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Abstract. We prove an abstract criterion on spectral instability of nonneg-

ative selfadjoint extensions of a symmetric operator and apply this to self-
adjoint Neumann Laplacians on bounded Lipschitz domains, intervals, and

graphs. Our results can be viewed as variants of the classical weak coupling

phenomenon for Schrödinger operators in L2(Rn) for n = 1, 2.

1. Introduction

We start by recalling the classical weak coupling phenomenon for Schrödinger
operators, which goes back to Simon [41], [42]. For this purpose, let −∆ be the
self-adjoint one-dimensional Laplacian in L2(R) defined on H2(R) and assume that
the potential V : R→ R satisfies V ∈ L1(R; (1 + x2)dx) ∩ L2(R; dx), and V is not
zero a.e. For α ∈ R it follows that −∆ + αV is self-adjoint in L2(R) and

σess(−∆ + αV ) = σess(−∆) = σ(−∆) = [0,∞). (1.1)

It was shown in [41, Theorem 2.5] (see also [39, Theorem XIII.11]) that for any
α < 0 one has

σp(−∆ + αV ) ∩ (−∞, 0) 6= ∅ if and only if

∫
R
V (x) dx ≥ 0, (1.2)

and hence, in particular, if V ≥ 0, then σp(−∆ + αV ) ∩ (−∞, 0) 6= ∅ for any
α < 0. The same result holds also for the self-adjoint Laplacian −∆ in L2(R2)
under slightly different integrability conditions on the potential V : R2 → R, and
it is also well known that the phenomenon of weakly coupled eigenvalues does
not appear in dimensions n ≥ 3. The works [41], [42] by Simon have inspired and
influenced a lot of future research; they were followed by Klaus and Simon [28], [29],
and Rauch [38]. A wealth of additional information can be found, for instance, in
[6], [7], [12], [15], [21], [25]–[27], [33], [34], [36], [37], [39, Theorem XIII.11, p. 336–
338]. For some other related more recent developments we refer the reader to [1],
[8], [9], [10], [11], [13], [20], [30], [35], and the references cited therein.

The main objective of this note is to transfer these ideas from Schrödinger oper-
ators −∆ +αV to an abstract setting that replaces the Laplacian by a nonnegative
self-adjoint extension A of a densely defined closed nonnegative symmetric operator
S in a Hilbert space H and the potential by an appropriate nonnegative self-adjoint
perturbation, also denoted by V , that is relatively form compact with respect to
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A. In our main abstract result Theorem 2.2 it is shown that under some additional
mild assumptions A is spectrally unstable, that is, for any α < 0 the perturbed
self-adjoint operator A+αV has negative discrete eigenvalues. The proof of Theo-
rem 2.2 is based on the Birman–Schwinger principle, see, for instance, [16, 31]. In
fact, the essential assumptions to ensure the existence of weakly coupled negative
eigenvalues of A + αV , α < 0, are ker(A) 6= {0} and ker(A) 6⊆ ker(V ); roughly
speaking the first assumption ker(A) 6= {0} ensures that the resolvent of A has a
singularity at 0 and the second assumption ker(A) 6⊆ ker(V ) is needed to preserve
this singularity for the sandwiched resolvent V 1/2(A − µIH)−1V 1/2 when µ < 0
tends to 0. We note that for the special case where 0 is an isolated eigenvalue of
finite multiplicity of A, our result would also follow from asymptotic perturbation
theory.

Our general result applies directly to the Neumann Laplacian −∆N on a bounded
interval (a, b) or on a bounded Lipschitz domain Ω ⊂ Rn, n ≥ 2, since in that case
ker(−∆N ) is spanned by the constant function and if V ≥ 0 is a multiplication
operator which is relatively compact perturbation with respect to −∆N , then cer-
tainly ker(−∆N ) 6⊆ ker(V ) as otherwise V = 0 a.e. on (a, b) or Ω, respectively. As
a consequence of our abstract result, Theorem 2.2, we conclude in Corollary 3.1
and Corollary 3.2 that for any α < 0 and nonnegative function V , V 6= 0, such that
V ∈ Lp with p ≥ 2 if n = 1, 2 and p > 2n/3 if n ≥ 3, there exist weakly coupled
negative bound states for the perturbed Neumann Laplacian −∆N + αV , that is,

σ(−∆N + αV ) ∩ (−∞, 0) 6= ∅ for any α < 0. (1.3)

We note that weakly coupled bound states for Schrödinger operators in Rn exist
only for n = 1, 2, whereas weakly coupled bound states for the perturbed Neumann
Laplacian exist in any space dimension. We mention that our abstract result also
applies to other self-adjoint nonnegative realizations A of the Laplacian on bounded
domains with the property ker(A) 6= {0} (cf. Remark 3.3). The observations for
the case of a bounded interval extend naturally to finite compact graphs, where the
Neumann Laplacian corresponds to Kirchhoff or standard boundary conditions;
see, Corollary 3.4. Furthermore, in Corollary 3.5 we consider a Sturm–Liouville
operator with Neumann boundary conditions in L2((0,∞)) with 0 as embedded
eigenvalue at the bottom of the essential spectrum.

Finally, a few remarks about the notation employed: Given a separable complex
Hilbert space H, ( · , · )H denotes the scalar product in H (linear in the second
factor), ‖ · ‖H the norm in H, and IH represents the identity operator on H. The
domain and range of a linear operator T in H are abbreviated by dom (T ) and
ran (T ). The kernel (null space) of T is denoted by ker(T ). The spectrum, point
spectrum (i.e., the set of eigenvalues), essential spectrum, and resolvent set of a
self-adjoint operator in H will be abbreviated by σ( · ), σp( · ), σess( · ), and ρ( · ),
respectively. The space of compact linear operators in H is denoted by B∞(H). For
Ω ⊆ Rn, n ∈ N, we will abbreviate L2(Ω; dnx) for simplicity by L2(Ω), and IL2(Ω)

for convenience by I.

2. Spectral instability of nonnegative self-adjoint extensions

Throughout this section suppose that S is a densely defined closed symmetric
operator in a Hilbert space H and assume that S is semibounded from below with
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the lower bound κ ≥ 0, that is,

(Sf, f)H ≥ κ(f, f)H, f ∈ dom (S). (2.1)

Hypothesis 2.1. Let A be a nonnegative self-adjoint extension of S in H such
that kerA 6= {0} and let V ≥ 0 be a self-adjoint operator in H which is relatively
compact with respect to A, that is,

dom (A) ⊆ dom (V ) and V (A+ IH)−1 ∈ B∞(H). (2.2)

One notes that the lower bound of A is κ ≥ 0 and recalls that the Friedrichs
extension AF of S has the same lower bound as S. In the case of differential
operators (see the next section) the reader may think of A in Hypothesis 2.1 as
the self-adjoint Laplacian with Neumann boundary conditions. Another typical
example for a self-adjoint extension of S satisfying Hypothesis 2.1 is the Krein–von
Neumann extension AK , the smallest nonnegative extension of S, which in the case
κ > 0 is defined by

AK = S∗ � dom (AK), dom (AK) = dom (S)
.
+ ker(S∗) (2.3)

(see, e.g., [3, Sect. 5.4], [14] and the references cited therein). We also note that the
self-adjoint extension theory point of view is not strictly necessary for the following
arguments and Theorem 2.2 below, however we find it useful to compare A in
Hypothesis 2.1 with the extremal nonnegative self-adjoint extensions AF and AK .
We will return to this topic elsewhere.

Our goal is to show that the lower bound 0 for A in Hypothesis 2.1 is not
stable under arbitrary small negative perturbations αV . The relative compactness
assumption in Hypothesis 2.1 ensures that the operators A + αV , α ∈ R, are self-
adjoint and that

σess(A+ αV ) = σess(A), (2.4)

see, for instance, [39, Theorem XIII.14 and Corollary 2]. Furthermore,

(i) If α ≥ 0, then A+ αV ≥ 0 and, in particular, σ(A+ αV ) ∩ (−∞, 0) = ∅.
(ii) If α < 0, then σ(A+ αV )∩ (−∞, 0) is either empty or consists of discrete

eigenvalues.

From Hypothesis 2.1 one obtains V (A − zIH)−1 ∈ B∞(H), z ∈ ρ(A), by using
the resolvent identity. We also note that

V 1/2(A+ IH)−1/2 ∈ B∞(H) (2.5)

by [17, Theorem 3.5 (i)]. Then one has V 1/2(A+ IH)−1 ∈ B∞(H),

V 1/2(A−zIH)−1 ∈ B∞(H), and V 1/2(A−zIH)−1/2 ∈ B∞(H), z ∈ ρ(A). (2.6)

It follows that (A − zIH)−1V 1/2 and (A − zIH)−1/2V 1/2, z ∈ ρ(A), are densely
defined bounded operators, whose closures coincide with the adjoints of the op-
erators in (2.6) for z̄ ∈ ρ(A), and hence also belong to B∞(H). Therefore, the
Birman-Schwinger family K(z), defined by

K(z) := V 1/2(A− zIH)−1V 1/2, z ∈ ρ(A), (2.7)

satisfies

K(z) = V 1/2(A− zIH)−1/2(A− zIH)−1/2V 1/2 ∈ B∞(H), z ∈ ρ(A). (2.8)

Thus, if z ∈ ρ(A) and α−1 is not an eigenvalue of the compact operator K(z), then
K(z) + α−1IH is boundedly invertible and one verifies in the same way as in [16,
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Proof of Theorem 2.3] that in the present case z ∈ ρ(A + αV ) and the resolvent
formula

(A+ αV − zIH)−1 = (A− zIH)−1 (2.9)

− (A− zIH)−1V 1/2
[
K(z) + α−1IH

]−1
V 1/2(A− zIH)−1,

z ∈ ρ(A+ αV ) ∩ ρ(A),

holds.
The next theorem is our main abstract result; it provides a sufficient condition

for spectral instability of the self-adjoint operator A in Hypothesis 2.1.

Theorem 2.2. Let A and V be as in Hypothesis 2.1 and assume, in addition, that
ker(A) 6⊆ ker(V ). Then

σ(A+ αV ) ∩ (−∞, 0) 6= ∅ for any α < 0. (2.10)

Proof. By assumption there exists k ∈ ker(A), ‖k‖H = 1, such that V k 6= 0 and
hence also V 1/2k 6= 0. From this we conclude that there exists f ∈ dom

(
V 1/2

)
such

that h = V 1/2f satisfies (h, k)H 6= 0 as otherwise k ∈
(
ran

(
V 1/2

))⊥
= ker

(
V 1/2

)
.

We shall now make use of the orthogonal direct sum decomposition

H = lin.span{k} ⊕
(
lin.span{k}

)⊥
(2.11)

and denote the orthogonal projection in H onto (lin.span{k})⊥ by P . Then

V 1/2f = h = (h, k)Hk + Ph (2.12)

and for ν < 0 it follows from (A− νIH)−1k = − 1
ν k and (2.11) that(

V 1/2(A− νIH)−1V 1/2f, f
)
H

=
(
(A− νIH)−1h, h

)
H

=
(
(A− νIH)−1((h, k)Hk + Ph), (h, k)Hk + Ph

)
H

= −|(h, k)H|2

ν
(k, k)H +

(
(A− νIH)−1Ph, Ph

)
H

= −|(h, k)H|2

ν
+

∫ ∞
0

1

λ− ν
d(EA(λ)Ph, Ph)H,

where EA(λ), λ ∈ R, denotes the family of spectral projections of the self-adjoint
operator A. Since (h, k)H 6= 0 the first term tends to +∞ as ν ↑ 0 and by monotone
convergence the spectral integral converges in [0,+∞] as ν ↑ 0. Hence, we conclude

lim
ν↑0

(
V 1/2(A− νIH)−1V 1/2f, f

)
H

= +∞. (2.13)

We note that for ν < 0 the Birman–Schwinger operator K(ν) in (2.7)–(2.8) is
nonnegative and compact. Furthermore, from (2.13) we conclude that

lim
ν↑0

∥∥K(ν)
∥∥
B(H)

= +∞ (2.14)

and since the operator norm of the nonnegative compact operator K(ν), ν < 0,
coincides with its largest eigenvalue we conclude that for any α < 0 there exist
να < 0 and kα ∈ H, kα 6= 0, such that

K(να)kα = − 1

α
kα. (2.15)
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Now consider fα = (A− ναIH)−1V 1/2kα (see also [31] or [16, Proof of Theorem 3.2]
for the following arguments) and observe first that

kα =
[
K(z) + α−1IH

]−1[
K(z)−K(να)

]
kα

= (z − να)
[
K(z) + α−1IH

]−1
V 1/2(A− zIH)−1(A− ναIH)−1V 1/2kα

= (z − να)
[
K(z) + α−1IH

]−1
V 1/2(A− zIH)−1fα, z ∈ ρ(A),

(2.16)

and hence, in particular, fα 6= 0 as otherwise kα = 0. Using (2.16) we see on the
one hand

(A− zIH)−1V 1/2kα

= (z − να)(A− zIH)−1V 1/2
[
K(z) + α−1IH

]−1
V 1/2(A− zIH)−1fα

= (z − να)
[
(A− zIH)−1 − (A+ αV − zIH)−1

]
fα,

(2.17)

where (2.9) was used in the last equality. On the other hand, by the resolvent
identity one obtains

(A− zIH)−1V 1/2kα

= (A− ναIH)−1V 1/2kα + (z − να)(A− zIH)−1(A− ναIH)−1V 1/2kα

= fα + (z − να)(A− zIH)−1fα.

(2.18)

It follows from (2.17) and (2.18) that (να − z)(A + αV − zIH)−1fα = fα which
implies fα ∈ dom (A+ αV ) and (A+ αV )fα = ναfα. Hence να is an eigenvalue of
A+ αV , thus σ(A+ αV ) ∩ (−∞, 0) 6= ∅ for any α < 0. �

Remark 2.3. We note that for the unperturbed nonnegative self-adjoint operator
A in Hypothesis 2.1 it is only assumed that 0 ∈ σp(A), but no further restrictions
on the spectrum of A are required; for example, in general 0 may be an eigenvalue
of infinite multiplicity or an accumulation point of positive spectrum of A. In
the special case where 0 is an isolated eigenvalue of finite multiplicity of A, the
spectral instability of A in Theorem 2.2 would already follow from well-known
results in analytic perturbation theory, see, for instance, [24, Sect. VII.3], [39,
Theorems XII.8, XII.9], [40, Ch. II] and monotonicity of eigenvalues. �

3. Spectral instability of the Neumann Laplacian

In this section we shall show that Theorem 2.2 applies to the Neumann Laplacian
on bounded Lipschitz domains, (arbitrary) intervals, and graphs, and conclude
spectral instability for certain classes of potentials V that are relatively compact.

In the following let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain and let ν be
the unit normal vector field pointing outwards on ∂Ω. We shall use the notation

H
3/2
∆ (Ω) =

{
f ∈ H3/2(Ω)

∣∣∆f ∈ L2(Ω)
}
, (3.1)

where H3/2(Ω) is the L2-based Sobolev space on Ω of fractional order 3/2. We
recall from [2, 19] that the Dirichlet trace mapping C∞(Ω) 3 f 7→ f |∂Ω and the
Neumann trace mapping C∞(Ω) 3 f 7→ ν·∇f |∂Ω extend by continuity to continuous
surjective mappings

τD : H
3/2
∆ (Ω)→ H1(∂Ω) and τN : H

3/2
∆ (Ω)→ L2(∂Ω), (3.2)
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respectively, where H1(∂Ω) denotes the first-order L2-based Sobolev space on ∂Ω.
In the next corollary we study the weak coupling behaviour of the Neumann Lapla-
cian

ANf = −∆f, f ∈ dom (AN ) =
{
g ∈ H3/2

∆ (Ω)
∣∣ τNg = 0

}
, (3.3)

which is self-adjoint in L2(Ω), see, for instance, [2, Theorem 6.10] or [18, Theorem
2.6 and Lemma 4.8] and also [22].

Corollary 3.1. Let Ω ⊂ Rn be a bounded Lipschitz domain, n ∈ N, n ≥ 2, suppose
that AN is the self-adjoint Neumann Laplacian in L2(Ω), and assume that V 6= 0
is a nonnegative function such that V ∈ Lp(Ω) with p ≥ 2 if n = 2 and p > 2n/3 if
n ≥ 3. Then

(AN + αV )f = −∆f + αV f, f ∈ dom (AN + αV ) = dom (AN ), (3.4)

is self-adjoint in L2(Ω),

V (AN − zI)−1 ∈ B∞
(
L2(Ω)

)
, z ∈ ρ(AN ), (3.5)

and
σ(AN + αV ) ∩ (−∞, 0) 6= ∅ for any α < 0. (3.6)

Moreover, for 0 < −α sufficiently small, the unique eigenvalue ν(α) ∈ (−∞, 0) of
AN + αV satisfies

ν(α) =
α↑0

α

|Ω|

∫
Ω

V (x) dnx+O
(
α2
)
, (3.7)

where |Ω| abbreviates the volume of Ω.

Proof. Consider the densely defined closed symmetric operator

Sf = −∆f, f ∈ dom (S) = H2
0 (Ω) = C∞0 (Ω)

‖·‖H2(Ω) , (3.8)

in L2(Ω) and note that S is semibounded from below by κ > 0, where κ is the
smallest eigenvalue of the Friedrichs (or Dirichlet) extension

AF f = −∆f, f ∈ dom (AF ) =
{
g ∈ H3/2

∆ (Ω)
∣∣ τDg = 0

}
; (3.9)

cf. [2, Theorem 6.9 and Lemma 6.11] or [18, Theorem 2.10 and Lemma 3.4] and
also [23, Theorem B.2]. The Neumann Laplacian AN in (3.3) is a self-adjoint
extension of S and one has ker(AN ) = lin.span{1}. One notes that the condition
ker(AN ) 6⊆ ker(V ) in Theorem 2.2 is satisfied for the multiplication operator V as
otherwise the constant function would be in ker(V ), which is only possible if V = 0.

It remains to show that V is relatively compact with respect to AN as then
Hypothesis 2.1 is satisfied and the statement follows from Theorem 2.2. In order to
see that V is relatively compact with respect to AN we shall use that for 0 < δ < 1
one has

‖f‖L2q(Ω) ≤ Cq‖f‖H3/2−δ/2(Ω) for q ∈

{
[1,∞] if n = 2,

[1, n/(n− 3 + δ)] if n ∈ N, n ≥ 3,

(3.10)
by [5, Theorem 8.12.6.I]. Let us consider the case n ≥ 3 first. As Ω is bounded
we have Lp2(Ω) ⊆ Lp1(Ω), 1 ≤ p1 ≤ p2 ≤ ∞, and hence under our assumptions
there exists 0 < δ < 1 such that V ∈ Lp(Ω), where p = 2n/(3 − δ). This yields
V ∈ L2r(Ω), where r = n/(3− δ). For s = n/(n− 3 + δ) we have 1/r+ 1/s = 1 and
the Hölder inequality together with (3.10) leads to

‖V f‖L2(Ω) ≤ ‖V ‖L2r(Ω)‖f‖L2s(Ω) ≤ Cs‖V ‖L2r(Ω)‖f‖H3/2−δ/2(Ω), (3.11)
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so that
V : H3/2−δ/2(Ω)→ L2(Ω) (3.12)

is bounded. In the case n = 2 it follows in the same way with V ∈ L2r(Ω), r = 1,
and s =∞ that the mapping V in (3.12) is bounded.

Next, one observes that (AN +I)−1 : L2(Ω)→ H3/2(Ω) is bounded; this follows,
for instance, from the norm equivalences on dom (AN ) in [2, Theorem 6.10]. As
Ω is bounded it is clear that the embedding H3/2(Ω) ↪→ H3/2−δ/2(Ω) is compact
(see, e.g., [5, Theorem 8.12.6.IV]) and hence (AN + I)−1 : L2(Ω) → H3/2−δ/2(Ω)
is compact. Together with (3.12) we obtain that V (AN + I)−1 : L2(Ω)→ L2(Ω) is
compact, that is, V is relatively compact with respect to AN .

Finally, (3.7) is a consequence of analytic first-order Rayleigh–Schrödinger per-
turbation theory (see, e.g., [24, eq. (II.2.36), Sect. VII.3], [39, p. 5, Theorems XII.8,
XII.9], [40, Ch. II]), since |Ω|−1/2 is the normalized eigenfunction corresponding to
the simple discrete eigenvalue 0 of AN . �

For completeness we also discuss the one-dimensional case for a finite interval
Ω = (a, b). In this context we recall that the self-adjoint Neumann Laplacian in
L2((a, b)) is given by

ANf = −f ′′, f ∈ dom (AN ) =
{
g ∈ H2((a, b))

∣∣ g′(a) = g′(b) = 0
}
. (3.13)

Corollary 3.2. Let (a, b) be a finite interval, let AN be the self-adjoint Neumann
Laplacian in L2((a, b)), and assume that V 6= 0 is a nonnegative function such that
V ∈ Lp((a, b)) with p ≥ 2. Then

(AN + αV )f = −f ′′ + αV f, f ∈ dom (AN + αV ) = dom (AN ), (3.14)

is self-adjoint in L2((a, b)),

V (AN − zI)−1 ∈ B∞
(
L2((a, b))

)
, z ∈ ρ(AN ), (3.15)

and
σ(AN + αV ) ∩ (−∞, 0) 6= ∅ for any α < 0. (3.16)

Moreover, for 0 < −α sufficiently small, the unique eigenvalue ν(α) ∈ (−∞, 0) of
AN + αV satisfies

ν(α) =
α↑0

α

b− a

∫ b

a

V (x) dx+O
(
α2
)
. (3.17)

Proof. Consider the densely defined closed symmetric operator

Sf = −f ′′, f ∈ dom (S) =
{
g ∈ H2((a, b))

∣∣ g(a) = g(b) = g′(a) = g′(b) = 0
}
,

(3.18)
in L2((a, b)) and note that S is semibounded from below by κ = (π/(b− a))2 > 0.
The Neumann Laplacian AN in (3.13) is a self-adjoint extension of S and one has
ker(AN ) = lin.span{1}. Note that the condition ker(AN ) 6⊆ ker(V ) in Theorem 2.2
is satisfied for the multiplication operator V as otherwise the constant function
would be in ker(V ), which is only possible if V = 0. We claim that V is relatively
compact with respect to AN . In fact, using the inequality

‖g‖L∞((a,b)) ≤ C‖g‖H1((a,b)), g ∈ H1((a, b)), (3.19)

one has

‖V g‖L2((a,b)) ≤ ‖V ‖L2((a,b))‖g‖L∞((a,b)) ≤ C‖V ‖L2((a,b))‖g‖H1((a,b)),

g ∈ H1((a, b)),
(3.20)
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and hence V : H1((a, b)) → L2((a, b)) is bounded. Therefore, as (AN + I)−1 :
L2((a, b)) → H2((a, b)) is bounded and the embedding H2((a, b)) ↪→ H1((a, b)) is
compact we see that (AN + I)−1 : L2((a, b))→ H1((a, b)) is compact and thus also
V (AN + I)−1 : L2((a, b))→ L2((a, b)) is compact.

Relation (3.17) is the special one-dimensional case of (3.7) in Corollary 3.1. �

Remark 3.3. The observations in Corollaries 3.1 and 3.2 remain valid for more
general classes of self-adjoint Laplacians. More precisely, if α ∈ L∞(∂Ω) is real-
valued, then the Robin Laplacian

Aαf = −∆f, f ∈ dom (Aα) =
{
g ∈ H3/2

∆ (Ω)
∣∣ τNg = ατDg

}
, (3.21)

is self-adjoint in L2(Ω) and if, in addition, Aα is nonnegative and ker(Aα) 6= {0},
then

σ(Aα + αV ) ∩ (−∞, 0) 6= ∅ for any α < 0 (3.22)

by Theorem 2.2 under the same integrability assumptions on V as in Corollary 3.1 if
ker(Aα) 6⊆ ker(V ) holds. The latter condition is satisfied, for instance, if V (x) > 0
for a.e. x ∈ Ω. Similarly, in the case of a finite interval the Neumann realization AN
of −d2/dx2 in Corollary 3.2 can be replaced by any nonnegative self-adjoint realiza-
tion A of −d2/dx2 in L2((a, b)) such that ker(A) 6= {0}. As ker(A) ⊆ lin.span{1, x}
in this case, it is clear that ker(A) 6⊆ ker(V ) holds. �

Next, we consider the case of the Neumann (or Kirchhoff) Laplacian on a com-
pact finite (not necessarily connected) graph Γ, which consists of e < ∞ edges
(finite intervals) En, n = 1, . . . , e, and v < ∞ vertices Vm, m = 1, . . . , v. One re-
calls from [4, 32] that the self-adjoint Neumann Laplacian in L2(Γ) = ⊕en=1L

2(En)
is given by

ANf = (−f ′′n )en=1, (3.23)

f ∈ dom (AN ) =

{
g = (gn)en=1

∣∣∣∣ gn ∈ H2(En), g(xi) = g(xj), xi, xj ∈ Vm,∑
xj∈Vm ∂g(xj) = 0,m = 1, . . . , v,

}
,

and that the multiplicity of 0 ∈ σp(AN ) equals the number of connected components
of the metric graph Γ.

Corollary 3.4. Let Γ be a compact finite graph, let AN be the self-adjoint Neumann
Laplacian in L2(Γ), and assume that V 6= 0 is a nonnegative function such that
V ∈ Lp(Γ) with p ≥ 2. Then

(AN + αV )f = ANf + αV f, f ∈ dom (AN + αV ) = dom (AN ), (3.24)

is self-adjoint in L2(Γ),

V (AN − zI)−1 ∈ B∞
(
L2(Γ)

)
, z ∈ ρ(AN ), (3.25)

and

σ(AN + αV ) ∩ (−∞, 0) 6= ∅ for any α < 0. (3.26)

The proof of Corollary 3.4 is similar to that of Corollary 3.2 and hence is not
repeated here.

In the next corollary we consider a perturbed Neumann Laplacian in L2((0,∞)),
where 0 ∈ σp(A) is an embedded eigenvalue.
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Corollary 3.5. Let

AN (q)f = −f ′′ + qf, f ∈ dom (AN (q)) =
{
g ∈ H2((0,∞))

∣∣ g′(0) = 0
}
, (3.27)

where

q(x) = − 2

x2 + 1
+

8x2

(x2 + 1)2
=

6x2 − 2

(x2 + 1)2
, x ≥ 0, (3.28)

and assume that V 6= 0 is a nonnegative function such that V ∈ L2((0,∞)). Then

(AN (q) + αV )f = −f ′′ + qf + αV f, f ∈ dom (AN (q) + αV ) = dom (AN (q)),
(3.29)

is self-adjoint in L2((0,∞)),

V (AN (q)− zI)−1 ∈ B∞
(
L2((0,∞))

)
, z ∈ ρ(AN (q)), (3.30)

σess(AN (q) + αV ) = σess(AN (q)) = [0,∞), (3.31)

and

σ(AN (q) + αV ) ∩ (−∞, 0) 6= ∅ for any α < 0. (3.32)

Proof. Since q ∈ L∞((0,∞)), AN (q) is self-adjoint in L2((0,∞)) as the same is true
for the unperturbed Neumann operator ANf = −f ′′, dom (AN ) = dom (AN (q)).
It is also clear that ∞ is in the limit point case for the differential expression
−(d2/dx2) + q(x), x ∈ [0,∞), and since q ∈ L1((0,∞)) it follows from [3, Propo-
sition 6.13.7] that σess(AN (q)) = σess(AN ) = [0,∞). Alternatively, one can argue
that the resolvent difference of the full-line Schrödinger operator associated with
−(d2/dx2) + q(x), x ∈ R, in L2(R) and the direct sum of the corresponding two
half-line Neumann operators in L2((−∞, 0)) ⊕ L2((0,∞)) is a rank-one operator
and combine this with the fact that q(x) = q(−x), x ∈ [0,∞), and the full-line
Schrödinger operator has essential spectrum equal to [0,∞) as limx→±∞ q(x) = 0.
Moreover, it is easy to see that 0 is a simple eigenvalue of AN (q) with corresponding
normalized eigenfunction

f0(x) =
2

π1/2

1

x2 + 1
, x ∈ [0,∞), ‖f0‖L2((0,∞)) = 1, (3.33)

and it follows from

AN (q) = BB∗ ≥ 0, (3.34)

that AN (q) is nonnegative. Here,

Bf = f ′ + φf, f ∈ dom (B) = H1
0 ([0,∞)),

B∗g = −g′ + φg, g ∈ dom (B∗) = H1([0,∞)),
(3.35)

where

φ(x) = f ′0(x)/f0(x) = − 2x

x2 + 1
, x ∈ [0,∞). (3.36)

We also note that the condition ker(AN (q)) 6⊆ ker(V ) in Theorem 2.2 is satisfied
for the multiplication operator V as otherwise V = 0. We claim that V is relatively
compact with respect to AN (q). In fact, for z ∈ C \ [0,∞) we have the identity

(AN (q)− zI)−1 = (AN − zI)−1 − (AN − zI)−1q(AN (q)− zI)−1 (3.37)

and V (AN − zI)−1 ∈ B∞(L2((0,∞))) by [39, Problem 41] (for the half-line), and
thus also V (AN (q) − zI)−1 ∈ B∞(L2((0,∞))). This implies σess(AN (q) + αV ) =
σess(AN (q)) = [0,∞) and hence (3.32) follows from Theorem 2.2. �
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Remark 3.6. Without going into more details we note that Corollary 3.5 permits
the analog of (3.7) and (3.17) in the following form: For 0 < −α sufficiently small,
the unique eigenvalue ν(α) ∈ (−∞, 0) of AN (q) + αV satisfies

ν(α) =
α↑0

4απ−1

∫ ∞
0

(
x2 + 1

)−2
V (x) dx+O

(
α2
)
. (3.38)

While (3.38) is not a result of analytic first-order Rayleigh–Schrödinger perturba-
tion theory as 0 is not a discrete eigenvalue of AN (q), one can apply the Fredholm
determinant approach developed by Simon [41] to arrive at (3.38). �
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