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Abstract. Let H1 and H2 be selfadjoint operators or relations (multivalued

operators) acting on a separable Hilbert space and assume that the inequality

H1 ≤ H2 holds. Then the validity of the inequalities −H−1
1 ≤ −H−1

2 and

H−1
2 ≤ H−1

1 is characterized in terms of the inertia of H1 and H2. Such results
are known for matrices and boundedly invertible operators. In the present

paper those results are extended to selfadjoint, in general unbounded, not

necessarily boundedly invertible, operators and, more generally, for selfadjoint
relations in separable Hilbert spaces.

1. Introduction

Let H1 and H2 be selfadjoint matrices, operators, or relations (multivalued op-
erators) in a separable Hilbert space, which is not necessarily finite-dimensional.
This paper is concerned with a question which goes back to K. Löwner: what are
the implications of the inequality H1 ≤ H2 for the inverses of H1 and H2; cf. [1, 15].

Here specific conditions are investigated under which the implication

(1.1) H1 ≤ H2 ⇒ H−12 ≤ H−11

is true. In the literature such results are often formulated as antitonicity results,
see e.g. [4, 10, 16, 18]. Of course, the above implication does not hold in general;
a simple counterexample is H1 = −I and H2 = I. In the finite-dimensional setting
necessary and sufficient conditions for the implication in (1.1) to hold are given
by the following antitonicity theorem, see [4, 16]. Recall that the inertia of the
selfadjoint matrix Hi, i = 1, 2, is the ordered triplet, i(Hi) = {i+i , i

−
i , i

0
i }, of the

numbers of positive, negative, and zero eigenvalues of Hi.

Theorem 1.1. Let H1 and H2 be invertible selfadjoint matrices in Cn and assume
that H1 ≤ H2. Then

H−12 ≤ H−11 if and only if i(H1) = i(H2).

The condition that the matrices H1 and H2 are invertible means that i01 = i02 = 0;
hence the condition i(H1) = i(H2) in Theorem 1.1 is equivalent to i−1 = i−2 and
to i+1 = i+2 . If in Theorem 1.1 the matrices H1 and H2 are not invertible, then
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the inverses H−11 and H−12 still exist in the sense of linear relations (multivalued
mappings). With this interpretation Theorem 1.1 can be generalized to obtain the
following two results, which are new and applicable already in the finite-dimensional
setting (cf. [6, 7]).

Theorem 1.2. Let H1 and H2 be selfadjoint relations in Cn and assume that
H1 ≤ H2. Then

H−12 ≤ H−11 if and only if i−1 = i−2 .

Theorem 1.3. Let H1 and H2 be selfadjoint relations in Cn and assume that
H1 ≤ H2. Then

−H−11 ≤ −H−12 if and only if i−1 + i01 = i−2 + i02.

Clearly, when the selfadjoint relations H1 and H2 are invertible matrices, then
Theorem 1.2 and 1.3 coincide with Theorem 1.1. However, in the case of non-
invertible matrices H1 and H2 the above statements are new extensions of The-
orem 1.1. Note that, since H−11 and H−12 are selfadjoint relations, the condition
−H−11 ≤ −H−12 is in general different from the condition H−12 ≤ H−11 .

From either of the above theorems also other previously known antitonicity re-
sults in the matrix literature can be derived as special cases. For example the main
antitonicity result for the Moore-Penrose inverse H+ of a selfadjoint matrix H, see
[4, Theorem 2], can be obtained as a direct consequence of Theorem 1.2.

Corollary 1.4. Let H1 and H2 be selfadjoint matrices in Cn and assume that
H1 ≤ H2. Then

H+
2 ≤ H

+
1 if and only if i(H1) = i(H2).

It should be emphasized that both inequalities H−12 ≤ H−11 and −H−11 ≤ −H−12

occur naturally in the study of limits of monotone matrix functions, and they have
different geometrical implications; see [7]. Such inequalities between selfadjoint
relations have interesting applications, for instance, in the area of differential equa-
tions: they appear in the study of the square-integrability of solutions of definite
canonical systems of differential equations; see [6] and the references therein.

The objective of this paper is to prove antitonicity results analogous to The-
orem 1.2 and Theorem 1.3 for selfadjoint operators or relations H1 and H2 in a
separable, not necessarily finite-dimensional, Hilbert space. The results and their
proofs can be read with the finite-dimensional case in mind; in fact, the proofs of
the main two antitonicity theorems, Theorem 3.2 and Theorem 3.4 below, do not
essentially simplify in the finite-dimensional setting. As a preparation some facts
on selfadjoint relations in Hilbert spaces are in given Section 2. In particular, the
notion of ordering for selfadjoint relations which are bounded from below and the
concept of inertia are introduced. Section 3 contains the main results of the paper:
the two infinite-dimensional variants of Theorem 1.2 and 1.3. The important in-
gredients in their proofs are an infinite-dimensional version of Theorem 1.1, which
has been independently established in [18, 9] (cf. [10], and see also [3]), combined
with suitable perturbations arguments, and a general limit result on monotone op-
erator functions. Various consequences of the two main antitonicity results are
discussed, among them an infinite-dimensional version of the antitonicity result for
Moore-Penrose inverses in Corollary 1.4.
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ANTITONICITY FOR SELFADJOINT RELATIONS 3

2. Ordering and inertia of selfadjoint relations

This section contains an introduction to selfadjoint relations in Hilbert spaces.
In particular the notions of ordering and inertia for selfadjoint relations in Hilbert
spaces are introduced and investigated.

2.1. Linear relations. Let H be a Hilbert space with scalar product (·, ·) and
corresponding norm ‖ ·‖. A (closed) relation H in H is a (closed) linear subspace of
the product space H×H. As such, H is considered to consist of pairs {h, k} ∈ H×H,
so that H is the graph of a multivalued (linear) operator in H. The domain, range,
kernel, and multivalued part of a relation H are defined as follows:

domH = {h ∈ H : {h, k} ∈ H}, ranH = {k ∈ H : {h, k} ∈ H},
ker H = {h ∈ H : {h, 0} ∈ H}, mulH = {k ∈ H : {0, k} ∈ H}.

Note that, if H is closed then ker H and mulH are closed subspaces. A number
λ ∈ C is called an eigenvalue of H if {h, λh} ∈ H for some nontrivial h ∈ H,
which is then called an eigenvector. Similarly, ∞ is said to be an eigenvalue of H
if {0, k} ∈ H or, equivalently, k ∈ mulH, for some nontrivial k ∈ H, which is then
called an eigenvector. The relation H is an operator precisely when mulH = {0},
i.e., when ∞ is not an eigenvalue of H.

Each relation H has an inverse H−1 and an adjoint H∗, which are defined as

H−1 =
{
{k, h} : {h, k} ∈ H

}
;

H∗ =
{
{h, k} ∈ H× H : (g, h) = (f, k) for all {f, g} ∈ H

}
.

In particular, domH−1 = ranH and ker H−1 = mulH. Note that the adjoint is a
closed relation in H and that it coincides with the usual adjoint when H is a densely
defined operator.

For a relation H in H and λ ∈ C, the relation H − λ is given by

H − λ =
{
{h, k − λh} : {h, k} ∈ H

}
.

Its inverse, (H−λ)−1, is a relation whose kernel and multivalued part coincide with
mulH and ker (H−λ), respectively. Furthermore, it satisfies the following spectral
mapping identity:

(2.1) (H − λ)−1 = − 1

λ
+

1

λ2

(
−H−1 −

(
− 1

λ

))−1
, λ ∈ C \ {0}.

For a closed relation H the number λ ∈ C is said to belong to the resolvent set
of H, λ ∈ ρ(H), if (H − λ)−1 is an everywhere defined operator. The resolvent set
is an open subset of C. For λ ∈ ρ(H) the operator (H−λ)−1 is called the resolvent
operator of H (at λ).

2.2. Selfadjoint relations. A relation H is said to be symmetric if (k, h) ∈ R
for all {h, k} ∈ H. By the polarization formula, H is symmetric precisely when
H ⊂ H∗. A relation H is called selfadjoint if H = H∗; in particular, a selfadjoint
relation is automatically closed. A selfadjoint relation H in H induces the following
orthogonal decompositions of the space:

(2.2) H = domH ⊕mulH and H = ranH ⊕ ker H,
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where domH and ranH indicate the closures of domH and ranH, respectively.
This shows that H admits the following orthogonal decomposition:

(2.3) H = Hs ⊕̂ ({0} ×mulH),

where Hs = H ∩ (domH × domH), the so-called orthogonal operator part of H, is
a selfadjoint operator in domH and {0}×mulH is a selfadjoint relation in mulH.
The symbol ⊕̂ in (2.3) indicates the orthogonality of the summands. It follows
from (2.3) that the finite spectra of H and of Hs coincide. Hence C \ R ⊂ ρ(H)
and the selfadjoint operator part Hs is bounded if and only if domH is closed.
Moreover, if ranH is closed, then there exists a reduced neighborhood of 0 in R
which belongs to ρ(H), and 0 is at most an isolated eigenvalue of H. Let Es(·) be
the spectral function of Hs in domH. Define the spectral function E(·) for H in H
by E(t) = Es(t)⊕ 0mulH , t ∈ R, (cf. (2.3)) so that

(2.4) (H − λ)−1 =

∫
R

1

s− λ
dE(s), λ ∈ ρ(H).

For a measurable function ϕ : R→ C, define ϕ(H) = ϕ(Hs) ⊕̂ ({0} ×mulH).
A selfadjoint relation H in a Hilbert space H is said to be bounded from below

by m ∈ R if its operator part Hs is bounded from below by m:

(Hsh, h) ≥ m(h, h) for all h ∈ domH = domHs.

Any such number m is said to be a lower bound. The supremum of all lower bounds
is called the lower bound of H. Any real number smaller than the lower bound
belongs to ρ(H). If the lower bound is nonnegative, then H is called nonnegative:
H ≥ 0. Note that if H has lower bound m, then H − x has lower bound m− x for
any x ∈ R. Therefore H − x is nonnegative for all x ≤ m. In particular, if x < m
then (H − x)−1 is an everywhere defined positive bounded operator.

The square root H1/2 of a nonnegative selfadjoint relation H is defined as

H1/2 = (Hs)
1/2 ⊕̂ ({0} ×mulH).

For a nonnegative selfadjoint relation H one has

(2.5) domH ⊂ domH1/2, domH = domH1/2, mulH = mulH1/2.

Clearly, if Hs is bounded, then domH = domH1/2 = (mulH)⊥.

2.3. Ordering of selfadjoint relations. Let H1 and H2 be selfadjoint relations
in a Hilbert space H with lower bounds m1 and m2, respectively. Then H1 and H2

are said to satisfy H1 ≤ H2 if for a fixed x < min {m1,m2}
(2.6) 0 ≤ ((H2 − x)−1h, h) ≤ ((H1 − x)−1h, h) for all h ∈ H,

see [5, 8, 11]. The next proposition gives a characterization for the ordering of self-
adjoint relations, see [8, 11]. According to this proposition (2.6) holds automatically
for all x < min {m1,m2} if it holds for some x < min {m1,m2}.

Proposition 2.1. Let H1 and H2 be selfadjoint relations in a Hilbert space H with
lower bounds m1 and m2, respectively. Then H1 and H2 satisfy H1 ≤ H2 if and
only if for any x < min {m1,m2}

(2.7) dom (H2 − x)1/2 ⊂ dom (H1 − x)1/2

and

(2.8) ‖(H1 − x)1/2s h‖ ≤ ‖(H2 − x)1/2s h‖ for all h ∈ dom (H2 − x)1/2.
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ANTITONICITY FOR SELFADJOINT RELATIONS 5

If domH1 and domH2 are closed or, equivalently, if the operator parts (H1)s
and (H2)s are bounded, then by Proposition 2.1 (cf. (2.5)) H1 ≤ H2 if and only if

(2.9) domH2 ⊂ domH1 and ((H1)sh, h) ≤ ((H2)sh, h) for all h ∈ domH2.

In particular, if domH1 = domH2 = H, i.e., if H1 and H2 are bounded selfadjoint
operators, then the inequality H1 ≤ H2 has the usual meaning.

The inclusion (2.7) combined with (2.2) and (2.5) yields the following implication

(2.10) H1 ≤ H2 ⇒ domH2 ⊂ domH1 and mulH1 ⊂ mulH2.

Corollary 2.2. Let H1 and H2 be selfadjoint relations in a Hilbert space H with
closed domains such that H1 ≤ H2. Then −H2 ≤ −H1 if and only if domH1 =
domH2 or, equivalently, mulH1 = mulH2.

Proof. By assumption the operator parts (H1)s and (H2)s are bounded, which
guarantees that each of the relations ±H1 and ±H2 is bounded from below. Now,
the implication (⇒) is obtained by applying (2.10) to the inequalities H1 ≤ H2 and
−H2 ≤ −H1. The implication (⇐) follows directly from (2.9). �

Let Hj be a selfadjoint relation in a Hilbert space H with lower bound mj and
let Ej(·) be its spectral function for j = 1, 2. Then for x < mj ,

x‖h‖2 + ‖(Hj − x)1/2s h‖2 =

∫
R
s d(Ej(s)h, h), h ∈ dom (Hj − x)1/2.

Hence, the selfadjoint relations H1 and H2 satisfy H1 ≤ H2 if and only if the
inclusion (2.7) and the following inequality are satisfied for any x < min {m1,m2}:

(2.11)

∫
R
s d(E1(s)h, h) ≤

∫
R
s d(E2(s)h, h) for all h ∈ dom (H2 − x)1/2.

The next lemma will be useful in the proofs of Proposition 2.6 and 2.7 below.

Lemma 2.3. Let H1 and H2 be selfadjoint relations in a Hilbert space H which
are bounded from below and satisfy H1 ≤ H2. Let E1(·) and E2(·) denote the
corresponding spectral measures. Then the following statements hold:

(i) ranE2((−∞, 0]) ∩ ran (I − E1((−∞, 0))) ⊂ ker H1 ∩ ker H2;
(ii) ranE2((−∞, 0]) ∩ ran (I − E1((−∞, 0])) = {0};
(iii) ranE2((−∞, 0)) ∩ ran (I − E1((−∞, 0))) = {0}.

Proof. Note first that since H2 is semibounded,

ranE2((−∞, 0]) ⊂ domH2 ⊂ dom (H2 − x)1/2, x < min {m1,m2}.
Hence (2.11) holds for h ∈ ranE2((−∞, 0]).

(i) For h ∈ ranE2((−∞, 0])∩ ran (I −E1((−∞, 0))) the righthand side of (2.11)
is nonpositive and the lefthand side is nonnegative. Hence,∫

R
s d(E1(s)h, h) =

∫
R
s d(E2(s)h, h) = 0

and this implies (i).
(ii) Let h ∈ ranE2((−∞, 0]) ∩ ran (I − E1((−∞, 0])). If h 6= 0, the righthand

side of (2.11) is nonpositive and the lefthand side is positive. Hence h = 0 and (ii)
holds.

(iii) Let h ∈ ranE2((−∞, 0)) ∩ ran (I − E1((−∞, 0))). If h 6= 0, the righthand
side of (2.11) is negative and the lefthand side is nonnegative. Hence h = 0 and
(iii) holds. �
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The following result is included as a preparation for Section 3.

Lemma 2.4. Let H be a selfadjoint relation in a Hilbert space H and let (α, β) be
a spectral gap of H. Then the following statements hold:

(i) the relations (H − α)−1 and (H − β)−1 are selfadjoint with −(H − α)−1

and (H − β)−1 being bounded from below. They are limits of (H − t)−1 as
t ↓ α and t ↑ β respectively:

(H − t)−1 → (H − α)−1, (H − t)−1 → (H − β)−1,

where the convergence is in the strong resolvent sense. Moreover, the in-
equalities

−(H − t)−1 ≤ −(H − α)−1 and (H − t)−1 ≤ (H − β)−1

hold for α < t < β;
(ii) if Kα and Kβ are selfadjoint relations in H with −Kα and Kβ being bounded

from below, such that −(H − t)−1 ≤ −Kα or (H − t)−1 ≤ Kβ, α < t < β,
then the limits (H − α)−1 and (H − β)−1 satisfy

−(H − α)−1 ≤ −Kα or (H − β)−1 ≤ Kβ .

Proof. The statements are proved for the right endpoint β; a similar reasoning
applies to the left endpoint α. Note first that if E(·) is the spectral function of H,
then (2.4) shows that for all t1, t2 ∈ (α, β) with t1 ≤ t2 and all h ∈ H,

((H − t2)−1h, h)− ((H − t1)−1h, h) =

∫
R\(α,β)

t2 − t1
(s− t1)(s− t2)

d(E(s)h, h).

The support of the measure d(E(·)h, h) is contained in R \ (α, β) and there the
integrand is nonnegative. Hence, the operator function (H − t)−1 is nondecreasing
in t ∈ (α, β).

(i) Fix some c ∈ (α, β) and let mc be a lower bound for the bounded operator
(H − c)−1. As the function t 7→ (H − t)−1 is nondecreasing in (α, β) it follows that
mc is a lower bound for (H−t)−1, t ∈ (c, β). Hence by [5, Theorem 3.5] there exists
a selfadjoint relation B in H, bounded from below by mc, such that (H− t)−1 → B
as t ↑ β in the strong resolvent sense, or, equivalently, in the graph sense; cf. [5,
Proposition 2.3] and [17]. Moreover, (H − t)−1 ≤ B holds for all t ∈ (c, β).

Hence, to prove (i) it suffices to verify B = (H − β)−1. For this let {φ, ψ} ∈ B.
Since B is the graph limit of (H − t)−1 there exist {φt, ψt} ∈ (H − t)−1 with
{φt, ψt} → {φ, ψ} as t ↑ β. Since

{ψt, φt + (t− β)ψt} ∈ H − β and {φt + (t− β)ψt, ψt} ∈ (H − β)−1,

it follows that {φ, ψ} ∈ (H−β)−1, i.e., B ⊂ (H−β)−1. Since both B and (H−β)−1

are selfadjoint, the equality B = (H − β)−1 follows.
(ii) Since B = (H−β)−1 is bounded from below bymc the relation (H−β)−1−mc

is nonnegative. Recall that dom ((H − β)−1 −mc)
1/2 = H0, where

H0 = {h ∈ H : lim
t↑β
‖((H − t)−1 −mc)

1/2h‖ <∞};

cf. [5, Theorem 3.5]. Now let Kβ be such that (H − t)−1 ≤ Kβ , then by Proposi-
tion 2.1 for all t ∈ (c, β)

dom (Kβ −mc)
1/2 ⊂ dom ((H − t)−1 −mc)

1/2
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ANTITONICITY FOR SELFADJOINT RELATIONS 7

and

‖((H − t)−1 −mc)
1/2h‖ ≤ ‖(Kβ −mc)

1/2
s h‖ for all h ∈ dom (Kβ −mc)

1/2.

Since (H − t)−1 is a nondecreasing operator function on (α, β), the preceding in-
equality implies that

dom (Kβ −mc)
1/2 ⊂ H0 = dom ((H − β)−1 −mc)

1/2.

Hence Proposition 2.1 yields (H − β)−1 ≤ Kβ . �

2.4. Inertia of selfadjoint relations. The notion of inertia of a selfadjoint rela-
tion in a Hilbert space is defined by means of its associated spectral measure. In
what follows the Hilbert space is assumed to be separable.

Definition 2.5. Let H be a selfadjoint relation in a separable Hilbert space H and
let E(·) be the spectral measure of H. The inertia of H is defined as the ordered
quadruplet i(H) =

{
i+(H), i−(H), i0(H), i∞(H)

}
, where

i+(H) = dim ranE((0,∞)), i−(H) = dim ranE((−∞, 0)),

i0(H) = dim ker H, i∞(H) = dim mulH.

In particular, for a selfadjoint relation H in Cn, the quadruplet i(H) consists of
the numbers of positive, negative, zero, and infinite eigenvalues of H; cf. [7]. Hence,
if H is a selfadjoint matrix in Cn, then i∞(H) = 0 and the remaining numbers make
up the usual inertia of H, see, e.g. [12, 14] or the introduction.

The inertia numbers of a selfadjoint relation H in a separable Hilbert space H
satisfy:

(2.12) i+(H) + i−(H) + i0(H) + i∞(H) = dimH.

Furthermore, the following identities hold:

i(H−1) =
{
i+(H), i−(H), i∞(H), i0(H)

}
;

i(−H−1) =
{
i−(H), i+(H), i∞(H), i0(H)

}
.

(2.13)

The next proposition shows that the ordering of two selfadjoint relations in a
separable Hilbert space implies certain inequalities between their inertia numbers;
cf. [7, Proposition 3.6] for a finite-dimensional variant of Proposition 2.6.

Proposition 2.6. Let H1 and H2 be selfadjoint relations in a separable Hilbert
space H which are bounded from below and satisfy H1 ≤ H2. Then their inertia
i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j }, j = 1, 2, satisfy the following inequalities:

(i) i∞1 ≤ i∞2 and i−1 + i01 + i+1 ≥ i−2 + i02 + i+2 ;
(ii) i−1 ≥ i−2 and i−1 + i01 ≥ i−2 + i02;
(iii) i+1 + i∞1 ≤ i+2 + i∞2 and i01 + i+1 + i∞1 ≤ i02 + i+2 + i∞2 .

Proof. (i) This is a direct consequence of the implication in (2.10).
(ii) If i−1 = ∞, then automatically i−2 ≤ i−1 . Hence, in order to show i−2 ≤ i−1 ,

assume that i−1 <∞ and let L be a finite-dimensional subspace in ranE2((−∞, 0)).
Since E1((−∞, 0)) restricted to L is injective by Lemma 2.3 (iii), one has

dimL = dimE1((−∞, 0))L ≤ dim ranE1((−∞, 0)) = i−1 .

Thus any finite-dimensional subspace of ranE2((−∞, 0)) has dimension at most i−1 ,
which implies that the space ranE2((−∞, 0)) itself has dimension at most i−1 , i.e.
i−2 ≤ i−1 .
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The inequality i−1 + i01 ≥ i−2 + i02 can be shown in a similar way, when (ii) in
Lemma 2.3 is used instead of (iii).

(iii) By Lemma 2.3 (ii) the identity

(2.14) ranE2((−∞, 0]) ∩ (ranE1((0,∞))⊕mulH1) = {0}

holds. If i+2 + i∞2 = ∞, then automatically i+1 + i∞1 ≤ i+2 + i∞2 . Hence, in order to
show i+1 + i∞1 ≤ i+2 + i∞2 , assume that i+2 + i∞2 <∞ and let L be a finite-dimensional
subspace in ranE1((0,∞)) ⊕ mulH1. Since I − E2((−∞, 0]) restricted to L is
injective by (2.14), one has

dimL = dim
(
I − E2((−∞, 0])

)
L ≤ dim ran

(
I − E2((−∞, 0])

)
= i+2 + i∞2 .

Thus any finite-dimensional subspace of ranE1((0,∞)) ⊕ mulH1 has dimension
at most i+2 + i∞2 , which implies that the space ranE1((0,∞)) ⊕ mulH1 itself has
dimension at most i+2 + i∞2 , i.e., i+1 + i∞1 ≤ i+2 + i∞2 .

The inequality i01 + i+1 + i∞1 ≤ i−2 + i+2 + i∞2 can be shown in a similar way, when
(iii) in Lemma 2.3 is used instead of (ii). �

The case of equality in an inertia inequality of Proposition 2.6 has a specific
geometric implication.

Proposition 2.7. Let H1 and H2 be selfadjoint relations in a separable Hilbert
space H which are bounded from below. Let i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j } be the inertia of

Hj, j = 1, 2, and assume that H1 ≤ H2. Then the following statements hold:

(i) if i∞1 = i∞2 <∞, then mulH1 = mulH2;
(ii) if i−1 + i01 = i−2 + i02 <∞, then ker H1 ⊂ ker H2;

(iii) if i−1 = i−2 <∞, then ker H2 ⊂ ker H1.

In particular, if i−1 = i−2 <∞ and i01 = i02 <∞, then ker H1 = ker H2.

Proof. (i) This is a direct consequence of (2.10).
(ii) & (iii) Define the subspace L0 = ranE2((−∞, 0]) ∩ ran (I − E1((−∞, 0))).

According to Lemma 2.3 (i) L0 ⊂ ker H1 ∩ ker H2. Furthermore, note that L0 can
be rewritten as

L0 = ranE2((−∞, 0]) ∩
(
ranE1((−∞, 0))

)⊥
.

Since dim ranE2((−∞, 0]) = i−2 + i02 and dim ranE1((−∞, 0)) = i−1 <∞,

(2.15) dimL0 ≥ i−2 + i02 − i−1 .

In case (ii), the assumption together with (2.15) implies that dimL0 ≥ i01 =
dim ker H1. Combining this observation with the inclusion L0 ⊂ ker H1∩ker H2 ⊂
ker H1 yields that ker H1 ∩ ker H2 = ker H1 and, hence, that ker H1 ⊂ ker H2.

In case (iii), the assumption together with (2.15) implies that dimL0 ≥ i02 =
dim ker H2. Combining this observation with the inclusion L0 ⊂ ker H1∩ker H2 ⊂
ker H2 yields that ker H1∩ker H2 = ker H2 and, hence, that ker H2 ⊂ ker H1. �

3. Antitonicity for selfadjoint relations

The infinite-dimensional variants of the antitonicity theorems from the intro-
duction are here proved by means of perturbation arguments, the spectral mapping
result (2.1), and limit properties of monotone operator functions. Furthermore,
various consequences and special cases of these results are also discussed.
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3.1. An antitonicity theorem for bounded and boundedly invertible op-
erators. The following theorem is the infinite-dimensional variant of Theorem 1.1
from the introduction; it was proved independently in [18, 9]; cf. [10]. A simple
proof is included here; it relies on the main arguments used in [9, 10].

Theorem 3.1. Let H1 and H2 be bounded and boundedly invertible selfadjoint
operators in a separable Hilbert space H. Let i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j } be the inertia

of Hj, j = 1, 2, and assume that min {i+2 , i
−
1 } <∞ and that H1 ≤ H2. Then

H−12 ≤ H−11 if and only if i(H1) = i(H2).

Proof. Observe that for the bounded and boundedly invertible selfadjoint operators
H1 and H2 one has i0j = 0 = i∞j , j = 1, 2. Hence i(H1) = i(H2) is equivalent to

i−1 = i−2 and i+1 = i+2 . Furthermore, observe that i−1 < ∞ implies that i−2 < ∞ and
that i+2 <∞ implies that i+1 <∞; cf. Proposition 2.6.

(⇒) In view of (2.13) the equalities i−1 = i−2 and i+1 = i+2 follow by applying
Proposition 2.6 to H1 ≤ H2 and H−12 ≤ H−11 .

(⇐) Assume that i(H1) = i(H2), so that i−1 = i−2 and i+1 = i+2 . The asserted
implication will be shown in two steps.

First consider the case that i−1 < ∞. Then i−2 = i−1 < ∞. Now define the
operator J as Ii+1

⊕ −Ii−1 . Then a result of G. Köthe, cf. [13, Satz 1.2], shows the

existence of bounded and boundedly invertible operators V1 and V2 such that

H1 = V ∗1 JV1 and H2 = V ∗2 JV2.

By means of the above notation the inequality H1 ≤ H2 can be written as

(3.1) 0 ≤ J − U∗JU, U = V1V
−1
2 .

A simple calculation shows that(
I 0

JU∗ I

)∗(
J − UJU∗ 0

0 J

)(
I 0

JU∗ I

)
=

(
I JU
0 I

)∗(
J 0
0 J − U∗JU

)(
I JU
0 I

)
.

Since congruence does not change the inertia of bounded operators, the inertia of
the diagonal matrices in the above equation coincide, i.e.,

i−(J − UJU∗) + i−(J) = i−(J) + i−(J − U∗JU).

As i−(J) = i−1 <∞ and i−(J−U∗JU) = 0 by (3.1) it follows that i−(J−UJU∗) = 0
and hence J−UJU∗ is a nonnegative operator. Using the definition of U , this yields

H−12 = (V ∗2 JV2)−1 = V −12 JV −∗2 ≤ V −11 JV −∗1 = (V ∗1 JV1)−1 = H−11 ,

which completes the proof in the case i−1 <∞.
Next consider the case i+2 < ∞. Then it follows that i+1 = i+2 < ∞. By (2.13)

this implies that i−(−H1) = i−(−H2) < ∞. Since H1 ≤ H2 is equivalent to
−H2 ≤ −H1, the previous step shows that −H−11 ≤ −H−12 , which is equivalent to
H−12 ≤ H−11 ; see Corollary 2.2. This completes the proof of Theorem 3.1. �

3.2. First main antitonicity theorem. The following theorem is the infinite-
dimensional version of Theorem 1.3 from the introduction. Recall that for selfad-
joint relations H1 and H2 with closed ranges the operator parts of H−11 and H−12

are bounded; in particular, the relations −H−11 and −H−12 are bounded from below.
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Theorem 3.2. Let H1 and H2 be selfadjoint relations in a separable Hilbert space
H which are bounded from below and have closed ranges. Let i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j }

be the inertia of Hj, j = 1, 2, and assume that i−1 + i01 < ∞ and that H1 ≤ H2.
Then

−H−11 ≤ −H−12 if and only if i−1 + i01 = i−2 + i02.

Proof. (⇒) Apply Proposition 2.6 and (2.13) to the inequalities H1 ≤ H2 and
−H−11 ≤ −H−12 . Then the inertia equality i−1 + i01 = i−2 + i02 follows.

(⇐) Let H1 ≤ H2 and assume that i−1 +i01 = i−2 +i02 <∞ holds. Since the ranges of
H1 and H2 are closed, there exists a constant δ > 0, such that (−δ, δ)\{0} ⊂ ρ(Hj);
i.e. Hj has a spectral gap around 0 and the point 0 is possibly an isolated eigenvalue
of finite multiplicity, j = 1, 2. Define µ+ := min

{
1, δ
}

, then Proposition 2.1 implies
that the inequality

(3.2) H1 − ε1 ≤ H2 − ε2, 0 < ε2 ≤ ε1 < µ+,

holds. Clearly, Hj(εj) := Hj − εj is boundedly invertible and its inertia is

(3.3) i
(
Hj(εj)

)
=
{
i+j (εj), i

−
j (εj), i

0
j (εj), i

∞
j (εj)

}
=
{
i+j , i
−
j + i0j , 0, i

∞
j

}
, j = 1, 2.

Let mj be a lower bound for Hj , j = 1, 2. Then mj − 1 < mj − εj is a lower bound
for Hj(εj), j = 1, 2. Hence H1(ε1) ≤ H2(ε2) in (3.2) implies that

0 ≤ (H2(ε2)− x)−1 ≤ (H1(ε1)− x)−1, x < min {0,m1 − 1,m2 − 1};
cf. (2.6). Using (2.1), this yields the inequality

(3.4)
(
−H2(ε2)−1 + 1/x

)−1 ≤ (−H1(ε1)−1 + 1/x
)−1

.

By (2.13) and (3.3) the inertia numbers of −Hj(εj)
−1, j = 1, 2, are given by

(3.5) i
(
−Hj(εj)

−1) =
{
i−j (εj), i

+
j (εj), i

∞
j (εj), 0

}
, j = 1, 2.

Since (0,−1/(mj − 1)) ⊂ ρ(−Hj(εj)
−1) the operator −Hj(εj)

−1 + 1/x is bounded
and boundedly invertible for all x < min {0,m1 − 1,m2 − 1}, j = 1, 2. Hence (3.5)
and (3.3) imply that for j = 1, 2:

i
(
−Hj(εj)

−1 + 1/x
)

=
{
i−j (εj), i

+
j (εj) + i∞j (εj), 0, 0

}
=
{
i−j + i0j , i

+
j + i∞j , 0, 0

}
.

Since by assumption i−1 + i01 = i−2 + i02 <∞, Theorem 3.1 applied to (3.4) yields

−H1(ε1)−1 + 1/x ≤ −H2(ε2)−1 + 1/x, 0 < ε2 ≤ ε1 < µ+

or, equivalently,

(3.6) −(H1 − ε1)−1 ≤ −(H2 − ε2)−1, 0 < ε2 ≤ ε1 < µ+.

Now letting subsequently ε2 ↓ 0 and ε1 ↓ 0 in (3.6) in the strong resolvent sense
and using Lemma 2.4 in each step, the inequality −H−11 ≤ −H−12 is obtained. �

It is emphasized that the equivalence in Theorem 3.2 is not true without the
minus signs; see Corollary 2.2.

Corollary 3.3. Let H1 and H2 be selfadjoint relations in a separable Hilbert space
H with closed domains and closed ranges. Let i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j } be the inertia

of Hj, j = 1, 2, and assume that i−1 + i01 < ∞, i∞2 < ∞, and that H1 ≤ H2. Then
the following statements are equivalent:

(i) i(H1) = i(H2);
(ii) (a) −H−11 ≤ −H−12 ;
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(b) mulH1 = mulH2;
(c) ker H1 = ker H2;

(iii) −H2 ≤ −H1, −H−11 ≤ −H−12 , and H−12 ≤ H−11 .

Proof. (i) ⇒ (ii) This follows from Theorem 3.2 and Proposition 2.7.
(ii)⇒ (iii) Apply Corollary 2.2 to the inequalities H1 ≤ H2 and −H−11 ≤ −H−12 .

Then the desired inequalities follow.
(iii)⇒ (i) If the stated inequalities hold, then by Corollary 2.2 mulH1 = mulH2

and ker H1 = ker H2, i.e. i∞1 = i∞2 and i01 = i02. Furthermore, the inequality
−H−11 ≤ −H−12 implies that i−1 + i01 = i−2 + i02. Since i−j , i0j , and i∞j are finite for

j = 1, 2, (2.12) shows that (i) holds. �

3.3. Second main antitonicity theorem. The following theorem is the infinite-
dimensional version of Theorem 1.2 from the introduction. It is emphasized that
in contrast to Theorem 3.2 there is no closed range assumption on the relations.
However, the conditions H1 ≤ H2 and i−1 <∞ imply i−2 <∞; hence H−11 and H−12

are both semibounded from below.

Theorem 3.4. Let H1 and H2 be selfadjoint relations in a separable Hilbert space
H which are bounded from below. Let i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j } be the inertia of Hj,

j = 1, 2, and assume that i−1 <∞ and that H1 ≤ H2. Then

H−12 ≤ H−11 if and only if i−1 = i−2 .

Proof. (⇒) Apply Proposition 2.6 and (2.13) to H1 ≤ H2 and H−12 ≤ H−11 . Then
the inertia equality i−1 = i−2 follows.

(⇐) Let H1 ≤ H2 and assume that i−1 = i−2 < ∞ holds. Then the negative
spectrum of Hj consists of 0 ≤ i−j < ∞ eigenvalues (counting multiplicities), j =

1, 2. Let µ−j be the largest negative eigenvalue of Hj if 0 < i−j and define

µ− :=

{
min {1,−µ−1 ,−µ

−
2 }, i−1 = i−2 > 0,

1, i−1 = i−2 = 0.

Then

(3.7) H1 + ε1 ≤ H2 + ε2, 0 < ε1 ≤ ε2 < µ−,

where Hj + εj is boundedly invertible and i(Hj + εj) = {i+j + i0j , i
−
j , 0, i

∞
j }, j = 1, 2.

Since by assumption i−1 = i−2 <∞, Theorem 3.2 can be applied to (3.7) yielding

−(H1 + ε1)−1 ≤ −(H2 + ε2)−1, 0 < ε1 ≤ ε2 < µ−.

Because (Hj+εj)
−1, j = 1, 2, is a bounded operator, this inequality can be rewritten

as

(3.8) (H2 + ε2)−1 ≤ (H1 + ε1)−1, 0 < ε1 ≤ ε2 < µ−.

Now letting subsequently ε1 ↓ 0 and ε2 ↓ 0 in (3.8) in the strong resolvent sense and
using Lemma 2.4 in each step (which is possible since (−µ−, 0) ⊂ ρ(Hj), j = 1, 2),

the inequality H−12 ≤ H−11 is obtained. �

Theorem 3.4 with i−1 = 0 implies the following well-known result for nonnegative
selfadjoint operators and relations; cf. [2, 8].
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Corollary 3.5. Let H1 and H2 be selfadjoint relations in a separable Hilbert space
H. Then

0 ≤ H1 ≤ H2 if and only if 0 ≤ H−12 ≤ H−11 .

The following corollary for (not necessarily bounded) selfadjoint operators ex-
tends Theorem 3.1; cf. [18, Theorems 1, 2], [9, Theorem 2], and [10, Theorem 1.4].

Corollary 3.6. Let H1 and H2 be injective selfadjoint operators in a separable
Hilbert space H and let i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j } be the inertia of Hj, j = 1, 2. Then

the following statements hold:

(i) if H1 and H2 are bounded from below, i−1 <∞, and H1 ≤ H2, then

H−12 ≤ H−11 if and only if i(H1) = i(H2);

(ii) if −H1 and −H2 are bounded from below, i+2 <∞, and −H2 ≤ −H1, then

−H−11 ≤ −H−12 if and only if i(H1) = i(H2).

Combining Theorem 3.2, Theorem 3.4, and Proposition 2.7 yields the following
result.

Corollary 3.7. Let H1 and H2 be selfadjoint operators in a separable Hilbert space
H which are bounded from below and have closed ranges. Let i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j }

be the inertia of Hj, j = 1, 2, and assume that i−1 + i01 < ∞ and that H1 ≤ H2.
Then

H−12 ≤ H−11 , −H−11 ≤ −H−12 if and only if i−1 = i−2 , i01 = i02,

in which case ker H1 = ker H2.

3.4. An antitonicity theorem for Moore-Penrose inverses. The Moore-Penrose
inverse H+ of a selfadjoint operator H in a Hilbert space is defined as

H+ := PH−1P,

where H−1 is the inverse of H (in the sense of relations) and P denotes the orthog-
onal projection onto ranH in H. It follows that

(3.9) H+ = (H−1)s ⊕̂ (ker H × {0})
holds. Note that the assumption mulH = {0} implies ker (H−1)s = ker H−1 = {0}
and hence ker H+ = ker H and i(H+) = i(H) hold.

The following theorem is the infinite-dimensional version of Corollary 1.4 from
the introduction.

Theorem 3.8. Let H1 and H2 be selfadjoint operators in a separable Hilbert space
H which are bounded from below. Let i(Hj) = {i+j , i

−
j , i

0
j , i
∞
j } be the inertia of Hj,

j = 1, 2, and assume that i−1 + i01 <∞ and that H1 ≤ H2. Then

H+
2 ≤ H

+
1 if and only if ker H1 = ker H2 and i(H1) = i(H2).

Proof. (⇒) Since ker H+
j = ker Hj , j = 1, 2, it follows from Proposition 2.6 and

(2.13) that i−1 = i−2 <∞ and i01 = i02 <∞ hold. Since i∞1 = i∞2 = 0 by assumption,
(2.12) implies that i+1 = i+2 and, therefore, i(H1) = i(H2). The assertion ker H1 =
ker H2 follows from Proposition 2.7.

(⇐) The assumption i(H1) = i(H2) together with Theorem 3.4 implies the in-
equalities H−12 ≤ H−11 and (H−12 )s ≤ (H−11 )s. Therefore, as ker H1 = ker H2 it
follows from (3.9) and Proposition 2.1 that H+

2 ≤ H
+
1 holds. �
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