
ON DIRAC OPERATORS WITH ELECTROSTATIC δ-SHELL

INTERACTIONS OF CRITICAL STRENGTH

JUSSI BEHRNDT AND MARKUS HOLZMANN

Abstract. In this paper we prove that the Dirac operator Aη with an electro-

static δ-shell interaction of critical strength η = ±2 supported on a C2-smooth
compact surface Σ is self-adjoint in L2(R3;C4), we describe the domain explic-

itly in terms of traces and jump conditions in H−1/2(Σ;C4), and we investi-

gate the spectral properties of Aη . While the non-critical interaction strengths
η 6= ±2 have received a lot of attention in the recent past, the critical case

η = ±2 remained open. Our approach is based on abstract techniques in

extension theory of symmetric operators, in particular, boundary triples and
their Weyl functions.

1. Introduction

Dirac operators with electrostatic δ-shell interactions attracted a lot of attention
in the recent past, see [3, 4, 5, 7, 30, 31, 33] or the related papers [2, 12, 13]. From the
physical point of view they are the relativistic counterpart of Schrödinger operators
with δ-potentials, which are used as idealized models for Schrödinger operators with
strongly localized regular potentials, cf. [1, 6, 22, 29] and the references therein.
On the other hand Dirac operators with electrostatic δ-shell interactions are also
interesting from the mathematical point of view, since it can be expected that their
spectral properties depend on the geometry of the interaction support and/or the
interaction strength; such effects are studied in the monograph [24] and, e.g., in
[14, 21, 22, 23, 25] for Schrödinger operators with δ-potentials.

The mathematical study of Dirac operators with singular interactions supported
on a set of measure zero started in the 1980s. In the one-dimensional case several
results as, e.g., a description of the spectrum, an explicit resolvent formula, the
approximation by Dirac operators with squeezed potentials and their convergence
in the nonrelativistic limit were deduced in [1, 17, 27, 34, 35]. Making use of these
results and a decomposition into spherical harmonics J. Dittrich, P. Exner, and
P. Šeba studied the Dirac operator in R3 with a singular perturbation supported
on a sphere in [20]. The investigation of the Dirac operator in R3 with singular
perturbations supported on more general surfaces was initiated only recently in
the pioneering paper [3] by N. Arrizabalaga, A. Mas, and L. Vega, where a new
approach to extension theory of symmetric operators was employed; this research
was continued in [4, 5, 30, 31]. A different approach using the abstract theory
of quasi boundary triples and their Weyl functions from [9, 10] was proposed by
P. Exner, V. Lotoreichik, and the authors of the present paper in [7].
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In what follows we fix some notations and describe several already obtained
results to set up the problem treated in this paper. Let us choose units such that
the Planck constant ~ and the speed of light are both equal to one. The free Dirac
operator A0 in L2(R3;C4) is given by

A0f := −i
3∑
j=1

αj∂jf +mβf, domA0 = H1(R3;C4),

where the Dirac matrices α1, α2, α3 and β are defined by (1.2) below. The operator
A0 describes the motion of a free spin- 1

2 particle with mass m > 0 in R3 taking
relativistic effects into account. Furthermore, let Σ be the boundary of a bounded
C2-smooth domain Ω+ ⊂ R3 and let Ω− := R3 \ Ω+. The Dirac operator with an
electrostatic δ-shell interaction of strength η ∈ R supported on Σ is formally given
by

Aη = A0 + ηI4δΣ;

here I4 stands for the identity matrix in C4×4. In a mathematically rigorous form
Aη, η 6= ±2, is defined in [3, 7] as a particular self-adjoint extension of the symmetric
operator

S := A0 � H1
0 (R3 \ Σ;C4).

Observe that S is the restriction of the free Dirac operator to functions that vanish
on Σ. Roughly speaking, a function f ∈ domS∗ belongs to domAη if the traces of
f± := f � Ω± satisfy the jump condition

(1.1)
η

2

(
f+|Σ + f−|Σ

)
= −iα · ν

(
f+|Σ − f−|Σ

)
,

where ν is the outer unit normal vector field of Ω+; cf. Definition 5.1 for more
details. Concerning the basic spectral properties of Aη in the non-critical case
η 6= ±2 the following theorem is known from [3, 7] and Proposition 5.2.

Theorem 1.1. For η ∈ R \ {±2} the operator Aη is self-adjoint in L2(R3;C4) and
the following properties hold:

(i) domAη ⊂ H1(R3 \ Σ;C4);
(ii) the essential spectrum of Aη is given by

σess(Aη) = (−∞,−m] ∪ [m,∞);

(iii) the discrete spectrum of Aη in the gap (−m,m) is finite.

For an interaction strength η ∈ R\{±2} also various other results for the operator
Aη are known, as, e.g., an abstract version of the Birman-Schwinger principle [4, 7],
an isoperimetric inequality [5], the existence and completeness of the wave oper-
ators for the pair {Aη, A0}, the convergence in the nonrelativistic limit [7], and
the approximation by Dirac operators with squeezed potentials including Klein’s
paradox [31].

We emphasize that in all papers [3, 4, 5, 7, 30, 31] the critical interaction
strengths η = ±2 were excluded. This situation is more difficult to handle with
extension theoretic techniques and remained open so far. It is the goal of this paper
to fill this gap. Our main result can be summarized as follows; cf. Theorem 5.5,
Theorem 5.7, and Theorem 5.9 for more details.
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Theorem 1.2. The Dirac operator with an electrostatic δ-shell interaction of crit-
ical strength η = ±2 is self-adjoint in L2(R3;C4), its domain is not contained in
H1(R3 \ Σ;C4), the set (−∞,−m] ∪ [m,∞) belongs to the essential spectrum and
essential spectrum may also appear in (−m,m).

In fact, it will turn out in Theorem 5.5 that the operator A±2 is essentially self-
adjoint in L2(R3;C4) and hence, its closure is self-adjoint. Here A±2 is defined with
the help of a suitable quasi boundary triple in a similar way as in [7] on functions
satisfying the jump condition (1.1) inH1/2(Σ;C4). Our techniques, based on special
transformations of quasi boundary triples to ordinary boundary triples and vice
versa in the spirit of [11], allow us to give an explicit description of the domain of
the self-adjoint operator A±2. More precisely, we show that f ∈ domS∗ belongs to
the domain of the self-adjoint Dirac operator A±2 with critical interaction strength
if and only if the traces of f satisfy the jump condition in (1.1) in H−1/2(Σ;C4) and
that domA±2 is not contained in H1(R3 \ Σ;C4). Thus the functions in domA±2

are less regular than those in domAη, η ∈ R \ {±2}, which indicates one of the key
difficulties in the treatment of the critical interaction strengths ±2. We would like
to point out that a result of the same type as Theorem 5.5 was obtained recently in
[33] by T. Ourmières-Bonafos and L. Vega. In the present paper we also investigate
the spectral properties of the self-adjoint operators A±2. As one may expect the
set (−∞,−m] ∪ [m,∞) belongs to the essential spectrum – the proof of this fact
is based on the usage of suitable singular sequences – but it is less intuitive that
also in the interval (−m,m) essential spectrum may appear. For the case that the
interaction support Σ contains a flat part we prove in Theorem 5.9 that the point 0
belongs to σess(A±2) and at the same time it turns out that in this situation the
functions in domA±2 do not possess any Sobolev regularity of positive order. We
remark that a similar effect occurs in the study of indefinite Laplacians; cf. [8, 16].

The paper is organized as follows: In Section 2 we provide some statements from
the theory of quasi and ordinary boundary triples that are needed to prove our
main results. Section 3 contains then some preliminary considerations on the free
Dirac operator in R3 and a maximal Dirac operator in R3 \ Σ, while in Section 4
boundary triples suitable for Dirac operators with singular interactions are studied.
Section 5 contains our main results: Theorem 5.5, Theorem 5.7, and Theorem 5.9.

Notations. The positive constant m stands for the mass of the particle. The
identity matrix in Cn×n is denoted by In. Furthermore, α1, α2, α3 and β are the
Dirac matrices

(1.2) αj :=

(
0 σj
σj 0

)
and β :=

(
I2 0
0 −I2

)
,

where σj are the Pauli spin matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

The Dirac matrices satisfy the anti-commutation relations

(1.3) αjαk + αkαj = 2δjk and αjβ + βαj = 0, j, k ∈ {1, 2, 3}.

For vectors x = (x1, x2, x3)> we employ the notation α · x :=
∑3
j=1 αjxj .
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The open ball of radius R centered at x is denoted by B(x,R). Moreover,
Ω+ ⊂ R3 is a C2-smooth bounded domain and we set Ω− := R3\Ω+ and Σ := ∂Ω+.
For an open set Ω ⊂ R3 we write C∞c (Ω;C4) for the space of all infinitely many
times differentiable vector valued functions with four components and compact
support, and C∞(Ω;C4) := {f � Ω : f ∈ C∞c (R3;C4)}. In a similar way, if Ω
is an open subset of R3 or if Ω = Σ, then L2(Ω;C4) denotes the space of vector
valued functions, where each of the four components is square integrable, and we
write (·, ·)Ω for the corresponding inner product. If Ω = Σ, then these L2-spaces
are equipped with the Hausdorff measure σ, otherwise with the standard Lebesgue
measure. Eventually, we use the symbol Hs(Ω;C4) for Sobolev spaces of order
s ≥ 0 and H1

0 (Ω;C4) for the closure of C∞c (Ω;C4) with respect to the H1-norm.
For more details on Sobolev and other function spaces, see, e.g., [32].

The Laplace-Beltrami operator on Σ acting on C4-vector valued functions will be
denoted by −∆Σ. The operator (I4 −∆Σ)s : H2s(Σ;C4) → L2(Σ;C4) is bijective
and continuous for any s ∈ [−1, 1]. Finally, we are going to use the following
expression for the duality product for the pair H1/2(Σ;C4) and its dual space
H−1/2(Σ;C4):

(ϕ,ψ)1/2×−1/2 :=
(
(I4 −∆Σ)1/4ϕ, (I4 −∆Σ)−1/4ψ

)
Σ

for ϕ ∈ H1/2(Σ;C4) and ψ ∈ H−1/2(Σ;C4).

Acknowledgments. The authors wish to thank the referee for helpful comments
and remarks that led to an improvement of the manuscript. Furthermore, the au-
thors thank T. Ourmières-Bonafos and L. Vega for fruitful discussions. J. Behrndt
gratefully acknowledges financial support by the Austrian Science Fund (FWF):
Project P 25162-N26.

2. Quasi and ordinary boundary triples

In this section we give a short introduction to ordinary boundary triples, quasi
boundary triples, and some related techniques in extension and spectral theory of
symmetric and self-adjoint operators in Hilbert spaces. We formulate the results in
a way such that they can be applied directly in the main part of the paper in the
analysis of Dirac operators with singular interactions. In order to get a detailed
overview of the concept of ordinary and quasi boundary triples and applications to
partial differential operators we refer the reader to [9, 10, 15, 18, 19, 28].

Throughout this section H is always a complex Hilbert space with inner prod-
uct (·, ·)H and S denotes a densely defined, closed and symmetric operator with
adjoint S∗. We start with the definition of quasi and ordinary boundary triples.

Definition 2.1. Assume that T is a linear operator in H such that T = S∗. A triple
{G,Γ0,Γ1} consisting of a Hilbert space G and linear mappings Γ0,Γ1 : domT → G
is called a quasi boundary triple for S∗ if the following conditions hold:

(i) For all f, g ∈ domT the abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

is satisfied.
(ii) Γ = (Γ0,Γ1)> : domT → G × G has dense range.

(iii) A0 := T � ker Γ0 is a self-adjoint operator in H.
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If (i) and (iii) hold, and the mapping Γ = (Γ0,Γ1)> : domT → G × G is surjective
then {G,Γ0,Γ1} is called ordinary boundary triple.

We point out that the above (non-standard) definition of ordinary boundary
triples is equivalent to the usual one in, e.g., [15, 18, 28], see [9, Corollary 3.2]. In
particular, if {G,Γ0,Γ1} is an ordinary boundary triple, then T coincides with S∗.
Note that a quasi boundary triple or ordinary boundary triple for S∗ exists if and
only if the defect numbers dim ker(S∗ ± i) coincide, i.e. if and only if S admits
self-adjoint extensions in H, and that the operator T in Definition 2.1 is in general
not unique.

Let T ⊂ T = S∗ and let {G,Γ0,Γ1} be a quasi boundary triple for S∗. Then

S = T �
(
ker Γ0 ∩ ker Γ1

)
and the mapping Γ = (Γ0,Γ1)> : domT → G × G is closable; cf. [9]. Next, we
are going to introduce the γ-field and the Weyl function associated to the quasi
boundary triple {G,Γ0,Γ1}; as we will see one can describe spectral properties of
self-adjoint extensions of S with the help of these operators. In the following let
A0 = T � ker Γ0. Then the direct sum decomposition

(2.1) domT = domA0+̇ ker(T − λ) = ker Γ0+̇ ker(T − λ), λ ∈ ρ(A0),

holds. The definition of the γ-field and Weyl function for quasi boundary triples is
in accordance with the one for ordinary boundary triples in [18].

Definition 2.2. Let T be a linear operator in H such that T = S∗ and let
{G,Γ0,Γ1} be a quasi boundary triple for S∗. Then the corresponding γ-field γ
and Weyl function M are defined by

ρ(A0) 3 λ 7→ γ(λ) =
(
Γ0 � ker(T − λ)

)−1

and
ρ(A0) 3 λ 7→M(λ) = Γ1

(
Γ0 � ker(T − λ)

)−1
,

respectively.

Because of (2.1) the γ-field is well-defined and one has ran γ(λ) = ker(T − λ)
for any λ ∈ ρ(A0). Note that dom γ(λ) = ran Γ0 is dense in G by Definition 2.1.
Making use of the abstract Green’s formula (Definition 2.1 (i)) one can show that

(2.2) γ(λ)∗ = Γ1(A0 − λ)−1, λ ∈ ρ(A0);

this is a bounded and everywhere defined operator from H to G. Thus γ(λ) is a
(in general not everywhere defined) bounded operator; cf. [9, Proposition 2.6] or
[10, Proposition 6.13]. In the special case that {G,Γ0,Γ1} is an ordinary boundary
triple γ(λ) is automatically bounded and everywhere defined. Next, one has for all
λ, µ ∈ ρ(A0) and all ϕ ∈ ran Γ0

(2.3) γ(λ)ϕ =
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ)ϕ,

see [9, Proposition 2.6]. In particular, the mapping λ 7→ γ(λ)ϕ is holomorphic on
ρ(A0) for any fixed ϕ ∈ ran Γ0.

Next, we state some useful properties of the Weyl function M corresponding to
the quasi boundary triple {G,Γ0,Γ1}; the proofs of these statements can be found
in [9, Proposition 2.6]. The definition of M implies that

M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(T − λ), λ ∈ ρ(A0).
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In particular, for any λ ∈ ρ(A0) the linear operator M(λ) is densely defined in G
with domM(λ) = ran Γ0 and ranM(λ) ⊂ ran Γ1. For λ, µ ∈ ρ(A0) and ϕ ∈ ran Γ0

one has

(2.4) M(λ)ϕ−M(µ)∗ϕ = (λ− µ)γ(µ)∗γ(λ)ϕ.

Therefore, we see that M(λ) ⊂ M(λ)∗ for any λ ∈ ρ(A0) and hence M(λ) is a
closable, but in general unbounded linear operator in G. In the special case that
{G,Γ0,Γ1} is an ordinary boundary triple M(λ) is bounded and everywhere defined.
Equation (2.4) also yields that for any ϕ ∈ ran Γ0 the G-valued function λ 7→M(λ)ϕ
is analytic on ρ(A0).

In the main part of the paper we are going to use ordinary boundary triples,
quasi boundary triples, and their Weyl functions to define and study self-adjoint
extensions of the underlying symmetry S. Let T be a linear operator in H such
that T = S∗, let {G,Γ0,Γ1} be a quasi boundary triple for S∗ and let ϑ be a linear
operator in G. Then, we define the extension Aϑ of S by

(2.5) Aϑ = T � ker(Γ1 − ϑΓ0),

i.e. f ∈ domT belongs to domAϑ if and only if f satisfies Γ1f = ϑΓ0f . If ϑ is a
symmetric operator in G then Green’s identity implies

(2.6) (Aϑf, g)H − (f,Aϑg)H = (ϑΓ0f,Γ0g)G − (Γ0f, ϑΓ0g)G = 0

for all f, g ∈ domAϑ and hence the extension Aϑ is symmetric in H.

In the following theorem we state an abstract version of the Birman-Schwinger
principle and a Krein type resolvent formula for canonical extensions Aϑ; for the
proof of this result, see [9, Theorem 2.8] or [10, Theorem 6.16].

Theorem 2.3. Let T be a linear operator in H such that T = S∗, let {G,Γ0,Γ1} be
a quasi boundary triple for S∗ with A0 = T � ker Γ0, and denote the corresponding γ-
field and Weyl function by γ and M , respectively. Let Aϑ be the canonical extension
of S associated to an operator ϑ in G as in (2.5). Then the following assertions
hold for all λ ∈ ρ(A0):

(i) λ ∈ σp(Aϑ) if and only if 0 ∈ σp(ϑ−M(λ)). Moreover, it holds that

ker(Aϑ − λ) =
{
γ(λ)ϕ : ϕ ∈ ker(ϑ−M(λ))

}
.

(ii) If λ /∈ σp(Aϑ) then g ∈ ran(Aϑ−λ) if and only if γ(λ)∗g ∈ ran(ϑ−M(λ)).
(iii) If λ /∈ σp(Aϑ) then

(Aϑ − λ)−1g = (A0 − λ)−1g + γ(λ)
(
ϑ−M(λ)

)−1
γ(λ)∗g

holds for all g ∈ ran(Aϑ − λ).

Assertion (ii) of the previous theorem shows how the self-adjointness of an ex-
tension Aϑ can be proven. Namely, if ϑ is symmetric in G then Aϑ is symmetric in
H by (2.6), and hence Aϑ is self-adjoint if, in addition, ran(Aϑ∓ i) = H. According
to Theorem 2.3 (ii) the latter is equivalent to ran γ(∓i)∗ ⊂ ran(ϑ−M(±i)).

In the special case that {G,Γ0,Γ1} is an ordinary boundary triple the situation
is simpler as the next well-known proposition states. We note that the converse in
Proposition 2.4 holds if ϑ in (2.5) is allowed to be a linear relation (multivalued
operator).
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Proposition 2.4. Let S be a densely defined closed symmetric operator in H and
assume that {G,Γ0,Γ1} is an ordinary boundary triple for S∗. Let ϑ be an operator
in G and let Aϑ be defined by (2.5). If ϑ is (essentially) self-adjoint in G then Aϑ
is (essentially) self-adjoint in H.

In what follows we describe a particular transformation procedure of quasi bound-
ary triples to ordinary boundary triples from [11] which will be useful later in this
paper. Let T be a linear operator such that T = S∗ and let {G,Γ0,Γ1} be a quasi
boundary triple for S∗. Define the spaces

(2.7) G0 := ran(Γ0 � ker Γ1) and G1 := ran(Γ1 � ker Γ0).

We will often assume that G1 is dense in G. In this case, we denote by G ′1 the dual
space of G1 with respect to any norm ‖ · ‖G1 such that

(
G1, ‖ · ‖G1

)
is a reflexive

Banach space continuously embedded into G; such a norm exists, see [11, Proposi-
tion 2.9], and all norms with this property are equivalent, cf. [11, Proposition 2.10].
Analogous statements hold if G0 is dense in G and T � ker Γ1 is self-adjoint, and
hence we can employ a similar notation in this case as well.

First, it turns out that the boundary mapping Γ0 or Γ1 can be extended to
domS∗, if the set G1 or G0, respectively, is dense in G; cf. [11, Proposition 2.10 and
Corollary 2.11]. In the following we write ‖ · ‖S∗ for the graph norm induced by S∗.

Proposition 2.5. Let T be a linear operator such that T = S∗, let {G,Γ0,Γ1} be
a quasi boundary triple for S∗, and let G0,G1 be as in (2.7). Then the following
assertions are true:

(i) If G1 is dense in G then Γ0 admits a unique, surjective and continuous
extension

Γ̃0 :
(
domS∗, ‖ · ‖S∗

)
→ G ′1.

(ii) If G0 is dense in G and A∞ := T � ker Γ1 is self-adjoint then Γ1 admits a
unique, surjective and continuous extension

Γ̃1 :
(
domS∗, ‖ · ‖S∗

)
→ G ′0.

Under the assumptions of the previous proposition also the γ-field and the Weyl
function associated to the quasi boundary triple {G,Γ0,Γ1} can be extended; cf. [11,
Definition 2.14] and the corresponding discussion.

Proposition 2.6. Let T be a linear operator such that T = S∗, let {G,Γ0,Γ1} be a
quasi boundary triple for S∗, and let A0 = T � ker Γ0. Denote the corresponding γ-
field and Weyl function by γ and M , respectively. Assume that G0 and G1 defined by
(2.7) are dense in G and that A∞ := T � ker Γ1 is self-adjoint. Then the following
assertions hold for all λ ∈ ρ(A0):

(i) The values of the γ-field admit continuous extensions

γ̃(λ) =
(
Γ̃0 � ker(S∗ − λ)

)−1
: G ′1 → H.

(ii) The values of the Weyl function M(λ) admit continuous extensions

M̃(λ) = Γ̃1γ̃(λ) : G ′1 → G ′0.

Making use of the extended boundary mapping Γ̃0 one can transform the origi-
nally given quasi boundary triple {G,Γ0,Γ1} to an ordinary boundary triple, see [11,
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Theorem 2.12]. In order to introduce this ordinary boundary triple fix some iso-
morphisms ι+ : G1 → G and ι− : G ′1 → G which satisfy

(ι−x
′, ι+x)G = (x′, x)G ′1×G1

for all x ∈ G1 and x′ ∈ G ′1, where (·, ·)G ′1×G1
denotes the duality product of the pair

G ′1 and G1.

Theorem 2.7. Let T be a linear operator such that T = S∗ and let {G,Γ0,Γ1}
be a quasi boundary triple for S∗ with A0 = T � ker Γ0. Assume that G1 defined
by (2.7) is dense in G and that there exists µ ∈ ρ(A0) ∩ R. Define the mappings
Υ0,Υ1 : domS∗ → G by

Υ0f = ι−Γ̃0f, Υ1f = ι+Γ1f0, f = f0 + fµ ∈ domA0+̇ ker(S∗ − µ),

where Γ̃0 is the extension of the boundary mapping Γ0 from Proposition 2.5 (i).
Then {G,Υ0,Υ1} is an ordinary boundary triple for S∗ such that the self-adjoint
operators T � ker Γ0 and S∗ � ker Υ0 coincide.

We remark that the γ-field β and the Weyl functionM associated to the bound-
ary triple {G,Υ0,Υ1} are given by

(2.8) β(λ) = γ̃(λ)ι−1
− and M(λ) = ι+

(
M̃(λ)− M̃(µ)

)
ι−1
−

for λ ∈ ρ(A0) and µ ∈ R ∩ ρ(A0) chosen as in Theorem 2.7; cf. [11, eq. (2.17)].

Finally, let ϑ be a linear operator in G and let Aϑ be the canonical extension
of S defined via (2.5) and the quasi boundary triple {G,Γ0,Γ1}. Consider the linear
operator

Θ(ϑ) = ι+
(
ϑ−M(µ)

)
ι−1
− ,

dom Θ(ϑ) =
{
ϕ ∈ G : ι−1

− ϕ ∈ dom (ϑ−M(µ)) and (ϑ−M(µ))ι−1
− ϕ ∈ G1

}
,

(2.9)

in G. If {G,Υ0,Υ1} is the ordinary boundary triple in Theorem 2.7 then one verifies

ker(Γ1 − ϑΓ0) = ker
(
Υ1 −Θ(ϑ)Υ0

)
;

cf. [11, Corollary 3.5]. Together with Proposition 2.4 the next corollary follows
immediately; again a converse statement is true if ϑ and Θ(ϑ) are allowed to be
linear relations.

Corollary 2.8. Let ϑ, Θ(ϑ) and Aϑ be as above and assume that the assumptions
in Theorem 2.7 are satisfied. If Θ(ϑ) is (essentially) self-adjoint in G then the
operator Aϑ is (essentially) self-adjoint in H.

In this context we also note that for some self-adjoint operator Θ acting in G
and its corresponding extension AΘ = S∗ � ker(Υ1 −ΘΥ0) one has

λ ∈ σ(AΘ) ∩ ρ(A0) if and only if 0 ∈ σ(Θ−M(λ)),(2.10)

λ ∈ σp(AΘ) ∩ ρ(A0) if and only if 0 ∈ σp(Θ−M(λ)),(2.11)

and

(2.12) λ ∈ σdisc(AΘ) ∩ ρ(A0) if and only if 0 ∈ σdisc(Θ−M(λ));

cf. [18, 19] and [15, Theorem 1.29 and Theorem 3.3]. Moreover, for λ ∈ ρ(A0) ∩
ρ(AΘ) we have

(2.13) (AΘ − λ)−1 = (A0 − λ)−1 + β(λ)
(
Θ−M(λ)

)−1
β(λ)∗;
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see [18, 19] and [11, Section 3] for more details.

3. The free and the maximal Dirac operator

In this section we first recall the definition and some standard properties of
the free Dirac operator, which will be of importance in our further considerations.
Then we introduce and discuss the maximal Dirac operator in R3 \ Σ, where Σ is
the boundary of a bounded C2-domain.

Let us choose units such that the speed of light and the Planck constant ~ are
both equal to one. Then, the free Dirac operator is given by

(3.1) A0f := −i
3∑
j=1

αj∂jf +mβf = −iα · ∇f +mβf, domA0 = H1(R3;C4),

where the Dirac matrices α1, α2, α3 and β are defined by (1.2) and we require
m > 0. If −∆ denotes the self-adjoint Laplace operator in L2(R3;C) defined on
H2(R3;C) then

(3.2) A2
0 = (−∆ +m2)I4, domA2

0 = H2(R3;C4);

cf. [37, Korollar 20.2] for m = 1. In the above formula the symbol (−∆ +m2)I4 is
understood as a 4 × 4 diagonal block operator, where each diagonal entry acts as
−∆ +m2. Next, it is well-known that A0 is self-adjoint in L2(R3;C4) and that the
spectrum of A0 is

(3.3) σ(A0) = (−∞,−m] ∪ [m,∞),

see [36] or [37, Chapter 20]. Furthermore, for λ /∈ σ(A0) the resolvent of A0 is given
by

(3.4) (A0 − λ)−1f(x) =

∫
R3

Gλ(x− y)f(y)dy, x ∈ R3, f ∈ L2(R3;C4),

where the integral kernel Gλ is a C4×4-valued function of the form

(3.5) Gλ(x) =

(
λI4 +mβ +

(
1− i

√
λ2 −m2|x|

) i(α · x)

|x|2

)
ei
√
λ2−m2|x|

4π|x|
;

cf. [36, Section 1.E] or [4, Lemma 2.1]. In the above formula the square root is

defined such that Im
√
λ2 −m2 > 0 for λ 6∈ σ(A0).

Let Σ be the boundary of the bounded C2-domain Ω+ and let Ω− := R3 \ Ω+.
We will make use of the decomposition L2(R3;C4) = L2(Ω+;C4)⊕L2(Ω−;C4) and
split functions f ∈ L2(R3;C4) in the form f = f+ ⊕ f−, where f± := f � Ω± ∈
L2(Ω±;C4). Furthermore, we define the subspaces D± of L2(Ω±;C4) by

D± :=
{
f± ∈ L2(Ω±;C4) : (−iα · ∇+mβ)f± ∈ L2(Ω±;C4)

}
,

where all derivatives are understood in the distributional sense, and we endow D±
with the natural norms

(3.6) ‖f±‖2D± := ‖f±‖2Ω± +
∥∥(−iα · ∇+mβ)f±

∥∥2

Ω±
, f± ∈ D±.

Now, we define the maximal Dirac operator Tmax in L2(R3;C4) by

Tmaxf := (−iα · ∇+mβ)f+ ⊕ (−iα · ∇+mβ)f−,

domTmax := D+ ⊕D−.
(3.7)
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The operator Tmax turns out to be the adjoint of the symmetric restriction of A0

on functions vanishing on Σ.

Proposition 3.1. Define the linear operator S by

(3.8) S := A0 � H1
0 (R3 \ Σ;C4)

and let Tmax be as above. Then S is a densely defined, closed, symmetric operator
such that S∗ = Tmax holds.

Proof. Since C∞c (R3 \ Σ;C4) ⊂ domS and S ⊂ A0 it is clear that S is densely
defined and symmetric. Moreover S is closed since H1

0 (R3 \ Σ;C4) is a closed
subspace of H1(R3;C4) and the graph norm of A0 is equivalent to the H1(R3;C4)-
norm, see, e.g., [37, Satz 20.1].

Next we show S∗ ⊂ Tmax. For that, let f ∈ domS∗ and g+ ∈ C∞c (Ω+;C4).
Then g := g+ ⊕ 0 ∈ domS and(

(S∗f)+, g+

)
Ω+

= (S∗f, g)R3 = (f, Sg)R3 =
(
f+, (−iα · ∇+mβ)g+

)
Ω+
.

Since this holds for any g+ ∈ C∞c (Ω+;C4), the distribution (−iα ·∇+mβ)f+ exists
in L2(Ω+;C4) and is equal to (S∗f)+. Similarly, one verifies (−iα · ∇+mβ)f− =
(S∗f)− in the distributional sense. This yields f ∈ D+ ⊕ D− = domTmax and
Tmaxf = S∗f .

It remains to prove that Tmax ⊂ S∗. Let f ∈ domTmax and g ∈ C∞c (R3 \Σ;C4).
Then we have(

f+, (Sg)+

)
Ω+

=
(
f+, (−iα · ∇+mβ)g+

)
Ω+

=
(
(−iα · ∇+mβ)f+, g+

)
Ω+

=
(
(Tmaxf)+, g+

)
Ω+

and similarly (f−, (Sg)−)Ω− =
(
(Tmaxf)−, g−

)
Ω−

. Summing up these two equations

yields
(f, Sg)R3 = (Tmaxf, g)R3 .

A density argument shows that this remains valid for any g ∈ H1
0 (R3 \ Σ;C4) =

domS and hence f ∈ domS∗ and S∗f = Tmaxf . This completes the proof of this
proposition. �

The next lemma implies that smooth functions are dense in domTmax equipped
with the graph norm. The proof follows the strategy in [12, Lemma 2.1]; a similar
result can also be found in [33, Proposition 2.12].

Lemma 3.2. The space C∞(Ω±;C4) is dense in D± with respect to the norm ‖·‖D±
in (3.6).

Proof. We show this statement for D−, the assertion for D+ follows in almost the
same way. Assume that f ∈ D− satisfies

(3.9)
(
f, g
)

Ω−
+
(
(−iα · ∇+mβ)f, (−iα · ∇+mβ)g

)
Ω−

= 0

for all g ∈ C∞(Ω−;C4). Since this is true, in particular, for any g ∈ C∞c (Ω−;C4),
it follows that the distribution (−iα ·∇+mβ)2f exists in L2(Ω−;C4) and coincides
with −f .

Next, we claim that

(3.10) (−iα · ∇+mβ)f ∈ H1
0 (Ω−;C4).
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To see this, let A0 be the free Dirac operator in (3.1), let h ∈ C∞c (R3;C4) and
choose a smooth cutoff function χ : R3 → [0, 1] satisfying χ ≡ 1 in B(0, 1) and
χ ≡ 0 in R3 \ B(0, 2). Set χl := χ(·/l), l ∈ N. Then (χlA

−1
0 h) �Ω− ∈ C∞(Ω−;C4)

converges to (A−1
0 h)− in H1(Ω−;C4) as l →∞. Making use of (3.9), we conclude

that(
A−1

0 (0⊕−f), h
)
R3 = −

(
f, (A−1

0 h)−
)

Ω−
= − lim

l→∞

(
f, (χlA

−1
0 h)−

)
Ω−

= lim
l→∞

(
(−iα · ∇+mβ)f, (−iα · ∇+mβ)(χlA

−1
0 h)−

)
Ω−

=
(
(−iα · ∇+mβ)f, (−iα · ∇+mβ)(A−1

0 h)−
)

Ω−

=
(
0⊕ (−iα · ∇+mβ)f, h

)
R3 .

Since this is true for any h ∈ C∞c (R3;C4) it follows that

0⊕ (−iα · ∇+mβ)f = A−1
0 (0⊕−f) ∈ H1(R3;C4).

Moreover, the trace of 0⊕ (−iα ·∇+mβ)f at Σ is equal to zero. This yields (3.10).

From (3.10) it is clear that there exists a sequence (hn) ⊂ C∞c (Ω−;C4) such that
hn → (−iα · ∇+mβ)f in H1(Ω−;C4). Integration by parts yields finally that

0 ≤
(
(−iα · ∇+mβ)f, (−iα · ∇+mβ)f

)
Ω−

= lim
n→∞

(
hn, (−iα · ∇+mβ)f

)
Ω−

= lim
n→∞

(
(−iα · ∇+mβ)hn, f

)
Ω−

=
(
(−iα · ∇+mβ)2f, f

)
Ω−

=
(
− f, f

)
Ω−
≤ 0.

Thus, f = 0 and hence C∞(Ω−;C4) is dense in D−. �

4. Boundary triples for Dirac operators with δ-shell interactions

In this section we first provide a quasi boundary triple which is convenient to
study Dirac operators with singular interactions supported on Σ. In a slightly
different way this quasi boundary triple was already introduced in [7]. Although
only C∞-smooth surfaces Σ were considered in [7] the relevant results below remain
valid for C2-surfaces. The main purpose is then to extend and transform this quasi
boundary triple to an ordinary boundary triple as explained in Section 2; cf. [11].

First, we define the operator T := Tmax � H1(R3 \ Σ;C4), that is,

Tf := (−iα · ∇+mβ)f+ ⊕ (−iα · ∇+mβ)f−,

domT := H1(R3 \ Σ;C4) = H1(Ω+;C4)⊕H1(Ω−;C4),
(4.1)

and the linear mappings Γ0,Γ1 : domT → L2(Σ;C4) by

(4.2) Γ0f = iα · ν(f+|Σ − f−|Σ) and Γ1f =
1

2
(f+|Σ + f−|Σ), f ∈ domT.

Since Σ is C2-smooth, it follows that the normal vector field ν is differentiable and
hence, Γ0f,Γ1f ∈ H1/2(Σ;C4) for f ∈ domT by the trace theorem.

It can be deduced from [7] that {L2(Σ;C4),Γ0,Γ1} is a quasi boundary triple
for T (see [7, Remark 3.3]). For the convenience of the reader we give a direct and
simple proof here.
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Theorem 4.1. Let S be given by (3.8) and let the mappings T,Γ0 and Γ1 be as in
(4.1) and (4.2), respectively. Then {L2(Σ;C4),Γ0,Γ1} is a quasi boundary triple
for Tmax = S∗ = T with

(4.3) ran(Γ0,Γ1)> = H1/2(Σ;C4)×H1/2(Σ;C4),

and T � ker Γ0 is the free Dirac operator A0 in (3.1).

Proof. Observe first that T = Tmax since C∞(Ω+;C4) ⊕ C∞(Ω+;C4) is dense in
domTmax with respect to the graph norm by Lemma 3.2. Hence also the space
H1(Ω+;C4) ⊕ H1(Ω+;C4) is dense in domTmax with respect to the graph norm
and thus T = Tmax. Moreover, S is closed and S∗ = Tmax by Proposition 3.1.

Next it will be shown that Green’s identity holds. For this let f = f+ ⊕ f−, g =
g+ ⊕ g− ∈ domT = H1(Ω+;C4)⊕H1(Ω−;C4). Using (−iαj)∗ = iαj , j ∈ {1, 2, 3},
we get by integration by parts(
(−iα · ∇+mβ)f±, g±

)
Ω±
−
(
f±, (−iα · ∇+mβ)g±

)
Ω±

= ±
(
− iα · νf±|Σ, g±|Σ

)
Σ

;

note that the normal vector field ν always points inside Ω−, hence there is a different
sign on the right hand side. By adding these two formulae for Ω+ and Ω−, we obtain

(Tf, g)R3 − (f, Tg)R3 = (Γ1f,Γ0g)Σ − (Γ0f,Γ1g)Σ,

i.e. Green’s identity in Definition 2.1 (i) is valid.

To prove the range property (4.3) consider ϕ,ψ ∈ H1/2(Σ;C4). By the trace
theorem and (α · ν)2 = I4 there exists g+ ∈ H1(Ω+;C4) and h ∈ H1(R3;C4) such
that

iα · νg+|Σ = ϕ and h|Σ = ψ − 1

2
g+|Σ.

Then f := (g+ ⊕ 0) + h belongs to domT = H1(R3 \ Σ;C4) and satisfies

Γ0f = iα · νg+|Σ + iα · ν(h+|Σ − h−|Σ) = ϕ and Γ1f =
1

2
g+|Σ + h|Σ = ψ.

This implies (4.3) and hence item (ii) in Definition 2.1. Finally, since ker Γ0 =
H1(R3;C4) the restriction T � ker Γ0 coincides with the free Dirac operator A0

which is self-adjoint. Therefore, {L2(Σ;C4),Γ0,Γ1} is a quasi boundary triple
for S∗. �

Next we provide the γ-field and Weyl function associated to the quasi boundary
triple in Theorem 4.1.

Proposition 4.2. Let {L2(Σ;C4),Γ0,Γ1} be the quasi boundary triple in Theo-
rem 4.1, let λ ∈ ρ(A0) = C \ ((−∞,−m]∪ [m,∞)) and let Gλ be the integral kernel
of the resolvent of the free Dirac operator in (3.5). Then the following statements
hold.

(i) The values γ(λ) : L2(Σ;C4) → L2(R3;C4) of the γ-field are defined on
H1/2(Σ;C4) and given by

γ(λ)ϕ(x) =

∫
Σ

Gλ(x− y)ϕ(y)dσ(y), x ∈ R3, ϕ ∈ H1/2(Σ;C4).

Each γ(λ) is a densely defined and bounded operator from L2(Σ;C4) to
L2(R3;C4) and an everywhere defined bounded operator from H1/2(Σ;C4)
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to H1(R3 \ Σ;C4). The adjoint γ(λ)∗ : L2(R3;C4)→ L2(Σ;C4) is

γ(λ)∗f(x) =

∫
R3

Gλ(x− y)f(y)dy, x ∈ Σ, f ∈ L2(R3;C4).

(ii) The values M(λ) : L2(Σ;C4)→ L2(Σ;C4) of the Weyl function are defined
on H1/2(Σ;C4) and given by

M(λ)ϕ(x) := lim
ε↘0

∫
|x−y|>ε

Gλ(x− y)ϕ(y)dσ(y), x ∈ Σ, ϕ ∈ H1/2(Σ;C4).

Each M(λ) is a densely defined bounded operator in L2(Σ;C4) and an ev-
erywhere defined bounded operator in H1/2(Σ;C4).

Proof. Since the triple {L2(Σ;C4),Γ0,Γ1} in Theorem 4.1 is a restriction of the
quasi boundary triple considered in [7], the γ-field, the Weyl function and the ad-
joint γ-field are restrictions of the corresponding operators there; their explicit com-
putation can be found in [7, Proposition 3.4]. By definition and from [7, Proposi-
tion 3.4] it is also clear that γ(λ) and M(λ) are defined on ran Γ0 = H1/2(Σ;C4) and
are bounded operators in the respective L2-spaces. Moreover, by Definition 2.2 we
have ran γ(λ) = ker(T−λ) ⊂ H1(R3\Σ;C4) and ranM(λ) ⊂ ran Γ1 ⊂ H1/2(Σ;C4).

To see that γ(λ) : H1/2(Σ;C4)→ H1(R3 \ Σ;C4) is bounded it suffices to show
that γ(λ) is closed. Assume that (ϕn) ⊂ H1/2(Σ;C4) is a sequence such that

ϕn → ϕ in H1/2(Σ;C4) and γ(λ)ϕn → f in H1(R3 \ Σ;C4).

Clearly, ϕ ∈ H1/2(Σ;C4) = dom γ(λ) and ϕn → ϕ in L2(Σ;C4). Since γ(λ) is
bounded in the respective L2-spaces, we have γ(λ)ϕn → γ(λ)ϕ in L2(R3;C4). This
implies γ(λ)ϕ = f and therefore γ(λ) : H1/2(Σ;C4)→ H1(R3 \Σ;C4) is closed and
everywhere defined, and hence bounded.

Finally, since γ(λ) : H1/2(Σ;C4) → H1(R3 \ Σ;C4) is bounded, the continuity
of the operator M(λ) = Γ1γ(λ) in H1/2(Σ;C4) follows from the continuity of the
trace map. �

Recall that M(λ) is injective for any λ ∈ C \
(
(−∞,−m] ∪ [m,∞)

)
and that its

inverse is given by

(4.4) M(λ)−1 = −4α · νM(λ)α · ν.
In particular, M(λ) is bijective in H1/2(Σ;C4). For λ ∈ (−m,m) equation (4.4)
follows from the known identity −4(M(λ)α · ν)2 = I4, which is stated, e.g., in
[4, Lemma 2.2 (ii)] (note that M(λ) = Cλσ in the notation of [4, Lemma 2.2]).
For λ ∈ C \ R the above formula (4.4) follows then by an analytic continuation
argument.

Next we extend and transform the quasi boundary triple from Theorem 4.1 to
an ordinary boundary triple for S∗ using Proposition 2.5 and Theorem 2.7. Recall
from (2.7) that G0 and G1 are defined by

(4.5) G0 := ran(Γ0 � ker Γ1) and G1 := ran(Γ1 � ker Γ0).

Lemma 4.3. Let {L2(Σ;C4),Γ0,Γ1} be the quasi boundary triple in Theorem 4.1.
Then the operator A∞ := T � ker Γ1 is self-adjoint, the spaces G0 and G1 in (4.5)
are

(4.6) G0 = G1 = H1/2(Σ;C4),
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and Γ0 and Γ1 have surjective extensions

Γ̃0 : domTmax → H−1/2(Σ;C4) and Γ̃1 : domTmax → H−1/2(Σ;C4),

which are continuous with respect to the graph norm of Tmax.

Proof. First, it will be shown that A∞ is self-adjoint. Because of Green’s formula
(Definition 2.1 (i)) we see immediately that A∞ is symmetric. To prove that A∞
is self-adjoint it suffices to check ranA∞ = L2(R3;C4), which by Theorem 2.3 (ii)
is the case if and only if ran γ(0)∗ ⊂ ranM(0). The latter inclusion holds since
ran γ(0)∗ = ran Γ1A

−1
0 = H1/2(Σ;C4) by (2.2) and (4.4) yields that M(0) is bijec-

tive in H1/2(Σ;C4). Therefore A∞ is self-adjoint.

In order to show (4.6) let ϕ ∈ H1/2(Σ;C4) and choose functions f± ∈ H1(Ω±;C4)
with f±|Σ = ∓ 1

2 iα · νϕ. Then f = f+ ⊕ f− ∈ ker Γ1 and Γ0f = ϕ, and hence

G0 = H1/2(Σ;C4). To show the claim on G1 consider ϕ ∈ H1/2(Σ;C4) and choose
f ∈ H1(R3;C4) with f |Σ = ϕ. Then f ∈ ker Γ0 and Γ1f = f |Σ = ϕ. Hence (4.6) is
shown.

The last assertion on the surjective extensions of Γ0 and Γ1 is now an immediate
consequence of Proposition 2.5. �

Next we discuss the extensions of the γ-field and the Weyl function of the quasi
boundary triple {L2(Σ;C4),Γ0,Γ1}.

Proposition 4.4. Let {L2(Σ;C4),Γ0,Γ1} be the quasi boundary triple from The-
orem 4.1 with corresponding γ-field γ and Weyl function M . Then the following
assertions hold for all λ ∈ ρ(A0):

(i) The values of the γ-field admit continuous extensions

γ̃(λ) =
(
Γ̃0 � ker(Tmax − λ)

)−1
: H−1/2(Σ;C4)→ L2(R3;C4).

(ii) The values of the Weyl function admit continuous extensions

M̃(λ) = Γ̃1

(
Γ̃0 � ker(Tmax − λ)

)−1
: H−1/2(Σ;C4)→ H−1/2(Σ;C4).

Moreover, it holds for any ϕ ∈ H1/2(Σ;C4) and ψ ∈ H−1/2(Σ;C4)

(4.7)
(
ϕ, M̃(λ)ψ

)
1/2×−1/2

=
(
M(λ)ϕ,ψ

)
1/2×−1/2

.

(iii) The operators

M̃(λ)2 − 1

4
I4 : H−1/2(Σ;C4)→ H1/2(Σ;C4)

are well-defined and bounded. In particular, M(λ)2 − 1
4I4 is compact in

H1/2(Σ;C4).

Proof. Proposition 2.6 implies the existence and continuity of γ̃(λ) and M̃(λ) in (i)
and (ii). In order to show (4.7) let ϕ,ψ ∈ H1/2(Σ;C4). Making use of (2.4) we find(

ϕ, M̃(λ)ψ
)

1/2×−1/2
=
(
(I4 −∆Σ)1/4ϕ, (I4 −∆Σ)−1/4M̃(λ)ψ

)
Σ

=
(
ϕ,M(λ)ψ

)
Σ

=
(
M(λ)ϕ,ψ

)
Σ

=
(
(I4 −∆Σ)1/4M(λ)ϕ, (I4 −∆Σ)−1/4ψ

)
Σ

=
(
M(λ)ϕ,ψ

)
1/2×−1/2

.
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A density argument yields (4.7).

To prove item (iii) we first consider the case λ = 0. Note that equation (4.4)
and (α · ν)2 = I4 imply

(4.8) M(0)2 − 1

4
I4 = M(0)α · ν

(
α · νM(0) +M(0)α · ν

)
.

According to [33, Proposition 2.8] the operator

(4.9) A := α · νM(0) +M(0)α · ν : H1/2(Σ;C4)→ H1/2(Σ;C4)

admits a bounded extension Ã : H−1/2(Σ;C4)→ H1/2(Σ;C4). This and (4.8) show
assertion (iii) for λ = 0.

Let now λ ∈ ρ(A0) be arbitrary. The identity (2.4) yields for ϕ ∈ H1/2(Σ;C4)

(
M(λ)2 − 1

4

)
ϕ =

(
M(0) + λγ(0)∗γ(λ)

)2
ϕ− 1

4
ϕ

=

(
M(0)2 − 1

4

)
ϕ+ λM(0)γ(0)∗γ(λ)ϕ+ λγ(0)∗γ(λ)M(0)ϕ

+
(
λγ(0)∗γ(λ)

)2
ϕ.

(4.10)

From (2.2) we get

ran γ(0)∗ = ran
(
Γ1A

−1
0

)
= H1/2(Σ;C4).

Hence, the closed graph theorem implies that γ(0)∗ : L2(R3;C4) → H1/2(Σ;C4)
is continuous. Using item (i) of this proposition we see that γ(0)∗γ(λ) admits the
continuous extension

γ(0)∗γ̃(λ) : H−1/2(Σ;C4)→ H1/2(Σ;C4).

Moreover, since M(0) has the continuous extension M̃(0) in H−1/2(Σ;C4) and
M(0)2 − 1

4I4 has a continuous extension from H−1/2(Σ;C4) to H1/2(Σ;C4) by the
previous considerations, equation (4.10) yields finally the statement of assertion (iii)
for all λ ∈ ρ(A0).

Finally, since Σ is compact, the embedding ι : H1/2(Σ;C4) → H−1/2(Σ;C4) is
compact. Therefore, the mapping

M(λ)2 − 1

4
=

(
M̃(λ)2 − 1

4

)
ι

is compact in H1/2(Σ;C4). �

Eventually, we provide a transformation of the quasi boundary triple from The-
orem 4.1 to an ordinary boundary triple. This is an immediate consequence of
Theorem 2.7 for the special choice ι± = (I4 −∆Σ)±1/4 and µ = 0 ∈ ρ(A0), but for
the convenience of the reader we provide also a short direct proof. In order to define
the transformed boundary mappings recall that the direct sum decomposition

(4.11) domTmax = domA0+̇ kerTmax

holds, as 0 ∈ ρ(A0).
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Theorem 4.5. Let S be the symmetric operator in (3.8) with adjoint S∗ = Tmax

in (3.7). Moreover, let {L2(Σ;C4),Γ0,Γ1} be the quasi boundary triple from The-

orem 4.1, let Γ̃0 be the extension of Γ0 from Lemma 4.3, and define the mappings
Υ0,Υ1 : domTmax → L2(R3;C4) by

Υ0f := (I4 −∆Σ)−1/4 Γ̃0f and Υ1f := (I4 −∆Σ)1/4Γ1f0,

where f = f0 + f1 ∈ domA0+̇ kerTmax = domTmax. Then {L2(Σ;C4),Υ0,Υ1} is
an ordinary boundary triple for S∗ = Tmax with S∗ � ker Υ0 = T � ker Γ0 = A0.

Proof. First we verify that Green’s identity is true. Assume that f, g ∈ domT ⊂
domTmax and decompose these functions with respect to (4.11) as f = f0 + f1 and
g = g0 + g1 with f0, g0 ∈ domA0 and f1, g1 ∈ kerT . Using the self-adjointness of
the free Dirac operator A0 and Tf1 = Tg1 = 0 we deduce then

(Tf, g)R3 − (f, Tg)R3 = (A0f0, g0)R3 + (Tf0, g1)R3 − (f0, A0g0)R3 − (f1, T g0)R3

= (Tf0, g1)R3 − (f0, T g1)R3 + (Tf1, g0)R3 − (f1, T g0)R3 .

Employing now Theorem 4.1 and Γ0f0 = Γ0g0 = 0, as f0, g0 ∈ domA0 = ker Γ0,
we get

(Tf, g)R3 − (f, Tg)R3

= (Γ1f0,Γ0g1)Σ − (Γ0f0,Γ1g1)Σ + (Γ1f1,Γ0g0)Σ − (Γ0f1,Γ1g0)Σ

= (Γ1f0,Γ0g)Σ − (Γ0f,Γ1g0)Σ.

The self-adjointness of (I4 −∆Σ)±1/4 implies eventually

(Tf, g)R3 − (f, Tg)R3 =
(
(I4 −∆Σ)1/4Γ1f0, (I4 −∆Σ)−1/4Γ0g

)
Σ

−
(
(I4 −∆Σ)−1/4Γ0f, (I4 −∆Σ)1/4Γ1g0

)
Σ

= (Υ1f,Υ0g)Σ − (Υ0f,Υ1g)Σ.

Since C∞(Ω+;C4)⊕C∞(Ω+;C4) ⊂ domT is dense in domTmax by Lemma 3.2 and

Γ̃0,Γ1 are continuous with respect to the graph norm by Lemma 4.3 we conclude
that Green’s identity holds for all f, g ∈ domTmax.

To see that (Υ0,Υ1) is surjective let ϕ,ψ ∈ L2(Σ;C4) arbitrary, but fixed. Since

ran Γ̃0 = H−1/2(Σ;C4) by Lemma 4.3 there exists g ∈ dom Γ̃0 = domTmax such
that

Υ0g = (I4 −∆Σ)−1/4Γ̃0g = ϕ.

Next, choose some h ∈ domA0 which satisfies

Υ1h = (I4 −∆Σ)1/4Γ1h = ψ −Υ1g.

Since h ∈ domA0 = ker Γ0 we have, in particular, Υ0h = 0. Thus, the function
f := g+h ∈ domTmax fulfills Υ0f = ϕ and Υ1f = ψ, which shows that (Υ0,Υ1) is
surjective.

It remains to show that Tmax � ker Υ0 is self-adjoint. With the help of Green’s
identity, which is already proved, it is easy to see that Tmax � ker Υ0 is symmetric.
Moreover, the self-adjoint free Dirac operator is contained in Tmax � ker Υ0. Thus,
these operators must coincide. Therefore, the triple {L2(Σ;C4),Υ0,Υ1} fulfills
all conditions to be an ordinary boundary triple for S∗ = Tmax in the sense of
Definition 2.1 and the proof of this theorem is finished. �
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5. Dirac operators with electrostatic δ-shell interactions

In this section we define and investigate Dirac operators Aη with δ-shell inter-
actions supported on the closed and bounded C2-surface Σ ⊂ R3 with interaction
strength η ∈ R. In particular, we treat the case of the critical interaction strength
η = ±2, for which self-adjointness and other spectral properties of A±2 were not
obtained so far. The strategy is as follows: Using the quasi boundary triple from
Theorem 4.1 and the transformed ordinary boundary triple from Theorem 4.5 with
the corresponding transformed parameter Θ1(±2), cf. (2.9), we identify the closure
of A±2 with the closure of Θ1(±2), which turns out to be self-adjoint in L2(Σ;C4).
Making use of the corresponding Weyl functions and by constructing suitable sin-
gular sequences we prove some spectral results for A±2 in Theorem 5.7.

We start with the definition of Dirac operators with an electrostatic δ-shell in-
teraction of constant strength.

Definition 5.1. Let {L2(Σ;C4),Γ0,Γ1} be the quasi boundary triple from Theo-
rem 4.1 for S∗ = Tmax = T with T in (4.1) and let η ∈ R. Then the Dirac operator
Aη with an electrostatic δ-shell interaction of strength η is defined by

(5.1) Aη := T � ker(Γ0 + ηΓ1),

that is,

Aηf = (−iα · ∇+mβ)f+ ⊕ (−iα · ∇+mβ)f−,

domAη =
{
f = f+ ⊕ f− ∈ domT : η2 (f+|Σ + f−|Σ) = −iα · ν(f+|Σ − f−|Σ)

}
.

It follows immediately from (5.1) and Green’s identity that Aη is symmetric for
any η ∈ R. In the following proposition we prove that Aη is self-adjoint for η 6= ±2;
similar results have been obtained in [3, 7], but the approach used here also yields
an additional regularity result for the functions in domAη.

Proposition 5.2. Let η ∈ R \ {±2} and let Aη be defined as in Definition 5.1.
Then Aη is self-adjoint and domAη ⊂ H1(R3 \ Σ;C4).

Proof. Let η ∈ R \ {±2} be fixed and assume η 6= 0 (note that A0 is the self-
adjoint free Dirac operator). In order to show that the symmetric operator Aη is
self-adjoint we verify ran(Aη − λ) = L2(R3;C4) for all λ ∈ C \R. For λ ∈ C \R we
have λ 6∈ σp(Aη) since Aη is symmetric. Hence, by Theorem 2.3 (ii) the operator

Aη − λ is surjective if ran γ(λ)∗ ⊂ ran
(
− 1

η I4 −M(λ)
)
. Observe first that

ran γ(λ)∗ = ran
(
Γ1(A0 − λ)−1

)
= H1/2(Σ;C4)

by (2.2). To show that H1/2(Σ;C4) ⊂ ran
(
− 1

η I4 −M(λ)
)

we note that

(5.2)

(
−1

η
I4 −M(λ)

)(
−1

η
I4 +M(λ)

)
=

(
1

η2
− 1

4

)
I4 +K(λ)

with K(λ) := 1
4I4 −M(λ)2. By Proposition 4.4 (iii) the operator K(λ) is compact

in H1/2(Σ;C4). Moreover (5.2) is an injective operator as otherwise one of the
symmetric operators A±η would have the non-real eigenvalue λ; cf. Theorem 2.3 (i).
Thus, Fredholm’s alternative and (5.2) yield

H1/2(Σ;C4) = ran

((
1

η2
− 1

4

)
I4 +K(λ)

)
⊂ ran

(
−1

η
I4 −M(λ)

)
.
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From this and the above considerations it follows that Aη is self-adjoint for η ∈
R \ {±2}. The inclusion domAη ⊂ H1(R3 \ Σ;C4) is clear from (5.1). �

Now we turn our attention to the critical case η = ±2 in Definition 5.1.

Proposition 5.3. The operators

(5.3) A±2 = T � ker(Γ0 ± 2Γ1) = T � ker
(
Γ1 ± 1

2Γ0

)
are symmetric in L2(R3;C4) but not self-adjoint.

Proof. First, it follows from Green’s identity (Definition 2.1 (i)) that A±2 are both
symmetric. Now assume that A2 is self-adjoint; the same argument applies to A−2.
Then ran(A2−λ) = L2(R3;C4) for any λ ∈ C\R and hence Theorem 2.3 (ii) yields

(5.4) ran γ(λ)∗ = H1/2(Σ;C4) ⊂ ran

(
−1

2
I4 −M(λ)

)
.

Since λ 6∈ σp(A2) it follows that − 1
2I4 −M(λ) is bijective in H1/2(Σ;C4).

We claim that (5.4) also implies ran
(

1
2I4 −M(λ)

)
= H1/2(Σ;C4). In fact, for

ϕ ∈ H1/2(Σ;C4) we have −2M(λ)α · ν ϕ ∈ H1/2(Σ;C4) since Σ is C2-smooth and
M(λ) maps H1/2(Σ;C4) into H1/2(Σ;C4); cf. Proposition 4.2 (ii). By (5.4) there
exists ψ ∈ H1/2(Σ;C4) such that

−2M(λ)α · ν ϕ =

(
−1

2
−M(λ)

)
ψ.

Applying on both sides M(λ)α · ν and using (α · ν)2 = I4 and (M(λ)α · ν)2 = − 1
4I4

(see (4.4)) we find

1

2
ϕ = −2(M(λ)α · ν)2ϕ =

(
−1

2
M(λ)α · ν −M(λ)α · νM(λ)(α · ν)2

)
ψ,

which is equivalent to ϕ =
(

1
2 −M(λ)

)
α · ν ψ, i.e. ϕ ∈ ran

(
1
2I4 −M(λ)

)
. We

have shown ran
(

1
2I4 −M(λ)

)
= H1/2(Σ,C4), and as λ 6∈ σp(A−2) it follows that

1
2I4 −M(λ) is bijective in H1/2(Σ;C4).

Since − 1
2I4 − M(λ) and 1

2I4 − M(λ) are both bijective on H1/2(Σ;C4) also

M(λ)2 − 1
4I4 is bijective on H1/2(Σ;C4). On the other hand, M(λ)2 − 1

4I4 is

compact in H1/2(Σ;C4) by Proposition 4.4 (iii). Hence, this operator can not be
surjective; a contradiction. Therefore A2 is not self-adjoint in L2(R3;C4). �

In the following we complement Proposition 5.3, show that A±2 in (5.3) is es-
sentially self-adjoint and determine the closure A±2. For this we shall also consider
the ordinary boundary triple {L2(Σ;C4),Υ0,Υ1} in Theorem 4.5 with γ-field

(5.5) β(λ) = γ̃(λ)(I4 −∆Σ)1/4, λ ∈ ρ(A0),

and Weyl function

(5.6) M(λ) = (I4 −∆Σ)1/4
(
M̃(λ)− M̃(0)

)
(I4 −∆Σ)1/4, λ ∈ ρ(A0).
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The corresponding parameter (here ϑ = ∓ 1
2 by (5.3)) in Corollary 2.8 is then given

by

Θ1(±2) := −(I4 −∆Σ)1/4

(
±1

2
+M(0)

)
(I4 −∆Σ)1/4,

dom Θ1(±2) := H1(Σ;C4),

that is,

(5.7) A±2 = Tmax � ker
(
Υ1 −Θ1(±2)Υ0

)
.

Clearly, Θ1(±2) is symmetric in L2(Σ;C4). Our next goal is to prove that Θ1(±2)

is essentially self-adjoint and that Θ1(±2) coincides with the maximal operator

Θmax(±2)ϕ := −(I4 −∆Σ)1/4

(
±1

2
+ M̃(0)

)
(I4 −∆Σ)1/4ϕ,

dom Θmax(±2) :=

{
ϕ ∈ L2(Σ;C4) :

(
±1

2
+ M̃(0)

)
(I4 −∆Σ)1/4ϕ ∈ H1/2(Σ;C4)

}
.

(5.8)

Lemma 5.4. The operator Θ1(±2) is essentially self-adjoint in L2(Σ;C4) and

Θ1(±2) = Θmax(±2). In particular, Θmax(±2) is self-adjoint.

Proof. We prove the statement for η = 2, the case η = −2 is analogous. For the
convenience of the reader we divide the proof in three steps.

Step 1. We check first that Θmax(2) is closed. For this let (ϕn) ⊂ dom Θmax(2)
such that ϕn → ϕ ∈ L2(Σ;C4) and Θmax(2)ϕn → ψ ∈ L2(Σ;C4) as n→∞. Since
(I4 −∆Σ)−1/4 : L2(Σ;C4)→ H1/2(Σ;C4) is an isomorphism we find

(5.9) −
(

1

2
+ M̃(0)

)
(I4 −∆Σ)1/4ϕn → (I4 −∆Σ)−1/4ψ, n→∞,

with respect to the H1/2-norm, and hence also with respect to the H−1/2-norm.

On the other hand, since (I4 − ∆Σ)1/4 : L2(Σ;C4) → H−1/2(Σ;C4) and M̃(0) is
continuous in H−1/2(Σ;C4) by Proposition 4.4 (ii) we obtain

−
(

1

2
+ M̃(0)

)
(I4 −∆Σ)1/4ϕn → −

(
1

2
+ M̃(0)

)
(I4 −∆Σ)1/4ϕ, n→∞,

with respect to the H−1/2-norm. Combining this with (5.9) the last observation
leads to

−
(

1

2
+ M̃(0)

)
(I4 −∆Σ)1/4ϕ = (I4 −∆Σ)−1/4ψ ∈ H1/2(Σ;C4).

Therefore, ϕ ∈ dom Θmax(2) and Θmax(2)ϕ = ψ. Thus, Θmax(2) is closed.

Step 2. Let us now show the inclusion

(5.10) Θmax(2) ⊂ Θ1(2);

together with Θ1(2) ⊂ Θmax(2) and Θmax(2) closed from Step 1 this yields

(5.11) Θmax(2) = Θ1(2).
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To prove (5.10) let ϕ ∈ dom Θmax(2) and choose a sequence (ψn) ⊂ H1(Σ;C4) such
that ψn → ϕ in L2(Σ;C4) as n→∞. We define

ϕn := ϕ+ (I4 −∆Σ)−1/4

(
M̃(0)− 1

2

)
(I4 −∆Σ)1/4(ϕ− ψn).

It follows from

ϕn = (I4 −∆Σ)−1/4

(
1

2
+ M̃(0)

)
(I4 −∆Σ)1/4ϕ

+ (I4 −∆Σ)−1/4

(
1

2
−M(0)

)
(I4 −∆Σ)1/4ψn,(

1
2 + M̃(0)

)
(I4 − ∆Σ)1/4ϕ ∈ H1/2(Σ;C4) for ϕ ∈ dom Θmax(2), Proposition 4.2

and the mapping properties of (I4 −∆Σ)−1/4 that ϕn ∈ H1(Σ;C4) = dom Θ1(2).

Moreover, since M̃(0) is continuous in H−1/2(Σ;C4) we obtain

ϕn − ϕ = (I4 −∆Σ)−1/4

(
M̃(0)− 1

2

)
(I4 −∆Σ)1/4(ϕ− ψn)→ 0, n→∞,

in L2(Σ;C4). Finally, since M̃(0)2 − 1
4I4 : H−1/2(Σ;C4) → H1/2(Σ;C4) is contin-

uous by Proposition 4.4 (iii) we have

Θmax(2)(ϕ−ϕn) = (I4−∆Σ)1/4

(
M̃(0)2 − 1

4

)
(I4−∆Σ)1/4(ϕ−ψn)→ 0, n→∞,

in L2(Σ;C4). In particular, as Θ1(2) ⊂ Θmax(2) we have Θ1(2)ϕn → Θmax(2)ϕ as

n→∞, and hence ϕ ∈ dom Θ1(2) and Θ1(2)ϕ = Θmax(2)ϕ, i.e. (5.10) holds.

Step 3. Since Θ1(2) is symmetric it follows from (5.11) that Θ1(2) = Θmax(2) is a
symmetric operator. It is also clear from (5.11) that Θ1(2)∗ = Θmax(2)∗. In order
to conclude that Θmax(2) is self-adjoint it suffices to show the inclusion

(5.12) Θ1(2)∗ ⊂ Θmax(2).

For this let ψ ∈ dom Θ1(2)∗ and ϕ ∈ H1(Σ;C4) = dom Θ1(2). Making use of (4.7)
we compute(
Θ1(2)∗ψ,ϕ

)
Σ

=
(
ψ,Θ1(2)ϕ

)
Σ

=
(
ψ,−(I4 −∆Σ)1/4

(
1
2 +M(0)

)
(I4 −∆Σ)1/4ϕ

)
Σ

=
(

(I4 −∆Σ)1/4ψ,−
(

1
2 +M(0)

)
(I4 −∆Σ)1/4ϕ

)
−1/2×1/2

=
(
−
(

1
2 + M̃(0)

)
(I4 −∆Σ)1/4ψ, (I4 −∆Σ)1/4ϕ

)
−1/2×1/2

=
(
− (I4 −∆Σ)−1/4

(
1
2 + M̃(0)

)
(I4 −∆Σ)1/4ψ, (I4 −∆Σ)1/2ϕ

)
Σ
.

Since this is true for any ϕ ∈ H1(Σ;C4) = dom (I4 −∆Σ)1/2 we conclude

−(I4 −∆Σ)−1/4
(

1
2 + M̃(0)

)
(I4 −∆Σ)1/4ψ ∈ dom

(
(I4 −∆Σ)1/2

)∗
= H1(Σ;C4)

and using the self-adjointness of (I4 −∆Σ)1/2 we find

−(I4 −∆Σ)1/2
(

(I4 −∆Σ)−1/4
(

1
2 + M̃(0)

)
(I4 −∆Σ)1/4ψ

)
= Θ1(2)∗ψ.

This implies ψ ∈ dom Θmax(2) and Θ1(2)∗ψ = Θmax(2)ψ, and hence (5.12) holds.
�
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In the following theorem we conclude that the symmetric operator A±2 is es-
sentially self-adjoint and provide the domain of its closure, which is the proper
self-adjoint realization of the Dirac operator with an electrostatic δ-shell interac-
tion of strength ±2. For that recall the definitions of the maximal Dirac operator

Tmax from (3.7), the extended boundary mappings Γ̃0, Γ̃1 in Lemma 4.3, and of the
ordinary boundary triple {L2(Σ;C4),Υ0,Υ1} in Theorem 4.5.

Theorem 5.5. The operator A±2 in (5.1) is essentially self-adjoint in L2(R3;C4)
and the self-adjoint closure is given by

(5.13) A±2 = Tmax � ker
(
Υ1 −Θmax(±2)Υ0

)
= Tmax � ker

(
Γ̃0 ± 2Γ̃1

)
.

Furthermore, A±2 ( A±2 and domA±2 6⊂ H1(R3 \ Σ;C4).

Proof. It follows from Lemma 5.4 and (5.7) that A±2 is essentially self-adjoint;
cf. Corollary 2.8. Furthermore, since {L2(Σ;C4),Υ0,Υ1} is an ordinary boundary
triple the closure A±2 corresponds to the closure of the parameter Θ1(±2), that is,

A±2 = Tmax � ker
(
Υ1 −Θmax(±2)Υ0

)
,

and A±2 is self-adjoint in L2(R3;C4); cf. Lemma 5.4 and Corollary 2.8. The second
equality in (5.13) can be checked directly and also follows from [11, Corollary 3.8].
The last assertions are consequences of Proposition 5.3. �

Remark 5.6. The boundary condition ±2Γ̃1f = −Γ̃0f for f ∈ domTmax in Theo-
rem 5.5 is understood in H−1/2(Σ;C4) and with traces interpreted in H−1/2(Σ;C4)
(cf. [33, Proposition 2.1]) it has the more explicit form

±(f+|Σ + f−|Σ) = −iα · ν(f+|Σ − f−|Σ), f ∈ domTmax,

which is in accordance with Definition 5.1.

In the next theorem we discuss some spectral properties of the self-adjoint op-
erator A±2; the results complement those for Aη, η 6= ±2, from Theorem 1.1. We
point out that, in contrast to the non-critical case η 6= ±2, in the critical case
η = ±2 the interval (−m,m) may contain essential spectrum, see also Theorem 5.9
below.

Theorem 5.7. The following assertions hold for the self-adjoint operators A±2:

(i) (−∞,−m] ∪ [m,∞) ⊂ σess(A±2);

(ii) λ ∈ (−m,m) ∩ σp(A±2) if and only if 0 ∈ σp

(
1± 2M̃(λ)

)
;

(iii) σdisc(A2) = σdisc(A−2) and σess(A2) = σess(A−2);
(iv) For λ ∈ ρ(A±2) it holds that

(A±2 − λ)−1 = (A0 − λ)−1 ∓ γ̃(λ)
(
1± 2M̃(λ)

)−1
2γ(λ)∗.

Proof. (i) We verify the inclusion (−∞,−m]∪ [m,∞) ⊂ σess(A2); the inclusion for
the strength −2 can be verified in the same way. For λ ∈ (−∞,−m]∪ [m,∞) fixed
we construct a singular sequence as follows. First of all, since Σ is compact we can
choose R > 0 such that Σ ⊂ B(0, R). Next, let χ ∈ C∞c (R) be a cutoff function
satisfying χ(r) = 1 for |r| < 1

2 and χ(r) = 0 for |r| > 1 and set xn := (R + n2)e1,

where e1 = (1, 0, 0)>. We define

(5.14) ψλn(x) :=
1

n3/2
χ

(
1

n
|x− xn|

)
ei
√
λ2−m2x·e1

(√
λ2 −m2α1 +mβ + λ

)
ζ,
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where ζ ∈ C4 is chosen such that
(√
λ2 −m2α1 +mβ + λ

)
ζ 6= 0. By construction

we have suppψλn ∩ Σ = ∅ and thus ψλn ∈ domS ⊂ domA2; cf. (3.8). Moreover, it
holds

‖ψλn‖ =
∣∣∣(√λ2 −m2α1 +mβ + λ

)
ζ
∣∣∣ ·(∫

B(0,1)

|χ(|y|)|2dy

)1/2

= const.,

and since the supports of the ψλn are pairwise disjoint, the sequence (ψλn) converges
weakly to zero. A straightforward computation shows

(A2 − λ)ψλn(x) = (S − λ)ψλn(x)

= − i

n5/2
ei
√
λ2−m2x·e1χ′

(
1

n
|x− xn|

)
α · x− xn
|x− xn|

(√
λ2 −m2α1 +mβ + λ

)
ζ

+
1

n3/2
χ

(
1

n
|x− xn|

)
ei
√
λ2−m2x·e1

·
(√

λ2 −m2α1 +mβ − λ
)(√

λ2 −m2α1 +mβ + λ
)
ζ.

Note that
(√
λ2 −m2α1 +mβ − λ

) (√
λ2 −m2α1 +mβ + λ

)
= 0 by (1.3). Hence,

we have ∥∥(A2 − λ)ψλn
∥∥ ≤ C

n

(∫
B(0,1)

|χ′(|y|)|2dy

)1/2

and therefore, (A2− λ)ψλn → 0. Thus (ψλn) is a singular sequence for A2 and λ and
hence λ ∈ σess(A2).

Assertions (ii) and (iv) follow from (2.11), (2.13), and the special form of the
γ-field, Weyl function and Θmax(2) in (5.5), (5.6), and (5.8); cf. also [11, Corol-
lary 3.14].

It remains to prove item (iii). Since (−∞,−m] ∪ [m,∞) ⊂ σess(A±2) by (i), it
suffices to consider the case λ ∈ (−m,m). Assume that λ ∈ σdisc(A2). Note first
that the Birman Schwinger principle (2.12) implies

(5.15) 0 ∈ σdisc(Θmax(2)−M(λ)).

A simple calculation using (4.4) shows

−2M(λ)α · ν
(

1

2
I4 +M(λ)

)
= −

(
−1

2
I4 +M(λ)

)
α · ν,

where the operators M(λ) and α · ν are both bijective in H1/2(Σ;C4). Hence we
have

(5.16) −
(

1

2
I4 + M̃(λ)

)(
2M(λ)α · ν

)′
= −(α · ν)′

(
−1

2
I4 + M̃(λ)

)
with bijective operators (2M(λ)α ·ν)′ and (α ·ν)′ in H−1/2(Σ;C4). From (5.16) we
conclude

(5.17) dim ker(Θmax(−2)−M(λ)) = dim ker(Θmax(2)−M(λ))

and since ran(Θmax(2)−M(λ)) is closed it follows from (5.16) that ran(Θmax(−2)−
M(λ)) is closed; thus we have

(5.18) 0 ∈ σdisc(Θmax(−2)−M(λ))
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and hence λ ∈ σdisc(A−2). In the same way one can show that λ ∈ σdisc(A−2)
implies λ ∈ σdisc(A2).

Finally, we prove ρ(A2) ∩ (−m,m) = ρ(A−2) ∩ (−m,m). By exclusion and the
previous considerations this implies then σess(A2) = σess(A−2). Again, we only
verify that ρ(A2) ∩ (−m,m) ⊂ ρ(A−2) ∩ (−m,m), the other inclusion follows by
symmetry.

Let λ ∈ ρ(A2)∩ (−m,m). Then, by (2.10) we have that 0 ∈ ρ(Θmax(2)−M(λ)).

This implies that 1
2 + M̃(λ) is injective and that H1/2(Σ;C4) ⊂ ran

(
1
2 + M̃(λ)

)
.

Using equation (5.16) we deduce that− 1
2 +M̃(λ) is injective and thatH1/2(Σ;C4) ⊂

ran
(
− 1

2 + M̃(λ)
)
, i.e. 0 ∈ ρ(Θmax(−2) − M(λ)). Using again (2.10) we find

λ ∈ ρ(A−2). �

Remark 5.8. The functions ψλn in (5.14) are constructed as a solution of the equation
(−iα · ν + mβ)f = 0 times a cutoff function such that suppψλn ∩ Σ = ∅. Because
of the last property ψλn is contained in the domain of the symmetric operator S in
(3.8), and hence (ψλn) is a singular sequence for any self-adjoint extension of S at λ.
This implies that the set (−∞,−m]∪ [m,∞) is contained in the essential spectrum
of any self-adjoint extension of S; cf. [7, Theorem 4.4 (i)].

Note that Theorem 5.7 does not state that the spectrum of A±2 in (−m,m)
is purely discrete; in fact essential spectrum may appear in the gap as well. In
the special case when the interaction support contains a flat part it turns out in
the next theorem that 0 ∈ σess(A±2). Moreover, the functions in domA±2 do not
possess any Sobolev regularity (of positive order); cf. Theorem 5.5.

Theorem 5.9. Let Σ ⊂ R3 be the boundary of a bounded C2-smooth domain such
that there exists an open set Σ0 ⊂ Σ which is contained in a plane. Then the
following assertions hold for the self-adjoint operators A±2:

(i) 0 ∈ σess(A±2);
(ii) domA±2 6⊂ Hs(R3 \ Σ;C4) for all s > 0.

Proof. (i) The proof of this item is shown in an indirect way and is split into four
steps. Again we restrict ourselves to the case η = 2. Let us assume that

(5.19) 0 ∈ ρ(A2) ∪ σdisc(A2)

and consider the operator Ξ : L2(Σ;C4)→ L2(Σ;C4) defined by

(5.20) Ξϕ := (I4 −∆Σ)1/4

(
M̃(0)2 − 1

4

)
(I4 −∆Σ)1/4ϕ, ϕ ∈ L2(Σ;C4).

Step 1. Observe first that the operator Ξ is bounded and self-adjoint in L2(Σ;C4).

In fact, M̃(0)2 − 1
4I4 : H−1/2(Σ;C4) → H1/2(Σ;C4) is bounded by Proposi-

tion 4.4 (iii) and hence Ξ is well defined and bounded in L2(Σ;C4). Moreover,
since M(0) is symmetric by (2.4) we have(

Ξϕ,ϕ
)

=

((
M(0)2 − 1

4

)
(I4 −∆Σ)1/4ϕ, (I4 −∆Σ)1/4ϕ

)
∈ R

for ϕ ∈ H1(Σ;C4). By a density argument this extends to all ϕ ∈ L2(Σ;C4), so
that Ξ is self-adjoint in L2(Σ;C4).
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Step 2. We claim that the direct sum decomposition

(5.21) ker Ξ = ker Θmax(2)+̇ ker Θmax(−2)

holds. In particular, together with (5.17) for λ = 0, M(0) = 0 and assumption
(5.19) this implies that dim ker Ξ < ∞. Note first that the sum in (5.21) is direct

since ker( 1
2 + M̃(0)) ∩ ker( 1

2 − M̃(0)) = {0}. Next, the inclusion

(5.22) ker Θmax(2)+̇ ker Θmax(−2) ⊂ ker Ξ

follows easily from

Ξ = (I4 −∆Σ)1/4

(
1

2
+ M̃(0)

)(
−1

2
+ M̃(0)

)
(I4 −∆Σ)1/4

= (I4 −∆Σ)1/4

(
−1

2
+ M̃(0)

)(
1

2
+ M̃(0)

)
(I4 −∆Σ)1/4.

(5.23)

Furthermore, (5.23) also yields(
M̃(0)− 1

2

)
(I4 −∆Σ)1/4

(
ker Ξ	 ker Θmax(−2)

)
⊂ ker

(
1

2
+ M̃(0)

)
,

where ker Ξ	ker Θmax(−2) denotes the orthogonal complement of ker Θmax(−2) in
the closed subspace ker Ξ of L2(Σ;C4). Since the operator

(M̃(0)− 1

2
)(I4 −∆Σ)1/4 �

(
ker Ξ	 ker Θmax(−2)

)
is injective and (I4 −∆Σ)1/4 is an isomorphism we find

dim ker Ξ ≤ dim ker

(
1

2
+ M̃(0)

)
+ dim ker

(
1

2
− M̃(0)

)
= dim ker Θmax(2) + dim ker Θmax(−2),

which together with (5.22) implies (5.21).

Step 3. Now we consider the restriction of the self-adjoint operator Ξ onto the
invariant subspace H := (ker Ξ)⊥. From the above considerations it is clear that
Ξ �H is a bounded, self-adjoint and injective operator in H . We claim that the
operator (Ξ�H )−1 is bounded and everywhere defined in H .

In the following let P± be the orthogonal projectors onto ker Θmax(±2) and
observe that the self-adjoint operators

Θmax(±2) �(1−P±)L2(Σ;C4)

are boundedly invertible in (1 − P±)L2(Σ;C4); this follows from (5.19), Theo-
rem 5.7 (iii) and (2.12). We shall denote these restrictions by Θ±max(±2). Let
ϕ ∈ ran Ξ ⊂H and choose ψ ∈H such that ϕ = Ξψ. It is easy to see that

ψ± := −(I4 −∆Σ)−1/4

(
∓1

2
+ M̃(0)

)
(I4 −∆Σ)1/4ψ ∈ dom Θmax(±2)

satisfy ϕ = Ξψ = Θmax(±2)ψ±. Then we have ψ± = Θ±max(±2)−1ϕ + P±ψ± and
hence

(5.24) (Ξ�H )−1ϕ = ψ = ψ+−ψ− = Θ+
max(2)−1ϕ−Θ−max(−2)−1ϕ+P+ψ+−P−ψ−.
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Since P−ψ− − P+ψ+ ∈ ker Ξ = H ⊥ by (5.21) we find

‖(Ξ�H )−1ϕ‖2 ≤ ‖(Ξ�H )−1ϕ‖2 + ‖P−ψ− − P+ψ+‖2

=
∥∥(Ξ�H )−1ϕ+ (P−ψ− − P+ψ+)

∥∥2

=
∥∥Θ+

max(2)−1ϕ−Θ−max(−2)−1ϕ
∥∥2

and as Θ±max(±2)−1 are bounded it follows that (Ξ �H )−1 is bounded in H . As
(Ξ�H )−1 is self-adjoint in H it is clear that it is defined on H .

Step 4. Now we show that the assumption on Σ0 ⊂ Σ implies that there are
infinitely many linearly independent functions which do not belong to the range of
the operator Ξ in (5.20). This is a contradiction to the fact that dim ker Ξ is finite
and that Ξ �H is boundedly invertible with an inverse defined on all of H ; thus
(5.19) can not be true.

As in the proof of Proposition 4.4 (iii) consider

A = M(0)α · ν + α · νM(0)

in H1/2(Σ;C4) and recall that this operator admits a bounded extension Ã :
H−1/2(Σ;C4) → H1/2(Σ;C4); cf. [33, Proposition 2.8] or (4.9) and the discussion
afterwards. Since M(0)2− 1

4I4 = M(0)α ·νA (see the proof of Proposition 4.4 (iii))
a density argument leads to

M̃(0)2 − 1

4
I4 = M(0)α · νÃ.

Since M(0) and α·ν are bijective in H1/2(Σ;C4) and (I4−∆Σ)1/4 is an isomorphism,
we see by comparing with (5.20) that infinitely many linearly independent functions
do not belong to ran Ξ if and only if infinitely many linearly independent functions

do not belong to ran Ã. This statement will be shown now.

Making use of (1.3) we see that A is an integral operator of the form

(5.25) Aϕ(x) =

∫
Σ

K(x, z)ϕ(z)dσ(z)

with integral kernel

K(x, z) = G0(x− z)α · (ν(z)− ν(x)) +
ie−m|x−z|

2π|x− z|3
(1 +m|x− z|)ν(x) · (x− z),

where G0 is the Green’s function for the resolvent of A0 given by (3.5). Note that
|K(x, z)| ≤ C|x− z|−1 and hence the integral operator in (5.25) is not singular (see
also [3, equation (22) and Lemma 3.5] and [26, Proposition 3.11]). Let Σ1 ⊂ Σ
such that Σ1 ⊂ Σ0. Note that K(x, z) = 0, if x, z ∈ Σ0. Let U1 ⊂ R2 and
φ : U1 → R3 be a linear affine function which parametrizes Σ1, i.e. ranφ = Σ1, and
let ϕ ∈ H1/2(Σ;C4) be fixed. Since ν is constant on Σ0 and Σ1 ⊂ Σ0, we see that
the mapping U1 3 u 7→ K(φ(u), z) is C∞-smooth for any z ∈ Σ and the mapping
Σ 3 z 7→ K(φ(u), z) is C1-smooth for any u ∈ U1. From this, it is easy to deduce
that (Aϕ) ◦ φ is differentiable on U1 and

∂uj (Aϕ)(φ(u)) =

∫
Σ

∂ujK(φ(u), z)ϕ(z)dσ(z), j ∈ {1, 2}.

Let us denote the elements of the 4×4-matrix K(x, z) by Klm(x, z) and the elements
of ϕ(x) ∈ C4 by ϕm(x), l,m ∈ {1, 2, 3, 4}. Then the last observation implies, in



26 JUSSI BEHRNDT AND MARKUS HOLZMANN

particular, that

‖∂ujAϕ‖2L2(Σ1;C4) = C1

∫
U1

∣∣∂ujAϕ(φ(u))
∣∣2 du

= C1

∫
U1

∣∣∣∣∫
Σ

∂ujK(φ(u), z)ϕ(z)dσ(z)

∣∣∣∣2 du

= C1

∫
U1

4∑
m,l=1

∣∣∣(∂uj
Klm(φ(u), ·), ϕm

)
1/2×−1/2

∣∣∣2 du

≤ C1

∫
U1

∥∥∂ujK(φ(u), ·)
∥∥2

H1/2(Σ;C4)
‖ϕ‖H−1/2(Σ;C4)du

= C2‖ϕ‖H−1/2(Σ;C4).

By continuity we obtain from this observation that Ãϕ|Σ1
∈ H1(Σ1;C4) for any

ϕ ∈ H−1/2(Σ;C4). Thus, any ψ ∈ H1/2(Σ;C4) with ψ|Σ1 /∈ H1(Σ1;C4) is not
contained in ranA. Hence, there are infinitely many linearly independent functions

in H1/2(Σ;C4) that are not contained in ran Ã. The proof of item (i) is complete.

(ii) We show that domA2 ⊂ Hs(R3 \ Σ;C4) for some s > 0 implies that the
resolvent difference (A2 − λ)−1 − (A0 − λ)−1 is compact for λ ∈ C \ R. Since
σess(A0) = (−∞,−m] ∪ [m,∞) 6= σess(A2) this is a contradiction.

For s ∈ [0, 1] consider the Hilbert spaces

Hs := Hs(R3 \ Σ;C4) ∩ domTmax

equipped with the norms

‖f‖2Hs := ‖f‖2Hs(R3\Σ;C4) + ‖Tmaxf‖2L2(R3;C4), f ∈ Hs.

Then, the trace mappings Γ1
j := Γj : H1(R3 \ Σ;C4) = H1 → H1/2(Σ;C4) and

Γ0
j := Γ̃j : domTmax = H0 → H−1/2(Σ;C4) are continuous for j ∈ {0, 1}. By

interpolation we get that also

Γsj := Γ̃j � Hs : Hs → Hs−1/2(Σ;C4)

is continuous for any s ∈ [0, 1].

Let us assume now that domA2 = ker
(
Υ1 −Θmax(2)Υ0

)
⊂ Hs for some s > 0.

Then we have dom Θmax(2) ⊂ Hs(Σ;C4) as Υ0 = (I4 −∆Σ)−1/4Γ̃0. Let β and M
be the γ-field and Weyl function corresponding to {L2(Σ;C4),Υ0,Υ1}; cf. (5.5)
and (5.6). For λ ∈ C \ R we have

ran
(
Θmax(2)−M(λ)

)−1
= dom

(
Θmax(2)−M(λ)

)
⊂ Hs(Σ;C4)

and
(
Θmax(2)−M(λ)

)−1
is continuous in L2(Σ;C4). It follows that the operator(

Θmax(2)−M(λ)
)−1

: L2(Σ;C4)→ Hs(Σ;C4)

is closed and hence continuous. As the embedding ιs : Hs(Σ;C4) → L2(Σ;C4) is
compact we conclude that (Θmax(2)−M(λ))−1 is a compact operator in L2(Σ;C4).
Eventually (2.13) yields that

(A2 − λ)−1 − (A0 − λ)−1 = β(λ)
(
Θmax(2)−M(λ)

)−1
β(λ)∗, λ ∈ C \ R,

is a compact operator in L2(R3;C4). This completes the proof. �
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