f, (A + V)Q)LQ(Q) + (o fiINg) L2(09) (6.39)
for g € dom(Ay.q) and all f € H'(Q). By considering f € H' () only it follows
in a first step from (6.39) that Ay o = —A + V. In a second step, taking into
account that the range of vp restricted to dom(ay o) = H'(Q) is the dense subspace

HY2(09) of L*(99) (see (3.23) with s = 1), one finds yxg = 0 for all functions
g € dom(Ap,q). Thus, one obtains

Avo=—-A+YV,
dom(Anq) = {f € H*(Q) Ndom(Aaz.) |’ny = 0} (6.40)
={feH(Q ‘AfELQ(Q) and vy f =0},

and hence Ay is a self-adjoint extension of the minimal realization A,,in o of
—A + V defined in . In the following we shall refer to Ay o as the Neumann
extension of A,,in. 0.

Next, we list some useful properties of the Neumann realization.

Theorem 6.10. Assume Hypothesis and let An o be the Neumann realization
of =A +V in (6.40). Then the functions in dom(Ay.q) possess H3/?-reqularity,
that is, dom(Ay o) C H?/%(Q),

Ano=—-A+YV,
dom(Ay.) = {f € H*?(Q) N dom(Amaz0) | v f =0} (6.41)
={feH**Q)|Af € L*(Q) and ynf =0},
and on dom(Apn o) the norms

f o W) + 1A fll L2y, s € [0,3], (6.42)
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are equivalent. In addition, Ay q is self-adjoint in L*(Y), with compact resolvent,
and purely discrete spectrum, contained in [v_,00). In particular, oess(Ann) = @.
Moreover,

dom (|An,o|"?) = HY(Q). (6.43)

Proof. The H®/?-regularity of the functions in dom(An,q) is a consequence of
5.106: (used with s = 1), while the claim in follows immediately from
5.107)). The remaining statements can be found in [63] Theorem 2.6] and [64], The-
orem 4.5] for the case V' = 0. The proof in the case V' # 0 is analogous. We note
that the spectrum of Ay is bounded from below by v_ since the corresponding
form ay o in is bounded from below by v_. O

Next, as an immediate consequence of Lemma [6.3]and (2.78)), we state a lemma
describing the domain of the minimal operator A,in. q.

Lemma 6.11. Assume Hypothesis . Then the closed symmetric operator Apin.
is given by
Aping = —A+V,  dom(Apina) = H*(9). (6.44)

Finally we show that Ap o and Ay q are relatively prime (or disjoint), a fact
that will play a prominent role later on.

Theorem 6.12. Assume Hypothesis . Then the operators Ap o and Ay o are
relatively prime, that is,

dom(Ap ) Ndom(Ay ) = dom(Apin.q) = H2(Q). (6.45)

Proof. Let f € dom(Ap.q)Ndom(Ay,q). Then from (6.31)) and (6.41]) one deduces
f e H¥?(Q) and vp f = ynf = 0. Together with (5.105)), these conditions ensure
that for every ¢ € C°°(2) one can write

(f. AY) 20y = (AF, ) 12(0). (6.46)

As in the past, using tilde to denote the extension of a function, originally defined
in €, to the entire space R™ by taking said extension to be zero outside €, the fact

that f € L2(R") and imply
D’(R”)<AJ?’ ‘P>D(Rn) = D’(R")<J?v A‘P>D(Rn) = (. A<P|Q)L2(Q)
(BT, 9l0) 120y = (AF9) 2y
= D’(R")<Awf’ ‘P>D(Rn) (6.47)

for all ¢ € C§°(R™). As such, Af = Af in D'(R™). Since Af € L*(R"), invoking
standard elliptic regularity one concludes that f e H, %C(R”), which further implies
f € H?(Q). With this in hand, we are in a position to invoke Lemma and
to conclude that

dom(Ap ) Ndom(Ay.q) C H2(Q) = dom(Amin.q). (6.48)

This establishes the left-to-right inclusion in (6.45)). The opposite inclusion follows
from Lemma@ and the fact that Ap o and Ay o are both extensions of A,,in .
a
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7. WEYL-TITCHMARSH OPERATORS FOR SCHRODINGER OPERATORS ON
BOUNDED LiPscHITZ DOMAINS

In this section we study z-dependent Dirichlet-to-Neumann maps, that is, Weyl-
Titchmarsh operators, for Schrodinger operators on bounded Lipschitz domains,
assuming Hypothesis throughout this section.

For each complex number z not in the spectrum of the self-adjoint Dirichlet
operator Ap o, that is, for z € p(Apg) = C\o(Ap,q), and for each s € [0, 2],
the characterization in implies the following direct sum decompositions of
dom(Amaz.0) N H*(Q):

dom(Apmaz,0) N H*(Q) = [dom(Ap o) + ker(Apan,o — 21)] N H* () )
—dom(Apg) - {f€H'Q)| —Af+Vf=zf}.

In a similar manner, (6.41)) ensures that the following direct sum decomposition
holds for the self-adjoint Neumann operator Ay q, z € p(Ana), s € [0, %]

dom(Anaz.0) NH(Q) = [dom(Ana) + ker(Amazr,o — 21)] N H* ()

. (7.2)
=dom(An,q) + {f € H*(Q) | ~Af+Vf=zf}
For further reference, we also note that if z € p(Ap o) then
W (Apa—2I)~" € B(L*(Q), L*(09)), (7.3)
by (6.31), (6.32) with s =0 and s = %, and (5.102) with s = % In particular, (7.3)
entails
[Wv(Apa —2I)7'" € B(L*(09), L*(Q)). (7.4)

Similarly, if z € p(An,q) then , with s =0 and s = %, and with
s = %, imply that
Yp(Ang —2I)"' € B(L*(Q), H'(09)), (7.5)
hence
[vp(Ano — 2I)7]" € B(HH(09), L*(Q)). (7.6)
To be able to proceed, we also need the following useful results contained in the
next two lemmas:

Lemma 7.1. Assume Hypothesis and fiz an arbitrary z € p(Ap o) U p(An.q).
Then ker(Apaz0 — 2I) N H3/2(Q) is dense in ker(Apmaz,0 — 2I) when the latter
space is equipped with the L?(Q)-norm.

Proof. Fix z € p(Ap,q) (the case when z € p(An,n) is similar). Employing the
density result (2.102)) (with s; = s2 = 0) shows that given any f € ker(Amaz.0—21)

there exists a sequence {g;}jen C C*(§) with the property that g; — f and
Ag; — Af in L?(Q2) as j — co. Then

fi=1l9; — (Apg —2I) " (~A+V — 2I)g;] € ker(Apmaw,0 — 21) N H32(Q) (7.7)
for every j € N, and since and since V € L*°() it follows that

(-A+V —2D)g; — (-A+V —2I)f =0 in L*(Q). (7.8)
j—o0
Therefore, one concludes that f; — f in L?(£2) as j — oo. O

Here is the second density result alluded to above.
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Lemma 7.2. Assume Hypothesis . Then dom(Apaz.q) N H3?(Q) is a dense
subspace of dom(Ammas.q), when the latter space is equipped with the natural graph

norm f = || flle2) + 1A f 2(q)-

Proof. Fix some z € p(Ap o) and select an arbitrary f € dom(Aqez,0). Use (7.1)
(with s = 0) to decompose f = g+h with g € dom(Ap o) and h € ker(Amaz,0—21).

By (6.31) this entails
g € dom(Apaz0) N HY2(). (7.9)

Then invoke Lemma [7.1] to produce a sequence
{h;}jen C ker(Apmara — 2I) N HY?(Q) € dom(A,a0.0) N HY2(Q),  (7.10)
such that h; — h in L?*(Q) as j — oo. Since V € L>(12), one also has

Ahj = (V = z)h; — (V —zI)h = Ah in L*(Q). (7.11)
Jj—o0
Hence g + h; € dom(Aaz.0) N H?/?(Q) for each j € N, and
g+h; — fin L*(Q) and A(g+h;) — Af in L*(Q), (7.12)
J—00 j—o0o
from which the desired conclusion follows. O

Our next result extends [63, Theorem 3.6, Corollary 3.3] and [65, Theorem 5.3].

Lemma 7.3. Assume Hypothesis . Then for each z € p(Apq) and s € [0,1]
the boundary value problem

(~A+V —2)f =01 Q, feH*TD(Q)Ndom(Anaza), (7.13)
vof =@ on 9, ¢ H*(00), .

is well posed, with unique solution f = fp(z, ) given by

fo(z,0) = —[ww(Apa -2, (7.14)
with the adjoint understood in the sense of (7.4)).

Proof. That (7.13) is uniquely solvable is a consequence of the surjectivity of the

boundary trace map «yp in (3.68)) and the decomposition in (7.1). Regarding (7.14)),
we denote by fp the unique solution of (7.13]). Based on ([7.3)—(7.4) and Green’s
formula (5.105)), for each v € L?(2) one computes

(fp:v)r2) = (fp, (FA+V —2)(Ap.a — EI)_LU)LZ(Q)
=((-A4+V —2)fp,(Apa — EI)_lv)LZ(Q)
+ -100) (W~ fp,70(AD.o — 21)71U>H1(8Q)
— (ynfp, v (Apa — EI)_lv)Lz(ag)

= —(¢,(Apa — ﬂ)_lv)m(aﬂ)

= _(['YN(AD,Q _EI)_I]*¢7U)L2(Q)' (715)
In light of the arbitrariness of v in L?(f), this proves (7.14]). O

We continue by discussing an extension of [63, Theorems 3.2, 4.3, Corollaries 3.3,
4.4], [65, Theorem 5.4].
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Lemma 7.4. Assume Hypothesis 6.8, Then for each z € p(An) and s € [0,1]

the boundary value problem
(~A+V —2)f=0inQ, feH+t/D(Q)Ndom(Anarn), (7.16)
—wf=¢ in HH0Q), ¢ € H*(09), '

is well posed, with unique solution f = fn(z,¢) given by

fn(z0) = —[vp(Ana — 277, (7.17)
with the adjoint understood in the sense of ((7.6]).

Proof. Together, the fact that the boundary trace map vy in (5.102)) is surjective

and the decomposition in ([7.2)) imply that the boundary value problem ([7.16) is
uniquely solvable. To justify (7.17]), denote by fn the unique solution of ([7.16]).

Relying on (7.5)—(7.6) and Green’s formula (5.105)), for each v € L?(Q2) one may

write
(fN7 )L2 Q) = (va( A+V_Z)(ANQ_zI 1U)L2(Q
(( A+V*Z)fN7(ANQ*Z[ IU)LQ(Q
+ u-100)(In v o (Ang —ZI) o H1(69)
- (’nyNa ’YN(ANJZ - ZI)_LU) L2(8Q)
= —g-100)(®;1p(An.a —Z1) ') (09)
—(I:’)/D(AN,Q —ZI)_ ] @’U)LQ(Q)' (718)
Given that v € L?(Q) is arbitrary, this proves (7.17). O

Next, we bring into play the solution operator corresponding to the boundary

value problems (|7.13)) and (|7.16).

Theorem 7.5. Assume Hypothesis [6.8] Then the following assertions hold:
(i) For z € p(Ap q) and s € [0,1], define

H*(09Q) — H3T/2(Q) N dom(Amaz.0),
Popalz): 44OV ()N dom(Ama.) (7.19)
o+ Pspalz)e:= fp(z,¢),

where fp(z,¢) is the unique solution of the boundary value problem (7.13). Then
for each z € p(Apq) and s € [0,1] the operator [yn(Ap.qa — 2])_1}*, originally
considered as in (7.4]), induces a mapping

[vw(Ap.a — 27" € B(H*(09), H*T (/2 (Q) N dom(Amaz.0)) (7.20)

(where the space H*T1/2(Q) N dom(Apmaz,q) i equipped with the natural norm
F= Il meriz@) + 1AfllL2), and

Pspa(z)=—[w(Apa —2)"" on H*(0Q). (7.21)
Moreover, P; p (%) is injective with
ran(Ps p o(2)) = ker(Apmaz.o — 21) N HFA/2(Q). (7.22)

In particular, ran(Ps p q(z)) is dense in ker(Amaz,0—21) with respect to the L*(12)-
norm.
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(it) For z € p(Anq) and s € [0,1], define
H=1(09) — H*+/2(Q) N dom(Amaz.a),
PS’N,Q(Z) :
¢ = Pona(z)e = fn(z ),

where fn(z,¢) is the unique solution of the boundary value problem (7.16)). Then
for each z € p(Anq) and s € [0,1] the operator I:')/D(AN)Q —EI)_l]*, initially
viewed as in (7.6), induces a mapping

[vp(An.o — 27" € B(H*1(09), H*T /2 (Q) N dom(Amaz,0)) (7.24)

(7.23)

(where the space H*T1/2(Q) N dom(Amaz.q) is equipped with the natural norm
f i lmsvarz @) + 1A FllL2 (@), and

Py no(z) = —[vw(Ana —ZI)7]" on H*7H(0Q). (7.25)
In addition, Ps n.o(2) is injective with
ran(P, v (2)) = ker(Apmaz. — 21) N HF/2(Q). (7.26)

In particular, ran(Ps na(2)) is dense in ker(Amaz.0—21) with respect to the L*(2)-
norm.

(#ii) For z € p(Ap,q) and s € [0, 1], the Dirichlet-to-Neumann operator defined by
Moa(a) {HS(aQ) — H571(09), 727)
p = Msa(2)e = =P p.a(2)e,
satisfies
Mo(z) = [y (Apa —21) 71" € B(H®(09), H*~(09)). (7.28)
Moreover, for each z € p(Ap o) and each s € [0,1],
the adjoint of M o(z) € B(H®(0Q), H*~(09)) s
the operator My_, (%) € B(H'*(0Q), H*(09)).
(tv) For z € p(Anq) and s € [0,1], the Neumann-to-Dirichlet operator defined by

Ns,a(2) : {HSl(am — H(0%), (7.30)

(7.29)

¢ = Ny a(z)p = =70 Ps n(2)e,
satisfies
Nsa(z) =vp [vp(Ano — 27" € B(H*71(09), H*(09)). (7.31)
In addition, for each z € p(Anq) and each s € [0,1],
the adjoint of N, q(z) € B(Hs_l((‘?Q),HS(ﬁQ)) is
the operator N1_4 (%) € B(H*(0Q), H'~5(6%)).

(v) If z € p(Ap o) Np(An,q), then for each s € [0, 1] the Dirichlet-to-Neumann op-
erator Mg o(z) maps H®(0R2) bijectively onto H*~1(9Q), the Neumann-to-Dirichlet
operator Ny o(z) maps H*~1(9N) bijectively onto H*(9SY), and their inverses sat-
isfy

(7.32)

M, o(z)"' = =Ny o(z) € B(H*'(0Q), H*(09)), (7.33)
Noa(2)™h = =M, o(z) € B(H*(0Q), H*~(09)). (7.34)



102 J. BEHRNDT, F. GESZTESY, AND M. MITREA

Proof. Most of the claims in (i)—(ii) follow from Lemmas |7.3 in a straightfor-
ward manner. For the membership in one first observe that [yn(Apo —
ZI)~']* regarded as mapping from H*(9Q) to H5+(1/2(Q) N dom(Aaz.0) (where
the latter space is equipped with the norm f — || f| ge+1/2(q) +[|Af]| 2 () is closed.
In fact, if {¢;}jen C H*(09) is sequence which converges to ¢ € H?(09Q) in the
norm of H*(9Q) and

lim I:’YN(AD’Q — E])_l]*goj =€ Hs+(1/2)(Q) Ndom(Apez.0) (7.35)
j—o0

with respect to the graph norm on HS+(1/2)(Q) Ndom(Apez.q) then it follows that
also p; = ¢ in L?(09Q) as j — oo and the limit in exists also in L2(Q).
Hence it follows from the boundedness of [yn(Ap.o — ZI)~!]* when regarded as a
mapping from L?(99) to L?(Q) (see (7.4)) that

[w(Ape =207 o = v e U2 (Q) Ndom(Apas).  (7.36)
Therefore,
[y~ (Apa —2)7'": H*(8Q) — H*T1/2(Q) N dom(Amax,0) (7.37)

is closed and defined on the whole space H*®(9f2) by the well-posedness of the bound-
ary value problem and the representation . This yields the boundedness
of and hence shows (7.20). The membership in (7.24) follows from a similar
reasoning, employing the well-posedness of and (|7.17)). In addition, the fact
that ran(Ps p o(z)) and ran(Ps ya(2)), s € [0,1], are dense in ker(A,qz.0 — 21)
with respect to the L?(Q)-norm follows from combining Lemma with and
(7.26]).

Next, the first claim in (4i¢), that is, , follows from combining ,
(7:20)—(7-21), and (7.27). To verify (7.29), fix 2,2’ € p(Apq), s € [0,1], and pick
1 € HI75(092), o € H*(0R), arbitrary. Then, noticing

Py p.a(2)p2 € HT/D(Q) N dom(Amasn),

(7.38)
Pi_spa(z)pr € HP75(Q) N dom(Amaz.0),
one observes that by design,
YpPs,p0(2)p2 = @2, YNPspa(2)p2s = —Ma(2)p,
(7.39)

YoP1spo(2)p1 =¢1, WWPi-spa?)er = —Mi_sa(z)p1.
As such, Green’s identity applied to the functions from implies
m-=00){¢1, MS,Q(Z)<P2>H571(3Q) — g-s(00)(Mi—s,0(z') 1, 902>H5(39)
= H—S(aﬂ)<'7NP175,D,Q(ZI)<P17WDPS,D,Q(2)4P2>H5(BQ)

— m-=00){10P1—s,p.0(2) 1, 'YNPS,D,Q('Z)902>H571(QQ)

(Plfs,D,Q(Z/)Salv Amam,QPs,D,Q(Z)QPZ)Lz(Q)
- (Amax,ﬂplfs,D,Q(Z/)@lv Ps,D,Q(Z)QOZ)Ig(Q)
= (Z — ?) (Pl—s,D,Q(Z/)Qpla RQ,D,Q(Z)SDQ)L'Z(Q)' (740)
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Specializing the above formula to the case when 2z’ = Z then proves that for every
z € p(Ap.a), every s € [0,1], and each p1 € H!75(0Q), p2 € H*(952), one has

H1*5(89)<¢1aMS7Q(Z)§02>HS—1(QQ) = H*S(BQ)<M1—S,Q(§)<P1aSD2>H5(3Q)- (7.41)

In turn, this identity justifies the claim in . The treatment of (ii) is therefore
complete and the claims in part (iv) are handled in a similar fashion.

Finally, we consider the claims made in part (v). To this end, select z € p(Ap o)N
p(Anq) and fix s € [0,1]. In addition, let v € H'=%(9) and p € H*~1(99) be
arbitrary. Then, observing

Pl—s,D,Q(g)w € H(S/Q)_S(Q) N dom(Amaz,Q)a

(7.42)
P, na(2)e € HHY2(Q) N dom(Amar.a),
our definitions ensure that
'YD-Plfs,D,Q(E)w = 1/% ’YNPlfs,D,Q(E)dJ = _les,ﬂ(z)w7 (7 43)

’YDPS,N,Q(Z)SD = - 5,9(2)807 ’YN-Psz,Q(Z)SO = —p.

Keeping these facts in mind and employing Green’s identity ({5.105|) for the functions
in (7.42), one concludes that

H-200)(M1_s,0(Z)0, NS,Q(Z)@HS(BQ)
= g-+02) (W Pi—s,0,0(@)V, VDPS,N,Q(Z)@Hs(ag)
= m1-+(02) (10 P1—5,0 2DV, WP N.2(2)9) 1o 1 00y
+ (P1—s,p,0(2)0, Amax,QPs,N,Q(Z)@)LQ(Q)
— (Amaz,0Pi—s,p.0(Z)0, Ps,N,Q(Z)tp)Lz(Q)
= H1*5(8§2)<¢7 (_¢)>Hsfl(6g)
+ (Pl_s,D,Q(?)lb,ZPS,N,Q(Z)SO)LQ(Q)
— (zPi—s,p,0(2)0, PS,N,Q(Z)SO)LQ(Q)
= mi—(00) (¥, (_SD)>H571(6Q)‘ (7.44)

In view of (7.29)), (7.32), and the arbitrariness of ¢» € H!=%(9Q) and ¢ € H*~1(99Q),
this further implies

M, 0(2)Nyo(z) = —1 € B(H*~(09)), (7.45)
Ni_so@)Mi_s0(Z)=-1¢€ B(Hlfs(aﬁ)). (7.46)

Since s € [0,1] and z € p(Ap,a)Np(An,q) have been arbitrarily selected, all desired
claims follow from ((7.45])—(7.46)). O

In the next lemma we collect some important properties of the Dirichlet-to-
Neumann map in the case s = 1. In this case, for each z € p(Ap ) we define

Mq(z) := M; o(2) as an unbounded operator on L*(99)

(7.47)
with dense domain dom(Mq(2)) := H'(09).
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Lemma 7.6. Assume Hypothesis and let z € p(Ap.a) N p(An,q). Then the
operator Mg (z) maps H*(9R) bijectively onto L?(9Q). One has

Ma(z) = Ma(2)" (7.48)
where the adjoint is understood in L?(0R), and
Mq(z)™' = —=Nio(z) € B (L?(09)). (7.49)

Proof. First, according to (7.31]), one has Ny,o(z) € B(L?*(9€), H'(99)) and hence
Ny o(z) € B(L*(99)) for all 2 € p(An.q). Moreover, since H'(99) embeds com-
pactly into L?(9Q) it follows that Ny o(2) € Bao(L2(09)) for z € p(An.q). From
(7.34) one obtains

Nig(z) = —MLQ(Z)il = —MQ(Z)il, z € p(Ap.a) N p(ANn.a), (7.50)

and hence one concludes assertion (|7.49)).
In order to prove (7.48|) we verify the identity

Niq(Z) = N1a(2)” (7.51)

for z € p(An.q), where the adjoint is understood in L?(9Q). Pick ¢, € L*(99)
and notice that

Pino(Z)e, Pina(z)y € HY?(Q) N dom(Amaz.0), (7.52)
by and
WPLN@E) e =—¢, PinaE)e=—Na@)p e H (09),
WWPLna(2)d ==, YpPina(2)y = —Nia(z)p € H' (99);
cf. . From Green’s identity one obtains
(0, Nia(2)¥) 2 00) — (N1,0(2)9, V) L2(00)

= m-1(00){(®; N1,Q(Z)¢>H1(ag) - H1(852)<N1,Q(E)4P7¢>H71(39)

(7.53)

= w-100)(IN PN (Z)e, 'YDP1,N,Q(Z)1/}>H1(QQ)

— m o) {1pP1,p.0(Z)e, 'VNPLN,Q(Z)w>H71(3Q)

(PLN,Q(E)@v Amaz,ﬂpl,N,Q(Z)w)Lz(Q)
— (Amaz. 0PN (@), Prya(z)e) L2()
= (z —z ) (PLN’Q(E)QD, P nal(z go)L2(Q) =0, (7.54)

which implies (7.51). For z € p(Ap,q) N p(An,q) one then finally concludes with
the help of (7.50) and (7.51)) that

MQ(E) = —Nl’Q(E)_l = (— N]_’Q(Z)*)_l = (— leﬂ(z)_1>* = MQ(Z)*, (755)
where the adjoint is understood in L?(9%2). O

Next, from ([7.21), (7.25)), the resolvent identity, and the self-adjointness of
Ap ., AN, the following useful relations on L?(9€2) may be deduced:

PO,D,Q(Z) = (I—|— (Z — Z/)(AD’Q — ZI)_I)P()‘D’Q(ZI), VZ,Z/ S p(AD’Q),

(7.56)
Pina(z) =T+ (z—2)(Anq — zI)_l)PLN,Q(z'), V2,2 € p(An.q).
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By (7.19) (with s = 0,1), (7.21)), and (7.4)), one infers that for each z € p(Ap q) the

operator Py p o(z), originally defined on H'(92) and presently viewed as a densely
defined operator on L?(912), has the bounded L?(9Q)-L?(2)-closure

Pi po(z) = Popa(z) € B(L?(09), H/?(Q)) C B(L*(09), L*(Q)). (7.57)
As such,

Pipa(z)" =Py palz)* € B(L*(Q),L*(09Q)), Vz€ p(Apq). (7.58)

In particular, we emphasize that
Pypalz): L*(09) — HY2(Q) < L*(Q), VYzep(Apg), (7.59)
Pina(z): L*(09) — H3?2(Q) < L*(Q), Vzep(Ang), (7.60)

and it is in this sense that the adjoint symbol * is understood for L?(Q)-L?(9Q)
operators in ([7.58)), as well as in the remainder of this and the following section.

Next, we note that collectively Lemma (7.22), and ([7.26)), imply

(ker(Po.p.a()) " = ran(Pop.a(2)) (751)
= ker(Amaz.0 — 2I), Vze€p(Apa),
(ker(Pva(2)) " = ran(PLva()) (7.62)
=ker(Amaz,0 —2I), Vz € p(Angq),
which further yield the orthogonal decompositions
L*(Q) = ker(Py p.a(2)*) @ ker(Apmaz.a — 2I), Yz € p(Apa), (763)

L*(Q) = ker(P1 na(2)*) @ ker(Apaza — 2I), Vz € p(Ana).

8. MAXIMAL EXTENSIONS OF THE DIRICHLET AND NEUMANN TRACE ON
BOUNDED LiPSCHITZ DOMAINS

The main objective of this section is to extend the Dirichlet and Neumann trace
operator by continuity onto the domain of the maximal operator Az q, with
Q C R™ a bounded Lipschitz domain. Again it will be assumed throughout this
section that Hypothesis holds.

The following trace spaces equipped with a suitable topology will play the key
role in the extension procedure discussed below (cf. [22]).

Definition 8.1. Assuming Hypothesis consider the spaces

Gp(09) := ran ( ) and 9y (0) := ran ( (8.1)

7D|d0m(AN,Q) ’7N|d0m(AD,Q)).

To get a better insight into the nature of the spaces just introduced we observe
that in the case when (2 is smooth (e.g., Q of class C*" for some 7 > 1/2 will do;
see [69]) one has

G (00) = H*?(0Q) and 9n(0Q) = H/2(9Q). (8.2)

We also point out that, in the case when (2 is a bounded quasi-convex domain in the
sense of [65] (hence, in particular, if ) is a bounded convex open set, or a bounded
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domain of class C*" for some r > 1/2) then the spaces in (8.1)) may be explicitly
described as

Gn(0Q) = {g € L*(09) | gv; € H'?(9Q), 1 < j < n},
Gp(0Q) = {g € H(0Q) | Viang € [H/*(090)]"},

where the v;’s are the components of the outward unit normal v, and Vg, is the
tangential gradient on 99 (see [65] for a proof and further comments).

Here we emphasize that in the more general class of arbitrary bounded Lipschitz
domains in R™ the descriptions in and are no longer valid (the root of
the problem being the failure of the inclusions in ), though, the following
inclusions continue to hold:

{9 € L*(0Q) | gv; € H'*(0Q), 1 <j < n} € In(0Q),
{9 € H(0Q) | Viang € [H?(0)]"} C 9p(09).

Returning to the mainstream discussion (in the setting of Hypothesis , from
(3-68), (6.31), (5.102), and (6.41)) we remark that

Gp(0Q) = {vpf | f € H**(Q) Ndom(Amaz,n), W8 f =0} C H'(09),

(8.3)

(8.4)

(8.5)
Gn(09Q) = {ynf | f € H¥*(Q) Ndom(Amazn), 70f =0} C L2(9Q).
One also observes that ( -, m, and (8.1]) entail
ran(Po’D’Q(z)*) =9n(0Q), Vzep(Apa), (56)

ran(PLN’Q(z)*) = %D(aﬁ), Vze p(ANyg).

Lemma 8.2. Assume Hypothesis . Then 9n(00Q) is a dense proper linear sub-
space of L2(0Q), while 9p(0R) is a dense proper linear subspace of H*(99) (hence
also dense in L?(09)).

Proof. That ¥x(052) is a proper linear subspace of L?(99) is seen from (8.5)), (8.1)),
and (5.138)), bearing in mind that (cf. (6.31))
dom(Ap o) = HA(Q) N H'(Q). (8.7)
Likewise, that ¢p(992) is a proper linear subspace of H'(df) is seen from (8.5),
(8.1)), and ([5.150)), bearing in mind that (cf. (6.41))
dom(An,0) = {u € HA(Q)|ynu=0}. (8.8)
There remains to deal with the density claimed in the statement. To this end,
suppose that the function ¢ € L?(99) is orthogonal to the subspace ¥x(99) of
L2(09). In view of (8.5)) this implies
(0,98 f) 290y =0 forall fe H3/2(Q) Ndom(Apmar.q) with ypf =0. (8.9)
Using the fact that yp in (3.68) with s = 1/2 is surjective, it follows that there
exists
g € HY2(Q) Ndom(Aae.) With ypg = ¢. (8.10)
Hence, for each f € H3/2(Q)Ndom(Aaz.0) With vp f = 0, Green’s formula ([5.105)
yields
0= (¢7 ’YNf)LQ((’)Q) = (Vng'YNf)Lz (99)

= (Hl(asz))*<7Ng7’7Df>H1(aQ (9, Af)L20) — (Ag, fr2(a)
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=(9,Af) 2 ) — (Ag, f)r2(0)- (8.11)
By (6.31)), one can rephrase the above condition as
(ga AD,Qf)Lz(Q) = ((_A + V)ga f)Lzr(Q)a Vfe dom(AD,Q)a (812)

which, in turn, forces g € dom(A}, ;) and hence g € dom(Ap ) by the self-
adjointness of Ap o (cf. Theorem [6.9). As a consequence of this membership,

, and , one obtains ¢ = ypg = 0. This ultimately proves that the space
Gn(09) is dense in L?(99).

Next, assume that the functional ¢ € H~(9Q) = (H*(99))" annihilates the
subspace 9p (9Q) of H'(99). By(8.5)), this translates into

(Hl(ag))*<¢,’ny>H1(am =0 for all functions
f € B¥*(Q) Ndom(Apar,0) with v f =0.
Given that vy in with s = 1/2 is surjective, one concludes that there exists
g € H'?(Q) Ndom(Apaz0) with yvg = ¢. (8.14)

As such, for each f € H3/2(Q) N dom(Amaz,0) with vxf = 0, Green’s formula
(5.105)) allows us to write

(8.13)

0= (1(00))- (¥, 7Df>H1(BQ) = (11 (02)) (TN Y, VDf>H1(SQ)
= (VDQ,WNf)m(m) — (9, Af)2) + (Ag, fr2()

=—(9,Af) 2 + (Ag, flr2 ) (8.15)
By virtue of (6.41)), this may be rephrased as
(g7AN,Qf)L2(Q) = ((_A+V)gaf)L2(Q)a Vf € dom(AN,Q)7 (816)

which further entails g € dom(A} (). Thus, g € dom(Ap q) by the self-adjointness

of An o (cf. Theorem [6.10]). This fact, (8.14), and (6.41)) imply ¢ = yng = 0. By
the Hahn-Banach theorem, this proves that the space ¥p(9Q) is dense in H'(92)

(hence also dense in L?(09)). O

In the next theorem we list some important properties of the imaginary part
of the Dirichlet-to-Neumann map and its inverse in the case s = 1. For this pur-
pose, we recall (cf. (7.47)) that we employ the notation Mq(z) := M o(z) for
z € p(Ap,a).

Theorem 8.3. Assume Hypothesis [6.8, Then the following assertions hold:
(1) If z € C4 (resp., z € C_) then

Im(Mq(z)) :== %Z(MQ(Z) - MQ(E)) =Im(z) Pi pa(2)" Pi,p,o(2),

(8.17)
dom (Im(Mg(2))) == H'(8%),
is a densely defined bounded operator in L?(0Q) with bounded closure
Im(Mq(2)) = Im(z) Po,p.a(2)*Po,p,o(z) € B(L*(09)). (8.18)

In addition, Im(Mq(z)) is a nonnegative (resp., nonpositive) self-adjoint operator
in L2(0Q) which is invertible with an unbounded inverse.
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(ii) If z € C4 (resp., z € C_) then
Im( — Mq(2)™!) = Im(2) Pin0(2)" Pin0(2) € B(L*(09)), (8.19)
is a nonnegative (resp., nonpositive), bounded, self-adjoint operator in L?(0Y)
which is invertible with an unbounded inverse.
Proof. Concerning (%), one observes that the same argument as in equation ([7.40))
implies -
MQ(Z) — MQ(Z/)* = (Z — 2 )PO7D7Q(Z/)*P17D7Q(Z) (820)
for every z,2" € p(Ap.q). Setting z = 2z’ and taking into account (7.58)) and (7.48)
yields (8.17). Next, fix z € p(Ap.q), then
Im(Mq(2)) =Im(z) P1.p.o(2)"Pi pa(z) =Im(z) Po.p.a(2)*Pipa(z) (8.21)
(see ([7.58)) together with (7.57) yields
Im(Mq(2)) = Im(z) Po,p,a(2)*Po,p,a(z) € B(L*(09)), (8.22)
which goes to show that for each z € C (resp., each z € C_) the bounded operator
Im(Mgq(2)) is nonnegative (resp., nonpositive) and self-adjoint in L?(9€2).

Next, fix z € C_ UC,.. According to Lemma the space @ (99) is dense in
L?(99) hence one obtains from

ker(Py,p.a(z)) = (ran(PO’D’Q(z)*))L, ran(Po p.a(z)*) = 9n(09), (8.23)
(cf. (8.6)), that
ker (W) = ker (PO’D’Q(Z)*PO’D’Q(Z)) = ker (Po,D,Q(z))

— (ran(Po.p.a(2)") " = %N (09)*" = {0}. (8.24)

Thus, Im(Mq(z)) is injective. From the representation (8.22) and the second iden-
tity in (8.23)) it follows that the inclusion

ran (Im(Mq(2))) C 9n(09) (8.25)

holds. As the operator Im(Mq(z)) is self-adjoint, one concludes that its range is a
dense subspace of L?(9Q) and from and Lemma it is clear that the range
of Im(Mgq(2)) is a proper subspace of L?(952). Hence, the inverse is an unbounded
operator in L?(9Q).

Finally, item (i7) follows in the same way as item (i) by interchanging the roles
of MQ(Z) and 7MQ(Z)717 PO,D,Q(Z) and PLN7Q(Z), YD and —YN, AD7Q and AN7Q,
and ¥y (0Q) and ¥p(092). O

The following theorem builds on [22], [63], [65] under various assumptions on the
underlying domain and the regularity of functions involved. Here we now present
the most general PDE result in this spirit. The notion of equivalence of norms in
different Banach spaces used in item (vi) of Theorem is explained in Lemma
below.

Theorem 8.4. Assume Hypothesis and consider
Y i=Im(— Ma@i)™"), A:=Im(Mq(i)), (8.26)

which, according to Theorem[B3] are bounded, nonnegative, self-adjoint operators in
L?(09), that are invertible, with unbounded inverses. Then the following statements

hold:
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(i) One has
Yp(09) = dom (271/2) =ran (21/2), 527)
9n(09Q) = dom (A™/?) = ran (AY/?),
and when equipped with the scalar products
(‘P,T/’)%D(GQ) = (2_1/2% 2_1/21/)) L2(09Q)’ Vo, e gD(E)Q), (8.28)

(@7 w)gzv (0%2) ‘= (A71/2§07 A71/2¢) L2(8Q)° v% d) € 9N (aQ)v
the spaces Gp(02), 9N (08) become Hilbert spaces.

(i) The Dirichlet trace operator vp (as defined in (3.68])) and the Neumann trace
operator vy (as defined in (5.102))) extend by continuity (hence in a compatible

manner) to continuous surjective mappings
p : dom(Apaz.0) = 9In(00)",
~ (8.29)
An s dom(Aez.0) = Yp(00)7,

where dom(Apmaz,0) is endowed with the graph norm of Amaz.q, and 9p(0N)*,
YN (0Q)* are, respectively, the adjoint (conjugate dual) spaces of 9p(09), Yn(0Q)
carrying the natural topology induced by (8.28)) on ¥p(0R), ¥n(00), respectively,
such that

ker(yp) = dom(Ap,q) and ker(Yn) = dom(Anq). (8.30)

Furthermore, for each s € [0, 1] there exists a constant C' € (0, 00) with the property
that

f €dom(Ayee0) and Apf € H*(OQ) imply f € Hs+(1/2)(Q)

N (8.31)
and || fllgravasm @y < C(IAfllL2@) + WD fllae00))

and
f e dom(Aparq) and Anf € H () imply f € HTG/2(Q)
and || f]l g-s+e2 ) < C(IfllL2@) + 1Al L2@) + AN Fll - (00)) -
(iii) With ¥p,vn as in (8:29), one has (compare to (5.116))
H2(Q) = {f € dom(Apmaz.0) |FDf =0 in Gn(0Q)*
and Anf =0 in 9p(0Q)"}. (8.33)

(iv) The manner in which the mapping Fp in (8.29) operates is as follows: Given
f € dom(Amaz.q), the action of the functional Yp f € Yn(0Q)* on some arbitrary
® € Yn(09) is given by

NC UGl E ¢>%(ag) = (£, A9)120) — (Af,9)12(0), (8.34)

for any g € H32(Q)Ndom(Amaz.0) such that ypg = 0 and yng = ¢ (the evistence
of such g being ensured by (8.5))). As a consequence, the following Green’s formula
holds:

(8.32)

gn09) (D[, 7N9>gN(aQ) = ([, Ag)r2(0) — (Af, 9)r2(0), (8.35)
for each f € dom(Aqez0) and each g € dom(Ap q).
(v) The mapping YN in (8.29)) operates in the following fashion: Given a function
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f € dom(Anae.0), the action of the functional Yn f € Yp(0N)* on some arbitrary
Y € Yp(00) is given by

Gp (0Q)* <§Nf7 w>gD (09) = _(f7 Ag)Lz(Q) + (Afa g)LZ(Q)7 (836)

for any g € H3?(Q)Ndom(Aas.q) such that yng = 0 and ypg = ¢ (the existence
of such g being ensured by (8.5))). In particular, the following Green’s formula holds:

Yp (00Q)* <§Nfa ’yDg>gD (09) = _(f, Ag)L2(Q) + (Afa g)LZ(Q)a (837)
for each f € dom(Apazq) and each g € dom(An ).

(vi) The operators
vp : dom(An o) = H>?(Q) N dom(Amaz.0) Nker(yy) = 9p(09), (8.38)
yx s dom(Ap o) = H¥?(Q) Ndom(Amas.) Nker(vp) — 9n(99), (8.39)

are well defined, linear, surjective, and continuous if for some s € |0, %] both spaces
on the left-hand sides of (8.38), (8.39) are equipped with the norm f v || f| =) +
|Afllz2(0) (which are all equivalent; cf. (6.32) and (6.42)). In addition,

the kernel of yp and vy in (8.38])—(8.39) is fOIQ(Q) (8.40)
Moreover,
9ll%p 00) ~ inf (1l sr2 g0y + 1Al L2@))

feH?/2(Q)Ndom(Amaz.0)
YN f=0, ypf=¢

~ inf 2000 -+ ||A )
FEHY2(Q)Ndom(Amas.) (Hf”L () 1Az (Q))
YN f=0, yp f=¢

~ inf +A : 8.41
fedom(Am”,Q)(Hf||L2(Q) IAfllL20)) (8.41)
AN f=0, Yp f=¢

uniformly for ¢ € Yp(0Q), and
[l gy (002) = inf (gl o720 + 1Al 2 ()

geH32(Q)Ndom (A maz.0)
Ypg=0, YynNg=7

~ inf gll2) + Ag 2(0
g€ H?/?(Q)ndom(Amas.0) (H HL () H ”L ( ))
7p9=0, YN g=v

g€dom(Amaz.) (||g||L2(Q) | g||L2(Q))
Fp9=0, Ang=2

) t A ’ 8.42
sedomny  I1Agl2 @), (5.42)
Ypg=0, yng=v
uniformly for 1 € Gn(0Q).
As a consequence,
Gp(09) — HY(9Q) — L*(9Q) — H™1(00) — 9 (dQ)*,

with all embeddings linear, continuous, and with dense range. Moreover, the duality
pairings between Gp(0) and Gp(0N)*, as well as between Yn(0) and Gn(02)*,
are both compatible with the inner product in L*(02).

(8.43)
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(vii) For each z € p(Apq), the boundary value problem
(—A+V =2)f=01inQ, fedom(Anea),
5Df =@ n gN(ﬁQ)*, (NS %N(aﬁ)*,

is well posed. In particular, for each z € p(Ap q) there exists a constant C' € (0,00),
which depends only on 2, n, z, and V, with the property that

I fllz2) < CllApfllayn)- for each f € dom(Amarn)

(8.44)

. | (8.45)
with (—A+V —2)f =0 in Q.
Moreover, if
~ YN (0Q)* — dom(Anmaz.0),
Bpo(z) : 4 NOYT = dom(Amas.a) (8.46)
@ = PD,Q('Z)SO = fD,Q(Za QO),

where }’VD’Q(Z, ) is the unique solution of (8.44)), then the solution operator _f)D’Q(Z)
is an extension of Py p o(z) in (7.19), and Pp (=) is continuous, when the adjoint
space Gn(00)* and dom(Aqez,0) are endowed with the norms in item (it).

(viii) For each z € p(An.q), the boundary value problem

(~A+V —2)f=0inQ, fcdom(Anwa), (8.47)
—Anf = inGp(00)*, € Gp(0N)*, |

is well posed. In particular, for each z € p(An q) there exists a constant C € (0,00),
which depends only on Q, n, z, and V, with the property that

Ifll2) < ClANfllgpa0)- for each f € dom(Amazn)

. . (8.48)
with (FA+V —2)f =0 in Q.
Moreover, if
~ Gp(00)* — dom(Amaz.)s
Bya(z) : 4 70D = dom({dnac.q) (8.49)
o= Pyna(2)e = fnalz¢),

where fN,Q (2, p) is the unique solution of (8.47)), then the solution operator ﬁNQ(Z)
is an extension of Py (%) in (7.23), and Py q(z) is continuous, when the adjoint
space 9p(0Q)* and dom(Apmay.0) are endowed with the norms in item (i3).

(iz) For all z € p(Ap.q) the Dirichlet-to-Neumann map Mq(z) in (7.47) admits
an extension

Mq(z) :

N {gN(aQ)* — Gp(0Q)*, (8.50)

¢ = Mo(2)p :== —AnPp.a(2)p,

and Mg(z) is continuous, when the adjoint spaces Gp(0Q)*, Yn(0N)* carry the
natural topology induced by (8.28]) on ¥p(00Q), ¥n(00), respectively.

As a preamble to the proof of this theorem, we first deal with a couple of useful
elementary results.

Lemma 8.5. Let XY be two Banach spaces and assume that T € B(X,Y) is
surjective. Then

=~ inf ) ly @ Y, bl
luly = __inf _ llelx uniformiy in y € Y, (8.51)
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that is, there exists a constant C' € (1,00), independent of y € Y, such that
-1 < inf < . 52
Myl < _inf_lellx < Cllylly (852)

)

Moreover, if the space X is reflexive then Y is also reflexive.

Proof. The fact that T : X — Y is linear and continuous implies that ker T is a
closed subspace of X. Moreover, given that T is surjective, T induces a continuous
isomorphism

T:X/kerT —Y, T(x+kerT):=Tzx, VzcX, (8.53)
where the space on the left-hand side of (8.53)) is equipped with the quotient norm
|z +ker T x/ ker 7 := il?fTHa:—&—zHX, Vo e X. (8.54)

z&ker

Then (8.51) becomes a consequence of (8.53)—(8.54) and the Open Mapping The-

orem. Next, we recall that in general,

every closed subspace of a reflexive Banach space is reflexive,
every quotient of a reflexive Banach space by a closed subspace is
reflexive, and every Banach space continuously isomorphic with
a reflexive Banach space is itself reflexive.

(8.55)

Granted these facts and assuming that X is a reflexive Banach space, it follows
from (8.53) that Y is also reflexive. d

Lemma 8.6. Let XY be two Banach spaces with the property that X CY densely,
and the inclusion 1 : X <Y is continuous. Then the following hold.

(i) The operator v* : Y* — X* is linear, continuous, and injective. In particular,
identifying Y* with ran(.*) yields the continuous embedding Y* < X*.

(ii) In the special case when 'Y is a Hilbert space, one has

XS5Yy=y"<d X* (8.56)
where Y = Y™ is the canonical identification between the Hilbert space Y and its
dual, and the duality pairing between X and X™* is compatible with the inner product
mY.

(#i1) If X is reflexive, then the embedding Y* < X* has dense range.

Proof. The main claim in part (¢) is a particular case of the well-known general
result to the effect that if X, Y are Banach spaces and T' € B(X,Y") then ran(T) is
dense in Y if and only if T* is injective. Regarding (ii), assume that Y is a Hilbert
space with inner product (-,-)y. Then the identification Y = Y* manifests itself in
the following manner: ¥ 3 y — A, := (y, )y € Y*. Consequently, if z € X and
y €Y, then ((z) € Y and

x- (" (Ay), 1) x =y (Ay, u(@))y = (y,(2))y (8.57)
This proves that the duality pairing between X and X* is compatible with the
inner product in Y. Finally, to deal with the claim in item (éi7), assume that a
functional in (X*)* = X has been fixed with the property that its restriction to
Y™ (identified with ran(¢*), as a subspace of X*) vanishes identically. This comes
down to having some x € X such that A(c(x)) = 0 for each A € Y*, and the density
of the embedding Y* — X* follows as soon as one shows that x = 0. The latter
conclusion is, however, implied by the Hahn—-Banach theorem. (I
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We are now ready to present the proof of Theorem [8.4]

Proof of Theorem B4} Regarding (i), one verifies that ¥y (09) = dom (A~1/2).

The assertion on ¥p(99) in follows in a similar form by interchanging the

roles of A with &, Py p o with Py y o and ¥n(092) with ¥p (09Q) (see [22], Section 2]).
According to Theorem the operator

A = Py pa(i) Py pali) € B(L*(09)) (8.58)

is self-adjoint, injective, and non-negative. Hence ran (A) and ran (Al/ 2) are both
dense in L2?(09). The space

& :=ran (A1/2) = dom (A_l/Q) (8.59)
is now equipped with the inner product
— (A-1/2 —1/2
(P )y = (A2, AT20) s
Vo, € 4 =ran (AY/?) = dom (A71/2).

Then ¢ is a Hilbert space which is densely embedded in L?(992) and hence gives
rise to a Gelfand triple ¥ — L?(0Q) — ¢*, where the adjoint (antidual) space ¥*
coincides with the completion of L?(92) equipped with the inner product

(Al/Qu,Al/Qv) Yu,v e L*(09). (8.61)

(8.60)

L2(8Q)°

For ¢ € L%(09) one computes
N . .
HPO,D,Q(l)SOHLz(Q) = (PO,D,Q(Z)SDa PO,D,Q(Z)(P) L2(Q)
= (Po,p,2(i)* Po,p.a(i)e, SO)LZ(QQ)
= (A§07 @)LQ(SQ) = (A1/2% A1/2</7) L2(0Q)

= [[AY20][32 oy = lll-- (8.62)

As the range of Py p (i) is dense in the space ker(Apaq,0 —4I) with respect to the
L?(2)-norm (see Theorem (2)), it follows from (8.62)) that

Py, p (i) admits a continuation to an isometry

_ (8.63)
Pp (i) acting from 4™ onto ker(Apqgz.0 — 1),

where the latter space is equipped with the L?(Q)-norm. Furthermore, as P p (i)
is a restriction of Py p (i) and dom(Py p (i) = H'(9N) is dense in ¥* (a con-
sequence of H'(9€) being dense in L?(99) and the definition of the norm in ¥*),
it follows that P p (i) also admits a continuation to an isometry from ¢* onto
ker(Amaz,0 —4I) which coincides with ﬁDQ(Z) Furthermore, for ¢ € L?(0Q) C ¥*
and f € L*(Q) one concludes from

(PO,D,Q(i)*f7 @)L2(89) = (fu PO,D,Q(i)SD)LQ(Q) = (f7 ﬁD,Q(Z)SD)Lz(Q)

= 4 (Ppo(i)*f, P)ge = (Pp.oli)*f, SD)L‘Z(Q)

(here ([7.59) and the subsequent discussion is relevant) that the adjoint of the op-
erator Pp (i) : 9* — L*(Q) coincides with Py p o(i)*. Together with (8.63) this
shows that Py p q(i)* is a continuous map from L%() onto 4.

(8.64)
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In a similar way as in (8.62)) the fact that for each ¢ € L?(92) one has
1A@lIG = (Ap, Ap)y = (A20, AY20) 1, o = Il (8.65)

shows that the operators A = Im(Mq(i)) and Im(Mq(i)) admit continuations to

an isometry A from ¢* onto ¢ (one observes that ran(A) is a dense subspace in the
Hilbert space (¢, (-, )« )) with

Im(Mq(i)) C A C A = Py p (i) Ppai); (8.66)

in the last equality in we have used and the fact that both operators
ﬁpﬁg(i) 1 9% — L*(Q) and Py po(i)* : L?(Q) — ¢ are continuous.

From and the fact that Py p,0(4)" |ker(A,nar.o—ir) 18 @ bijection onto ¥y (092)
(as seen from and (8.6)) one deduces that

4 = ran (K) =ran (PO)D’Q(Z'>*ﬁD’Q(Z'>) =ran(Py pa(i)*) = 9n(090). (8.67)

This completes the treatment of (7).
Next, we proceed to verify the claims made in relation to vp in item (i¢). First,
we define

?D : dom(AmaLQ) — gN(GQ)* (868)

as follows: Given any f € dom(Amqer) = dom(Ap.q) + ker(Amaz.0 — ¢I), write

f=fp+ fi with
fD = (AD7Q — Z'I)_l(Amaw,Q — ’LI)f S dOm(AD7Q), (8 69)
fii=F—(Apa—i) " (Amaz.a —il)f € ker(Amas.o — i), '

then set
?Df = PD7Q(i)71fz’ S %N(aﬁ)*, (870)
where the membership in (8.70]) follows from (8.63]) and (8.67). Upon noting that
Ifollrz@) = ||(Apa — i)™ (Amas.o — U)fHLz(Q)
< O(Amarss — D o
< Al flz2 () + [Amaz.afllzc) }s (8.71)

for some constant C € (0, 00), independent of f, one estimates

Gy (09 |Pp.ali)™!(f - fp)

|WDf||gN(aQ)* = HISD@(Z')%JCZ' YN (0"

< H‘IBD,Q(i)_l||B(L2(Q)7gN(QQ)*){||f||L2(Q) + ||fD||L2(Q)}

< C{IIflle20) + Amaz.afllL2@) } (8.72)
proving that the operator vp in is continuous with respect to the graph norm
of Amar.a in L2(Q) and the norm on ¥y (99Q)* induced by . To see that 7p
is compatible with yp, consider the case when f € dom(A,4z.0) N H'/2(Q) which
forces f; € ker(Aaz. —iI) N HY2(Q) (cf. (71)). In particular, vp f; € L*(0S2) by
(3.68) with s = 1/2. In this scenario,

Ipf = ﬁD,Q(i)ilfz’ = ﬁD,Q(i)iliDO,D,Q(Z‘)'YDfi

~ . (8.73)
= Ppo(i) ' Ppo(i)ypfi =vpfi=pf-
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The first equality in (8.73) follows from (8.70). The second equality in (8.73)

employs the fact that f; = Py p o(¢)vyp fi, which in turn is a consequence of the fact
that both f; and Py p q(i)vpfi solve the boundary value problem

- VI 1/2
{( A+V—if=0inQ feHY*Q)Ndom(Ana0), (8.74)

o f =7pfi € L*(9Q),

which is well posed, by Lemma @ with s = 0 and z = ¢. The third equality in
(8:73) is clear from the fact that Pp (i) is an extension of Py p.q(i) (cf. (8.63)).
Hence, ¥p is an extension of vp, implying the first assertion in item (i¢). Next, the
claim that ker(yp) = dom(Ap o) is an immediate consequence of the definition of
p in since }5D7Q(i)*1 acts isometrically from ker(A,,qq,0—11) onto ¥y (0€2)*.

Concerning , in a first stage we shall prove that there exists a constant
C € (0,00) with the property that

fedom(Anezo) and Apf =0 imply
f e H2(Q) and | fllgsr2) < ClIAS| 20

To this end, assume that f € dom(A,,qz,0) satisfies Ypf = 0 in ¥y (0Q)*. Then
8.70) forces f; = 0, hence f = fp. Introduce g := —Af € L*(Q). Since fp from
8.69) belongs to H3/2(2) (cf. Theorem [6.9)), it follows that fp solves the boundary
value problem

(8.75)

{Au—g in Q, we H%?(Q), (8.76)

vpu =0 on 99,

and satisfies the naturally accompanying estimate ||fDHH3/2(Q) < CllAfpllr2(q) (cf.
[77]). In turn, this implies (since f = fp)

£l 32y = 1fpllgs2) < CllASI L2 (), (8.77)

and follows. Having established , we now prove by reasoning as
follows. Given s € [0,1] and any f € dom(Aqz.0) With ¢ :=7pf € H*(09), use
the surjectivity of the map in order to find g € H*+(*/2)(Q) N dom(Aaz.0)
with vpg = . Moreover, by the Open Mapping Theorem and the surjectivity of
, matters may be arranged so that

N9l zr=+ /20y + 1Al L2(0) < Cllellas@a) = Cllp fll#s(a0) (8.78)

for some constant C' € (0, 00) independent of ¢. Then h := (f — g) € dom(Amaz,0)
has ph = 0, so (8.75) implies h € H3/2(Q) and Al frs/2 () < ClIAR| 12(q). Con-
sequently, f = g+ h € H*t(/2(Q) and

[ zrsvarm @y < Ngllms+arz @) + bl gorarm o)

N9l zrs+a/2 ) + 1”ll g3/2 )

ClVp fll s a0) + ClIAR|| L2 (o)

ClAp fllas@0) + C(IAf2@) + 1Agll2@))

< Ol fllaso0) + ClAfl L2 @) (8.79)

finishing the proof of (8.31]).

NN N

N
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Next, we verify the assertions for vy in item (ii). Denote by ﬁNQ(Z) the ex-
tension of P (i) to an isometry from ¥p(0Q)* onto ker(Apqqz.0 — 1) (which is
constructed in a similar way as Pp (i) above) and define

An s dom(Aez.0) = Yp(00)* (8.80)

as follows: Given any f € dom(Aqep,0) = dom(Anq) + ker(Apaz.0 — i), write
f=f~n+ fi with fx € dom(An,q) and f; € ker(Apmaq,0 —¢I), then set

Inf = Pra(i) "' fi € 9p(09)". (8.81)

The same arguments as in (with 3p, ¥n (89Q)*, Pp.o(i) and Ap g replaced by
N, DD (002)*, ]BNQ(Z) and Ay q, respectively) show that 7y in is continuous
with respect to the natural graph norm in dom(A;,4,,0) and the norm on ¥, (9)*.

To see that 7 is compatible with vy in , we first consider the case when
f € dom(Apqq,0)NH?/2() which forces f; € ker(Apaq,0—il)NH3/2(Q) (cf. (7:2)).
In particular, vy f; € L?(0S2) by . One can then write

Anf=Pna(@) fi = Pno(i) ' PLy (@) fi
= ISN,Q(i)flﬁN,Q(i)VNfi =fi=nf

In (8.82)), the first equality follows from ({8.81)), while the second equality employs
the fact that f; = Pi n.q(i¢)ynfi, which in turn is a consequence of the fact that
both f; and Pi n o(i)yn fi solve the boundary value problem

(-A+V =i f=0inQ, feH*Q)Ndom(Anq,0),
—yw.f = - fi € L*(09),
which is well posed, by Lemma[7.4with s = 1 and z = i. Finally, the third equality
in (8.82) is clear from the fact that Py (%) is an extension of Py p q(i).
Having established ([8.82)), we conclude that 7 in (8.80) is an extension of the
Neumann trace operator vy : H3/2(Q) N dom(Aar.0) — L?(09), that is,
Yn is compatible with vy in (5.102) when s = 2. (8.84)

It turns out that the compatibility property established in (8.84]) suffices to
prove (v), a task to which we now turn. Specifically, fix two arbitrary functions
f € dom(Amazo) and ¢ € ¥p(00Q). Then ¢ € H'(9Q) and (8.5) ensures the

existence of a function
g € H*¥?(Q) Ndom(A,,az.0) such that yxg = 0 and ypg = ¢. (8.85)

Making use of Lemma it is possible to find {f;};en C dom(Aae.0) N H3/2(Q)
with the property that

fi — fin L*(Q) and Af; — Af in L*(Q). (8.86)
J—>00 J—>0o0

(8.82)

(8.83)

Then f; — f in the natural graph norm of dom(A,qe.0) s j — oo, and one
concludes that yn f; — n f in ¥p(0N)* as j — oo by the continuity of the second
map in . Furthermore, Yy f; = v f; € L*(99) for each j € N by and
the fact that f; € H3/2(Q2). With the help of these remarks, , , and
Green’s formula , one computes

9Gp (002)* <§Nf7 ¢>gD(3Q) = Jli)rgo Yp(0Q)* <§ij7 ¢>gD(ag)
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= jliglo (Vijv“YDg)p(aQ)
= lim { — (f; 89) 2@ + (Afr9) 2@ }
~(f,89)120) + (AF,9) 120 (8.87)

and follows.

Next, we shall employ (8 in order to show that 7y is also compatible with
YN in when s € [2, 5). In this regard, it suffices to treat the case s = 1/2.
With this goal in mind, fix f € dom(Amaz.0) N HY2(Q) and let ¢ € Fp(9Q) be
arbitrary. Then by (8.36)) one has

G (99)* <7Nf,1/1>% o0y = ~([iA9)L2@) + (Af,9)2(0) (8.88)

for any g € H3/2(Q)Ndom(A,,az.0) such that yxg = 0 and ypg = . On the other
hand by Green’s identity (5.105|) one also has

(Hl(aﬂ))*<'7Nfa"/)>H1(aQ) —(f, Ag)r20) + (Af, 9) L2 (8.89)

and it follows from — that the functionals Yy f and vy f coincide on
4p(09) C HY(09Q) whenever f € dom(A,,az.0) N H/2(Q). This finishes the proof
of the claim that 7y is compatible with vy in .

Regarding the second formula in (8.30), the statement ker(yy) = dom(An q)
is an immediate consequence of the definition of vy in since ﬁN,Q (i)t acts
isometrically from ker(A,,qz.0 — iI) onto ¥p(99Q)*. Finally, is proved in
a similar manner to , where instead of one has to make use of the
well-posedness of the boundary value problem

{(—A +Nu=ge L), ue H?Q),

8.90
yyu =0 on 09, ( )

and the naturally accompanying estimate |[u| gs/2(q) < Cllgll2(0); see [57].
At this point we note that the surjectivity of the maps in can be used to
show that
the Banach spaces ¥y (09), ¥p(09) are reflexive (8.91)

(which also follows directly from part (¢)). Specifically, one first observes that when
dom(Aaz,0) is equipped with the natural graph norm, the mapping
dom(Amaz,0) 3 f + (f,Af) € L*(Q) ® L*() (8.92)

is a continuous isomorphism onto its range and this yields (cf. the discussion in
(8.55)) that dom(Amaz,0) is a reflexive Banach space. With this in hand, (8.91)
follows from the surjectivity of the maps in ({8.29)), Lemma and the well-known
fact that

a Banach space is reflexive if and only if its dual is reflexive. (8.93)

Turning to (i), identity (8.33) is a direct consequence of (6.45) and (8.30).

Regarding the first claim in part (iv), we start by fixing some arbitrary functions
f € dom(Aur0) and ¢ € Yn(00Q). Then ¢ € L*(0N) and (8.5) ensures the
existence of a function

g € H¥?(Q) Ndom(A,,az.0) such that ypg = 0 and yyg = ¢. (8.94)
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Making use of Lemma it is possible to find {f;};en C dom(Ayae.0) N H3/2(Q)
with the property that

fi — fin L*(Q) and Af; — Af in L*(Q). (8.95)
Jj—o0o J—0

Then f; — f in the natural graph norm of dom(A,,4z.0) as j — oo, from which
one deduces that ypf; = pf in ¥y (0Q)* as j — oo due to the continuity of the
first map in . Moreover, for each j € N one has ypf; = ypfj € L*(09)
since f; € H3/2(Q) and p is compatible with vp. In turn, these observations and
Green’s formula permit us to write (keeping in mind that ypg = 0)

GnN (0Q)* <§Df7 ¢>gN(aQ) = jligolo Gn (0Q)* <§ij7 ¢>gN (99)
= ]hﬁrgo (Wija 7N9) L2(89)
= jgﬂgo {(fj’ A9)L2(Q) - (Afjag)LQ(Q)}

= (£, A9)r20) — (Af,9)r2(0), (8.96)

finishing the proof of .

Next, we deal with the claims in item (vi). Pick an arbitrary f € H%/2(Q) N
dom(Aqez.q) such that vy f = 0 and note that, by , the function vp f is well
defined and belongs to ¥p(0€2), which is a reflexive Banach space (cf. (8.91))). As
such the norm of ypf € ¥p(9Q) = (%D(GQ)*)* may be computed as

Yo fllgpo0) = sup ’g o (& YD ey s ‘ 8.97
| o 00 cedn(00)" D )< >%(aﬂ) (8.97)
1€l a0y * <1

One recalls from part (i¢) that the operator Yn : dom(Amaz,0) — Yp(0N)* is
linear, surjective, and continuous when dom (A4, q) is equipped with the natural
graph norm f — || f|lz2(q) + |Af| £2(q) (or with any of the other equivalent norms

= 1) + 1Afll2@), s € [0,3]; cf. (6.31)). As a consequence of this and
the Open Mapping Theorem it then follows that there exists a constant C € (0, 00)
with the property that
for each § € ¥p(0N2)" satisfying [|£]|w,, (a0)~ < 1 there exists (5.98)
~ 8.98
g € dOHl(Amaw,Q) with yyg = € and ||gHL2(Q) + HAgHLz(Q) <C.

Given now an arbitrary § € ¥p(0Q)* with [[{||«, (a0)+ < 1, let g be as in (8.98)) and
compute

’%(89)*<’5’7Df>%(89)| = ‘%(89)* <§N977Df>%(aﬂ)’
= (9. Af)1202) — (Ag, 20|
< (Ifllz2@) + 1A F 22 @) (9l 2@y + 1Al L2())
<SO(Ifllz2 @) + 1Al 2 ())
S C(Ifllers ) + 1Afll 220 (8.99)

for s € [0, 2], where the second equality above is a consequence of (8.36)—(8.37).
Together, (8.97) and (8.99)) yield

1o flwp@e0) < CUIf e + 1AfllL2@), s € [0,3], (8.100)
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proving the continuity of the operator yp in (8.38). The case of the operator vy
in is handled similarly. Continuing the treatment of (vi), one observes that
the claim in (8.40) is a direct consequence of Theorem while the equivalences
in (8.41)—(8.42) are seen from the surjectivity of the operators in (8.38)—(8.39),
Lemma 8.5 and (8.31)—(8.32); the last equivalence in @D is due to the fact that
the Dirichlet Laplacian is strictly positive. Next, (]8__5' yields ¥p(02) C H'(99)
and ¥y (00) C L*(09). Given any ¢ € 9p(99Q), making use of and the
boundedness of vp in with s = %, one obtains

I 2 C inf 2 + A
”d)H!D(aQ) fGHg/Q(Q)ﬁdom(Amam,sz) (Hf||H3/ () || f||L2(Q))

YN f=0, ypf=¢

>C inf
f€H3/2(Q)ﬁdom(AmaI,n) (H’nyHLZ(QQ))

YN f=0, vyp f=¢
= C|8l z (a0) (8.101)

for some constant C' € (0,00) independent of ¢. This proves that the inclusion
9p(002) — H'(9Q) is continuous, and a similar argument shows that the inclu-
sion @y (0€2) < L2?(0Q) continuously as well. Since these inclusions also have
dense ranges (cf. Lemma [8.2)), the claims pertaining follow with the help of
Lemma (also keeping in mind).

Next, the claims (vii) and (viii) follow from item (i7) and the direct sum decom-
positions

dom(Apmez,q) = dom(Ap o) + ker(Amaz,0 — 1)

= ker(p) + ker(Amaro — 2I), V2 € p(Apq), (8.102)
dom(Aaz.0) = dom(An.g) + ker(Apmaz.0 — 21)

= ker(An) + ker(Amaz.a — 2I), Yz € p(Anq). (8.103)

Finally, statement (iz) is a consequence of items (i), (vii) and (viii); see also [22]
Corollary 4.2]. O

In the following remarks we will elaborate on the links to abstract boundary
triples and their 7-fields and Weyl functions from extension theory of symmetric
operators.

Remark 8.7. Consider the operator
Tyn0=—-A+V, dom(T30)=H*(Q)Ndom(Amas.0), (8.104)

and note that Lemma and Lemma imply T3/2.0 = Amaz.0 = A;‘nm’Q. It is
immediate from Corollary and Corollaryfor s =3/2that f,g € dom(T3/2,0)
satisfy vpf,ypg € HY(99) and yn f,ynvg € L?(0R). Furthermore, the following
Green’s formula is a consequence of Corollary (z) with s = 3/2, bearing in mind
that vy f € L*(09):
(Ts)2,0f9)2) — (f, T3/2,09) L2 (9)
= ('S, 7n9)12092) — (11 02)- (YN S IDI) 111 (06 (8.105)

= (v f, w9209 — (N, YD) L2 (00)-
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Observe that ¥p(0Q) x {0} and {0} x ¥n(99) are both contained in the range of
the map

(Y0, —yn) s dom(Ty . o) — L*(09) x L*(9Q) (8.106)
by Lemma hence the range of is dense. Furthermore, for s = 3/2
Corollary shows that vy : dom(T3/0.0) — L?(09) is surjective. It is also clear
from Theorem [6.9] and Theorem that

Apa=Tspqo I {f €dom(Ts20)|vpf =0},
Ana =Tspo0 | {f € dom(T3/20) |y f =0},

are both self-adjoint restrictions of the operator T35 o in L?(Q).

From the above observations it follows that {L?(92),vp, —yn} is a so-called
quasi boundary triple for T3/5 0 C Apmae,o With corresponding vy-field Py p o and
Weyl function Mo = My q from Theorem [7.5](i) and (iii) (see [19, 20]). The
transposed triple {L?(09Q),vn,7p} is even a B-generalized boundary triple for
T3/2.0 C Amae,o with corresponding 7-field Py v o and Weyl function Nj o from
Theorem [7.5(ii) and (iv) (see [50, 52]). The abstract theory of quasi boundary
triples and B-generalized boundary triples yields the continuity of the ~v-fields as
mappings from L?(992) to L?(2) and the representations of the adjoints in Theo-

rem[7.5/(i) and (ii). Similarly, the formulas (8.17) and (8.19) in Theorem [8.3|for the

(8.107)

imaginary parts of M; g and N; g = —Mfgll (see Lemma ) reflect the connection
between the y-field and Weyl function of a quasi boundary triple or B-generalized
boundary triple.

In this context we mention that the extension of the Dirichlet trace operator vp
and Neumann trace operator vy onto dom(A,qz,q) in Theorem [8.4)(47) is based
on an abstract technique developed for quasi boundary triples in [22]. In the case
of Schrédinger operators on bounded Lipschitz domains this method gives rise to
a certain regularization of the Neumann trace operator such that a modified sec-
ond Green’s identity holds on dom(A;,qq,0). Using 4p in Theorem (zz) and
replacing the Neumann trace operator 75 by such a regularized version leads to an
ordinary boundary triplet; cf. [22] for details. For domains with smooth boundary
the corresponding construction of a boundary triple (including regularization) and
parametrization of all proper extensions was proposed in different manners in [159]
and [68] (see also [98]). Besides, the corresponding v-field and the Weyl function
M corresponding to this ordinary boundary triple were computed in [98].

Remark 8.8. Consider the operator
Tia=-A+V, dom(Tiq)=H"(Q)Ndom(Amnazr) (8.108)

As in Remark we have 11 o = Apge,0 = A:nmﬂ and it follows from Corollary

and Corollary |5.7/for s = 1 that f,g € dom(7T} o) satisfy vp f, vpg € H'/?(0%) and
Y~ f,yng € H-Y/2(0Q). Furthermore, Corollary [5.7](i) with s := 1 shows that

(Thaf,9)r2@) — (f; T1,09) 2 ()

(8.109)

= H/2(09) <7va 'YN9>(H1/2(39))* - (Hl/z(aQ))*<’YNf, ’YD9>H1/2(69)

for all f,g € dom(T}.q). Since HY/2(0Q) — L?(0N) — (HY?(99Q))* we can fix

a uniformly positive self-adjoint operator 7 in L?(0Q) with dom(j) = H'/?(9Q)

such that j: H/2(0Q) — L?(99) is an isomorphism and 77! admits an extension

to an isomorphism j=1 : (HY2(9Q))* — L?(99) and the duality pairing between
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H'Y2(0Q) and (H'/?(09))* is compatible with the scalar product in L?(9€). Hence
(8.109) can be written in the form

(Tyaf 9) 2 — (f, T1.09) L2 ()
— ~— (8.110)
= (10f.0719) 1200y — (1IN F07D9) 1260
for all f,g € dom(T} o). Furthermore, the mappings
77D : dom(Ty.q) — L*(99) and F’YN : dom(Ty,q) — L2(09)
are both surjective by Corollary Corollary and the properties of 5 and F
As in (8.107)) one sees that
Apqo=Tio | {f €dom(Tiq)|pf =0},
Ano=Tio I {f € dom(T ) |F'7Nf =0},
are both self-adjoint restrictions of the operator 77 o. Therefore, it follows that

(8.111)

{L*(0%), 17D, —FWN} is a so-called double B-generalized boundary triple for
Ti .o C Amas,0 in the sense of [21] Definition 2.1]. The corresponding v-field is given

by P /5 p.a(-)y~" and the corresponding Weyl function is given by FM1/279(~)j*1.

In the case of a smooth boundary such a double B-generalized boundary triple was
constructed in [21] and the corresponding v-field and Weyl function were also pro-
vided there.

9. THE KREIN-VON NEUMANN EXTENSION ON BOUNDED LIPSCHITZ DOMAINS

The principal purpose of this section is to describe the Krein—von Neumann
extension for perturbed Laplacians on bounded Lipschitz domains. Special em-
phasis is given to its spectral properties, the corresponding boundary conditions
in terms of extended Dirichlet and Neumann traces and the Dirichlet-to-Neumann
map at z = 0, Krein-type resolvent formulas connecting the Krein—von Neumann
and Dirichlet resolvent, and finally to the Weyl asymptotics of perturbed Krein
Laplacians.

In this section we now strengthen Hypothesis by assuming, in addition, that
V € L*™(Q) is nonnegative a.e.

Hypothesis 9.1. Let n € N\{1}, assume that Q@ C R™ is a bounded Lipschitz
domain, and suppose that V € L () is nonnegative a.e.

It then follows from Lemma [6.3] that the minimal operator
Aming = =A+V,  dom(Apin0) = H*(2), (9.1)
is strictly positive, and the same holds for the Friedrichs extension Ag g of Apin.0
by Theorem One recalls from the paragraph preceding Theorem [6.9] that Ap g

coincides with the Dirichlet realization Ap o of —A + V. Next, we recall that the
Krein—von Neumann extension Ag o of Ay,in o is given by

Ago=—-A+V, dom(Ag.q)=dom(Amina) + ker(Amar.a)- (9.2)

We remark that, collectively, the functions in dom(Ag q) do not possess any addi-
tional Sobolev regularity, that is, dom(Ak o) ¢ H*(2) for any s > 0.

In the following theorem we briefly collect some well-known properties of the
Krein—von Neumann extension Ay o which were shown by M.G. Krein in [88] (see
also [8, 14}, [15] [16], and [62], Section 2]).
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Theorem 9.2. Assume Hypothesis @ and let A q be the Krein—von Neumann
extension of Amin,q. Then the following assertions hold:

(i) Ak.q is a nmonnegative self-adjoint operator in L*(Q) and o(Akq) consists
of eigenvalues only. In addition, the eigenvalue N\ = 0 has infinite multiplicity,
dim(ker(Ax o)) = 0o, and the restriction Ak ol(er(Ax.q))t 18 @ strictly positive
self-adjoint operator in the Hilbert space (ker(Ax o))t with compact resolvent.

(ii) A nonnegative self-adjoint operator Aq in L?(Q) is a self-adjoint extension of
Apin,o if and only if

(Apo—p) " < (Ao —p) ' < (Axko—p)" (9.3)
holds for some (and, hence for all) p < 0.

We note that is equivalent to the inequality Ax o < Aq < Apgq, when
interpreted in the sense of quadratic forms (see [58, Section 1.6] and [83] Theo-
rem VI.2.21]). In the next lemma we explicitly verify that the Dirichlet and the
Krein—von Neumann extension are relatively prime (or disjoint), see, for instance,
[14, Lemma 2.8].

Lemma 9.3. Assume Hypothesis and let Ap q be the Dirichlet extension and
let Ax.q be the Krein—von Neumann extension of Amin.q in (9.2). Then

dom(Ap o) Ndom(Ak o) = dom(Aina) = ﬁ2(Q) (9.4)

Proof. Suppose that f € dom(Ap,qn) Ndom(Ak o) and decompose f according to
" in the form f = fpim + fo with fr, € dom(Am'm,Q) and fy € ker(Amam,Q)~
It follows that fy € dom(Ap o) N ker(Amqs,0) and since Ap o is strictly positive
one concludes that fy = 0. Thus f = fnin € dom(Apin.q). The inclusion

dOIIl(AmimQ) C (dOHl(AD@) N dOIIl(AK’Q)) (95)

is clear as both Ap o and Ak o are extensions of Ay,in . The last equality in (9.4)
was shown in Lemma [6.11] O

Alternatively, this result follows abstractly from [I4, Lemma 2.8] upon noting
that the Dirichlet, Ap o, and the Friedrichs realization, Ar o, of A,y o, coincide
(cf. (6.30)).

Our next goal is to obtain an explicit description of the domain of the Krein—
von Neumann extension Ag o in terms of the extended Dirichlet and Neumann
trace operators in Theorem [8.4f The Dirichlet-to-Neumann map at z = 0 will
enter as regularization parameter here. One observes that Mq(0) and its extension
MQ(O) in the context of Theorem are well defined as Ap o is strictly positive
by Theorem We mention that for smooth domains and elliptic differential
operators with smooth coefficients, this description of the Krein—von Neumann
extension Ak o goes back to a remarkably early 1952 paper (translated into English
in 1963) by Visik [159], followed by work of Grubb [68] in 1968. For quasi-convex
domains, Theorem below coincides with [15, Theorem 5.5] and [65, Theorem
13.1]; for the abstract setting we refer to [22, Example 3.9]. For Lipschitz domains
this result was recently obtained in [I8, Theorem 3.3].
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Theorem 9.4. Assume Hypothesis and let 4p, YN and MQ be as in Theo-
rem @ Then the Krein—von Neumann extension A .o of Amin.q is given by

AKVQ =-A+ V,

dom(Ag ) = {f € dom(Apaes0) |Fnf + Mo (0)ipf = 0}.

Proof. Let A q be the Krein-von Neumann extension of A, o and note that

(9.6)

dom(Ag ) = dom(Apmin.a) + ker(Amas.a) = H2(Q) + ker(Apmara)  (9.7)
by (9.2) and (9.1). Consider f € dom(Ak,q). Then f € dom(A,uq) and by

9.7) f can be decomposed in the form f = fi.in + fo, where fiin € POI2(Q) and

fO € ker(Amaw,Q)- Thus, ’YDfmzn = ;\nymin = 0 and 'nymzn = :\VJmezn =0, and
hence it follows from Theorem [8.4](vii), (iz) that

Mo(0)3p f = Ma(0)3p (fmin + fo) = Ma(0)3p fo (9.8)
= —Anfo = —AN(fmin + fo) = AN . (9.9)

Hence,
dom(Ag.) C {f € dom(Apas0) |Fnf + Ma(0)ipf = 0}. (9.10)

Next, we verify the opposite inclusion of the domains in . To this end,
pick f € dom(Aqz.0) satisfying the boundary condition MQ(Oﬁpf +3nf = 0.
According to the decomposition one can write f in the form f = fp + fo,
where fp € dom(Ap o) and fy € ker(Ayez,0). Then vpfp =7pfp = 0 and with
the help of Theorem [8.4](vii), (iz) one computes

Mq(0)3p f = Ma(0)3p(fp + fo) = Ma(0)3p fo = —An fo- (9.11)
Taking into account the boundary condition MQ (0)ypf = —4n [ one obtains
0=9~n(f - fo) =9~ /D, (9.12)

and hence fp € ker(Yn) = ker(yn) = dom(An o) (cf. Theorem [8.4)(:7)). Thus,
making use of Theorem and ({9.1) one obtains

fp € dom(Ap o) Ndom(Ay.q) = dom(Apmin.a) = H2(Q), (9.13)
implying f = fp + fo € H2(Q) + ker(Amqe.0), that is, f € dom(Ag.q). O

Next, we prove a variant of Krein’s resolvent formula relating the resolvent of the
Krein-von Neumann extension Ag o to the resolvent of the Dirichlet (and hence,
Friedrichs) realization Ap . For variants of Krein’s formula discussed here see [19],
1201, [210, [22], [38], [63], [98], [132], and Section [L0}

Theorem 9.5. Assume Hypothesis and let Ak q be the Krein—von Neumann
extension of Amin . Let ISD@(Z) be the solution operator of the boundary value

problem (8.44)) and let M, (2) be the extended Dirichlet-to-Neumann map in (8.50)).
Then, for each z € p(Ak.a) N p(Ap.a),

Mg(z) — Mq(0) : Dn (09)* — G5 (09)* (9.14)
is a linear, continuous, injective mapping, with range

ran (Mg (z) — Mq(0)) = 9x (89). (9.15)
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Moreover, for each z € p(Ak ) N p(Apq), the operator
Mo(z) — Mq(0) : Dn(99)* — 9y (09)

(9.16)
18 a continuous linear isomorphism

and, with (Mg(z) — MQ(O))_l € B(9n(09Q),9n(00)*), the following Krein-type

resolvent formula holds in B(L?(Q)):
(AK,Q - ZI)_l - (AD7Q — ZI)_l

— —Pp.a(2)(Ma(z) — Ma(0)) " (Ppa(2), (9.17)

where (ﬁDQ(Z)) € B(L*(Q),9n(0)) is the adjoint of the operator ﬁD’Q(Z') in
(8.46) (viewed here as a linear and continuous mapping from G (0Q)* into L?(2)).

Proof. Fix z € p(Ak a)Np(Ap.q). We start by noting that and the fact that
0 € p(Ap.q) guarantee that the operator Mg(z) — Mg (0) in is well defined,
linear, and continuous. To see that Mq(z) — Mq(0) is also injective, assume that
© € In(09)* is such that

(Ma(2) — Mo(0))p = 0 in %p(dQ)*. (9.18)

*

By design,
fpalz,¢) == Ppa(z)p € dom(Apez.0) (9.19)
is the unique solution of the boundary value problem (8.44)), hence
Yo fp.a(z @) =ApPpalz)e = ¢,
~ (9.20)
and fD,Q(Za 90) € ker(Amaz,Q - ZI)

It follows from (8.50)), (9.18]), and (9.20]), that

InFp.a(z,9) = InPpa(z)p = —Mo(2)p = —Mq(0)p
= *MQ(OWD]}VD,Q(ZM) (9-21)

Consequently, fpﬂ(z,(p) € dom(Ag,q) by and . Given this fact and
keeping in mind one deduces that fpg(z, ¢) € ker(Ag o — zI). In turn, this
forces fD,Q(Z7g0) = 0, given that we are presently assuming z € p(Ax.n). With
this in hand, by once again appealing to one | finally concludes that ¢ = 0.

Therefore, have shown that the operator Mq(z) — Mq(0) in (9.14) is injective.
In order to prove the range condition in (9.15) one first notes that for ¢ €

%N (0)* one has, by definition (cf. (8.50)),
(Ma(z) — Mo(0))¢ = —3n (Pp.a(2) — Ppa(0))e. (9:22)
On the other hand, 7p (ﬁDQ(Z) — 13D7Q(0))<p = ¢ — ¢ = 0 which goes to show that
(Pp,a(2) — Pp,a(0))¢ € ker(3p) = dom(Ap o) € H*?(Q) Ndom(Amas,n) (9.23)

by the first relation in (8.30) and (6.31). This fact, (8.84), and the definition of
9n(0Q) in (8., imply that the function in (9.22)) belongs to ¥x(0€2). This yields
the left-to-right inclusion in . In order to verify the right-to-left inclusion
in (9.15), consider some arbitrary ¢ € ¥ (0€2). Then there exists a function
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f € H32(Q) N dom(Ayarq) such that ypf = 0 and ynf = ¢ (cf. §F)). In
particular,

ANf + Ma(0)ipf = v f = . (9.24)
Since z € p(Ak q), this ensures the direct sum decomposition
dom(Aaz.0) = dom(Ag.q) + ker(Amaz.0 — 21). (9.25)

Using this in relation to the function f € dom(A,,qz o) and observing that we have
Ang + Mq(0)ypg = 0 for each g € dom(Ak ) by Theorem it follows from
(9.24) that there exists

n € ker(Aqz,0 — 2I) such that yyn + J,\\/[/(Oﬁpn =1). (9.26)
Setting ¢ := —Ypn € ¥n(02)*, one concludes from (8.50)) and (9.26) that
(Ma(2) = Ma(0)p =T + Ma(0)ipn = ¢. (9:27)

The conclusion is that M (z) — MQ(O) maps onto ¥ (9Q), finishing the proof of
(19.15)).
Regarding (9.16), one only needs to establish the continuity of the operator

in question. By (9.22)-(9.23), (8.84), the fact that the operator vy in (8.39) is
continuous, and by the significance of Pp o(2), Pp,q(0) in the context of (8.44]) and
their memberships to B(¥y(9Q)*, L*(€)), one estimates for each ¢ € ¥n(9Q)*,

I (MQ(Z) - MQ(O))‘PH%(aQ)
= |HN (]SD,Q('Z) - ﬁD,Q(O))SOHgN(ag)
<C(] (Ppa(z) - ﬁD,Q(O))‘PHm(Q) + ||A(]5D7Q(Z) - ISD»Q(O))SDHH(Q))

< C(HﬁD,Q(z)()OHIﬂ(Q) + HﬁD,Q(O)<p||L2(Q)

+ H(V - Z)PDQ(Z)‘PHLZ(Q) + HVPD,Q(O)‘F’HLZ(Q))
< Cllelgy o0 (9.28)
for some finite constants C' independent of . This justifies the claim in (9.16)).
It remains to prove the resolvent formula (9.17). For this purpose, pick h € L?(Q)
and consider
fi=(Ap.q—2)""h = Ppo(2)(Ma(z) — Mo(0)) " (Pp.a(2)h.  (9.29)
From what has been proved up to this point, and from the fact that the operator
(Ppa(z))* maps L?(Q2) into ¥ (0R), one concludes that the function f is well
defined and belongs to dom(Amez.q). Moreover, as the solution operator Pp o(z)
of the boundary value problem (8.44]) maps into ker(A4,,4z,0 — 2I), one has
(Amaz.a — 2D f = (Amaz.a — 2I)(Apg — 2I) " *h = h. (9.30)

At this stage we claim that f € dom(A,ez0) in (9.29) satisfies the boundary
condition

*

Inf + Ma(0)Apf = 0. (9.31)
Indeed, from (7.21)), Theorem (vit), and (8.50]), one obtains
Anf =An(Apa — 2I)"'h = Ppa(z) (Ma(2) — Ma(0)) ' (Pp.a(2)h
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— —(Pp.a(2)) h + Mo(2)(Ma(2) — Mo(0)) ™ (Ppa(2)) h
= Mo(0)(Ma(2) — Ma(0)) ™ (Pp,a(2))"h. (9.32)

On the other hand, since Yp(Ap.q — 2I)"'h = 0, relying on Theorem (vii) one
computes

Mo(0)ip f = —Ma(0)3p Pp.a(z) (Ma(z) - MQ(O)Y1 (Pp.a(2))

= = Mo (0)(Ma(2) — Mo(0)) " (Pp.a(2))"h. (9.33)

Now the claim in (9.31)) is seen from (9.32)-(9.33)). To proceed, from (9.31) and
Theorem (9.4 we conclude that f € dom(Ak o). As such, (9.30) gives

(AK7Q - Zl)f = (Ama:r,ﬂ - ZI)f = h, (934)
and since z € p(Ag q) one finally infers from (9.34]) and (9.29)) that
(Ago—2I)"th=f=(Apo—zI)"'h
— Ppa(2)(Ma(z) — Mo(0)) " (Ppa(2))h.  (9.35)
This readily implies (9.17)), finishing the proof of Theorem |

*

h

As a final result in this section we derive the Weyl spectral asymptotics of Ax o
in Theorem below. Here we follow the lines of [I4] [I5], where the case of so-
called quasi-convex domains was investigated. We first recall a basic result due to

Kozlov [85]. Let Wq be a closed subspace in H?(2) containing 2 (Q),

H2(Q) C Wq C HX(Q), (9.36)
in particular,

Wq < L*(Q) compactly. (9.37)
In addition, consider the following forms in L?(€2):

wlfg)i= Y [ 0p@ @ D@ )@ dw, dom(an) = W, (9:3)

0<|al,|8l<2

bolfg)i= S [ b s @I ', domon) = Wa. (9:39)

0<|af,|8]<1

Suppose that they are both symmetric, that the leading coefficients of ag and bg
are Lipschitz functions, while the coefficients of all lower-order terms are bounded,
measurable functions in 2. Furthermore, assume that the following coercivity,
nondegeneracy, and nonnegativity conditions hold for some ¢ € (0, c0),

ao(f, f) = cllfltz@), V¥ f € dom(aq), (9.40)
> bap(@) TP #£0, Ve vVEeR\{0}, (9.41)

la|=8]=1

bo(f,f) =0, Vfedom(bg). (9.42)

Recall that for each multi-index v = (71, ...,7,) and each vector £ = (&1,...,&),
the symbol £7 stands for £* - -- &)= (this is relevant in (9.41)).
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Under the above assumptions, Wq can be regarded as a Hilbert space when
equipped with the inner product ag( -, -). Next, consider the operator T € B(Wgq),
uniquely defined by the requirement that

aQ(faTQg) = bQ(fag)? Vf,QEWQ (943)

It follows from ([9.37)), (9.40]), and (9.42)), that the operator T, is compact, nonneg-
ative, and self-adjoint in the Hilbert space (Wgq,aq( -, -)). Denoting by

0< - < pjs1(Ta) < pi(Ta) < - < m(To), (9.44)
the eigenvalues of T listed according to their multiplicity, we set
NN To) =#{j e N|p;(To) 227"}, A>0. (9.45)

The following Weyl asymptotic formula is a particular case of a general result due
to Kozlov [85]. We also note that various related results can be found in [84], [86].

Theorem 9.6. Let Q C R™, n > 2, be a bounded Lipschitz domain and retain the
above notation and assumptions on aq, bq, and Tg. Then the distribution function
of the spectrum of Tq introduced in (9.45|) satisfies the following asymptotics

N(A7 TQ) = Wa,b,Q )\n/2 + O<)\(n_(1/2))/2)7 (946)
A—o0
where,
1 \|%\ bapl@e™ ]
al= =1
= — dw,— d"z, 4
cunn = [ | | () [ e )

|| =[8]=2

with dw,_1 denoting the surface measure on the unit sphere S*~1 in R™.

The Weyl asymptotics for perturbed Krein Laplacians on a bounded Lipschitz
domain now follow from Kozlov’s Theorem in a similar way as in [I5l [16]; cf.
[18, Theorem 4.1].

Theorem 9.7. Assume Hypothesis . Let {\;}jen C (0,00) be the strictly posi-
tive eigenvalues of the Krein—von Neumann extension A o enumerated in nonde-
creasing order counting multiplicity, and let

N\ Agq)i=#{j e N[0 <, <A}, YA>0, (9.48)

be the eigenvalue distribution function for Ak q. Then the following Weyl asymp-
totic formula holds,

N\ Akga) = (2m) " 0. | A2 4 O(A=(/2)/2) (9.49)
where v, denotes the volume of the unit ball in R™ and |Q| is the volume of Q.
Proof. Consider the densely defined symmetric forms ax o and by q in L2(Q),
ag.(f,9) = (Aminaf, Amm,ﬂg)Lz(Q)7 dom(ag,0) = H*(Q), (9.50)

b[ﬂﬂ(.f) g) = (fv Amin,ﬂg)Lz(Q)v dom(bK,Q) = I?IQ(Q) (951)

We note that dom(ax o) = dom(bg o) = dom A, 0 holds by Lemma One
can then verify that conditions (9.40)—(9.42) are satisfied by ax o and bgx o with
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Wao = ﬁ[z(Q) In this context one observes that the graph norm of —A + V is
equivalent to the H2-norm on H?((2), that is, there exists C' € (1, 00) such that

CH fllir () < ax(f. /) S Clfllieq), VFeH(Q), (9.52)
(cf. the proof of Lemmal6.3|and (2.78))). One observes that the self-adjoint operator
in L?(2) uniquely associated with the form af g is given by Aaz 0 Amin.a (cf. [83)
Example VI.2.13]). In particular,

ﬂK,Q(fa g) = (fa Amam,QAmin,Qg) L2(9) (953)

holds for all f € domag o and g € dom(Amae,.0Amin,0) C dom(ak ).
We introduce the operator Tk o via the demand that

ar.olf, Txag) =bralf,g), Y fgeH Q). (9.54)

As discussed at the beginning of this section, Tk o is compact, nonnegative, and

self-adjoint on Wi o, the Hilbert space H 2(Q) equipped with the scalar product
ara(-, ). Moreover, one has

A € 0(Ak.)\{0} if and only if A\™! € 0(Tk.q) (9.55)

counting multiplicity, that is, the eigenvalues of Tk o are precisely the reciprocals
of the nonzero eigenvalues of A o, counting multiplicity. In fact, in order to verify
, assume first that A > 0 is an eigenvalue of Ak o corresponding to the
eigenfunction h € dom(Ag @), that is,

Ak .oh = Ah, (9.56)
and according to (9.2) the function h admits a decomposition in h = i + ho,

where i € dom(Apin o) and hy € ker(Amqes,0). One observes that A > 0 and
(19.56) imply Apmin # 0 and Amin 0hmin = Ak oh. Therefore,

Amin,thin - Ahmm = AK,Qh - Ahmin = A\h — Ahmm = )‘hO (957)
belongs to ker(A,qz,0) and it follows that
Amax,QAmin,thin = )\Amax,thin = /\Amin,ﬂhmin- (958)

Together with (9.53) and (9.54) this yields
aK,Q(fa Ailhmin) = (fa AilAmaz,QAmin,thin)LQ(Q)

= (fv Amin,thin)Lz(Q)

(9.59)
== bK,Q(fa hmm)
= aK,Q(f7 TK,thln)
for all f € dom(ak ) and hence
1

A
Conversely, assume that A, € dom(Tk o) = 1?[2((2) and A # 0 are such that

holds. Then
ar,o(f, hmin) = ax.o(f, \Tk,0hmin)

= b a(f, Nmin) (9.61)
= (fu )‘Amin,ﬂhmin)L2(Q)
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for all f € dom(ak ). The fact that A,ae.0Amin,o is the representing opera-
tor for ax o and the first representation theorem for quadratic forms [83, Theo-
rem VI.2.1(i44)] imply

himin € dom(Apmaz,0Amin,a) and Anae.0Amin,0lmin = AMmin,0lmin.  (9.62)
Next, we consider h := A’lAmm’thm. It then follows from that
Apaz,o(bh = himin) = A Amaz.0Amin,ohmin — Amin,oRmin = 0 (9.63)
and hence one has
h=hmin+ (h—=hmin),  Bmin € dom(Apin.a), b — Rmin € ker(Anaz.0). (9.64)
From one concludes h € dom(Ag ) and the definition of h and yield
A oh = Apaz,oh = X Apas, 0 Amin,0hmin = Amin,0hmin = Ah, (9.65)
that is, h is an eigenfunction of Ax o corresponding to the eigenvalue A. This
completes the proof of the equivalence .
Next, introducing
N Tko) =#{j eN|p;j(Tka) = A"}, VA>0, (9.66)

where {1;(Tk,q)}jen is the ascending sequence of eigenvalues of Tk o counting
multiplicity, then N'(\, Tk,o) = N(\, Ak ,q) for all A > 0, and Theorem yields
the asymptotic formula,

N\ Axg) =N\ Trq) = wia '+ 0N122), (9.67)
with
1 / / Z?:l 532 :
WK,Q = —— | dwp_1(§) |d"x
n(2m)" Jo ( sn—1 [E;k—l & ©
= (2m) 7" v, 9], (9.68)
since the surface area of S*~ ! is nv,,. O

In closing, we note that for the special case of the so-called quasi-convex domains,
Theorem [9.7] coincides with [I4) Theorem 8.2].

10. A DESCRIPTION OF ALL SELF-ADJOINT EXTENSIONS AND KREIN-TYPE
RESOLVENT FORMULAS FOR SCHRODINGER OPERATORS ON BOUNDED
LipscHITZ DOMAINS

In this section we describe all self-adjoint realizations of the Schrodinger dif-
ferential expression —A + V on a bounded Lipschitz domain via explicit bound-
ary conditions, and we express their resolvents in a Krein-type resolvent formula.
Throughout this section it is assumed that Hypothesis holds.

First of all, we fix some real point y which is not in the spectrum of the Dirich-
let realization Ap o, that is, p € p(Ap,o) N R and remark that such a point p
exists since Ap o is semibounded from below. Moreover, by one obtains the
decomposition

dom(Anqz,0) = dom(Ap ) + ker(Apmaz.0 — 1)

= dom(AD,Q) ".' {fu € dom(Amaa:,Q) | - Afu + Vfu = :Ufu}v
(10.1)
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to be used in the following. We agree to decompose functions f in the domain of
Apmaz,0 accordingly, that is, for f € dom(Apqez,0) we write

f=fo+fu [fedom(Apq), fu€ker(Anaza—p). (10.2)
In the following we will make use of the extended Dirichlet trace
p : dom(Apmaz.0) = 9In(0Q)* (10.3)
in Theorem where ¥n (0€)* is the dual of the space
YN (09Q) = ran(Yn|dom(Ap.q)) (10.4)
introduced in Definition Bl Since
G (00) — L*(0Q) — Dn(09)* (10.5)

forms a Gelfand triple (see, e.g., [I65]) there exist two isometric isomorphisms
Ly 19N (09) — L2(09) and t— : YN (0Q)* — L?(99) such that
(140, =) 12 (002) = @ (09) (©5 ¢>€¢N(m)* (10.6)

holds for all ¢ € 9N (09) and ¥ € Yy (0Q)*. For a closed subspace 2~ C ¥y (0Q)*
set

=N (2) C YN (09), (10.7)
so that

L (X)) =1 (Z) C L*(09). (10.8)
If Q.. (2°+) denotes the orthogonal projection in L?(09) onto the closed subspace
14 (Z7*) C L?(09) then we say that

ng* = L_T_lQL+(ggx)L+ (109)
is the orthogonal projection in ¥ (92) onto the closed subspace 2™ C ¥y (09).
We note that for all ¢ € 95 (0Q) and all ¢ € 2" one has Py «p € 2™ and

X+ <P36"*80a ¢>5¢w = %N(89)<P3Zf*$0a w>gN(3Q)* = (L+P5£”*90a L—T/)) L2(09)
= (QL+(%*)‘+‘P7L—¢)L2(6Q) = (L+‘P’QL+(%*)‘—¢)L2(5~Q)

= (119, L—w)LZ(aQ) = %(a@)<%¢>%(ag)“
(10.10)

where and 1 ) € 1_(2) = 1. (Z*) were used. We denote by (27*)* the
corresponding orthogonal complement of 27, that is, (27*)% = 17" (14 (27%)1e2),
and the corresponding orthogonal projection in ¥y (99) is denoted by P g+). In
the same style we write Py and Pg-1 for the orthogonal projections onto 2~ and
2+, respectively. The canonical embedding of 2" into ¥y (9€)* will be denoted
by ta.

Let again 2~ C 9y (09)* be a closed subspace and let 27* = ;' (2) C
YN (092). We shall say that a densely defined operator T': £ D dom(T) — £ is
symmetric if

and T : 2" D dom(T) — 2™ is said to be self-adjoint if
2 (T, ) o = 2 (p, ') g+ for all ¢ € dom(T)

(10.12)
implies ¢ € dom(T) and T = /.
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We note that T : 2" D dom(T) — Z™* is symmetric (self-adjoint) in this sense if
and only if the operator

1Tt dom(e Te™t) = o (dom(T)) C v (Z) (10.13)

is symmetric (self-adjoint, respectively) in the Hilbert space ¢+ (Z) = 14 (Z™*) C
L2(09).

In the following theorem all self-adjoint realizations of —A + V' are character-
ized via explicit boundary conditions in terms of closed subspaces 2~ C ¥y (00)*
and self-adjoint operators 7. In this context we note that the first description of
all self-adjoint realizations of second-order proper elliptic operators with smooth
coefficients on smooth domains in terms of boundary conditions was obtained by
Visik in his celebrated 1952 memoir, see [I59] Section 6]. The result below, is along
the lines of the classical parametrization due to Grubb in [68], is given here a com-
plete and self-contained proof. For earlier work, see also [22, Corollary 4.4], [65]
Theorem 14.3], and [98, Propositions 3.5, 3.6].

Theorem 10.1. Assume Hypothesis let ¥p be the extension of the Dirichlet
trace operator onto dom(Amaz.0), fix some point 1 € p(Ap o) NR and decompose

f e dom(Anez.0) in the form .

Then there is a one-to-one correspondence between the self-adjoint extensions of
Aping i L*(Q) and the family of pairs {2 ,T}, consisting of a closed subspace
2 of Yn(0Q)* and a self-adjoint operator T : & D dom(T) — Z™* as follows:
For every closed subspace 2" C 9n(0Q)* and every self-adjoint operator T : 2~ D
dom(T) — Z°* the operator

AT7Q =-A+V,
dom(A7.q) = {f € dom(Anas,0) ’T%Df = Poy-ynfp}

is a self-adjoint extension of Amin.q in L*(Q), where Py« denotes the orthogonal
projection in Yy (02) onto Z*. Conversely, for every self-adjoint extension A of
Aming in L?() there exists a closed subspace 2" C 9y (0Q)* and a self-adjoint
operator T : & O dom(T) — 2™ such that A = Arq, that is,

A=-A+7V,
dom(4) = {f € dom(Apas0) | TA0f = Por-nfp}.
Proof. Let f,g € dom(Apmaz,0) and decompose f, g in the form
f=/fp+f,and g=gp+ g, (10.16)

as in (10.1)—(10.2)). It then follows from the self-adjointness of Ap, the properties

Amaz0fy = pfy and Apaz 09, = gy, and the extended Green’s formula (8.35)
that

(10.14)

(10.15)

(Amaz.0fs 92 — (f; Amaz.09)L2(0)
= (Ap.afp + Amaz.9fu 90 + 9u)2) — (fD + fu, AD.99D + Amaz.09u) 12 (9)
= (Ap.afp,9u)r2) — (D) Amaz,09u) L2(0)
+ (Amaz.9fus 90)22Q) — (fur Ap.29D) 12(0)
= %N(asz)<7NfD,7D9u>gN(ag)* — gn 09 (VD fus 7N9D>gN(3Q)

= 9n(092) <’7NfD7 5D9>gN(aQ)* — 9n(0Q)* <”?Dfﬂ 'VNgD>gN 0Q) (1017)
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where dom(Ap o) = ker ¥p was used in the last step (cf. (8.30))).

Next, assume that 2" C ¥ (002)* is a closed subspace of ¥y (9Q)* and let T be
a self-adjoint operator which is defined on the dense subspace dom(7T") C 2" and
maps into 2* (cf. (10.12))). We consider the operator Aro = —A + V defined on
the linear subspace

dom(Arq) = {f € dom(Auz.0) |T7Df = P%wnyD}. (10.18)
As dom(An,0) is contained in ker yp N ker vy, it follows that
dom(Amin,a) C dom(Arq) (10.19)
and the inclusion dom(Ar ) C dom A,,qq.0 is clear from . Hence,
dom(Ain,a) C dom(Arq) C dom(Anmas.), (10.20)

and therefore, the operator Ay is an extension of A, o, and a restriction of
Apaz.o. Next we verify that the operator Ar g is symmetric in L?(Q2). For this

purpose, let f,g € dom(Ar q). By (10.20) the functions f, g belong to dom(Aaz,0)
and hence they can be decomposed as in ([10.16[). Then one has

Ypf €dom(T)C 2, TApf = Pa+ynfp C X, (10.21)
and
Apg € dom(T) C &', TApg = Pa~yngp C Z*. (10.22)
Thus, one concludes from together with , , and that
(Arof,9)r2@) — (f, Ar09)r2Q)
= (Amaz.f,9) 2 — (f; Amaz,09)12(0)
= gy 00)(IN[D> 7D9>gN(3Q)* — w09 (ID ] 7N9D>gN(aQ)
= 2+(Pa-NfD:ADY) o — 2 (ADS, P2+ INID) 4 -
= 2-(TApf,Ap9) 5 — 2 (DS, TADY) 5. =0, (10.23)

using that T is symmetric in the last step (cf. ) This proves that the operator
A g is symmetric in L%(Q).

Next, it will be verified that the inclusion dom(A% ) C dom(Arq) holds. To
accomplish this goal, pick some g € dom(A*iQ). We will then show that

Apg € dom(T) and THpg = Pa+yNgD- (10.24)
In fact, note first that the mapping
dom(Amaz,0) 3 f = fp+ fur=r {Anf,nIp} € In(0)" x 9N (0Q)  (10.25)

is surjective; this is an immediate consequence of Theorem (z)7 (18.30), and Def-
inition Next, we check that Ypg € 27; in fact, we will show that

Py i3pg =0, (10.26)

where Py 1 is the orthogonal projection in ¥y (9Q)* onto 2. For ¢ € (27*)*
choose f € dom(Amax,n) such that pf = 0 and yn fp = ¢; this is possible since
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(10.25)) is surjective. In that case one has Py «ynfp = Pa+p = 0 and hence
f € dom(Ar,0) by (10.18). It now follows from g € dom(A% () and (10.17)) that
0= (Araf 92 — (f, AT.09)12(0)
= (Amar,Qfa g)LQ(Q) - (fa Amaz,ﬂg)LQ(Q)

N _ (10.27)
= gn(09)(INID) VD9>gN(aQ)* — an09)- (D] 7N9D>gN(8Q)

= (%*)l<§07 P%iiDg»ggL :
Since this identity holds for all ¢ € (27*)* one concludes ([10.26)), hence
Ypg € . (10.28)

In the sequel we again make use of the surjectivity of the map (10.25)). In particular,
the space 2" x 2™ as a subspace of ¥y (9Q)* x ¥n(9NQ) is contained in the range
of the map in (10.25). Hence for ¢ € dom(T") C 2 there exists f € dom(Amaz,0)
such that

¢ =Fpf €dom(T) C 2" and T = fp = Poynfp © 2%, (1029)
and from (10.18)) one concludes that f € dom(Ar o). Making use of (10.29)), (10.17)),
f €dom(Arq) and g € dom(A7q), (10.30)

one computes together with ,
2+(T,Ap9) 5 = 27+(Pa=ANID:ADY) 5 = @n(69) <7NfDﬁDg>gN(am*
= (Amaz.0f> 9122 — (f, Ama.09) 12(0) + 9y 09)- (A0 f, ’YN9D>%N(GQ)
= (Araf, 92 — (F, Ara9) 2 ) + 2 (@, P2+ YNgD) 4.
= 2(p, Pu+INGD) .- (10.31)

This relation holds for all ¢ € dom(7T') and as T is assumed to be self-adjoint
(cf. (10.12)) this implies Ypg € dom(T) and Typg = Po+yngp, that is,
holds. But then immediately implies ¢ € dom(Ar ). This establishes
the inclusion dom(A4% ) C dom(Arq). All together, it follows that for a self-
adjoint operator T : 2 D dom(T) — £ mapping from some closed subspace
Z C Yn(0Q)* into £ C Yn(0N) the operator Ar g in is self-adjoint in
L2(Q).

Next, we prove the converse statement. Suppose in this context that A = A* is
some self-adjoint extension of A, 0 in L?(Q2), that is,

Amin,ﬂ CA=A"C Amaz,Q~ (1032)

In particular, A acts as —A + V on dom(A4) C dom(Aez.0). We now define a
closed subspace 2" in ¥n(0€2)* by

X = {p € In(0Q)*

At this point we introduce the linear operator T' mapping from 2" O dom(T") — Z™*
by

¢ =7pf for some f € domA}. (10.33)

TApf = Pa«yn fD,

- (10.34)
dom(T) = {p e X | ¢ =A3pf for some f € dom(A)}.
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One observes that T' is a well defined linear operator. In fact, if for some function
f € dom(A) one has Yp f = 0, then for every g € dom(A) one may write

2+ (PN fD:ADY) 4
= gx(00) (I [D> 7D9>gN(BQ)* — an(o9)-(ID ] 7N9D>gN(aQ)
= (Amaz.0f 92 — (f; Amaz,09)12(0)
= (Af,9)r2@) — (f; Ag)r2(0) =0, (10.35)
where and the symmetry of A was used. By the definition of the space

Z in (10.33)), the elements ¥pg with g € dom(A) form a dense set in 2. This
implies Py «vn fp = 0 and hence the operator T' in is well defined.

Next, it will be shown that T': 2" D dom(T) — 27" is self-adjoint in the sense
of . Assume in this context that ¥ € 2" and ¢’ € 2™ are such that

2 (T, V) o = 2 (o, V") - (10.36)
holds for all ¢ € dom(T'). Next, choose g € dom(A,qz,0) such that
Y =3pg and ¢ = yngp = Pa-Vngp, (10.37)

which is possible due to the surjectivity of the map (10.25]). Clearly, for ¢ € dom(T")
there exists f € dom(A) such that ¢ = pf, hence Ty = Pg«ynfp. Then one

concludes from that
0=a(To, V) — 2 (¢, V") 2~
= 2+(Pa= W fp,Yp9) 2 — 2 (Ynf,INgD) 2+
= 4y 02) (I FD: ADG) g, (902)- — 9w (090 (VDS INID g 90 (10.38)
= (Amaz.0f 9)2@) — (f, Amaz,09) L2(0)
= (Af,9) 2 — (f, Anaz.09)L2(0)-

The above equality holds for all ¢ = Ypf € dom(T) or, equivalently, for all f €
dom(A). As A is assumed to be self-adjoint in L?(2) one infers that g € dom(A)
and Ag = Anaz,09. In particular,

Y =pg € dom(T) and T = T7pg = Poy+yngp = ' (10.39)
Therefore, by (10.36) and (10.12) the operator T : 2" D dom(T) — Z™* is self-
adjoint. This completes the proof of Theorem [10.1 (]

Given Theorem [10.1} one can now attempt a spectral analysis of self-adjoint
extensions other than those discussed in this monograph. Interesting candidates
can be found, for instance, in [5], [6l Chs. 11,12].

It is worth noting that for 2" := ¥n(9Q)* and T := 0 the self-adjoint realization
in coincides with the Krein-von Neumann extension Ag . From this point
of view, the following theorem may be viewed as a generalization of Theorem (9.5
where the resolvents of Ax o and Ap o have been related via a Krein-type resolvent
formula. In fact, setting 2" := ¥n(0Q)*, T := 0, and choosing p := 0, the resolvent
formula in the next theorem reduces to the one in Theorem Let us now turn
to the general situation.
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Theorem 10.2. Assume Hypothesis and let vp be the extension of the Dirichlet
trace operator onto dom(Apmezq). Let 27 C Gn(0Q)* be a closed subspace, let
T: % Ddom(T) — Z™* be a self-adjoint operator and let

Arao=-A+V,
dom(Arq) = {f € dom Apae | TApf = Pa«ynfp}

be the corresponding self-adjoint realization of —A +V in L*(Q) in (10.14)). Then
the operator

(10.40)

T + Py~ (Mo(z) — Mo(p))egr : 2 D dom(T) — 27 (10.41)

is bijective and with inverse in B(Z™*, Z") whenever z € p(Ar.q) N p(Apq), and
the following Krein-type resolvent formula holds in B(L?(Q)):

(AT’Q — zI)_l — (AD’Q — ZI)_I
= —Ppo(2)ia (T + Py (Mo(2) — Ma(1))ear) ™ Pa+ (Ppa(2)”.

Proof. For z € p(Ap.o) define the operator H(z) : & — £ by setting

(10.42)

H(z):= Py (Mg(z) — Mg(u))ng. (10.43)

Note that H(z) is well defined, as the range of Mq(z) — Mq(y) is contained in
YN (09) (this can be verified in the same way as in the proof of Theorem [9.5]).
Furthermore, H(z) is bounded (cf. the proof of Theorem [9.5). Let T : 2 >
dom(T") — Z™* be a self-adjoint operator. We shall show that the operator

T+ H(z) =T + Py (Ma(2) — Mo(p))eg : 2 Ddom(T) — 2% (10.44)

is bijective for all z € p(Ap ) N p(Ar.q). To this end, first suppose that for some
¢ € dom(T') we have

(T + H(2))p = T + Pa- (Ma(z) — Mo())earp = 0. (10.45)

There exists f, € ker(Amae,0 — 2I) such that Ypf, = ¢. As ¢ € 27, one has

t2¥pf: = Apfs. Decompose f. as in (10.2) in the form f, = fp . + fy -, where
fp,» € dom(Ap ) and f, . € ker(Apaz,0 — p1I). One then computes

TApf. =T = —Pg (Ma(z) — Ma()) o
= —Pay- (Mo(2) — Ma(1))3p.f-
= 7P5?f* (MQ(Z)WDJEZ - MQ(,LL)?D(.}CD,Z + fu,z))

=Py-(Inf- —ANfuz) = Po-N D2

(10.46)

Hence f, € dom(Arq) Nker(Apmaz,0 — 2I), which implies f. € ker(Ar o — 2I).
This yields f, = 0 as z € p(Ar.q) by assumption. Consequently, ¢ = Ypf. = 0
which ultimately implies that the operator 7'+ H(z) in is invertible for all
z € p(Ap.a) N p(Arq).

Next, we shall show that T+ H(z) maps onto 2™* whenever z € p(Ap.a) N
p(Ar.q). For this purpose, let ¥ € 2™ and choose f € dom(A,,4z,0) such that

Ypf =0 and Pg-ynfp =1 (10.47)
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(here we once again use that the mapping (10.25)) is surjective). Note that thanks
to the first condition we have f = fp. Since, by assumption, z € p(Arn) we also
have the direct sum decomposition

dom(Apaz.0) = dom(Ar.q) + ker(Amaz.a — 21). (10.48)
As such, f may also be written in the form
f=fr+ f., where fr € dom(Arq) and f, € ker(Apmaz o — 2I). (10.49)

Next will make use of the decomposition of fr € dom(Ar o) with respect to ,
that is, write fr in the form
fr = fpr+ fur, where fpr € dom(Apn) and fu 1 € ker(Apmaz,0 — 11).
(10.50)
One notes that fr € dom(Arq) implies TYpfr = Pa«ynfpr. In particular,
Ypfr € dom(T) C Z and therefore, toVp fr = Ypfr. It then follows from the
first condition in (10.47)) and (10.49)) that

Yo fr = =D [ (10.51)

One compttes
(T + H(2)3pfr = (T + Po+ (Ma(z) — Mo(i))t2°) 3 fr

=TAHpfr + Py~ (Mﬂ(z)anT - MQ(N)?DJCT)

= Poyyn fp,r + Por+ (— Ma(2)Ap f- — Ma(w)ip(fo,r + fur))

= Py« (ywfpor +Nf- — MQ(M)WDJCM,T)

= Py« (ywfpr +ANf: + AN fuT)

=Py An(for + f2 + fur)

=PyANf = Pa-NfD =1,

(10.52)

and hence it follows that the operator T+ H(z) in maps onto 2 *. We have
shown that T4+ H(z) in is bijective for all z € p(Ap q) N p(Ara).

As H(z) is a bounded operator from 2" to 2™ and T is self-adjoint it follows
that T+ H(z) is closed as an operator from 2~ onto 2™*. This implies that the
inverse is closed as well, and hence bounded by the Closed Graph Theorem.

Next, it will be shown that the resolvent formula in the theorem holds. To get
started, pick f € L?(Q) and define

9= (Apgo—2I)"'f = Ppo(2)ia (T + H(z) " Pa-(Ppa(2)"f,  (10.53)
where, as above,
T+ H(z) =T + Py (Mo(2) — Mo(p))ez : 2 D dom(T) — Z7*.  (10.54)

First, observe that g € dom(Amqz,0—21) and that ran ]SD@(Z) C ker(Amaz.0—21)
yields

(Amaz,o —20)g=f. (10.55)
We claim that g belongs to dom(Ar q). To justify this, it suffices to verify that the
boundary condition

T'vpg = P+ yNgD (10.56)
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is satisfied. Making use of the decomposition g = gp + g, one rewrites

YNID = IN(9 — 9u) =ANG — VNG = ING + Ma(p)¥Dgyu

~ ~ (10.57)
=389 + Ma(1)Vpy-
Thus, the boundary condition (|10.56) is equivalent to
TApg = Po- (g + Ma()ipg)- (10.58)

Next we verify that g in (10.53)) satisfies ((10.58]). First, we note that
~ —1 =~ NN
Ypg = ngy(T+H(z)) Pg*(PD7Q(z)) f,
~ ~ — ~ 5 -1 ~ N
Invg =An(Apa —2I) ' f —AnPpa(2)ta (T + H(z))  Pa+(Ppa(z) f

— —(Pp.a(2)"f + Ma(2)ia (T + H(2)) " Pa (Ppo(2) " f.
(10.59)

This implies
TApg = —T(T +~H(z))_1P5{* (Ppa(2)"f - ) * (10.60)
=Py (Ppo(2) f+H)(T+ H(z)) Py (Ppa(2) f
and

INg + Ma(u)ypg

= —(Pp.a(2)"f + (Ma(z) — Mo(u)) o (T + H(2)) " Pa(Ppo(2) "/,
(10.61)

hence
Py (Ing + MQ(MWDQ)
= Py (Ppo(2)f+ H(z)(T + H(2)) ' Pa-(Ppa(2)f.

It now follows from (10.60) and (10.62) that (10.58) holds. Thus, g € dom(Ar q),
and from ((10.55)) one concludes that

(10.62)

(Aro —zI)g = f, (10.63)

or equivalently, as z € p(Ar.q),
g=(Apq—2I)"'f. (10.64)
Thus, completes the proof. (I

11. THE CASE OF VARIABLE COEFFICIENT OPERATORS

The principal purpose of this section is to initiate a treatment of Laplace—
Beltrami operators —A, (and hence the case of variable coefficients induced by
a metric g), perturbed by a scalar potential V. While this circle of ideas is worth
pursuing further, we will at this point provide the basic results to demonstrate how
the bulk of the material in Sections 2HI0| extends to perturbed Laplace-Beltrami
operators on Lipschitz subdomains of compact boundaryless Riemannian manifolds.
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Throughout this final section we let (M, g) be a compact, smooth (C*°), bound-
aryless manifold of (real) dimension n € N, n > 2, equipped with a C!'! Riemannian
metric g. That is, in local coordinates the metric tensor ¢ may be expressed by

9= girdr; @ duy, (11.1)
k=1

where the coefficients g;; are functions of class CY!. Hereafter, we shall often
invoke Einstein’s summation convention over repeated indices and suppress the
sigma symbol. The letter g is also used to abbreviate

g := det [(gjr) 1<) k<n) (11.2)
and we shall use (gjk)1<j7k<n to denote the inverse of the matrix (g;x)1<; k<n, that
is,

; -1
(9")1<ipcn = [(gip)1<ingn] - (11.3)

The volume element dV, on M (with respect to the Riemannian metric g from
(11.1))) then can be written in local coordinates as

dVy(z) = v/ g(z)d"z. (11.4)
Consequently, given any relatively compact subset O of a coordinate patch (which
we canonically identify with an open subset of the Euclidean space) it follows from
(11.4)) that for any absolutely integrable function f on O we have

/degz/f(x)\/g(x)d"x. (11.5)
o o

As is customary, we use {9;}1<j<n to denote a local basis in the tangent bundle
TM. This implies that if X,Y € T'M are locally expressed as X = X;0;, Y = Y;0;,
then

<X,Y>TM :ijkgjk> (116)
where (-, - )pas stands for the pointwise inner product in T'M.

Given an open set Q C M, for any scalar function f € C1(f2), and any vector
field X € C*(Q, TM) locally written as X = X;0;, we may locally write (with the
summation convention over repeated indices understood throughout)

grady f = (0;£)9" 0k,  X(f) = X;(0;f) = (grad, f, X) 7, (11.7)

and
divyX = g /20;(g"* X;) = 0;X; + T, Xy, (11.8)
where I‘j- . are the Christoffel symbols associated with the metric . Moreover,

for any scalar functions f,h € C1(Q) and any vector field X € C''(Q,TM), one
has the product formulas

grad,(fh) = ferad,h + hgrad,f, X(fh)= X(f)h+ fX(h),
divg(fX) = X(f) + fdiveX

Also, if O is a relatively compact subset of a coordinate patch (canonically identified
with an open subset of the Euclidean ambient) then for any two scalar functions
¢, € C1(O) we have

/(grad ¢, grad ¥) oy dV, = /Z (8;0)(x) () (2)g?* (2)/g(x) dx, (11.10)

]k:l

(11.9)
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thanks to (11.7)), (11.6), and (11.4).
The Laplace—Beltrami operator

Ay = divy grad, (11.11)
is expressed locally as
Agu = 971/23]4 (gjkg1/23ku). (11.12)
It satisfies the product formula
Ay(uv) = vAgu + uAgv + 2(grad u, grad ,v) - (11.13)

In the first part of this section we are interested in working with the formally
symmetric Schrodinger differential expression

L:=—A,+V, (11.14)

where the potential V' is a real-valued, essentially bounded, scalar-valued function
on M.

Given a nonempty open (necessarily bounded) set 2 C M, for each integer k € N
we let W*(Q) stand for the L2-based Sobolev space of order k in . For each k € N
we also define .

0 A

WhQ) =) @, (11.15)
and equip the latter space with the norm inherited from W*(2). Corresponding to
Q= M, for each k € N, we also set W=F(M) := (WF(M))*.

Lemma 11.1. Assume  C M is a nonempty open set, pick V. € L>*(M), and
define L as in (11.14). Then the graph norm

= fllez@) + 1LF 2@y Ve W(Q), (11.16)
is equivalent with the norm W2 () inherits from W2(Q).

Proof. From the work in [122] one knows that if A > 0 is a sufficiently large real
number then the linear and bounded operator

Ly:=L+X: WY M) - W M) (11.17)
is invertible, with bounded inverse
Lyt W M) — WH(M). (11.18)

In such a scenario, one can consider Fy € D'(M x M), the Schwartz kernel of L;l,
which is a distribution regular on the complement of the diagonal in M x M. From
[123 Proposition 6.1] one knows that the volume (Newtonian) potential operator

Iy f(x) ::/ Ex(z,y)f(y)dV,(y), xe€ M, (11.19)
M
is a linear and bounded mapping in the context
Iy : L2(M) — W*(M), (11.20)
which satisfies
Iy\(Lyf) = f on M, Y fecW?*M). (11.21)

Thus, for every f € C5°(f2) one estimates (recalling that tilde denotes the extension
by zero to the entire ambient manifold M)

||fHW2(Q) = HJ?HVW(M) = HH/\(L/\J?)HW%M)



140 J. BEHRNDT, F. GESZTESY, AND M. MITREA

S C||L)‘f||L2(M)

<CUEF Nl ny + 15 1 z2any)

= C(ILf 2 + 1 fllz2 ) (11.22)

for some constant C' € (0, 00), independent of f. In view of (11.15]) this implies
1 fllw2@) < C(Ifl2@) + 1L 2), Ve WQ). (11.23)
Since the opposite inequality is clear, the desired conclusion follows. 0

Given an open nonempty set 0 C M and a real-valued potential V' € L (M), we
consider operator realizations of the differential expression —A, + V' in the Hilbert
space L?(£2). We first define the preminimal realization L, o of —A, + V by

Lyo:=—-A,+V, dom(L,q):=C5 (). (11.24)

As such, L, q is a densely defined, symmetric operator in L?(Q2), hence closable.
Next, the minimal realization L, o of —Agz+ V is defined as the closure of L, o
in L?(Q), that is,

Lmin,Q = Lp,Q- (1125)

It follows that L,,in.q is a densely defined, closed, symmetric operator in L2(Q).
The mazimal realization Lp,qz 0 of —Ag + V is given by

Liaz,o = —0g+V, dom(Lpago) = {f € L*(Q)|Ayf € L*(Q)}, (11.26)

where, much as in the Euclidean case, the expression A, f, f € L*(Q), is understood
in the sense of distributions. The assumption V € L (M) ensures that for f €
L*(Q) implies A, f € L*(Q) if and only if (—A, + V) f € L*().

Some of the most basic properties of the operators L, o, Lmin.; Lmaz, are
discussed below.

Lemma 11.2. Suppose Q@ C M is an open nonempty set, and pick a real-valued
potential V. € L (M). In this setting, let Ly o, Lmino, and Lmaz0 be as above.
Then the operators Lpin o and Lyeq.o are adjoints of each other, that is,

min. = Ly o = Lmaz,o and Lyino = Lyo= Loz, (11.27)
and the closed symmetric operator Lp,n o is semibounded from below by
v = essinf,cq V(z), (11.28)
that is,
(Lminafs ez = v-|lfl2@) ¥ f € dom(Lyin ). (11.29)
In fact, the closed symmetric operator Lp,n o is given by
Lining = —8g +V,  dom(Lmin.a) = W2(Q), (11.30)

and Lpin,0 — v— 18 strictly positive.

Proof. Once LemmalII.1]has been established, all conclusions follow along the lines
of the Euclidean case treated in Lemmas [6.2H6.3] O
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11.1. Sobolev spaces on Lipschitz subdomains of a Riemannian manifold.
The reader is reminded that Sobolev spaces of fractional smoothness on M are
defined in a natural fashion, via localization (using a smooth partition of unity
subordinate to a finite cover of M with local coordinate charts) and pullback to the
Euclidean model. This scale of spaces is then adapted to open subsets of M via
restriction, in analogy to the case M = R" considered earlier in Subsections[2:2}{2.3]
by setting

H*(Q) := {u|,|ue H* (M)}, seR. (11.31)

In particular, H°(Q) coincides with L2(€2), the space of square integrable functions
with respect to volume element d}, in 2.

Since bounded Lipschitz domains in the Euclidean setting are invariant under
Cl-diffeomorphisms (cf. [74]), this class may be canonically defined on the manifold
M, using local coordinate charts. If 2 C M is a Lipschitz domain then, as in the
Euclidean setting, H*(Q2) = Wk(Q) for every k € N. Given a Lipschitz domain
Q C M, it is also possible to define (again, in a canonical manner, via localization
and pullback) fractional Sobolev spaces on its boundary, H*(99), for s € [—1,1].
In such a scenario one has (H* (89))* = H~*(99) for each s € [-1,1], and H°(99)
coincides with L?(99), the space of square integrable functions with respect to the
surface measure o4 induced by the ambient Riemannian metric on 0. Moreover,

{qﬁ‘ag |¢ € C>(M)} is dense in each H*(09), s € [-1,1], (11.32)
and
H®(02) — H*°(09) continuously, whenever —1 < sg < 51 < 1. (11.33)

Next, if @ C M is a given Lipschitz domain, the (Euclidean) nontangential
approach region defined in has a natural version on M, simply replacing
the standard Euclidean distance in R™ by the geodesic distance on M. With this
interpretation, the nontangential maximal operator and nontangential boundary
trace are then defined on Lipschitz subdomains of the manifold M as in
and , respectively. Then, virtually by design, it follows that all these objects
satisfy similar properties to those of their Euclidean counterparts. See, for instance,
[122], [123], [147], [165], and the references therein.

Next, we record a regularity result which is a particular case of [123] Proposi-
tion 4.9]. The reader is alerted to the fact that in Theorems and we shall
deviate from our typical condition V' € L*(M) and assumed V € LP(M), with
p > n, instead. This has its origins in the Calderén—Zygmund-type results in [122],

[123], culminating in the mapping properties (11.50)—(11.51)).

Theorem 11.3. Suppose Q@ C M is a Lipschitz domain and pick a real-valued
potential V- € LP(M) with p > n, where n is the dimension of M. Then for any
function u € C*(Q) solving

Lu=0 in D'(Q) (11.34)
one has
Ny € L*(09) <= u e H'*(Q) (11.35)
and, in fact,
HNH“HLz(an) ~ |ull 1720y, (11.36)

uniformly for u € C*(Q) satisfying (11.34).
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Moreover,

if Neu € L2(09Q), then u|ggn‘t' exists o-a.e. on 09, belongs to L?(052),
(11.37)

Kk—n.t.

and satisfies ||U|aQ ||L2(89)

< ||NH“||L2(89)'
The goal here is to establish a result similar in spirit to Theorem at a higher
regularity level. Specifically, we shall prove the following theorem.

Theorem 11.4. Assume 2 C M is a Lipschitz domain, and pick a real-valued
potential V- € LP(M) with p > n, where n is the dimension of M. If the function
u € CY(Q) is such that

Lu=0 in D'(), (11.38)
then
Ni(grad u) € L*(0Q) <= u € H*?(Q) (11.39)
and, in fact,
Wl oy + Vel ooy = [l ey, (1140

uniformly for u € CY(Q) satisfying ([11.38). Moreover,

if Nio(grad,u) € L?(09), then u’g;"t‘ exists o-a.e. on OS),
belongs to the Sobolev space H(9SY), and satisfies (11.41)

k—n.t.

[l 50, ||H1(8Q) < C||Ne(gradyu y T OHNK“HH(BQ)’

)||L2(8Q
for some constant C € (0,00), independent of u.

As a preamble to the proof of Theorem [I1.4] we record a regularity result per-
taining to the membership to fractional order Sobolev spaces in Lipschitz domains,
which is a slight variant of [I19, Lemma 2.34, p. 59]. See [I15, Theorem 9.45, p. 444]
for a proof.

Lemma 11.5. Let Q C M be a Lipschitz domain and suppose u € CO(Q)NHL ()
s a function satisfying

Neu € L*(09) and / |(g1radgu)(ac)|2 distg(x, 00) dV,(z) < oo, (11.42)
Q

where disty(x, 00Q) denotes the geodesic distance from x to 0S.
Then u € HY?(Q) and there exists a constant C € (0,00), independent of u,
with the property that

[ull 120y < ClINwullL2(a0)

1/2
2 1.
+C(/Q|(gradgu)(:r)| dist (z, 002) dVg(:c)) . (11.43)

We are now ready to present the proof of Theorem [11.4
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Proof of Theorem [11.4] First, we note that given the nature of the conclusion we
presently seek to confirm, there is no loss of generality in assuming that the differ-
ential operator L satisfies the non-singularity hypothesis:

for every Lipschitz domain D C M
(including the case D = M), and every —u=0in D. (11.44)

function w € HY(D), with Lu=0 in D

Indeed, since L is elliptic and formally symmetric, by arguing as in the proof of
[123, Proposition 4.9], it is possible (after first arranging to work in a domain
which is very small relative to M, as in proof of [123] Proposition 4.9]) to suitably
alter L away from 2 so that it becomes strictly positive definite on M, in the sense
that there exists some s > 0 such that

Hfl(M)<Lw,w>H1(M) >%||IUH12111(M)7 VwEHl(M> (11.45)

Assume that this is the case, and pick a Lipschitz domain D C M along with some
u € Ifll(D) satisfying Lu = 0 in D. Then, with tilde denoting extension by zero
outside D to the entire manifold M, it follows that w € H}(D) C H*(M) satisfies
supp (Lu) C 9D. In particular, this entails

as seen by approximating u € H}(D) in H*(M) with test functions on M which
are compactly supported in D (cf. for the Euclidean setting). Since we are
assuming that L is strictly positive on M (in the sense of ), this forces u = 0
on M, hence ultimately v = 0 in D. This concludes the justification of the fact
that, for the current purposes, we may assume that the non-singularity hypothesis

(TT.44) holds.

The usefulness of the non-singularity hypothesis mentioned above is already ap-
parent from choosing D = M in ([11.44}), which implies that the linear and bounded
operator

L:HYM)— H (M) (11.47)
is invertible, with bounded inverse
L™t H Y (M) — HY(M). (11.48)

In particular, it makes sense to consider the Schwartz kernel of L~!, a distribution
on M x M which we denote by E, € D'(M xM). From [122] one knows the behavior
of Ey, off the diagonal diag(M) of the Cartesian product M x M, specifically,

Ep € C'(M x M\diag(M)). (11.49)

In turn, these considerations permit us to introduce the (boundary-to-boundary)
single layer operator S, associated associated with L, by defining its action on any
Y € H*(0Q) with s € [-1,0] according to the formula

(SLt/})(x) = H_5(89)<EL(x,')7¢>Hs(39)7 Va € o0 (1150)
Then work in [I23] (involving the more general scale of Besov spaces) implies that
Sy : H*(0) — H*TH(0Q), s¢c[-1,0], (11.51)

are invertible operators, with bounded, compatible inverses
Syt H T 0Q) — H*(09), s € [-1,0]. (11.52)



144 J. BEHRNDT, F. GESZTESY, AND M. MITREA

We also define the action of the boundary-to-domain version of the single layer
operator .77, associated associated with L on any 1 € H*(0Q) with s € [-1,0] to

be (compare with (11.50]))
(y]ﬂb)(l‘) = H—s(@Q)<EL(.Z‘, -)’w>Hﬁ(69)’ Ve (11.53)

This operator satisfies the nontangential maximal function estimates (cf. [122],
[123])

N (grad, 2 | L200) < Cll¢llL200), Y € L*(09), (11.54)
IV (L) L2 00) < ClYlla-1(00), Y € H(99), (11.55)
as well as the square function estimates (cf. [73], [114], [115])

/Q|V2(<7Lw)(x)f2distg(x789) dVy(z) < CllYl|Z200), Yo € L*(09), (11.56)

/Q V(20 (@) [*disty (2, 02) dVy(2) < Ol gy, ¥ € H(09), (1157)

for some constant C' € (0,00) independent of ¢ (here and elsewhere V2 denotes
the Hessian operator). These properties are going to be of basic importance for us
later on.

After this preamble, we begin by considering the left-pointing implication in
(TT.39). To this end, assume a function u € C*(Q) N H3/2(Q), solving (i.e.,
Lu = 0 in D'(Q)), has been given. Fix a smooth tangent field X € C°(M,TM)
and, with Vx denoting the covariant derivative along X, define

v:=Vxue COQ)nHYQ). (11.58)
Then there exists C = C(2, X) € (0,00) such that
[Vl 172 () < Cllull gsrz(q)- (11.59)
Moreover, since Lu = 0 in €2, one can write
Lv=L(Vxu)=[L,Vx]u in Q, (11.60)

where, [A, B] := AB — BA abbreviates the commutator of the differential expres-
sions A and B. Locally, if X = Y,_, a;0;, where the coefficients a, are (C*-)
smooth functions, then a direct computation gives

n

L, Vxlu=Y [Ladu=—T + 1 — I3+ 1, — I, (11.61)
=1
where
L= zn: g 20;(g"* 9" * (Orae)(9pw)) € H'2(Q),
Jikt=1
I := i ag(agg_1/2)8j(gjkgl/Qaku) IS H_l/Q(Q),

.
=

~
Il

1

H
w

i
[

{(aja@)gjkafaku — g 24,0, (8g(gjkgl/2)8ku)} e HY2(0),
1

.
>

~
I
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n
Iy =) Vadeu e H(Q),
=1

Is =Y ady(Vu) € H (). (11.62)

=1
The memberships of Iy, T, I3 to H~1/2(Q) are readily justified by the fact that
multiplication with functions from Lip(§2) preserves H*()) whenever s € [—1,1]

(this follows in the same way as in the proof of Lemma [2.17). To place I in
H~1() one observes that

Ii=> Vaduu € LP(Q) - H'?(Q) — L>/3(Q) - LM/~ D(Q)
=1
— L2V +D(Q) — HHQ) (11.63)

(with continuous embeddings), by standard embedding results. Finally, to place I
in H~1(Q) it suffices to note that

Vu e LP(Q) - H¥2(Q) — L>3(Q) - L2 =3)(Q) — L*(Q). (11.64)
The bottom line is that, as seen from (11.61))-(11.62]),
f=L,Vxlue H Q) and || flla-1(0) < Cllullgsr ), (11.65)

for some constant C' € (0,00) which depends only on ,L,V,X. In particular

(11.60) becomes
Lv=feH Q). (11.66)

To proceed, we recall that Er(z,y) denotes the Schwartz kernel of L=! in (11.48)).
In [123], Proposition 6.1] it is shown that the volume (Newtonian) potential operator

M, f(x) = /M Er(e,y)f@) dVy(y), z €M, (11.67)

originally acting on functions f € L?(M), extends to a linear and bounded mapping
Iy : (H'73(M)) = H M) —» H*PH(M), Vse[-1,1], (11.68)
which satisfies
LMLF)=F in D'(M), VFe€H" (M), se[-1,1]. (11.69)
Thus, we consider F' € H~!(M) such that F|o = f as distributions in Q, and
IF -1 (ary < 2 fllr-1(0)- Then wx := (IILF)|, € H'(Q) satisfies
Lwx = (LIILF)|,=F|,=f in Q, (11.70)
and
lwx [ @) < ML F | aony < CIF|a-1an)
<Ol flla-10) < Cllullgs/2q) (11.71)

for some constant C' = C(Q, L,V, X) € (0,00). In particular, if we now introduce
Ix :=v—wx € H/?(Q), then
LYx =Lv—Lwx =f—f=01in Q, and

(11.72)
19x 120y < Il mr200) + lwx | g12) < Cllull s/
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for some constant C' = C(Q,L,V,X) € (0,00). Moreover, by the local elliptic
regularity result established in [123, Proposition 3.1] one has
Ix e [ Wal(9), (11.73)
1<p<oco

where W27 (Q) is the subspace of L} () consisting of functions with distributional

derivatives of order < 2 belonging to LV (€). Since standard embedding results

yield W2P(Q) € CY(Q) if p > n, one concludes that 9x € C*(Q). In addition,
Theorem implies that N, (dx) € L?(99) and

HNN(,ﬂX)HLZ(aQ) < Clxlle@) < Cllullgsrsq), (11.74)

for some constant C = C(Q, L, V, X) € (0, 00).
In summary, for every smooth vector field X on M we proved the decomposition
Vxu=19Yx +wx in Q, for some function

Ix € HY2(Q) N CH(Q) satisfying N, (Ix) € L2(09)

(11.75)
as well as HNKWX)HB(aQ) < Cllullgs/2(q), and some
function wy € Hl(Q) with H’U)XHHl/z(Q) < CHUHHs/z(Q),
for some constant C = C(Q, L, V, X) € (0, 00).
Next, we claim that the function « € H3/2(2) has the property
YpU € H! (092) and ||’yDu||H1(aQ) < CHU||H3/2(89)7 (11.76)

for some constant C' € (0, cc0) independent of u. Since membership to H*(99) is a
local property, we may work in local coordinates. For this portion of our proof one
can assume that M = R™. Granted this fact, we adjust the notation in (11.75]),

namely,

for i € {1,...,n} we write Qju =1; + w; in Q,
where 9; € H/2(Q) N CY(Q) satisfies N, (9;) € L2(09)

11.77
as well as ||\ (¥ ( )

i)HLz(ag) < Cllullgs/2(q), and where

w; € Hl(Q) satisfies ||UJ1'||H1/2(Q) < CHU”Ha/z(Q),
for some constant C = C(Q, L, V, X) € (0, 00).
The strategy for proving the claim made in (|11.76f) is to fix an arbitrary test
function ¢ € C§°(R™) along with two arbitrary indices j,k € {1,...,n}, with the
intent of applying the divergence theorem to the vector field

F = w(Op)e; — u(0j9)er in Q. (11.78)
With this goal in mind, one first observes that
Fe [HY2()]" (11.79)

and, in the sense of distributions,
div F = 0, (u8yt)) — Oy (u ;)
— (9u)(O) — (Bu) (953) in €, (11.80)
hence
div F e HY?(Q) c L*(Q) c L'(Q). (11.81)
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In addition, with v = (14, ...,v,) denoting the outward unit normal to €, one has
v-ypF = (1pu) (v (Or) ’an — v (0;9) ‘39)
= (ypu)(0r,,¢) on K. (11.82)
Moreover, (11.79) implies that for every ¢ € (0, 1),
AF € [HV2()]" ¢ [H=G/D*=()]". (11.83)

Hence, Theorem applies (we recall that we are currently working in the Eu-
clidean setting) and, if o denotes the canonical surface measure on 9<, one com-
putes

/ (1pw) (B, ) A" = / v pFd o
onN

o0
= / divF d"z
Q
= /Q {(8;u)(0kv) — (Oru)(859) } d™x, (11.84)

by (11.82) and (11.80f). At this point one introduces an approximating sequence,
Qy /1 Q as £ — oo, in the sense of Lemma [2.12] From the local elliptic regularity

result proved in [123], Proposition 3.1] one infers that

we [ Wik(Q). (11.85)
1<p<oo
In particular,
u € H*(Qy), for each £ € N. (11.86)
In turn, this implies that the vector field
G = Y(0ju)er, — Y(Opu)e; € [Hl/g(ﬂ)]n (11.87)

satisfies
div G = 8y (¢ dju) — 9;(1 )
= (Ok)(95u) — (9;)(Oku) (11.88)

in the sense of distributions in €. In light of (11.86f), this implies that for each
l e N,

Glg, € [H'(Q)]" (11.89)
and (cf. (3.))
WvD(é|m) - (¢|am)7&D(3J’U|QZ)€k
- (¢’69£)7€,D(8ku|ﬂk)€j on 0. (11.90)

Invoking the last part of Theoremfor the the vector field (11.89) in the Lipschitz
domain €y, as well as employing the decomposition in (11.77) (again, we recall that
we are currently working in the Euclidean setting) this permits us to write:

[ {@0@0) - @u)@0)} %

= lim [ {(9;u)(Ok) — (Oxu)(050) } d"x

l—00 Qp
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= lim div (é|92) d"r = lim v Ye¢,D (é|92) d"to,

=00 Jg, o Jq,
=Jim | voen@uly,) —vrep Osulg,)} (0log,) 4" o
=M L {Ah 19100, + 700 (w]g,)]
=V 9L, + 00 (0], )]} (V] ) 4o
=t {Vh o Ae[(93q,) @ A+ ep(wilg,) o Ad] (11.91)

—vf 0 A [(Oh] g, ) 0 Ae 70 (Wil g, ) © M) } (8]55,) 0 Ariwrd™ o
Keeping in mind that for every j € {1,...,n} and every £ € N one has
‘(ﬁj‘am) o Ag| < Ni(9;) pointwise on 0%, (11.92)

one then deduces from (11.84]), (11.91)), and (11.92) that

/ (Yypu)(Or, ) d" o (11.93)
o
< Climsup [ 57 {NeOm) + hen (wnlg,) 0 AL} (60,) o A "o

aq m=1

Now, for each m € {1,...,n} and ¢ € N, one estimates

2
/89 |7€,D(wm|ﬂz) OAZ’ d” 10'
S C/ ‘7€7D(wm’sz[) ° Aé|2we d" o = C/ ’,yé’D(wm‘Q[)‘an_laé
o0 50 ,

2 2
= CHWD(WHQE)HH(@QK) S CHW,D(“}W}Q)||H1/2(am)7 (11.94)

for some constant C € (0, 00), independent of ¢ € N. However,
Yo.p : HY (%) — HY2(89) is bounded, (11.95)

with operator norm controlled in terms of the Lipschitz character of €,. Hence,
there exists C' € (0, 00) independent of £ € N such that

H%DwHHl/z(am) < Clwllmi,), YweH Q). (11.96)
Based on this and one concludes that
2 2
||'YZ,D (wm’QZ) ||H1/2(6Q£) < Cme|Qé ||H1(Q£)
< CllwmllFn gy < Cllultsz g, (11.97)

where the constant C € (0, 00) remains independent of the index ¢ € N. Thus, for
each m € {1,...,n}, from (11.94) and (11.97) one obtains

/6 e (wnlg,) o Ad® d" Lo < Cllulds g (11.98)
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for some constant C' € (0, 00), independent of ¢ € N. This ultimately proves that

suNp Z [[ve.0 (wm|m) OAfHL?(aQ) < Cllull sy, (11.99)

m=1
for some constant C' € (0,00), independent of u. Returning to (11.93]), with the

help of (11.77) and ((11.99)) one estimates
[ oi@nata
a0

< Cliznsup Z {Hanm)HLZ(aQ)

— 00 m=1

+ ||’Y€,D (wm|Qg) ° AeHL?(&Q)}H (7”892) °© AfHL?(aQ)
< Cllull sz @19 a0l 22 o0y (11.100)
where C' = C(2) € (0,00) is independent of u and . Since also

[vpull200) < VDUl 1/2080) < C||u||H1(Q) < C”“HHS/?(Q)v (11.101)

by reasoning much as before, based on (with s = 1), , and the
20 1

characterization of H'(99) proved in Lemma 2. t follows that ypu € H(09),
as claimed. Moreover, from (11.100), (11.101]), and (2.186)), one concludes the
existence of a constant C € (0, 00), independent of w, with the property that

Ivpullmoa) < Cllullzs/2on. (11.102)

Next, note that since u € H3/2(Q) N CY(Q) ¢ H'/2(Q) N CY(Q) and Lu = 0 in
Q, Theorem applies and yields that

Neu € L2(09) and [[Nu|| 12 n0) < Cllull gz, (11.103)

(69)

for some constant C' € (0, 00), independent of u. On the other hand, given that
{Lu =0 in Q, wueCHQ),

11.104
Nou € L2(09), ( )

we know from [125, Proposition 3.1] that the pointwise non-tangential trace u|n ‘
exists o-a.e. on d). Hence we may invoke the (manifold version of) Lemma to
conclude that
K—n.t.
Yi=uly,  =7ypu e H(0Q). (11.105)

Regarding 1 as a function in L?(9€), this means that u solves the Dirichlet bound-
ary value problem

Lu=0in Q, wue CYQ),

Neu € L2(09), (11.106)
u ggn't' =1 on ON.

Granted the non-singularity condition (11.44)) we are currently assuming, it follows
from [122, Proposition 9.1] that the solution of (11.106]) is unique and may be
represented as

u=9.(S;') in Q, (11.107)
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where .7, is given by (I1.53) and S;' by (I1.52). Since actually ¢ € H'(99),
it follows that SL_11[1 € L?(09Q). Consequently, for some constant C € (0,00),
independent of u, one estimates

||Nﬁ(gradgu)||L2(aQ) = H/\/',{(gradeL(Szlzb))HLQ(m)
< CIIS Y| 200y < ClIYl 1 (00
= lvpullaran) < Cllullgs2aa), (11.108)
where the first inequality in is a consequence of , while the last
11.107)

inequality has been proved in . This completes the proof of the left-pointing
implication in .

Turning our attention to the proof of the right-pointing implication in ,
we assume that u € C*(Q) is such that N, (Vu) € L2(0Q) and Lu = 0 in Q. In light
of the current assumptions on wu, it follows from the manifold version of that
one also has N,u € L?(0€)). Having established this fact, [I19, Proposition 2.7]
implies that

the nontangential trace u|ggn't' exists at o-a.e. point on 01,
the function ¢ := u|g;ﬂ't' belongs to the space H'(99Q), (11.109)
and |9l (a0) < C([[Nate]| 290 + Ve (gradyu)llzzo0)),

for some constant C' € (0, 00) independent of u. As such, it follows that the function
u solves the so-called regularity boundary value problem

Lu=0in Q, wueC(Q),

Niu, N (grad,u) € L?(09), (11.110)
u gén't' = ¢ on 9N.

Since we are presently assuming the non-singularity condition (11.44)), it follows
from Proposition 9.2 in [122] (and its proof) that

u=9(5;'¢) in Q. (11.111)

In addition, it follows from the local elliptic regularity result established in [123]
Proposition 3.1] that

u € HE (). (11.112)

If V2, as before, denotes the Hessian operator, then a combination of (11.111]),
(11.56)), (11.52), and (11.109) yields

/Q |(V2u)(z)[*disty (x, 02) V) (x)
— /Q |(V2YL (Sgl¢))(x)|2distg(x,8ﬂ) v, (x)

<1850z 00 < Clléln ooy

< O (|Wislerady )72 gy + Nl o0)- (11.113)
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With these in hand, Lemma [TT.5] implies that for each smooth vector field X on
M,

Vxu e H/2(Q), (11.114)
and for some constant C' = C(Q2, X) € (0, 00), independent of u,
IVl 120y < C(|Nalgradgu)]| s ) + [Ncull2200)) - (11.115)
In addition, from the manifold version of one deduces that
we LT (Q) € L3(Q) and ul 22y < CINyull2o0), (11.116)

for some constant C' € (0, 00), independent of u. Having proved (11.114)—(11.115))
and (11.116), a quantitative lifting result (much as the one recorded in (2.99))
applies and yields

ue H2(Q) and |ullgs2(q) < O(|[Nlgradyu)|| o pn, + INwull 2 o)), (11.117)

for some constant C' € (0, 00), independent of u. This completes the justification of

the right-pointing implication in (11.39)). Since (11.117)) also takes care of (11.41])),
O

the proof of Theorem [11.4]is complete.

11.2. Sharp Dirichlet and Neumann traces on Lipschitz subdomains of
Riemannian manifolds. Much as in the Euclidean setting, if {2 C M is a Lips-
chitz domain, then the Dirichlet boundary trace map C>°(Q2) > f — f ‘ e extends
to operators (compatible with one another)

o H¥(Q) —» H=/20Q), vse (3,2), (11.118)
that are linear, continuous, and surjective. We aim to further refine and extend this
trace result in the theorem below, which the manifold counterpart of Theorem [3.6]
by also considering the end-point cases s € {%, %} in the class of functions mapped
by the Laplace—Beltrami operator in a better-than-expected Sobolev space.

Theorem 11.6. Assume that Q C M is a Lipschitz domain and fiz an arbitrary
e > 0. Then the restriction of the boundary trace operator to the space
{u € H3(Q) | Agu € H5’2+E(Q)}, originally considered for s € (5, %), induces a
well defined, linear, continuous operator

o {u € HY(Q) | Agu € H2=(Q)} — H=W/D(09), Vse [ 3] (11.119)

272

(throughout, the space on the left-hand side of equipped with the natural
graph norm u — ||ul| gs ) + [|Agullgs—21<(q)), which continues to be compatible
with when s € (%, %) Thus defined, the Dirichlet trace operator possesses
the following additional properties:

(i) The Dirichlet boundary trace operator in (L1.119)) is surjective. In fact, there
exist linear and bounded operators

Yp:H™W200) = {ue H' Q)| Ajue L*(Q)}, se[3,2],  (11.120)

which are compatible with one another and serve as right-inverses for the Dirichlet
trace, that is,

yo(Tp) =9, Y€ H =D () with s € [3,2]. (11.121)
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In fact, matters may be arranged so that each function in the range of Yp is har-
monic, that is,

Ay(Tpp) =0, Ve H-WD(0Q) with s € [L,3]. (11.122)
(i) The Dirichlet boundary trace operator (11.119) is compatible with the pointwise
nontangential trace in the sense that:
if u € H*(Q) has Agu € H*"*"5(Q) for some s € [3, 3],

and if u|ggn't' exists o-a.e. on 0S), then u|ggn't' =ypu € Hs(l/z)(?ﬁ).u?))

(#i1) The Dirichlet boundary trace operator vp in (11.119) is the unique extension
by continuity and density of the mapping C*°(Q) > f f‘asz'
(iv) For each s € [%, %] the Dirichlet boundary trace operator satisfies

vp(Pu) = (@}aﬂ)vDu at o-a.e. point on 0S), for all

u € H¥(Q) with Ayu € HS*(Q) and ® € C=(Q).
(v) For each s € [%, 3] such that e # %— s, the null space of the Dirichlet boundary
trace operator 11.119: satisfies
ker(yp) C H minls+3/2k Q). (11.125)

In fact, the inclusion recorded in (11.125)) is quantitative in the sense that, whenever
s € [%, %] is such that ¢ # %—s, there exists a constant C' € (0, 00) with the property
that

(11.124)

if u € H*(Q) satisfies Ayu € H**Y5(Q) and ypu = 0
then the function u belongs to H™™+¢3/21(Q) and (11.126)

||u||Hmin{s+s,3/2}(Q) < C(HUHHs(Q) + ||AgUHHS*2+6(Q))-

Proof. This may be established using the proof of Theorem as a blue-print,
substituting Theorems to the regularity and Fatou-type results in the
FEuclidean setting from Subsection In addition, all relevant well-posedness
results for the Dirichlet problem for the Laplace-Beltrami operator on Lipschitz
subdomains of Riemannian manifolds may be found in [122] and [123]. O

As in the past, we will use the same symbol vp in connection with either
or , as the setting in which this is used will always be clear from the context.
A particular case of Theorem [11.6] which is particularly useful in applications, is
singled out next.

Corollary 11.7. Suppose Q2 C M is a given Lipschitz domain. Then the restriction
of the operator (11.118]) to {u € H5(Q) ‘ Agu € L2(Q)}, originally considered for
s € (%, %), induces a well defined, linear, continuous operator

o {ue H(Q)|Ague L*(Q)} - H/2(9Q), Vse[§,3]  (11.127)
(throughout, the space on the left-hand side of being equipped with the
natural graph norm u = [[ul| gs (o) + [|Agul|L2(q)), which continues to be compatible
with when s € (%, %), and also with the pointwise nontangential trace,
whenever the latter exists.

In addition, the following properties are true:
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(i) The Dirichlet boundary trace operator in (11.127)) is surjective and, in fact,
there exist linear and bounded operators

Yp:H™W20Q) = {ue H' Q)| Ajue L*(Q)}, se[5,3],  (11.128)
which are compatible with one another and serve as right-inverses for the

Dirichlet trace, that is,

yo(Tpy) =1, Ve H=2(9Q) with s € [$,2]. (11.129)

272
Actually, matters may be arranged so that each function in the range of T p
is harmonic, that is,

Ay(Tpp) =0, Ve H-WD(0Q) with s € [L,3]. (11.130)

(i) For each s € [%, %] , the null space of the Dirichlet boundary trace operator
satisfies
ker(vp) C H3/%(9). (11.131)
In fact, the inclusion in is quantitative in the semse that there
exists a constant C € (0,00) with the property that

whenever u € HY*(Q) with Ayu € L*(Q) satisfies ypu = 0, then ( )
11.132
u e H3/2(Q) and Hu||H3/2(Q) < C(HU||L2(Q) + ||Agu||L2(Q)).

Proof. All claims up to, and including, are particular cases of the corre-
sponding statement in Theorem choosing ¢ = 2 — s. Finally, the proof of
follows the same pattern as that of its Euclidean counterpart in
(granted the well-posedness results in [122] and [123]). O

To proceed, we make the following definition:

Definition 11.8. Given a nonempty open set Q@ C M along with two numbers
S0,51 € R satisfying so — 1 > s1, define HZZ’SI(Q,TM) as the collection of all
vector fields Fe H*o(Q, TM) with the property that for every x € Q there exists a
local coordinate patch U on M which contains & and such that if F = F;0; is the
local writing of F in U N, then A F; € H* (U NQ) for each j € {1,...,n}.

In the context of Definition it is clear that HZOH’SI (Q, TM) is a vector space.
The condition that sg — 1 > s; ensures that this space is actually a module over

C>(Q), that is,
F € H"(Q,TM) whenever
vy, ( i ) (11.133)
Y € C®(Q) and F € H™ (Q,TM).

Definition 11.9. Given a Lipschitz domain @ C M, along with some real number
s € [3,2] and a vector field F € ng*Q“(Q,TM) with € € (0,1), define
vpF e H=1/2 (90, TM) (11.134)

as follows. First, one covers Q) with finitely many coordinate patches {U;}1<i<n
and considers a smooth partition of unity associated to this cover. That is, one
picks ¢¥; € Cg°(U;), 1 < j < N, such that Zjvzl ;=1 near 0§). Then one sets

N
wF =Y v F) (11.135)
j=1
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where, for each j € {1,...,N}, if F = F,Ej)ﬁk is the local writing of F in U; NQ,
and we have set

o (W F) := vp (0, FI) 8y, € H*~ (/D (90, TM). (11.136)

That the Dirichlet traces in the right-hand side of make sense as func-
tions in H*~(1/2)(9Q) is a consequence of the membership F' € HZTHE(Q,TM)
and . \

The goal now is to state and prove a version of the divergence theorem which
extends Theorem from the Euclidean setting to the context of Riemannian
manifolds. As a preamble, we recall a few basic facts from differential geometry.
Suppose that Q C M is a Lipschitz domain. In local coordinates, if

(VF)1gj<n is the outward unit normal on 0f) (11.137)
with respect to the Euclidean metric in R™,
and
B =g eVl (11.138)
then the unit outward normal to 9 with respect to the Riemannian metric
g = gjr dr; @ dxy, (11.139)
is given by (compare with [75, Section 5.1 p. 2763, Section 5.3, p. 2773])
v=v;0; € TM, where v; := ¢/*&"1/2)F. (11.140)
In particular,
Ve = gi®' 2. (11.141)

In addition, if locally we denote by o™ the Euclidean surface measure on 9<2, then
the surface measure o, induced by the Riemannian metric (11.139) on 05 is given
by

0, =/g&/2 " (11.142)

We are now ready to present the divergence theorem alluded to earlier.

Theorem 11.10. Consider a Lipschitz domain Q C M, with surface measure oy
and outward unit normal v € L>°(0Q, TM). Then for every given vector field

Fe HX;’_(?’/QHE(Q,TM) with € € (0,1), satisfying divgﬁ € LY(Q), one has

/divgﬁdvg :/ <y,7Dﬁ>TM dog, (11.143)
Q a0
where 'ny is considered in the sense of Definition with s = 1/2 (implying
ypF € L2(0Q, TM)).

As a corollary, holds for every wvector field F ¢ H/2+(Q, TM) for

some € > 0 with the property that divgl*:” € LY(Q) (hence, in particular, for every
vector field F € H*(Q,TM)).

Proof. We shall first prove (11.143) under the additional assumption that there
exists a local coordinate patch U on M such that

supp (F) c UNQ, (11.144)
and if F = F};0; is the local writing of FinUn Q, then
A F; € H-B/2T5(U N Q) for each j € {1,...,n}. (11.145)
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Assuming this to be the case, we identify U with an Euclidean open set (via the
corresponding local chart), and consider a Euclidean Lipschitz domain Q' satisfying

Q' canuy, supp(ﬁ)ﬂ@Q'C@Q, supp(ﬁ) cq,

(11.146)
and o) [ (99 N 0Q) = 7, (02 N dQ),

, is the surface measure induced by the Riemannian metric g on 9.

To proceed, for each j € {1,...,n} we invoke [123] in order to solve the boundary
value problem

where o

NGy =AgF; m @, Gy e HY/2H(Q), (11.147)

vpGj =0 at og-a.e. point on 9.

Then consider the vector field G = G;0; in € and set
h:=F—@G in (. (11.148)

It follows that i = h;0; with each component h; satisfying Agh; =0 in Q. Thus,
heC® (¥, TM) which, in particular, implies

divy G = div, F — divyh € Li, (). (11.149)

Moreover, h € HY/2(SY, TM) hence, if N, denotes the nontangential maximal oper-
ator associated with the Lipschitz domain €, one concludes via Theorem that
N'h € L2(8€') and l_i|g;,nt exists o}-a.e. on A€, and belongs to L*(9€Y,TM). If
v denotes the Dirichlet trace operator associated with the Lipschitz domain €,
together with the last condition in this forces

K—n.t.

VpFj =phj = hj|5g,  on 9 for each j, (11.150)

where the last equality is a consequence of item (4¢) in Theorem (cf. for
the Euclidean setting).

To proceed, we consider an approximating family €, ~ Q' as £ — oo of the
sort described in Lemma and recall that vy o Ay — v’ Eas ¢ = oo both
pointwise o'Fae. on 0 and in [L2 (09,0’ E)]n Moreover, the properties of the
homeomorphisms Ay allow one to conclude that for each j € {1,...,n},

—n.t.

(hj|am) oMy — hj‘gQ’
both pointwise and in [L2(dQ, 0" ™)]",

as £ — oo
(11.151)

by Lebesgue’s dominated convergence theorem (with uniform domination provided
by a multiple of J\/,’ﬁ € L?(09)). Finally, one notes that the wy’s appearing in
the change of variable formula are uniformly bounded, and converge to 1
as £ — oo pointwise o’ E_a.e. on 09. Given these facts and keeping in mind that
he C>(QV, TM), one computes

: 1/2
zlggo 8929 / Ve,j (hj|am) dog
— 1/2 ) A h; 1B
= elggo . 9" (Va5 o M) (hJ’aQ[) o Ajwydo

= / gl/QVj/E(hj‘gé,ut'> dO'/E = / gjkal"bej dO’;
o Q!
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=/ 9jkVk YD E} dUgZ/ (v, ADF) ., dog. (11.152)
o9 o0

Above, we used that (cf. (11.141))—(11.142))

B w1/2 /
v;  =gjx® 7y, and o

as well as (11.146)) and ([11.6].
On the other hand, applying the (Euclidean) divergence theorem in each Eu-
clidean Lipschitz domain §2, for the Euclidean vector field
(9"%h5lg,) 1< jcn € [C=(Q0)]" (11.154)

(cf. Theorem [2.11)), relying on Lebesgue’s dominated convergence theorem, and
invoking Lemma [4.1} yields (cf. (11.4), (11.8), (11.148)),

o220 (11.153)

B, 940 Ol ) dov

= lim 8j (91/2]’),]'> d"x = lim 9_1/28j (gl/Qh’j) \/gdnx

£—00 Qp £—00 Qp

= lim [ divyhdV, = lim [ div,FdV, — lim [ div,GdV,

L—00 Q £— 00 Q £— 00 Qp

= Jim N divyFdVy — lim . 9;(g"2q;) d'x

:/divgﬁdvg— lim veve,0(Gjlg,) doe, (11.155)
Q . ‘

£— 00 o0

where, for each ¢ € N, we denoted by 7., p the Dirichlet boundary trace operator
associated with the Lipschitz domain €y. The next step is to pick a small number
6 € (0,min{3,e}) and then estimate

< Z ||W,D(Gj|m) HLl(am,ae)

j:l
n
< CZ H’Yé,D (Gj |m) HH5(8Q[.)
j:l

for some constant C' € (0, 00), independent of £ € N. Since by (3.7) and (L1.147]),
G; € HY/2+5(Q), it follows from Lemma (used with s = £ 4+ 6 € (3,1)) that

‘/39 l/g7j"yg,D(Gj}Q£)dO'g
' (11.156)

Jin 3 (Gl om0 (11.157)
2

At this stage, (11.143) follows from (11.152))—(11.157)).
Finally, it remains to dispense with the additional assumption ([11.144)). To this

end, one covers () with finitely many coordinate patches {Uy }1<x<n and consider
a family of functions ¢y, € C§°(Uy), 1 < k < N, such that Z,ivzl ¥ = 1 near Q.

Then, by (11.133]), each vector field wkﬁ satisfies the hypotheses that permits one
to conclude that

/divg(wkf) dvgz/ (VD (Ve F)) gy, dog, VE€{1,...,N}.  (11.158)
Q o0
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Since the sub-collection of {iy}1<k<n consisting of those functions whose support
intersects 0 does constitute a smooth partition of unity near 92, ((11.158) and

(11.135)) imply that

N
/ <Va7Dﬁ>TMdUg:Z/ . D (Ve F))rar doyg
00 o Joa

N
:Z/ divy (1 F) dV, :/divgﬁdvg7 (11.159)
k=1 Q Q

as wanted. O

We shall find it useful to have a version of the divergence theorem, complementing
Theorem [11.10} for vector fields whose divergence is not necessarily an absolutely
integrable function. This task is accomplished below.

Theorem 11.11. Suppose @ C M is a Lipschitz domain with surface measure oy
and outward unit normal v. Consider a vector field F e Hi/gz’_(3/2)+s(9, TM) for
some € € (0,1) with the property that divgﬁ € H-(/2+(Q). Then

H(1/2)7E(s))<1,dngF_">H7(1/2)+E(S2) = /39<V7 WDﬁ>TM dag, (11.160)

where 1 denotes the constant function identically to 1 in Q, and the action of
vp on F' is considered in the sense of Definition with s = 1/2 (implying
ypF € L?(0Q,TM)).

Proof. As in the proof of Theorem [I1.10] making use of a smooth partition of unity,

there is no loss of generality in assuming that there exists a local coordinate patch
U on M such that

supp (ﬁ) cUNQ, (11.161)
and if F = F};0; is the local writing of Fin UNQ, then
A F; € H-B/DT(U N Q) for each j € {1,...,n}. (11.162)

Assuming this to be the case, we identify U with an Euclidean open set (via the

corresponding local chart), and consider a Euclidean Lipschitz domain Q' satisfying
Q' cQNU, supp (ﬁ) NoQY c 8Q, supp (Z*::) c Y, (11.163)
and o/ [(9Q' N IN) = 0, (92 N ON), '

where oy, is the surface measure induced by the Riemannian metric g on 9Q'. In

particular, if we let G= G;0; solve (|11.147)) and set

h:=F—G=h;d; in (11.164)

then, as before,
hj € C=(Q) N HY*(Q)), (11.165)
Ayh; =0 1in @', N.h;j € L*(09), (11.166)

pF = (hj|g§”'“')aj e L2(0Q, TM). (11.167)
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Granted the current hypotheses, one also has
divyh = div, F — div,G € LL () n H~ /D). (11.168)

Since each G, € HW/2+2(Q), by ([[1.147) and (B.7), it follows that there exists a
sequence {G¥}pen € C§°(€') with the property that

G = G; in HYPTE(Q) as k — oc. (11.169)
As a consequence, if for each k£ € N one sets Gk .= G;?@j, then
div,G* — div,G in H- YD) as k — oo, (11.170)

and hence,
12 -e oy (1, divyG) = lim ga/2 -« g (1, div,G*)
H1/2)=<(QY) ’ g H-(1/2)+¢(Q) oo H1/2)=e(Q) ) g H-(1/2)+¢(Q)

= lim gil/zaj (gl/sz)\/Z]d"x

k—oc0 Q

= lim 0 (gl/QG;?) d"x

k—oo Joy

— 1 k ‘B _
= len;O o vi(GSl,0) do ™ =0, (11.171)

given that GF € [Cg° (Q/)]n for every k € N. We then proceed to write

H(1/2)*5(Q)<17dngF>H—(1/2)+5(Q) = H(1/2>*5(Q/)<17dngF>H—(1/2)+E(Q/)
=m0+ (L diVoh) 4 oype g (11.172)

The first equality above is implied by (2.96)), (I1.161]), and the first line of (T1.163)),
while the second equality is a consequence of (11.171]) and (11.168)).

As in the past, we introduce an approximating family Q, Q' as £ — oo
(described in Lemma . Then one can write

H<1/2>*E(Q’)<1adngE>H7(1/2)+5(Q/) = lim/Q divgﬁ\/gd”a:
e

{— 00

= lim 0 (gl/zh) d"z

£—00 Qp

= fim [, 9 v (alan,) o

= v,ypF)... do,, 11.173
)iy, L

where the first equality is implied by Lemma and (11.168]), the second equality
relies on ([11.8)), the third equality is a consequence of (11.165)) and the divergence

theorem in the Lipschitz domain € for the vector field (h; ’Qz) 1<j<n € [C>(Qy)] "
(Theorem % is more than adequate in this context), while the fourth equality
is seen from ]TE)ZI). Formula now follows by combining and
(11.173). O
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Having dealt with the Dirichlet trace vp earlier in this section, we now turn our
attention to the task of defining the Neumann boundary trace operator vy in the
class of Lipschitz subdomains of Riemannian manifolds. As in the Euclidean setting,
in a first stage we shall introduce a weak version y of the aforementioned Neumann
boundary trace operator, whose definition is inspired by the “half” Green’s formula
for the Laplace-Beltrami operator. Specifically, we make the following definition.

Definition 11.12. Let Q C M be a Lipschitz domain. For some fized s € (%, %),
the weak Neumann trace operator is considered acting in the context

In (S F) € HY(Q) x H2(Q) | Ayf = Flo in D'(Q)} — H=®/2(09).
(11.174)
Specifically, suppose that some function f € H*(Q) along with some distribution
F € H5%(Q) € H"%(M) satisfying Ayf = Flg in D'(Q) have been given. In
particular,
grad, f € H*~(Q,TM) = (H'~*(Q,TM))". (11.175)

Then the manner in which n(f, F) is now defined as a functional in the space
H*=G/2(0Q) = (HB®/P=2(09))" is as follows: Given ¢ € HE/2=3(9Q), then for
any ® € H*>=5(2) such that yp® = ¢ (whose existence is ensured by the surjectivity

of (TI.11Y)), set
@25 00) (9 AN ([, F)>(H<3/2>—s(aﬂ))*
= H1-5(Q,TM) <gradg<1>, gradgf>(H1—S(Q,TM))*
+ a2 (@) (R F) (g2 ) (11.176)

Concerning Definition [11.12| one observes that in the context described there,
grad,® belongs to H'~*(Q, TM). Utilizing (I1.175)), this membership shows that
the first pairing in the right-hand side of is meaningful. In addition, here
we canonically identify the distribution F, originally belonging to Hy 2(Q), with a
functional in (H?7%(2))* (compare with the discussion pertaining to in the
Euclidean setting), so the last pairing in is also meaningfully defined as

H2*5(9)<®7F>(H275(Q))* = H2’S(M)<®’F>H~‘*2(M)

(11.177)
for any © € H?~*(M) satisfying 0|, = in D'(Q).
Here is a theorem which elaborates on the main properties of the weak Neumann

trace operator defined above.

Theorem 11.13. Let Q) C M be a Lipschitz domain, and fiz s € (%, %) Then the

weak Neumann trace map vy from Definition [11.12 yields an operator which is un-
ambiguously defined, linear, and bounded (assuming the space on the left-hand side

of (LL.174) is equipped with the natural norm (f, F) = || fllm=) + IFllz=—2mr))-
In addition, the following properties are true:

(i) The weak Neumann trace operators corresponding to various values of the pa-
rameter s € (%, %) are compatible with one another and each of them is surjective.

In fact, there exist linear and bounded operators

Ty :H TGP 0Q) 5 {ue H ()| Ajue LA (Q)}, se(L,3), (11.178)
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which are compatible with one another and satisfy (with tilde denoting the extension
by zero outside )

—~—

AN (YN, Ay (YY) =1, Ve H®D(0Q) with se (1,3).  (11.179)
(#3) Given any two pairs,
(f1, F1) € H*(Q) x HE 2(Q) such that Ay f1 = Filg in D'(Q), and

11.180
(f2, Fo) € H?>75(Q) x Hy*(Q) such that A, fs = Falq in D'(2), ( )

the following Green’s formula holds:
H6/2-00) (1D J2, AN (f1 FL)) (- 92y
— (-2 a0 (AN (f2, F2)7WDf1>H57<1/2>(3Q)
= sy (f2, F1>(H275(Q))* — () (F2, f1>H5(Q)~ (11.181)

Proof. The proof follows along the lines of the proof of Theorem making use
of the well-posedness results for the Neumann problem for the Laplace—Beltrami
operator on Lipschitz subdomains of Riemannian manifolds from [123]. O

We are prepared to state our main result concerning the Neumann boundary
trace operator on Lipschitz subdomains of Riemannian manifolds in the theorem
below. As in the case of the Dirichlet trace, by restricting ourselves to functions
mapped by the Laplace-Beltrami operator into a better-than-expected Sobolev
space, we are able to include the end-point cases s = % and s = % in .

Theorem 11.14. Assume that Q C M is a Lipschitz domain. Then for each € > 0
the weak Neumann boundary trace map, originally introduced in Definition [11.12
induces linear and continuous operators in the context
I A{(f F) € HA(Q) x HST*H(Q) [ Ay f = F|,, in D'(Q)} — H*=6/2(0Q)
with s € [%, %]

(11.182)
(where the space on the left-hand side of (11.182) is equipped with the natural norm
(f, F) = [fllzs) + | Fllgs—2+<(ary) which are compatible with those in Defini-
tion |11.12| when s € (l §), Thus defined, the weak Neumann boundary trace map

272
possesses the following properties:

(i) The weak Neumann boundary trace map in (L1.182)) is surjective. In fact, there
exist linear and bounded operators

Ty : HGP0Q) - {ue H (Q) | Aju e L*(Q)}, se [3,2], (11.183)

272
which are compatible with one another and satisfy (with tilde denoting the extension
by zero outside Q)

A (T, Ag(Tat)) = 0, Vb € B=G/D(0Q) with s e [L,3].  (11.184)
(ii) If e € (0,1) and s € [%, %] then for any two pairs

(f1, F1) € H5(Q) x HS2T(Q) such that A, fy = Fi|g in D'(R), and

- e o (11.185)
(fa, Fa) € H5(Q) x Hy¥°(Q) such that Ay fa = Fslq in D'(Q),
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the following Green’s formula holds:
H<3/2>—s(ag)<’YDf2ﬁN(f1,F1)>(H(3/2)_s(m))*
— (-2 o)) (AN (f2, F2)WDf1>HS_<1/2)(89)
= H"‘*S(Q)<f27F1>(H2—-<(Q))* T (HE () <F2’ f1>Hs(Q)' (11.186)
(7ii) There exists a constant C € (0,00) with the property that
if f € HY2(Q) and F € Hy ®*/?75(Q) with 0 < & < 1 satisfy
Agf =F|, in D(Q) and In(f, F) = 0, then f € HI/DTE(Q) (11.187)

and || fllgarm+e) < C(1fllz2@) + 1F N m-crovean)-

Proof. In the case when s € (3,3), all desired conclusions follow from Theo-

rem [T1.13] simply by observing that
{(f,F) € H¥(Q) x Hy***(Q) | Ayf = F|,, in D'(Q)}, (11.188)
the domain of the weak Neumann trace operator vy in 7 is a subspace of
{(f,F) € H*(Q) x H;*(Q) | Agf = F|, in D'(Q)}, (11.189)

the domain of 7y in (11.174]). In this context one can employ the operators Ty in
(11.178]).

Next, we consider the case when s = 3

5
no loss of generality in assuming that e € (0,1). Suppose some f € H?/?(Q) along
with some F' € HJ(I/QHE(Q) satisfying Ay f = F‘Q in D’'(2) have been given. In

particular,

For the goals we have in mind, there is

grad,f € H'/*(Q,TM) and A f € H-M/2+(q). (11.190)
In addition, for each X € C°(M,TM), the function Vx f € H'/?(Q) satisfies
Ag(Vxf)=[Ag, Vx|f+Vx(Ayf)
(80, 9x]f + T (F])
= [Ag, Vx|f + (VxF)|, € H ®/2%(Q), (11.191)

since the commutator [Ag, v X] is a second-order differential expression. Moreover,
there is a naturally accompanying estimate to the effect that for each vector field
X € O (M, TM) there exists C' € (0,00) independent of f and F such that

1Ag(Vx Ol -crm+e) < C (1 f gz + 1 Flr-arm+e (o)) - (11.192)
From (11.190) and (11.191)) one concludes that

grad, f € Hy>~ /2% 7). (11.193)
In turn, from (I1.193) and Definition [I1.9] (used with s = 1/2) one infers that
vp(grad, f) exists in L?(0Q, TM). (11.194)

Moreover, (11.192)) implies that
Ivp (grad, )l 200,00y < C (1flmsr20) + 1 Fll -2+ (o)) - (11.195)
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To proceed further, pick an arbitrary ® € C>(Q), set ¢ := <I>|8Q, and consider
the vector field

F:=%grad,f in Q. (11.196)
In light of the manifold counterpart of , the above definition implies
Fe H'?(Q,TM). (11.197)
Moreover, from (11.196)), (11.9), (11.7), (11.11)), and one infers that
divyF = (grad,®, grad, f).,.,, + @A, f € H~/2Fe(Q). (11.198)
Moreover, locally,
F = F;0;, with F; = ®¢g'*d,f, (11.199)

and for each j one has locally,

AgFj = (O1f)Dg(Rg7") + g7 Ay (01f)

—|—2<gradg(igjk),gradg(akf)>TM. (11.200)
From ((11.197)), (11.200)), and (11.191)) one concludes that
Femy> P, rm). (11.201)

Given (|11.201)), Theorem [11.11| applies to the vector field F. Specifically, let v

and o4 denote, respectively, the outward unit normal and surface measure on 9.
Ehen7 with the Dirichlet trace ’yD(gradgf) understood in the sense of (11.194]), one
as

((b7 (V,'yD(gradgf)>TM)L2(aQ) = /89<V7 VDﬁ>TM dO'g
= H(1/2)*E(Q)<1’divgﬁ>H*(1/2)+5(Q)

= Ha/2-<(Q) <1, <gradg<I>, gradgf>TM>H7(1/2)+E(Q)

+ H(1/2)*5(Q)<176A!]f>H7(1/2)+E(Q)
= H(1/2)_5(Q)<gradg<1>,gradgf>H_<1/2)+€(Q)
+ H(1/2)—5(Q)<(I)’ A9f>H—(1/2)+E(Q)
= (gradgfb,gradgf)Lz(Q) + H“/z"e(ﬂ)@)’F>(H<1/2)—E(Q))*’ (11.202)

where the last step relies on the manner in which (H(/2~¢(Q))* is identified with

H~1/2)%2(Q) (see (2.91)-([@2.92) for the Euclidean setting).
The fact that f € H3/2(Q) entails f € H*(Q) for each s € (3,3) and, as such,

a direct comparison of and reveals that
H<3/2>—s(gm)<¢ﬁN(fv F)>(H(3/2>75(m))* = (¢a (v, WD(gradgf»TM)Lz(aQ) (11.203)
for every s € (%7 %) and every function ¢ € {<I>|aQ | NS Coo(ﬁ)}.
Since the latter space is dense in L?(9€2), this ultimately proves that
if fe H3?(Q) and F € Ho_(l/2)+5(Q) for some € € (0,1) satisfy

Agyf = F|, in D'(Q), then actually Yy (f, F) € L*(9) and, (11.204)
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In(f, F) = (v,yp(grad, f))rn with the Dirichlet trace as in (11.194)).
Moreover, from (11.195]) one infers that
HﬁN(fa F)HLz(aQ) < C(”f”H%ﬂ(Q) + HF||H*(1/2)+E(Q)) (11205)

for some constant C' € (0, 00), independent of (f, F).

At this stage, all remaining claims in the statement of the current theorem
may be justified based on what we have proved already by reasoning along the
lines of the proof of Theorem with natural alterations. The well-posedness
results for boundary value problems for the Laplace—Beltrami operator on Lipschitz
subdomains of Riemannian manifolds which are relevant for us here are available
from the work in [122] and [123]. O

The following special case of Theorem [T1.14] plays a significant role in applica-
tions.

Corollary 11.15. Assume that Q C M is a Lipschitz domain, and denote by v its
outward unit normal. Then the Neumann trace map, originally defined for each for
ue C®(Q) as u — (v,grad,u)rar on 99, extends uniquely to linear continuous
operators

v {ue HY(Q) |Ague L2(Q)} — H 32 (0Q), se[},2] (11.206)

(throughout, the space on the left-hand side of (11.206)) equipped with the natural
graph norm u > ||ul| g= (o) + | Agul|12(q)), that are compatible with one another. In
addition, the following properties are true:

(i) The Neumann trace map (11.206) is surjective. In fact, there exist linear
and bounded operators

YT HCD(0Q) » {ue H(Q) | Ajue L2 (Q)}, se[L 3], (11.207)
which are compatible with one another and are right-inverses for the Neu-
mann trace, that is,

W(Tny) =, Yo e H 32 (9Q) with s € [L,3]. (11.208)

(i) If s € [%,%], then for any functions f € H*(Q) with Ayf € L*(Q) and
h € H*75(Q) with Ayh € L?(Q) the following Green’s formula holds:

HG/2-(90) (YD, 7Nf>(H<3/2>_s(aQ))*

T (Hs—(1/2)(6Q))* <7Nha 7Df>HS—(1/2>(BQ)

= (h,Agf)r2) — (Agh, flrza)- (11.209)
(iii) For each s € [%, %] , the null space of the Neumann boundary trace operator

(11.206) satisfies

ker(yy) C H3/2(Q). (11.210)
In fact, the inclusion in (11.210) is quantitative in the sense that there
exists a constant C € (0,00) with the property that

whenever u € HY*(Q) satisfies Agu € L*(Q) and yyu = 0, then ( )
11.211
(S HS/Q(Q) and Hu||H3/2(Q) < C(HUHLQ(Q) + ||Agu||L2(Q))
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Proof. The idea is to produce a formula restricting the weak Neumann trace oper-
ator from Theorem [11.14]to the present setting. With this goal in mind, we assume
an s € [%, %] has been fixed and choose 0 < ¢ < min{1,2 —e}. Next, we denote by

vi{ue H(Q) | Agu e L*(Q)}

(11.212)
—{(f,F) € H*(Q) x H;**(Q) | Ayf = F|, in D'(Q)},
the continuous injection given by
(u) == (u,Agu), Yue H*(Q) with Ayue L2(Q), (11.213)
where, as usual, tilde denotes the extension by zero outside 2. We then define
YN =N OL (11.214)

and note that this is a well defined, linear, and bounded mapping in the context of
(11.206)). With this in hand, all other claims in the statement are established as in
the proof of Corollary O

To exemplify the manner in which the mapping vy introduced in (|11.214)) oper-
ates, we consider the case where s € (1,2). Given u € H*(Q) with Aju € L*(Q),
along with ¢ € HG®/275(9Q) and ® € H27*(Q) such that yp® = ¢, then the ac-
tion of yyu € H*~G/2(09) = (H®/2=5(09))" on ¢ € HE/2~5(9Q) is concretely
given by

H(3/2)*S(8Q)<¢7 'YNU>(H(3/2)_5(39))*
= H(3/2>*5(89)<¢7 I (u, Agu)>(H(3/2)fs(ag))*
= H'=s(Q,TM) <gradg¢’, gra‘dgf>(Hlfs(Q’TM))*
+ HQ_S(Q)<(I)7 Agu>(H2—s(Q))*

= H'=s(Q,TM) <gradg(I>, gradgf>(H1—s(QvTM))*

+ ((I),Agu)Lz(Q). (11.215)

11.3. Schrodinger operators on Lipschitz subdomains of a Riemannian
manifold. The goal here is to study Schrodinger operators L on Lipschitz subdo-
mains of the compact Riemannian manifold M. To set the stage, given a Lipschitz
domain 2 C M and an essentially bounded real-valued potential V', we first intro-
duce the sesquilinear form

(ra(f,h) := (grad, f, gradgh)LQ(Q,TM) + (f,Vh)r2(0), dom(lpgq):= foll(Q),
(11.216)
which is densely defined, closed, symmetric, and semibounded from below in L?(€2).
Hence, it follows from the First Representation Theorem (cf. [83, Theorem VI.2.1])
that there is a unique self-adjoint operator Lr o in L?(Q2) such that the identity

(ra(f.h) = (f.Lrah) (11.217)

holds for all f € dom(lpqn) = POIl(Q) and all h € dom(Lpgq) C dom(lpq). Making
use of (11.15)) and Green’s formula it follows that

Lro=-A,+V, dom(Lra)={fe€H (Q)|A,f e L*Q)}, (11.218)
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and hence Lpq is a self-adjoint extension of the minimal realization Ly, o of
—Ag +V defined in . Again, by [83] Subsection VI.2.3], Ly q represents the
Friedrichs extension of Ly,in . Abstract functional theoretic results (cf., e.g., [54}
Section 6.1]) then yield the following theorem.

Theorem 11.16. For a Lipschitz domain 2 C M, the Friedrichs extension L q of
Luin.q is a self-adjoint operator in L*(2), whose resolvent is compact, and whose
spectrum is purely discrete and contained in (v_,00) (where v_ is as in (6.1)). In
particular, oess(Lpq) = .

Our next goal is to study the Dirichlet and Neumann realizations of —Ag4+V on
a Lipschitz subdomain Q of the compact manifold M. Assuming, as before that
V' is an essentially bounded real—valued potential, it follows from ) and .

with s = 1 that dom(lp o) = H 1(Q) and the Friedrichs extension L Fqo coincides
with the self-adjoint Dirichlet operator

Lpao=-A;+YV,
dom(Lp.q) = {f € H' () Ndom(Limas,) | 70 f = 0}.

Our next theorem collects further useful properties of this operator.

(11.219)

Theorem 11.17. Assume Q2 C M is a bounded Lipschitz domain, and pick some
V e L>®(M). In this setting, let Lpq be the Dirichlet realization of —Ay, +V
introduced in (11.219). Then dom(Lp.q) C H??(Q2), hence

LD,Q = _Ag + ‘/7

11.220
dom(Lpn) = {f € H3/2(Q) Ndom(Lyez.0) |7Df = O}. ( )

In addition, on dom(Lp o) the norms

Fe 1l + 186 fllL2), s € [0,3], (11.221)

are equivalent. Furthermore, Lp q is self-adjoint in L*(Q), with compact resolvent,
and purely discrete spectrum contained in (v_,00). In particular, oess(Lp o) = 9.
Moreover,

dom (|Lp o|?) = H'(Q). (11.222)

Proof. That functions in dom(Lp o) exhibit H 3/2_regularity is a consequence of
(11.131) (used with s = 1) Together with (T1.219) this also proves (11.220). When
s € [1, 3] the claim in is implied by (11.132)), while for s € [0, 1] one reasons
as follows Given f € dom(LD@), from (11.215) written for @ := f, F' := Ayf,

and s = 1, one obtains

0= HY/2(09Q) <7Df7 7Nf>H—1/2(8Q)

= (gradgfa grad, f)r2o,ran) + (f, Agf)r2 ()
which further implies that for all f € dom(Lp q),

(11.223)

||gradgf||2L2(Q,TM) < I fllzz ) 1Ag fllz2 (o)
2
< (If 2@y + 186 fll22)) " (11.224)

Thus, |[fllar@) < Cllflle2@) + [[Agfll2)) for all f € dom(Lp,q) which es-
tablishes (11.221) for s € [0,1]. The Second Representation Theorem (see [83]
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Theorem VI1.2.23]) gives (11.222)), and the remaining claims in the statement of the
theorem are consequences of Theorem [11.16 (]

Next, introduce the sesquilinear form
[N,Q(f, h) = (gradgf, gradgh) L2(Q,TM) + (fv Vh)LQ(Q),

(11.225)
dom(Iy.q) := H*(Q),

which is densely defined, closed, symmetric, and semibounded from below in L?(€2).
One notes that [y o is an extension of the form [rq in (11.216]) since

dom(lpq) = H'(Q) C HY(Q) = dom(Iy.q). (11.226)

Once again, the first representation theorem [83, Theorem VI.2.1] implies that there
is a unique self-adjoint operator Ly o in L?(€2) such that the identity

(vo(f h) = (f,Lyoh) 1 (11.227)

is valid for all f € dom(Iy o) = HY(Q) and all h € dom(Ly,g) C dom(Iyq).

Having fixed such f, h, one makes use of (11.225)), (11.227)), and (11.215|) (written

for ® := f, f:=h, F:= Ayh, and s = 1) in order to obtain
(f7 LN,Qh)Lz(Q) = (f7 (_Ag + V>h) L2(Q)
+ mr200)(70 f5 VNh>H71/2(3Q) (11.228)

for all h € dom(Ly o) and all f € H'(Q). First restricting f € H'(Q) in (T1.228)
then implies that Lyo = —A, + V. Next, taking into account that the range of
vp acting from dom(ly.o) = H'(Q) equals H'/2(052), which in turn is a dense

subspace of L?(99) (cf. (11.119) with s = & = 1), one infers that (11.228) forces
ynh =0 for each h € dom(Ly ). Altogether, this proves that

LN,Q = _Ag +V,

dOm(LN7Q) = {f € Hl(Q) n dOm(Lmava) |")/Nf = 0}
Hence, Ly q is a self-adjoint extension of the minimal realization Ly, ;p o of —Ag+V
defined in (|11.25). Henceforth we shall refer to Ly o as the Neumann extension (or
Neumann realization) of Ly,;n 0. Our next theorem contains further properties of
this Neumann realization.

(11.229)

Theorem 11.18. Assume Q C M is a bounded Lipschitz domain, and pick a
potential V. € L°°(M). In this context, let Ly q be the Neumann realization of
—A, +V defined as in (11.229). Then dom(Ly ) C H3/2(Q), hence

Lyo=-A4+V,
dom(Ly,) = {f € H¥*(Q) Nndom(Lya,0) | v f =0}.
Moreover, on dom(Ly q) the norms
Fe e + 18 fll2@), s € [0,3], (11.231)

are equivalent. In addition, Ly o is self-adjoint in L?(SY), with compact resolvent,
and purely discrete spectrum, contained in [v_,00). In particular, oess(Lnq) = @.
Moreover,

(11.230)

dom (|Ly,ol"?) = H'(Q). (11.232)
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Proof. That dom(Ly q) is contained in H3/2(Q) is seen from (I1.210) (used with
s = 1), while the claim in a direct consequence of (11.211). All other
claims may be justified by reasoning as in the proofs of [63, Theorem 2.6] and [64]
Theorem 4.5]. Here we just remark that the spectrum of Ly g is bounded from
below by v_ since the corresponding form [y o in is bounded from below
by v_. |

We continue by describing the domain of the minimal operator L, q-

Lemma 11.19. Assume that Q C M is a bounded Lipschitz domain, and suppose
that V € L>(M). Then the closed symmetric operator Ly, o is given by

Loning = —A+V,  dom(Lyin) = H*(2). (11.233)
Proof. This is an immediate consequence of Lemma and ([2.78). O

Our last result shows that, as in the Euclidean setting, the operators Lp o and
Ly q are relatively prime.

Theorem 11.20. Assume that Q C M is a bounded Lipschitz domain, and suppose
that V-.€ L>°(M). Then the operators Lp o and Ly o are relatively prime, that is,

dom(Lp.o) Ndom(Ly.g) = dom(Lpi.q) = H2(R). (11.234)

Proof. Given any f € dom(Lp ) Ndom(Ly,q), (11.220) and (11.230) imply that
f e H3?(Q) and vpf = yn f = 0. Together with (11.209)), these conditions ensure
that for every ¢ € C°°(Q) one may write

(fs AY)2(0) = (A, %) L2 (0)- (11.235)

As in analogous contexts before, we denote by tilde the zero extension of a function,
originally defined in €2, to the entire manifold M. Then f € L?(M) and (11.235)
implies that for each ¢ € C§°(M) we may write

(AF, @) r2any = (F, A@) 2 any = (f A¢|Q)L2(Q)
= (Afa @'Q)Lz(g) = (&./fv QO)LZ(M)-

Hence, Af = Af in D'(M). Since E:f € L?(M), invoking standard elliptic
regularity implies that f € H?*(M), which further implies f € H?(Q). With
this in hand, one invokes Lemma and in order to conclude that
dom(Lp,q) Ndom(Ly,n) C I;TQ(Q) = dom(Lin,q). This establishes the left-to-
right inclusion in (11.234). The opposite inclusion follows from Lemma and
the fact that Lp o and Ly ,q are both extensions of Ly,in - O

(11.236)

The machinery developed up to this point in this section makes it possible to
study z-dependent Dirichlet-to-Neumann maps, that is, Weyl-Titchmarsh opera-
tors, for Schrodinger operators in Lipschitz subdomains of the compact Riemannian
manifold M, in a very similar manner to the treatment in Section[7]of the Euclidean
setting. Deferring a detailed treatment of this circle of ideas to future work, a typ-
ical sample result in this connection reads as follows.

Theorem 11.21. Assume that Q C M is a Lipschitz domain, and suppose that
V € L>°(M). Then the following assertions hold:
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(i) For each z € p(Lpn) and s € [0,1] the boundary value problem

{(—Ag +V—2)f=0inQ, feH+tY/2(Q)Ndom(Lmaza), (11.237)
Yof =@ on 0, € H(IN),
is well posed, with unique solution f = fp(z, ) given by
fo(z,0) = —[w(Lpa -2 e, (11.238)
where the star indicates the adjoint of
YN (Lpo —2I)"" € B(L*(Q), L*(09)). (11.239)

Moreover, if for each z € p(Lp.q) and s € [0,1] one defines
H*(0Q) — H*t1/2)(Q) N dom(Lpaz o),
Py pal2): { (062) = (@) (Lmas,0) (11.240)
¢ = Py pa2)e = fo(z¢),

then the operator ['yN(LD@ — EI)_I]*, originally understood as the adjoint of
(11.239)), induces a mapping
[y (Lo — 207" € B(H*(09), H*H/2(Q) N dom(Limaz.0)) (11.241)

(where the space H*t1/2(Q) N dom(Lyaz.0) is equipped with the natural norm

F sz + (18 fllz2(0)), and
Pypa(z) = —[w(Lpa—2)""]" on H*(09). (11.242)

In addition, Ps p o(z) is injective with
ran(Ps p o(2)) = ker(Lopaz.o — 2I) N HT/2(Q). (11.243)

In particular, ran(Ps p (2)) is dense in ker(Lpaz o —21) with respect to the L?(12)-
norm.

(#3) For each z € p(Ln,q) and s € [0, 1] the boundary value problem

{(—Ag +V—2)f=0inQ, feH+tY2(Q)Ndom(Lmaza), (11.244)
—yvf=¢ in HH(09), »e H(0Q),
is well posed, with unique solution f = fn(z,¢) given by
In(z,0) = —I:’}/D(LN’Q —EI)_l]*gp, (11.245)
where the star indicates the adjoint of
vp(Lng —2I)7" € B(L*(Q), H' (0)). (11.246)

Moreover, if for each z € p(Ln,q) and s € [0, 1] one defines
H~109Q) — H*+1/2(Q) N dom(Lmas.0),
Ponal(2): { (0%) () N dom(Linas.0) (11.247)
¢ = Pyna(2)e = fn(z9),

then for each z € p(Ln,q) and s € [0,1] the operator [yp(Ln,o — E[)‘l}*, indtially
regarded as the adjoint of (11.246)), induces a mapping

[vp(Lno — 207" € B(H*71(09), H*T/D(Q) ndom(Lynaz,0))  (11.248)

(where the space H*+t1/2(Q) N dom(Lyazr.0) is equipped with the natural norm
F= ez + 186 fllz2), and

Pyna(z) = —[vo(Lna -2 on H1(09). (11.249)
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In addition, Ps n.o(2) is injective with
ran(Ps n.a(2)) = ker(Lpaz.o — 2I) N Hs+(1/2)(Q). (11.250)

In particular, ran(Ps n.q(2)) is dense in ker(Lpmaz o —21) with respect to the L?(12)-
norm.

(t4i) For z € p(Lp.q) and s € [0,1], the Dirichlet-to-Neumann operator defined by

H*(0Q) — H*~1(0%),
M, o(z) : (11.251)
p = Msa(2)e = =P p.a(2)e,
satisfies
M,o(2) =8 [vn(Lpa —21) 7" € B(H*(8Q), H*~1(8)). (11.252)
Moreover, for each z € p(Lpq) and each s € [0,1],
the adjoint of M qo(z) € B(H*(0Q), H*~*(09))
(11.253)

is the operator Mi_, o(%) € B(H'~5(60), H*(09)).
(v) For z € p(Ln.q) and s € [0,1], the Neumann-to-Dirichlet operator defined by

H*=1(09Q) — H*(0%),
N, a(z) : (11.254)
¢ = Ny a(2)p == —pPs v a(2)e,
satisfies
Nso(z) =vp[vp(Lna —21) 7" € B(H*H(09), H*(9)). (11.255)
In addition, for each z € p(Lyq) and each s € [0,1],
the adjoint of Ny o(z) € B(H*~'(9Q), H*(09))
is the operator Ny_s (%) € B(H *(0Q), H'~*(9Q)).

(v) If z € p(Lpa)Np(Ln.q), then for each s € [0,1] the Dirichlet-to-Neumann op-
erator Mg o(z) maps H*(0R) bijectively onto H*~1(9Q), the Neumann-to-Dirichlet
operator Ny o(z) maps H*~1(9N) bijectively onto H*(9SY), and their inverses sat-
isfy

(11.256)

M, o(z)"' = =N, (z) € B(H*'(6Q), H*(0%)), (11.257)
Noa(2) ™t = =M, o(z) € B(H*(0Q), H*~'(09)). (11.258)

Proof. All claims may be justified in a similar fashion to their Euclidean counter-
parts proved in Theorem [7.5] by relying on the trace theory in Corollary [I1.7] and

Corollary [11.15 (]

In turn, having established Theorem [IT.21] makes it possible to prove the follow-
ing extension of Theorem to the setting of Lipschitz subdomains of Riemannian
manifolds and with the Laplace—Beltrami operator replacing the ordinary flat-space
Laplacian.

Theorem 11.22. Assume that Q@ C M is a Lipschitz domain, and suppose that
V € L*>°(M). Consider the spaces

Yp(09) :=ran (’yD|dom(L]\m))7 Gn(09Q) :=ran (AVN‘dom(LD,Q))’ (11.259)
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and, the Dirichlet-to-Neumann map Mq(z) := My o(z) as in m, define
Yi=Im(— Ma@i)™'), A:= Im(MQ(i)). (11.260)

Then the following statements hold:

(i) Both ¥ and A are bounded, nonnegative, self-adjoint operators in L?(0SY), that
are invertible and have unbounded inverses.

(i7) One has
Gp(09) = {pf | f € H*(Q) ndom(Lyazn), W f =0} C H'(9Q),

(11.261)
Gn(0Q) = {nf| f € H*(Q) Nndom(Lyaza), vnf =0} C L2(09).
(#4i) One has
Yp(02) = dom (271/2) =ran (21/2),
(11.262)
Yn (09) = dom (Afl/z) = ran (Al/z),
and when equipped with the scalar products
(0, V)gp(an) = (B7H2p, 27 1/2¢)L2 @ay Ve ¥ €9p(09),
(11.263)

(9071/))%,(89) = (A 1/2S0 AT 1/21/))L2 (09)° V@ﬂ/) € gN(aQ)a

the spaces 9p(0), 9N (0Q) become Hilbert spaces.

(iv) The Dirichlet trace operator vp (as defined in (11.127)) and the Neumann trace
operator yn (as defined in (L1.206))) extend by continuity (hence in a compatible

manner) to continuous surjective mappings
?D : dOm(Lma%Q) — %N@Q)*,
~ (11.264)
YN - dOHl(Lma%Q) — gp(aQ)*,

where dom(Lyez ) s endowed with the graph norm of Luyae.q, and 9p(00)*,
G (00)* are, respectively, the adjoint (conjugate dual) spaces of Gp(00), In(09)
carrying the natural topology induced by (11.263)) on ¥p(0Q), Yn(00Q), respectively,
such that

ker(yp) = dom(Lp.o) and ker(yn) = dom(Ly o). (11.265)

Furthermore, for each s € [0, 1] there exists a constant C' € (0,00) with the property
that

f € dom(Loaza) and Fpf € H3(OQ) imply f e H+/D(Q) ( )
11.266
and || f|lge+ar2 @) < C(18fll2) + WD fll s 00)),

and
f e dom(Lyaz) and Anf € H-5(0Q) imply f e HTE/2(Q)
and || f|l g+ ) < C(IfllL2) + 186 fllz2) + AN Fll - (00))-
(v) With 3p, 7N as in (11.264), one has
H2(Q) = {f € dom(Lumas) |F0f =0 in Gn(0Q)
and Anf =0 in Gp(0Q)*}. (11.268)

(11.267)
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(vi) The manner in which the mapping ¥p in (11.264) operates is as follows:
Given f € dom(Lyqz,0), the action of the functional Ypf € Yn(0Q)* on some
arbitrary ¢ € Yn(09) is given by

Gn (0Q)* <5Df7 ¢>gN(3Q) = (f7 Agh)L2(Q) — (Agf, h)Lz(Q)u (11269)

for any h € H3/2(Q) Ndom(Lmaz,q) such that yph =0 and ynvh = ¢ (the existence
of such h being ensured by (11.261)). As a consequence, the following Green’s
formula holds:

YN (0Q)* <7Dfa Nh>g (09) (va h)LQ(Q ( gfa )L2 (92)> (11270)
for each f € dom(Lyyae,0) and each h € dom(Lp q).

(vit) The mapping Yn in (11.264]) operates in the following fashion: Given a func-
tion f € dom(Lpmaz.q), the action of the functional ynf € 9p(0Q)* on some
arbitrary ¥ € 9p(0R) is given by

gD(aﬂ)*<771Nf7¢>gD(aQ) (va h)L2 () + (A fv )LQ(Q (11271)
for any h € H3/?(Q) Ndom(Lyyeyz,0) such that ywh = 0 and yph = v (the existence

of such h being ensured by (11.261))). In particular, the following Green’s formula
holds:

gD(aQ)*@NfﬁDh)gD( —(fs Agh)r2(q) + (Agf, h) 2y, (11.272)

for each f € dom(Lyyae,0) and each h € dom(Ly ).

(viii) The operators
vp : dom(Ly.q) = H*?(Q) Ndom(Lyas.0) Nker(yn) — p(0Q),  (11.273)
yn :dom(Lp.o) = H¥2(Q) N dom(Lyaes.a) Nker(yp) — In(0),  (11.274)

. . . . . 3
are well defined, linear, surjective, and continuous if for some s € [0,3] both

spaces on the left-hand sides of (11.273), (11.274) are equipped with the norm
Fe= e + 1Ag fllL2(q) (which are all equivalent). In addition,

the kernel of vp and vy in (11.273)—(11.274) is 1312(9) (11.275)
Moreover,
Pl 00y ~ inf (1f 120y + 18 fll 22 ()

FeH?2(Q)Ndom(Lmaz.0)
YN f=0, ypf=¢

~ inf Ffllzzea + 1A I 2
FeH32(Q)Ndom(Lmaz,0) (” Iz @ | g e (Q))
Y~ f=0, ypf=¢

~ inf 2 Agfllrz@), 11.276
fedoml(anam) (Il 2 ) + 18g fll L2 ) ( )
AN f=0, Yp f=¢

uniformly for ¢ € 9Yp(0Q), and
[P llgn (00 ~ inf (Il 2520y + [1Ag R £2(0)

heH3/2(Q)Ndom (Lmaz.)
Yph=0, yNh=1

~ inf hl| 2 + A hl 12
he H3/2(Q)Ndom(Lumas.c) (” 93 () [Agh|[L (Q))
Yph=0, yNh=1
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~ inf bl Ayh
hedoml(anM,Q) (IRllz2@) + 18R] 2 ()
¥ph=0, ynh=1
R inf Ayh 11.277
hedomib o) [1AgRl 20, ( )
¥ph=0, ynh=1
uniformly for ¢ € In(09).
As a consequence,
Gp(00) — HY(0Q) — L*(09) — H1(0Q) — 9p(0Q)*,
G (09Q) — L*(09) — In(09)*,
with all embeddings linear, continuous, and with dense range. Moreover, the duality
pairings between Gp(0Q) and Yp(0N)*, as well as between Gy (00) and Gn(00)*,
are both compatible with the inner product in L?(0Y).

(11.278)

(iz) For each z € p(Lp.q), the boundary value problem
(~Ag+V =2)f=0 inQ, fedom(Lmaea)
Apf =@ inGnN(OQ)*, ¢ e Dn(0)*,

is well posed. In particular, for each z € p(Lp q) there exists a constant C' € (0,00),
which depends only on Q, n, z, and V, with the property that

I fllz20) < ClAp fllgyo0)- for each f € dom(Limaz,0)

(11.279)

‘ _ (11.280)
with (—Ag+V —2)f =0 in Q.
Moreover, if
~ Gn(0Q)* — dom(Laz.0),
Pp.al): w(0%)" = dom(Linaz.) (11.281)
¢ = Ppa(z)e:= fpalze),

where fDJ}(Z,Q@) s the unique solution of (11.279), then the solution operator

Pp a(z) is an extension of Py p a(z) in (11.240), and ﬁD,Q(Z) is continuous, when
the adjoint space Yn(0Q)* and dom(Ly,eq,0) are endowed with the norms in the
current item (iv).

(x) For each z € p(Ln,q), the boundary value problem
(—Ag+V =2)f=01inQ, fedom(Lman),
—Anf=¢ G (00)*, e YGp(0N)*,

is well posed. In particular, for each z € p(Ly q) there exists a constant C' € (0,00),
which depends only on 2, n, z, and V, with the property that

Ifll2) < ClANfllgn o)+ for each f € dom(Limar,)

(11.282)

. _ (11.283)
with (—Ag+V —2)f =0 in Q.
Moreover, if
~ Gp(0Q)* — dom(Lmaz.0),
Prnalz) : p(0Y" = dom(Limaz.0) (11.284)
¢ = Pna(2)e = fnal(z0),

where fNyg(z,<p) is the unique solution of (11.282), then the solution operator

Py q(z) is an extension of Py n.q(z) in (11.247), and ﬁNQ(Z) 18 continuous, when
the adjoint space 9p(0N)* and dom(Lyaq.0) are endowed with the norms in the
current item (iv).
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(xi) For all z € p(Lp,q) the Dirichlet-to-Neumann map Mq(z) = M q(2) in
(11.251) admits an extension

— {gN(am* — Gp(00)*,

Maq(z) : (11.285)

o = Mo(2)¢ := =75 Pp.a(2)e,
and Mg(z) is continuous, when the adjoint spaces Gp(0Q)*, Yn(0N)* carry the
natural topology induced by (L1.263]) on ¥p(00Q), Gn(02), respectively.

Proof. We may establish all claims reasoning analogously to the proof of the Eu-
clidean result in Theorem 8.4] now relying on the trace theory in Corollary and
Corollary as well as the theory of Weyl-Titchmarsh operators for Schrodinger
operators in Lipschitz subdomains of the compact Riemannian manifold M devel-
oped in Theorem [7.5} O

11.4. Variable coefficient elliptic operators in Euclidean Lipschitz do-
mains. Virtually everything we have established so far in this chapter for the per-
turbed Laplace-Beltrami operator A, +V on Lipschitz subdomains of Riemannian
manifolds yields corresponding results for variable coefficient Schrodinger operators
in Euclidean Lipschitz domains, in a natural way. The goal in this section is to
briefly elaborate on this aspect. For example, having proved Theorem [11.4] we can
now establish regularity results in the spirit of (2.191))—(2.192)), and (2.193)—(2.194)
(with k& = 1), for variable coefficient elliptic operators in place of the standard
Laplacian in R™.

To set the stage, given a nonempty, bounded open set 2 C R", we agree to
introduce

C1(Q) := {¢ : © — C| there exists an open neighborhood O of Q
and ® € C1(O) such that ®|, = ¢}

Theorem 11.23. Let Q C R™ be a bounded Lipschitz domain, u € C*(Q), and
consider a second-order divergence-form differential expression L, acting according
to

(11.286)

Lu = Z 9j(ajk(z)0ku) in Q, (11.287)
j k=1

in the sense of distributions, where A(z) = (ajx(z)) with © € Q, is a sym-

1<, k<n’ =
metric, positive definite matriz, with real-valued entries aj, € C'(Q). Moreover,
pick a real-valued potential V € LP(Q), with p > n, and introduce

Li=—L+V in Q. (11.288)
Then for any function u € C*(2) solving
Lu=0 in D'(Q) (11.289)
one has
Nou € L2H(09) <= u € H/?(Q),
(11.290)
HNH“HLz(aQ) ~ |lull 120,
as well as
N, (Vu) € L2(09) <= u € H3?(Q),
(11.291)

HNN“HB({)Q) + HNH(V“)HB(an) ~ |lull 220,
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uniformly for u € C1(Q) satisfying (11.289)).

Proof. The key observation is that any divergence-form operator £ as in (|11.287)) co-
incides, up to left multiplication by a power of det A(x), with the Laplace—Beltrami
operator A, of the manifold Q) equipped with the Riemannian metric tensor

g:= (det(4) V"N 0¥ dey @ day, (11.292)
jik=1

where the a/¥’s are the entries in the matrix A~!. Specifically, if A, is the Laplace—
Beltrami operator associated as in (11.12]) with the metric tensor g given in (|11.292)),
then

£ = (det(4))/" A, (11.293)

In particular, for any function u € C*(£2) one has

Lu=0<+= (-Ay +Va)u=0,
C1/(n—2) (11.294)
where V4 := (det(A)) Ve LP(Q).

Then all desired conclusions will follow from Theorem [[1.4] as soon as one succeeds
in viewing () as a subset of a local coordinate patch of a smooth, compact, bound-
aryless, Riemannian manifold M, whose metric tensor agrees with near
Q.

With this aim in mind, let O be an open neighborhood of Q with the property
that the entries of the matrix A extend to real-valued functions in C*1(0). We
retain the same notation aj; for these entries and observe that there is no loss of
generality in assuming that the matrix (ajk(:c))l <jh<n continues to be symmetric
and positive definite for each z € O. To proceed, pick a function n € C§°(O)
satisfying 0 < 7 < 1 as well as = 1 near €, and consider the Riemannian metric
in R™ given by

g:= Z gjk dx; ® dxy, where, for 1 < j,k < n,
k=1 (11.295)
(1 ‘ 1/(n=2) ik
we have set g;5, := (1 — 1)d;5, + n(det(A)) a’”®.
It is apparent from (11.295) that near Q we have
VG = (det(4))"/ (11.296)

and

g% = (det(4)) " P ay for 1< 4k < n. (11.297)
In addition, select a sufficiently large number R > 0 such that O C (0, R)", and

define the torus

M := R"/ ~ (11.298)
where ~ is the equivalence relation in R™ given by
x~y<—x—y€c{0,tRey,...,tRe,} (11.299)

for every z,y € R™. Then M is a (C*°) smooth, compact, boundaryless, manifold,
of real dimension n, which contains {2 in a single coordinate chart. Moreover, since
for 1 < j,k < n one has g;; = d;; near the boundary of the cube (0, R)", it follows
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that (11.295) induces a Riemannian metric on M which has C*'-coefficients and
which coincides with the metric (11.292)) near €. O

By the same token, we may painlessly reformulate results proved earlier in Sub-
sections |11.1 in the language of elliptic differential operators with variable
coefficients, of class C''*!, on the closure of a bounded Lipschitz domain  C R".
Given their intrinsic importance, we shall elaborate the variable-coefficient versions
of the Euclidean trace results from Theorem and Theorem starting with
the former.

Theorem 11.24. Fizx an arbitrary € > 0, let Q C R™ be a bounded Lipschitz do-
main, and consider a second-order divergence-form differential expression L, acting
on each distribution v € H,_'(Q) according to

loc
Lu = Z 9j(ajr(z)0ku) in Q, (11.300)
k=1
in the sense of distributions, where A(x) = (ajk(x))Kj wens With © € ), is a

symmetric, positive definite matriz, with real-valued entries aj, € C11(Q) (see

(11.310) below, and the subsequent comment).
Then the restriction of the boundary trace operator vp from (3.1)) to the space

{u e H*(Q) |£u € H*"2%(Q)}, originally considered for s € 3.3), induces a
well defined, linear, continuous operator
o {u€ H Q)| Lue H*E(Q)} - H /2 (90), Vse[i 3] (11.301)

(throughout, the space on the left-hand side of (11.301)) is equipped with the natural
graph norm u — |lul| g @) + || Lull ga—2+<(q)), which continues to be compatible with

(3.1) when s € (%,%) Thus defined, the Dirichlet trace operator possesses the
following additional properties:

(i) The Dirichlet boundary trace operator in (L1.301)) is surjective. In fact, there
exist linear and bounded operators

Yp: H™W20Q) » {ue H' Q)| Luec L*(Q)}, se[3,3], (11.302)

which are compatible with one another and serve as right-inverses for the Dirichlet
trace, that is,

o (Tpy) =9, Ve H =D (0Q) with s € [3,2]. (11.303)

In fact, matters may be arranged so that each function in the range of Tp is a
null-solution of L, that is,

L(Ypy) =0, Ve HYVD(00) with s €[5, 2] (11.304)
(#4) The Dirichlet boundary trace operator (11.301)) is compatible with the pointwise
nontangential trace in the sense that:
if u € H*(Q) has Lu € H*"*T(Q) for some s € [3, 3],

and ifu’g;l't' exists o-a.e. on O, then u{g;“t' =~ypu € H*=/2(90).
(11.305)

(#i1) The Dirichlet boundary trace operator o in (11.301) is the unique extension
by continuity and density of the mapping C*°(Q) > f — f|89.
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(iv) For each s € [%, %] the Dirichlet boundary trace operator satisfies

vp(Pu) = ((I)|BQ)’}/DU at o-a.e. point on 9N, for all

_ (11.306)
u € H*(Q) with Lu € H*>T5(Q) and & € C>(Q).

(v) For each s € [%, 3] such that € # %— s, the null space of the Dirichlet boundary
trace operator 11.301: satisfies

ker(yp) C H ™inls+3/2k (), (11.307)

In fact, the inclusion recorded in (11.307) is quantitative in the sense that, whenever
s € [%, %] 1s such that € # %—s, there exists a constant C' € (0, 00) with the property
that

if u € H%(Q) satisfies Lu € H*2T(Q) and ypu =0
then the function u belongs to H™™s+:3/25(Q) and (11.308)
”u”Hm‘“{HEﬁ/Q}(Q) < C(HUHHs(Q) + ||£u||HS—2+E(Q))'

Proof. To set the stage, we claim that if M, denotes the operator of pointwise
multiplication by a given function v € C11(Q) then

My : H(Q) —» H*(Q), Vse[-2,2], (11.309)

is a linear and bounded mapping (compare with (2.41))). Indeed, the case when
s € ]0,2] is seen via interpolation between s = 0 and s = 2. Moreover, since
pointwise multiplication with a function does not increase the support, pointwise
multiplication by ¢ € C11(€2) induces a well defined, linear, and bounded operator
from H(Q) into itself for each s € [0,2]. Based on this and duality (cf. (2.90)
we then conclude that My maps (Hg Q) = H ~5(Q) linearly and boundedly into
itself for every s € [0,2]. As such, (11.309)) is established.

As an immediate consequence of (11.309) and (2.42) we see that, given any
function ¢ € C11(€), it follows that the operator

M, maps H}.(Q) into itself, for each s € [-2,2]. (11.310)

In particular, from (considered with s = —2 and 1 any of the entries
a;; € CH1(Q) of the coefficient matrix A = (ajk)1<j7k<n) we conclude that the
differential expression £ acts in a meaningful manner (as in indicated in )
on any given distribution v € H,_! () and, in fact, Lu € H,;2(2). Let us also note
here that, as seen from and the duality formula recorded in , for each
function ¢ € C11(Q) it follows that

My : HJ(Q) — H{(Q), Vse[-2,2], (11.311)

is a well defined, linear, and bounded mapping.

Next, from the proof of Theorem[11.23|we know that there exists a (C*) smooth,
compact, boundaryless, manifold M, of real dimension n, which contains £ in a
single coordinate chart and which may be equipped with a Riemannian metric
tensor g possessing C'1'!-coefficients such that

L= (det(A))l/(n&)Ag near (2, (11.312)
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where A, denotes the Laplace-Beltrami operator on the Riemannian manifold M,
associated (as in (11.12])) with the metric tensor g. One also observes that

(det(A)) "2 e 1 @), (det(4)) VTP e et (@), (11.313)
Collectively, (11.309)), (11.312)), and (11.313|) prove that for any given distribution

u € H ! (Q) and any given index s € [~2,2] we have
Lu € H*(Q) if and only if Aju € H*(Q) (11.314)
in a quantitative fashion (i.e., with naturally accompanying estimates), as well as
Ly =0 in Q if and only if Agu =20 in Q. (11.315)
Given 7, all conclusions in Theorem [3.6| (formulated in relation to

the Laplace-Beltrami operator A,) translate into the properties claimed in the
current statement. (]

Following past conventions, we will use the same symbol «p in connection with

either (3.1)), or (11.301). A special case of Theorem [11.24] which is especially useful

in applications, is recorded below.

Corollary 11.25. Fiz an arbitrary € > 0, suppose 0 C R™ is a bounded Lips-
chitz domain, and consider a second-order divergence-form differential expression
L, acting on each distribution u € H; () according to

n

Lu = Z 9j(ajr(z)0ku) in Q, (11.316)
k=1
in the sense of distributions, where A(x) = (ajk(x))Kj pens With z € Q, is a

symmetric, positive definite matriz, with real-valued entries aj, € CH1(Q).

Then the restriction of the operator (1) to {u € H*(Q)|Lu € L*(Q)}, origi-
nally considered for s € (%, %), induces a well defined, linear, continuous operator

vp : {u€ HY(Q)| Lu e L*(Q)} - H=V/D(0Q), Vse [L, 2] (11.317)

(throughout, the space on the left-hand side of (11.317)) being equipped with the nat-
ural graph norm u — ||ul| gs (o) + || Lul|L2(q)), which continues to be compatible with
(3.1) when s € (%, %), and also with the pointwise nontangential trace, whenever
the latter exists.

In addition, the following properties are true:

(i) The Dirichlet boundary trace operator in (11.317) is surjective and, in fact,
there exist linear and bounded operators

Yp: H™W20Q) » {ue H Q)| Luec L*(Q)}, se[3,3], (11.318)

which are compatible with one another and serve as right-inverses for the
Dirichlet trace, that is,

yo(Tp) =9, Y€ H =D () with s € [3,2]. (11.319)

Actually, matters may be arranged so that each function in the range of Tp
s a null-solution of L, that is,

L(Tpy) =0, Ve H VD (0Q) with s € [1,32]. (11.320)
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(i) For each s € [2, 2] the null space of the Dirichlet boundary trace operator

([L1.317) satisfies
ker(vp) C H3/%(9). (11.321)

In fact, the inclusion in (11.321) is quantitative in the sense that there
exists a constant C € (0,00) with the property that

whenever u € HY?(Q) with Lu € L*(Q) satisfies ypu = 0, then ( )
11.322
we H¥2(Q) and |[u]l g2y < C(ullz2() + [1Lullz2())-

Proof. All claims are obtained from their counterparts in the statement of Theo-
rem specialized to the case when € := 2 — s. O

After introducing the weak Neumann trace operator in the present setting, we
continue by presenting a variable-coefficient version of the Euclidean weak Neumann
trace result from Theorems [£.2] and [£.4]

Definition 11.26. Let 2 C R™ be a bounded Lipschitz domain. Then for some
fixed smoothness exponent s € (2, 2) the weak Neumann trace operator

v {(f,F) e HY(Q) x Hy2(Q)| Lf = Flo in D'(Q)} — H*~ /2 (5Q)
(11.323)
is defined as follows: Suppose that some function f € H*(Q) along with some
distribution F € H3 2(Q) € H*"2(R™) satisfying Lf = Flq in D'(Q) have been
given. In particular,

Ve HTHQ)" = ([H' ()" (11.324)
Then the manner in which Yy, g(f, F) is now defined as a functional in the space
Hs=G/2(0Q) = (HG/?~ (89)) is as follows: Given ¢ € HB/2)=5(9Q), then for
any ® € H*>75(Q2) such that yp® = ¢ (whose existence is ensured by the surjectivity

of (3.1)), set

H(3/2)*S(BQ)<¢7 jYiN,E(.ﬂ F)>(H(3/2)75(3Q))*
= [Hl‘s(ﬂ)]"<Avq)7Vf>([Hlfs(Q)]n)* + H2_5(9)<(I)’F>(H2*S(Q))*'

Then the weak Neumann trace mapping (11.323) is an operator which is unam-
biguously defined, linear, and bounded (assuming the space on the left-hand side of

(11.323) is equipped with the natural norm (f, F) = ||f|l =) + |F|lme—2(@n))-

The above definition plays a basic role in the following theorem, which may be
regarded as a variable-coefficient version of the Neumann trace result established
(for the ordinary Laplacian) earlier in Theorems and

(11.325)

Theorem 11.27. Assume Q@ C R" is a bounded Lipschitz domain and consider a
second-order divergence-form differential expression L, acting on each distribution

u € H L (Q) according to
Lu = Z 9j(ajk(z)0ku) in Q, (11.326)
k=1
in the sense of distributions, where A(x) = (ajk(x))Kj pens With z € Q, is a

symmetric, positive definite matriz, with real-valued entries a;, € C11(Q).
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Then for each € > 0, the weak Neumann boundary trace map, originally intro-
duced as in , induces linear and continuous operators in the context
v {(fF) € HY(Q) x Hy*H(Q) | Lf = F|, in D'(Q)} — H/2(00)
with s € [%,3] (11.327)
(where the space on the left-hand side of is equipped with the natural norm

(L F) = W fllzs ) + |1 Fl| gs—2+<@n)) which are compatible with those in (11.323)

when s € (%, %) Thus defined, the weak Neumann boundary trace map possesses
the following properties:

(i) The weak Neumann trace operators corresponding to various values of the pa-

rameter s € [%, %] are compatible with one another and each of them is surjective.

In fact, there exist linear and bounded operators

Yne: H7OP0Q) —» {ue H(Q) | Lu e L*(Q)}, se[3,2],  (11.328)

272
which are compatible with one another and satisfy (with tilde denoting the extension
by zero outside )

Ine (Caeth L0 c0)) = v, Vi€ H=O/(00) with s € [1,2]. (11.329)
(i1) If e € (0,1) and s € [, 2] then for any two pairs
(f1,F1) € H*(Q) x H5 ?T(Q) such that Lf, = Fy|q in D'(), and (11.330)
(fo, Fo) € H*75(Q) x Hy *7¢(Q) such that Lfy = Fylq in D'(Q),
the following Green’s formula holds:
62 -00) (1D S2, AN.L(F15 F1) (41052 (962) -
— (o-w2 a0y (N2 (fa, F2),7Df1>Hsf<1/z)(3Q)
= H2—S(Q)<f2,F1>(H2_5(Q))* — (m=())* ( F2, f1>Hs(Q)- (11.331)
(#ii) There exists a constant C' € (0, 00) with the property that
if f € HY?(Q) and F € Hy */?7(Q) with 0 < & < 1 satisfy
Lf=F|,inD'(Q) and In.c(f, F) =0, then f € H/DT(Q) (11.332)
and || fll rasmee) < C(IIfllz2@) + 1F |l -@r2+e@ny) -

Proof. Bringing back the (C'*°) smooth, compact, boundaryless, manifold M, of
real dimension n, from the proof of Theorem this has the property that Q
is contained in a single coordinate chart of M. Moreover, if we equip M with the
C%! Riemannian metric tensor g defined as in , then

£ = (det(4))"" VA, near 0, (11.333)
where A, denotes the Laplace-Beltrami operator on the Riemannian manifold M,
associated (as in (11.12])) with the metric tensor g.
Based on (11.296)), (11.297)), and (11.5) we conclude that for any ¢ € H2~%(£)
and ¢ € H*(Q) with s € (3,5) we have

Hz_s(Q)<q§,1/)>(H2,S(Q))*7 with Q viewed as a set in M,
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coincides with H275(9)<¢, (det(A)) 1/(n_2)¢>(H275(Q))*, (11.334)

where 2 is now viewed as an open set in R".

On account of (11.296) @, and (11.10) we also see that if ¢ € H2~*(Q2) and
€ H*(Q) for some s 6 (5,5) then

H?=5(Q,TM) <gradg¢v gradg¢>(H1—s(Q7TM))*

(11.335)
= [HPE()) <AV¢ vq/’>([1j{175(9)]n)*'
In addition, define the operator M mapping the space
{(f.F) e H :(Q) x Hy*(Q)| Lf = Flo in D'(Q)} (11.336)
(where Q is viewed as an open set in R™) into the space
{(f,.F) € H,}(Q) x Hy*(Q)| Agf = Flo in D'(Q)} (11.337)

(where © is now regarded as an open subset of the Riemannian manifold (M, g))
according to

M(f,F) = (f, (det(A))W”*Q)F). (11.338)

Thanks to (11.333)), (11.313), and (11.311)), this is a well defined linear operator.
In this regard, the key observation is that for each s € [ we have

53]
AN, = YN o M as operators acting from the space
{(f,F) e H*(Q) x H;*(Q)| Lf = F|o in D'(Q)} (11.339)
and taking values into the space H*~(®/2)(9Q),

where 7 is the weak Neumann trace operator associated as in Theorem [[1.14] when
) is regarded as a subdomain of the Riemannian manifold (M, g) (see also (11.176))).
Indeed, if s € Elz, 2) then is seen directly from (11.325)), (11.338)), (11.333)),
(T1.334), and (11.335). Since the scale of Sobolev spaces is nested, this also covers
(a posteriori) the end-point case s = % Finally, in the case s = % we take
as a definition of the weak Neumann trace operator Yy ..

Given that for each s € [%, %] and ¢ € (0,1) the operator M becomes an
isomorphism of the space

{(f,F) € H*(Q) x H; ***(Q)| Lf = Flq in D'(Q)} (11.340)

(where €2 is viewed as an open set in R™) onto the space
{(f,F) € H*(Q) x Hy ***(Q) | Agf = Flo in D'(Q)} (11.341)

(where Q is now regarded as an open subset of the Riemannian manifold (M, g)),
all claims in the statement of the current theorem become relatively straightfor-
ward consequences of and the corresponding properties of the weak Neu-
mann trace operator vy from Theorem (while also bearing in mind ,
(11.313)), (11.309), and (11.311))). |

We conclude by presenting the following special case of Theorem [I1.27] which
plays a significant role in applications.
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Corollary 11.28. Suppose Q) C R" is a bounded Lipschitz domain, and denote by
v its outward unit normal. In addition, consider a second-order divergence-form
differential expression L, acting on each distribution u € ngi(Q) according to

n

Lu = Z 9j(a;k(x)Ou) in Q, (11.342)
k=1
in the sense of distributions, where A(zx) = (ajk(x))Kj pens With © € Q, is a

symmetric, positive definite matriz, with real-valued entries a;i, € ch(Q).
Then the Neumann trace map, originally defined for each for u € C*(Q) as
u s (v, AVu) on 09, extends uniquely to linear continuous operators

i {ue HY(Q) | Lue L2(Q)} — HB/2(0Q), se [}, 2] (11.343)

(throughout, the space on the left-hand side of (11.343)) is equipped with the natural
graph norm w = ||ul| s (o) + | Lullz2(q)), that are compatible with one another. In
addition, the following properties are true:

(i) The Neumann trace map (11.343|) is surjective. In fact, there exist linear

and bounded operators
YTn:HOP09) - {ue H ()| Lue L*(Q)}, se[35,3], (11.344)

which are compatible with one another and are right-inverses for the Neu-
mann trace, that is,

w(Tn) =, Yo e HB/D(0Q) with s € [L,3]. (11.345)
(i1) If s € [4,2], then for any functions f € H*(Q) with Lf € L*() and

h € H*5(Q) with Lh € L*(Q) the following Green’s formula holds:
HB/2)=s(0Q) <’7Dh7 7Nf>(H<3/2>—S(SQ))*

= (-2 00)) IV YD) o (000

= (h, Lf)r2) — (LR, lr2(a)- (11.346)
(ii7) For each s € [%, %] , the null space of the Neumann boundary trace operator

(111.343) satisfies
ker(yn) C HB/Q(Q). (11.347)

In fact, the inclusion in (11.347) is quantitative in the sense that there
exists a constant C' € (0,00) with the property that

whenever w € HY?(Q) satisfies Lu € L*(Q) and yyu = 0, then

i (11.348)
we H¥2(Q) and |[u]l g2y < C(ull2() + [1Lullz2())-
Proof. Having fixed s € [%, %], pick 0 < ¢ < min{1,2 — ¢} and define
v {ue H¥(Q) | Lue L*(Q)}
(11.349)

= {(f,F) € H*(Q) x Hy***(Q)| Lf = F|, in D'(Q)},
as being the continuous injection given by

W(u) = @Z&) Vue H(Q) with Lu e L2(Q), (11.350)
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where tilde denotes the extension by zero outside 2. With the weak Neumann trace
operator vy, associated with £ as in Theorem [11.27] we then set

YN = WN,[: O (L. (11351)

Thanks to the continuity of ¢ in (11.349)) and Yy, 2 in (11.327)), this is a well defined,
linear, and bounded mapping in the context of (11.343). In fact, all other claims
in the statement are clear from (11.351f) and Theorem [11.27] O
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