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Abstract. In this note we provide boundary triplets and Weyl functions for
singular perturbations of Dirac operators, and apply them to investigate Dirac

operators with Lorentz scalar δ-shell interactions supported on points in R,

curves in R2, and surfaces in R3. In the one-dimensional situation such a
singular interaction is a rank two perturbation of the free Dirac operator and

can easily be treated with an ordinary boundary triplet. In the multidimen-

sional situation δ-shell interactions lead to infinite dimensional perturbations
and here it is more natural to apply generalized and quasi boundary triplets

when proving self-adjointness and spectral properties of the perturbed Dirac

operator. Some of the abstract techniques in this note are closely related and
inspired by the notion of boundary relations introduced by Seppo Hassi and

his coauthors in [23].

1. Introduction

Singular perturbations of self-adjoint operators play an important role in the
description of idealized quantum systems, where a localized short-range potential
is often replaced by a more singular model potential. More precisely, assume that
A0 is a self-adjoint differential operator in an L2-Hilbert space which is viewed as
the Hamiltonian of an unperturbed quantum system and suppose that V is some
potential such that the formal sum AV = A0 + V describes the quantum system
under investigation. Standard operator theory techniques ensure that for potentials
V belonging to certain function spaces the perturbed operator AV is again self-
adjoint; we refer the reader to the monographs of Reed and Simon [48, 49, 50, 51]
or Kato [40]. However, a detailed spectral analysis of AV is typically very difficult,
and for this reason the potential V is often replaced by an idealized perturbation
term of δ-type, which is then regarded as an approximation of the real model [5, 31].
On the one hand this procedure may simplify the spectral analysis considerably
[1, 16, 19, 39], but on the other hand it may lead to new technical difficulties in the
mathematically rigorous definition of the Hamiltonian itself.

In the case that A0 is the Laplacian in an L2-space and the δ-potential is sup-
ported on hypersurfaces in Rd (e.g., curves in R2, or surfaces in R3) the standard
quadratic form approach is useful. In this situation, roughly speaking, the per-
turbed operator Aτ = A0 +τδΣ is viewed as the self-adjoint operator corresponding
to the form

(1.1) a[f, g] = (∇f,∇g)L2 +

∫
Σ

τ f |Σ g|Σ dx,

1
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where (∇f,∇g)L2 is the quadratic form defined on the Sobolev space H1 associated
with the Laplacian, and the singular perturbation is encoded in the additive form
perturbation with Σ denoting the support of the δ-distribution, τ is some real (posi-
tion dependent) coefficient, and f |Σ and g|Σ denote the traces of the Sobolev space
functions f, g defined in an appropriate way. Of course one has to impose certain
assumptions on the support Σ of the δ-potential and the coefficient τ to ensure that
a in (1.1) is a densely defined closed semibounded form (which then gives rise to a
self-adjoint operator Aτ ); we refer to [19, 31, 32, 37, 52] for a detailed treatment and
further references. A different approach to the operator Aτ is via extension theory
techniques in general, and boundary triplet methods in particular (see the recent
monograph [9] and [21, 22, 23, 24, 25, 26, 27] by Seppo Hassi and his coauthors
for an extensive treatment of boundary triplets and further developments). For
the case of point interactions it is well known what type of transmission or jump
conditions the functions in the domain of Aτ satisfy; cf. [1] for a comprehensive
treatment of point interactions. In the case that the δ-distribution is supported
on a hypersurface we refer to [16], where quasi boundary triplets were used for the
first time to define Aτ as a self-adjoint restriction of a Laplacian that is decoupled
along the support Σ. As in the case of point interactions also in the multidimen-
sional setting one ends up with transmission and jump conditions for the functions
in the domain of Aτ along the support Σ of the δ-distribution, see also [8, 17, 42].
In conclusion, for the case that A0 is the Laplacian (or some more general semi-
bounded Schrödinger operator) nowadays one may efficiently apply form techniques
or boundary triplet methods to define and study the perturbed operator Aτ – de-
pending on the particular problem under consideration one method may prove more
useful than the other.

Now assume that the unperturbed operator A0 is the Dirac operator instead of
the Laplacian or the Schrödinger operator. While the Dirac operator describes a
similar physical system as the Laplace operator including relativistic effects (see
Section 3 for more details), the mathematical situation is entirely different: The
free Dirac operator A0 is not semibounded from below and hence standard qua-
dratic form methods are not applicable. Therefore, it is most natural to try to
apply boundary triplet techniques, since these methods do not require any type
of semiboundedness of the operators under consideration. In fact, Dirac operators
with singular interactions supported on points and spheres were already treated
with direct methods in [1, 30, 35], but for more general supports of the singular
potential only recently a series of papers was published [2, 3, 4], which in turn led
to our publications [6, 10, 12, 13] employing the quasi boundary triplet technique.
We also emphasize the recent papers [7, 11, 38, 43, 45, 46] where closely related
techniques were used to study Dirac operators with δ-shell interactions.

The main objective of this small note is to provide boundary triplets for Dirac op-
erators with Lorentz scalar interactions supported on a point in the one-dimensional
case, and supported on curves and surfaces in the two- and three-dimensional sit-
uation. This operator is formally given by

Aτ = A0 + τα0δΣ,

where α0 is a Dirac matrix defined in Section 3, and τα0δΣ describes the Lorentz
scalar δ-shell interaction supported on Σ. The one-dimensional setting with a single
point interaction is particularly easy to treat and we discuss in Section 4 a possible
choice of an ordinary boundary triplet, which was also used in [46]. We compute the
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corresponding γ-field and Weyl function, and give an expression for the resolvent of
the singularly perturbed one-dimensional Dirac operator. In the multidimensional
setting one observes typical analytic difficulties with trace maps and integration
by parts formulas on maximal operator domains (similar as for the Laplacian or
more general elliptic operators; cf. [14, 15]). It is convenient to extend the notion
of ordinary boundary triplets in such a way that these analytic difficulties can
be circumvented. As in the case of symmetric second order elliptic operators the
concepts of quasi boundary triplets and generalized boundary triplets are useful
and fit in this setting very well. In the present manuscript we allow some flexibility
in the domain of the boundary maps and obtain a family of quasi boundary triplets
that reduce to a generalized boundary triplet in the limit case, where the parameter
describing regularity of the operator domain is minimal; cf. Theorem 5.3. As
in the one-dimensional situation we provide the corresponding γ-fields and Weyl
functions, we discuss the self-adjointness of the operator Aτ and list some of its
spectral properties. An interesting issue in the multidimensional setting is the
regularity of the support Σ of the Lorentz scalar δ-perturbation: From C2-curves
and hypersurfaces treated earlier in [2, 3, 6, 7, 10, 45] and piecewise C2-curves
studied in [47] we make a substantial step towards more rough supports, and discuss
in Theorem 5.4 the case that Σ is the boundary of a bounded Lipschitz domain.

2. Ordinary, generalized, and quasi boundary triplets

In this section we briefly recall basic definitions of ordinary and generalized
boundary triplets, quasi boundary triplets, and some related techniques in extension
and spectral theory of symmetric and self-adjoint operators in Hilbert spaces. The
concepts will be presented such that they can be applied directly to Dirac operators
with singular interactions in the next sections. We refer the reader to [9, 14, 15,
20, 28, 29, 36] for more details on boundary triplet techniques.

Throughout this section H denotes a complex Hilbert space with inner prod-
uct (·, ·)H and S is a densely defined closed symmetric operator with adjoint S∗.

Definition 2.1. Let T be a linear operator in H such that T = S∗. A triplet
{G,Γ0,Γ1} consisting of a Hilbert space G and linear mappings Γ0,Γ1 : domT → G
is called a quasi boundary triplet for S∗ if the following holds:

(i) For all f, g ∈ domT the abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

is true.
(ii) The range of Γ = (Γ0,Γ1)> is dense in G × G.

(iii) The restriction A0 := T � ker Γ0 is a self-adjoint operator in H.

If (i) and (iii) hold, and the mapping Γ0 : domT → G is surjective, then {G,Γ0,Γ1}
is called generalized boundary triplet; if (i) and (iii) hold, and the mapping Γ =
(Γ0,Γ1)> : domT → G×G is surjective, then {G,Γ0,Γ1} is called ordinary boundary
triplet.

We remark that the above (non-standard) definition of generalized and ordinary
boundary triplets is equivalent to the usual one given in, e.g., [9, 20, 28, 29, 36],
see [14, Corollary 3.2 and Corollary 3.7]. In particular, if {G,Γ0,Γ1} is an ordinary
boundary triplet, then T = S∗. Note that a quasi boundary triplet, generalized
boundary triplet, or ordinary boundary triplet for S∗ exists if and only if the defect
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numbers dim ker (S∗±i) coincide, i.e. if and only if S admits self-adjoint extensions
in H. Moreover, the operator T in Definition 2.1 is in general not unique.

Next, we recall the definition of the γ-field and the Weyl function associated with
the quasi boundary triplet {G,Γ0,Γ1}. These mappings will allow us to describe
spectral properties of self-adjoint extensions of S. Let A0 = T � ker Γ0. Then the
direct sum decomposition

(2.1) domT = domA0+̇ker (T − λ) = ker Γ0+̇ker (T − λ), λ ∈ ρ(A0),

holds. The definition of the γ-field and Weyl function for quasi boundary triplets
is in accordance with the one for ordinary and generalized boundary triplets in
[28, 29].

Definition 2.2. Assume that T is a linear operator in H satisfying T = S∗ and
let {G,Γ0,Γ1} be a quasi boundary triplet for S∗. Then the corresponding γ-field
γ and Weyl function M are defined by

ρ(A0) 3 λ 7→ γ(λ) =
(
Γ0 � ker (T − λ)

)−1

and

ρ(A0) 3 λ 7→M(λ) = Γ1

(
Γ0 � ker (T − λ)

)−1
,

respectively.

From (2.1) we get that the γ-field is well defined and that ran γ(λ) = ker (T −λ)
holds for all λ ∈ ρ(A0). Moreover, dom γ(λ) = ran Γ0 is dense in G by Definition 2.1.
With the help of the abstract Green’s identity in Definition 2.1 (i) one verifies that

(2.2) γ(λ)∗ = Γ1(A0 − λ)−1, λ ∈ ρ(A0);

this is a bounded and everywhere defined operator from H to G. Therefore, γ(λ) is
a (in general not everywhere defined) bounded operator; cf. [14, Proposition 2.6] or
[15, Proposition 6.13]. If {G,Γ0,Γ1} is a generalized or ordinary boundary triplet,
then γ(λ) is automatically bounded and everywhere defined.

Next, we state some useful properties of the Weyl function M corresponding to
the quasi boundary triplet {G,Γ0,Γ1}; see, e.g, [14, Proposition 2.6] for proofs of
these statements. For any λ ∈ ρ(A0) the operator M(λ) is densely defined in G
with domM(λ) = ran Γ0 and ranM(λ) ⊂ ran Γ1. Next, for all λ, µ ∈ ρ(A0) and
ϕ ∈ ran Γ0 one has

(2.3) M(λ)ϕ−M(µ)∗ϕ = (λ− µ)γ(µ)∗γ(λ)ϕ.

Therefore, we see that M(λ) ⊂M(λ)∗ for any λ ∈ ρ(A0) and hence M(λ) is a clos-
able, but in general unbounded linear operator in G. If {G,Γ0,Γ1} is a generalized
or ordinary boundary triplet, then M(λ) is bounded and everywhere defined.

In the main part of the paper we are going to use ordinary boundary triplets,
generalized boundary triplets, quasi boundary triplets, and their Weyl functions to
define and study self-adjoint extensions of the underlying symmetry S. Let again T
be a linear operator in H such that T = S∗, let {G,Γ0,Γ1} be a quasi boundary
triplet for S∗, and let ϑ be a linear operator in G. Then we define the extension Aϑ
of S by

(2.4) Aϑ = T � ker (Γ1 − ϑΓ0),
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i.e. f ∈ domT belongs to domAϑ if and only if f satisfies Γ1f = ϑΓ0f . If ϑ is a
symmetric operator in G, then Green’s identity implies

(2.5) (Aϑf, g)H − (f,Aϑg)H = (ϑΓ0f,Γ0g)G − (Γ0f, ϑΓ0g)G = 0

for all f, g ∈ domAϑ and hence the extension Aϑ is symmetric in H.
Of course, one is mostly interested in the self-adjointness of Aϑ. If {G,Γ0,Γ1} is

an ordinary boundary triplet, then the situation is simple: Here one has a one-to-
one correspondence between self-adjoint realizations Aϑ as in (2.4) and self-adjoint
operators and relations ϑ in G. In particular, if ϑ is a self-adjoint operator in G,
then Aϑ is self-adjoint in H, see, e.g. [9, Theorem 2.1.3] for more details.

If {G,Γ0,Γ1} is a generalized or a quasi boundary triplet, then the self-adjointness
of ϑ does, in general, not imply the self-adjointness of Aϑ, or vice versa. However,
the following theorem, where we also state an abstract version of the Birman-
Schwinger principle and a Krein type resolvent formula for canonical extensions
Aϑ, will allow us to give conditions for the self-adjointness of Aϑ; for the proof we
refer to [14, Theorem 2.8] or [15, Theorem 6.16].

Theorem 2.3. Let T be a linear operator in H satisfying T = S∗, let {G,Γ0,Γ1}
be a quasi boundary triplet for S∗ with A0 = T � ker Γ0, and denote the associated
γ-field and Weyl function by γ and M , respectively. Let Aϑ be the extension of S
associated with an operator ϑ in G as in (2.4). Then the following holds for all
λ ∈ ρ(A0):

(i) λ ∈ σp(Aϑ) if and only if 0 ∈ σp(ϑ−M(λ)). Moreover,

ker (Aϑ − λ) =
{
γ(λ)ϕ : ϕ ∈ ker (ϑ−M(λ))

}
.

(ii) If λ /∈ σp(Aϑ), then g ∈ ran (Aϑ−λ) if and only if γ(λ)∗g ∈ ran (ϑ−M(λ)).
(iii) If λ /∈ σp(Aϑ), then

(Aϑ − λ)−1g = (A0 − λ)−1g + γ(λ)
(
ϑ−M(λ)

)−1
γ(λ)∗g

holds for all g ∈ ran (Aϑ − λ).

Assertion (ii) of the previous theorem shows how the self-adjointness of an ex-
tension Aϑ can be proven, if {G,Γ0,Γ1} is a generalized or a quasi boundary triplet.
If ϑ is symmetric in G, then Aϑ is symmetric in H by (2.5), and hence Aϑ is self-
adjoint if, in addition, ran (Aϑ ∓ i) = H. According to Theorem 2.3 (ii) the latter
is the case, if ran γ(∓i)∗ ⊂ ran (ϑ−M(±i)).

3. Some facts about Dirac operators

In this section, a brief introduction to Dirac operators will be presented. These
operators correspond to the right-hand side of the Dirac equation. The free Dirac
equation was derived by P. Dirac when linearising the relativistic energy-momentum
relationship of the energy E and the momentum p = (p1, . . . , pd) given by

E2 =

d∑
j=1

p2
j +m2.

Here and in the subsequent sections, d is the space dimension and m > 0 is the
mass of the particle. Furthermore, the speed of light c and Planck’s constant ~
are set to one for simplicity. This can always be realised by a suitable choice of
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units. The usual linearisation approach, as it is carried out for instance in [53],
corresponds to

(3.1)

E − d∑
j=1

αjpj −mα0

E +

d∑
j=1

αjpj +mα0

 = 0

with matrices αj ∈ CN×N , where N = 2[(d+1)/2] and [·] is the Gauss bracket. For
the cases relevant to us we have N = 2 for d ∈ {1, 2} and N = 4 for d = 3. A
comparison with the energy-momentum relationship above shows that the matrices
αj must be chosen such that they satisfy the anti-commutation relations

(3.2) αkαj + αjαk = 2δkjIN for all k, j ∈ {0, 1, . . . , d},
where In denotes the n× n-identity matrix. For d ∈ {1, 2} the matrices αj can be
chosen as the Pauli spin matrices

α1 = σ1 =

(
0 1
1 0

)
, α2 = σ2 =

(
0 −i
i 0

)
and α0 = σ3 =

(
1 0
0 −1

)
and for d = 3 as the so-called Dirac matrices

αj =

(
0 σj
σj 0

)
and α0 =

(
I2 0
0 −I2

)
.

If one now applies the usual substitution rules i ∂∂t and −i ∂
∂xj

for E and pj in one

of the factors in (3.1), one obtains the free Dirac equation

i
∂

∂t
Ψ =

−i d∑
j=1

αj
∂

∂xj
+mα0

Ψ,

which describes a particle with spin 1/2, such as an electron, that moves in Rd.
Here and in the following we use for x = (x1, . . . , xd) ∈ Rd the notation

α · x :=

d∑
j=1

αjxj and α · ∇ :=

d∑
j=1

αj
∂

∂xj
.

As in the case of the Schrödinger equation, one now defines the free Dirac operator
as the right-hand side of the free Dirac equation by

A0f = (−iα · ∇+mα0) f, domA0 = H1(Rd;CN ).(3.3)

With the help of the Fourier transform it is not difficult to verify that A0 is self-
adjoint in L2(Rd;CN ) with purely essential spectrum

(3.4) σ(A0) = (−∞,−m] ∪ [m,∞);

cf. [53] or [54]. From a physical point of view there are possible energy states of the
system that are negative and these energies are not bounded from below. This led
to the discovery of anti-particles, as, e.g., in the case of the electron, the positron.

To derive an explicit representation of the resolvent (A0 − λ)−1 for λ ∈ ρ(A0),
one uses that (3.2) implies the relation

(A0 − λ)(A0 + λ) =
(
−∆ +m2 − λ2

)
IN ,

where −∆ is the free Laplace operator defined on dom (−∆) = H2(Rd). This
implies

(3.5) (A0 − λ)−1 =
(
− iα · ∇+mα0 + λIN

)
(−∆ +m2 − λ2)−1IN .
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Using the well-known form of the resolvent of −∆, one finds that (A0 − λ)−1 is an
integral operator in L2(Rd;CN ). In order to describe the integral kernel Gλ,d(x−y),
we write Kj for the modified Bessel functions of the second kind and

(3.6) k(λ) =
√
λ2 −m2 and ζ =

λ+m

k(λ)
=

λ+m√
λ2 −m2

;

here
√
z is chosen for z ∈ C \ [0,∞) such that Im

√
z > 0. For d ∈ {1, 2, 3} the

integral kernel Gλ,d is explicitly given by

Gλ,1(x) =
i

2
eik(λ)|x|

(
ζ sgn (x)

sgn (x) ζ−1

)
,

Gλ,2(x) =
k(λ)

2π
K1

(
− ik(λ)|x|

)σ · x
|x|

+
1

2π
K0

(
− ik(λ)|x|

)(
λI2 +mσ3

)
,

Gλ,3(x) =

(
λI4 +mα0 + (1− ik(λ)|x|) i(α · x)

|x|2

)
1

4π|x|
eik(λ)|x|;

(3.7)

cf. [1, 13, 53, 54].
Next, external potential fields are to be considered in which the particle moves.

Since we are studying relativistic effects, these potentials must be invariant under
Lorentz transformations. For a given scalar potential Φs the quantity V = Φsα0 is
Lorentz invariant as shown in [53]. This motivates the following formal ansatz for
the Dirac operator of a relativistic quantum particle with spin 1/2 moving in an
external field consisting of a scalar potential Φs:

A = A0 + Φsα0.

Of particular interest are strongly localized fields which only have an effect in a small
neighbourhood of a set Σ ⊂ Rd with measure 0. An example for a field of this kind is
the quark confinement inside a nucleon in form of the MIT bag model. To describe
these strongly localized fields it is often a useful simplification to replace them by
δ-potentials which are supported on Σ. In the following we consider a Lorentz
scalar potential which is strongly localized in a neighbourhood of the hypersurface
Σ ⊂ Rd and approximate it by a δ-potential supported on Σ. Applying the formal
ansatz above for the Dirac operator yields the formal expression

(3.8) Aτ = A0 + τα0δΣ

with interaction strength τ ∈ R. In the following sections, this operator will be
defined in a mathematically rigorous way and its properties will be studied. Re-
call from (3.4) that the free Dirac operator A0 is not bounded from below and
hence the usual form approach to construct self-adjoint realizations with singular
perturbations is not applicable.

4. One-dimensional Dirac operators with Lorentz scalar δ-point
interactions

In this section, one-dimensional Dirac operators with Lorentz scalar δ-interactions
supported on Σ = {0} will be investigated. The following results are well known,
see for instance [46], but are presented here for the sake of completeness. In par-
ticular, the methods used and the results obtained in the discussion will serve as
a motivation for the analysis of two- and three-dimensional Dirac operators in the
following section.
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As already mentioned in the previous section, it is well known that the free Dirac
operator

A0f = −iσ1
d

dx
f +mσ3f, domA0 = H1

(
R;C2

)
,

is self-adjoint in the Hilbert space L2(R,C2). In accordance with (3.8), Lorentz
scalar δ-interactions shall now be considered, which are represented by the formal
expression

(4.1) Aτ = A0 + τσ3δΣ.

Here τ ∈ R corresponds to the constant interaction strength. Following the usual
construction of self-adjoint realizations of the expression above as in [1], one first
defines the symmetric operator

Sf :=

(
−iσ1

d

dx
f+ +mσ3f+

)
⊕
(
−iσ1

d

dx
f− +mσ3f−

)
,

domS := H1
0

(
(0,∞);C2

)
⊕H1

0 ((−∞, 0);C2).

Here the orthogonal decomposition L2(R;C2) = L2((0,∞);C2)⊕ L2((−∞, 0);C2),
as well as the notation f = f+ ⊕ f− for a function f ∈ L2(R;C2) is used. It can be
shown that the adjoint operator S∗ acts in the same way as S, but has the larger
domain domS∗ = H1((0,∞);C2)⊕H1((−∞, 0);C2). In the next step, self-adjoint
extensions of S are defined by restricting S∗ to a suitable domain of definition.
This domain is characterised by imposing certain coupling conditions on Σ = {0},
which are found by a formal integration of the expression (4.1). In the present case
the coupling conditions have the form

i (f2(0+)− f2(0−)) =
τ

2
(f1(0+) + f1(0−)) ,

i (f1(0+)− f1(0−)) = −τ
2

(f2(0+) + f2(0−)) .
(4.2)

Next, we define the two linear mappings Γ0,Γ1 : domS∗ → C2 by the assignments

(4.3) Γ0f = −i
(
f2(0+)− f2(0−)
f1(0+)− f1(0−)

)
and Γ1f =

1

2

(
f1(0+) + f1(0−)
f2(0+) + f2(0−)

)
.

Using these boundary maps one obtains the equivalent representation

Γ0f + τσ3Γ1f = 0, f ∈ domS∗,

of the above coupling conditions.

Proposition 4.1. The triplet {C2,Γ0,Γ1} is an ordinary boundary triplet for S∗.

Proof. Integration by parts and a straightforward computation shows that the ab-
stract Green’s identity in Definition 2.1 is valid. If one defines the function

f(x) =
i

2

(
c2
c1

)
sgn (x)e−|x| +

(
c3
c4

)
e−|x|, x ∈ R,

for a given vector (c1, c2, c3, c4) ∈ C4, then f ∈ domS∗ and the surjectivity of the
mapping (Γ0,Γ1)> : domS∗ → C4 follows. This shows (ii) in Definition 2.1. Finally,
to show that Definition 2.1 (iii) holds, notice that the restriction A0 = S∗ � ker Γ0

corresponds to the free Dirac operator. �
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Using the ordinary boundary triplet from Proposition 4.1, one can now define
the operator

Aτ = S∗ � ker(Γ0 + τσ3Γ1),

which is interpreted as the realisation of the formal expression (4.1) on the basis
of the coupling conditions (4.2). Due to τ ∈ R it follows immediately that Aτ is
a self-adjoint operator in L2(R;C2); see the discussion before Theorem 2.3. Note
that in this case ϑ−1 corresponds to −τσ3, which is self-adjoint.

Next, we derive an explicit resolvent representation of Aτ and characterise its
spectrum. For this purpose, the first step is to determine the γ-field and the Weyl
function of the ordinary boundary triplet from Proposition 4.1. To simplify the
presentation, we first define the two functions

f1(x) =
i

2

(
ζ

sgn (x)

)
eik(λ)|x| and f2(x) =

i

2

(
sgn (x)
ζ−1

)
eik(λ)|x|

with k(λ) and ζ defined as in (3.6). Note that these functions form a basis of
ker(S∗ − λ) for all λ ∈ ρ(A0) and are mapped to the basis vectors (1, 0) and (0, 1)
of C2 by Γ0. A simple computation now shows that the γ-field is given by[
γ(λ)

(
ξ1
ξ2

)]
(x) = ξ1f1(x) + ξ2f2(x) =

i

2
eik(λ)|x|

(
ζ sgn (x)

sgn (x) ζ−1

)(
ξ1
ξ2

)
for (ξ1, ξ2) ∈ C2 and x ∈ R, while the Weyl function corresponds to the matrix

M(λ) =
i

2

(
ζ 0
0 ζ−1

)
.

Note that the x-dependent part in the representation of the γ-field corresponds to
the Green’s function of the free Dirac operator. This will remain valid also in the
multidimensional considerations in the next sections. Using the above representa-
tions of the γ-field and the Weyl function the next result follows from Theorem
2.3.

Proposition 4.2. For all λ ∈ ρ(Aτ ) ∩ ρ(A0) and f ∈ L2(R;C2) the resolvent
formula

(Aτ − λ)−1f(x) = (A0 − λ)−1f(x)

+
τ

2 (2 + iτζ)

((
ζ

−sgn (·)

)
eik(λ)|·|, f

)
L2(R;C2)

(
ζ

sgn (x)

)
eik(λ)|x|

− τζ

2 (2ζ − iτ)

((
−sgn (·)
ζ−1

)
eik(λ)|·|, f

)
L2(R;C2)

(
sgn (x)
ζ−1

)
eik(λ)|x|

is valid for all x ∈ R. Furthermore, the spectrum of Aτ is given by

σess(Aτ ) = (−∞,−m] ∪ [m,∞)

σdisc(Aτ ) =

{
∅ , if τ ≥ 0{
±m 4−τ2

4+τ2

}
, if τ < 0.

Proof. From Theorem 2.3 (iii) the representation

(Aτ − λ)−1f = (A0 − λ)−1f − γ(λ)τσ3(I + τM(λ)σ3)−1γ(λ)∗f

follows for all λ ∈ ρ(Aτ ) ∩ ρ(A0). After a simple calculation using the above
expressions for the γ-field and the Weyl function one obtains the claimed resolvent
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representation for all f ∈ L2(R;C2). The statement about the essential spectrum
follows from the fact that both Aτ and A0 are self-adjoint extensions of the operator
S, which has the finite defect indices (2, 2). It remains to show the claim about the
discrete spectrum. Notice first that σdisc(Aτ ) ⊆ (−m,m) ⊆ ρ(A0). Thus, it follows
from Theorem 2.3 (i) that λ ∈ σdisc(Aτ ) if and only if 0 ∈ σ(I + τM(λ)σ3). The
eigenvalues of this matrix can be determined quite elementarily and one obtains
the defining equations

2 + iτζ = 0 or 2ζ − iτ = 0.

Due to the choice of the complex square root in the definitions of ζ and k(λ) it
follows in the case that the first equation is valid that an eigenvalue exists if and
only if τ < 0. This eigenvalue is then given by λ1 = m(4 − τ2)/(4 + τ2). If the
second equation holds, then a similar reasoning yields the eigenvalue λ2 = −λ1. �

5. Boundary triplets for two- and three-dimensional Dirac
operators with singular interactions

In this section we use similar boundary mappings as in Section 4 to construct
boundary triplets for Dirac operators with δ-shell interactions in R2 and R3. How-
ever, by translating the boundary mappings in (4.3) directly to the higher dimen-
sional setting one obtains a generalized or quasi boundary triplet instead of an
ordinary boundary triplet. Before we can introduce the boundary triplets, some
preliminaries related to function spaces and trace theorems are needed. For smooth
surfaces similar boundary triplets and Sobolev spaces were used in [6, 7, 10, 38] and
[13, 18, 45], respectively; it is one of the main goals in this note to extend these
constructions to closed Lipschitz smooth hypersurfaces. As an application we prove
that Dirac operators with Lorentz scalar δ-shell interactions supported on general
compact Lipschitz hypersurfaces are self-adjoint.

5.1. Sobolev spaces for Dirac operators and related trace theorems. As in
Section 3 the space dimension is denoted by d ∈ {2, 3} and N := 2[(d+1)/2], where
[·] is the Gauss bracket. Consequently, we have N = 2 for d = 2 and N = 4 for
d = 3. Let α0, . . . , αd be the d + 1 anti-commuting CN×N -valued Dirac matrices
defined in Section 3.

Throughout this subsection let Ω ⊂ Rd be a bounded or unbounded Lipschitz
domain with compact boundary and denote by ν the unit normal vector field at
∂Ω. For s ∈ [0, 1] we define the space

Hs
α(Ω;CN ) :=

{
f ∈ Hs(Ω;CN ) : (α · ∇)f ∈ L2(Ω;CN )

}
,

where the derivatives are understood in the distributional sense and Hs(Ω;CN ) is
the standard L2-based Sobolev space of order s of CN -valued functions, and endow
it with the norm

‖f‖2Hsα(Ω;CN ) := ‖f‖2Hs(Ω;CN ) + ‖(α · ∇)f‖2L2(Ω;CN ).

One can show with standard techniques that Hs
α(Ω;CN ) is a Hilbert space and

that C∞0 (Ω;CN ) is dense in Hs
α(Ω;CN ); cf. [18, Lemma 2.1], [10, Lemma 3.2], or

[45, Proposition 2.12] for similar arguments. Moreover, with the help of the Fourier
transform it is not difficult to see that Hs

α(Rd;CN ) = H1(Rd;CN ) for any s ∈ [0, 1].
In the following lemma we state a trace theorem for Hs

α(Ω;CN ) for s ≥ 1
2 .
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Lemma 5.1. For s ∈ [ 1
2 , 1] the map C∞0 (Ω;CN ) 3 f 7→ f |∂Ω extends to a unique

continuous operator γD : Hs
α(Ω;CN )→ Hs−1/2(∂Ω;CN ).

Proof. For s ∈ ( 1
2 , 1] the claim follows from the classical trace theorem [44, The-

orem 3.38], as Hs
α(Ω;CN ) is continuously embedded in Hs(Ω;CN ). For s = 1

2 we
consider for s1, s2 ∈ R the Hilbert space

(5.1) Hs1,s2
∆ (Ω;CN ) :=

{
f ∈ Hs1(Ω;CN ) : −∆f ∈ Hs2(Ω;CN )

}
endowed with the norm

‖f‖2
H
s1,s2
∆ (Ω;CN )

:= ‖f‖2Hs1 (Ω;CN ) + ‖∆f‖2Hs2 (Ω;CN ).

It follows from [34, Lemma 3.1] that there exists a continuous trace map from

H
1/2,−1
∆ (Ω) to L2(∂Ω). Since (3.2) implies (α · ∇)2 = −∆ in the distributional

sense, H
1/2
α (Ω;CN ) is continuously embedded in H

1/2,−1
∆ (Ω;CN ). This yields the

claim also for s = 1
2 . �

Using Lemma 5.1 and the fact that C∞0 (Ω;CN ) is dense in Hs
α(Ω;CN ) one can

show for all f, g ∈ Hs
α(Ω;CN ), s ∈ [ 1

2 , 1], the following integration by parts formula:

(5.2)

∫
Ω

i(α · ∇)f · gdx =

∫
∂Ω

i(α · ν)f · gdσ +

∫
Ω

f · i(α · ∇)gdx.

In the construction of boundary triplets for Dirac operators with singular inter-
actions some families of integral operators related to the fundamental solution Gλ,d
given in (3.7) are required. Let Σ ⊂ Rd be a closed bounded Lipschitz hypersurface
and let Ω+ be the bounded Lipschitz domain with ∂Ω+ = Σ, let ν be the unit nor-
mal vector field at Σ pointing outwards of Ω+, and let Ω− := Rd\Ω+. We introduce
for λ /∈ (−∞,−m] ∪ [m,∞) the potential operator Φλ : L2(Σ;CN ) → L2(Rd;CN )
by

(5.3) Φλϕ(x) :=

∫
Σ

Gλ,d(x− y)ϕ(y)dσ(y), ϕ ∈ L2(Σ;CN ), x ∈ Rd \ Σ,

and the strongly singular boundary integral operator Cλ : L2(Σ;CN )→ L2(Σ;CN )
acting as

(5.4) Cλϕ(x) := lim
ε↘0

∫
Σ\B(x,ε)

Gλ,d(x− y)ϕ(y)dσ(y), ϕ ∈ L2(Σ;CN ), x ∈ Σ,

where B(x, ε) is the ball of radius ε centered at x. Both operators Φλ and Cλ are
well defined and bounded, see [2, Lemma 3.3] and the references there. Moreover,
for λ ∈ (−m,m) the operator Cλ is self-adjoint in L2(Σ;CN ). In the next lemma
we improve the mapping properties for Φλ.

Lemma 5.2. For any λ ∈ ρ(A0) the operator Φλ gives rise to a bounded map

Φλ : L2(Σ;CN )→ H1/2
α (Rd \ Σ;CN ).

Proof. Let SL(µ) = (−∆− µ)−1γ′D be the single layer potential for −∆− µ, where
γ′D is the dual of the Dirichlet trace operator. Using that (3.2) implies (α ·∇)2 = ∆
in the distributional sense one gets

Φλ =
(
− iα · ∇+mα0 + λIN )SL(λ2 −m2)IN ,
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see also (3.5). Since SL(λ2 − m2) : L2(Σ) → H
3/2,0
∆ (Rd \ Σ) is bounded, where

H
3/2,0
∆ (Rd \ Σ) is defined by (5.1) (this follows, e.g., from [33, Equation (2.127)]),

the claimed result follows. �

Finally, we note that for ϕ ∈ L2(Σ;CN ) the trace of Φλϕ, which is well defined
by Lemmas 5.1 and 5.2, is given by

(5.5) γ±DΦλϕ = ∓ i
2

(α · ν)ϕ+ Cλϕ,

where γ±D denotes the trace operator for Ω±; this can be shown in the same way as
in [2, Lemma 3.3] or [13, Proposition 3.4].

5.2. Quasi boundary triplets and generalized boundary triplets for Dirac
operators with singular interactions. In this subsection we follow ideas from
Section 4 and introduce a family of quasi boundary triplets for Dirac operators;
similar constructions can also be found in [6, 10]. Let Ω+ ⊂ Rd be a bounded
Lipschitz domain, set Ω− := Rd \ Ω+ and Σ := ∂Ω+ = ∂Ω−. We denote by ν the
unit normal vector field at Σ that is pointing outwards of Ω+. In the following we
will often denote the restriction of a function f defined on Rd onto Ω± by f±.

We introduce for s ∈ [0, 1] the operators T (s) in L2(Rd;CN ) by

T (s)f := (−i(α · ∇) +mα0)f+ ⊕ (−i(α · ∇) +mα0)f−,

domT (s) := Hs
α(Ω+;CN )⊕Hs

α(Ω−;CN ),

and S := T (s) � H1
0 (Rd \ Σ;CN ), which is given more explicitly by

Sf = (−i(α · ∇) +mα0)f, domS = H1
0 (Rd \ Σ;CN ).

The operator S is densely defined, closed, and symmetric. Using standard argu-
ments and distributional derivatives one verifies that

S∗ = T (0) and (T (0))∗ = S.

Next, we introduce for s ∈ [ 1
2 , 1] the mappings Γ

(s)
0 ,Γ

(s)
1 : domT (s) → L2(Σ;CN )

by

(5.6) Γ
(s)
0 f := i(α · ν)(f+|Σ − f−|Σ) and Γ

(s)
1 f :=

1

2
(f+|Σ + f−|Σ),

and note that Γ
(s)
0 and Γ

(s)
1 are well defined due to Lemma 5.1. In order to charac-

terize the range of Γ
(s)
0 , we introduce the space

Hs
α(Σ;CN ) :=

{
ϕ ∈ L2(Σ;CN ) : (α · ν)ϕ ∈ Hs(Σ;CN )

}
,

where Hs(Σ;CN ) denotes the standard Sobolev space on Σ of CN -valued functions.
If Σ is C1,s+ε-smooth for some ε > 0, then Hs

α(Σ;CN ) = Hs(Σ;CN ), cf. [12,

Lemma A.2]. In the following theorem we show that the mappings Γ
(s)
0 and Γ

(s)
1

in (5.6) give rise to a quasi boundary triplet for S∗ and we compute the associated
γ-field and Weyl function. Recall that A0 is the free Dirac operator defined in (3.3)
and that Φλ and Cλ are the mappings introduced in (5.3) and (5.4), respectively.

Theorem 5.3. Let s ∈ [ 1
2 , 1]. Then the following holds:
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(i) The triplet
{
L2(Σ;CN ),Γ

(s)
0 ,Γ

(s)
1

}
is a quasi boundary triplet for S∗ = T (s)

with T (s) � ker Γ
(s)
0 = A0, and one has

(5.7) ran Γ
(s)
0 = Hs−1/2

α (Σ;CN ).

In particular,
{
L2(Σ;CN ),Γ

(1/2)
0 ,Γ

(1/2)
1

}
is a generalized boundary triplet.

(ii) For λ ∈ ρ(A0) = C \ ((−∞,−m] ∪ [m,∞)) the values γ(s)(λ) of the γ-field
are given by

γ(s)(λ) = Φλ � Hs−1/2
α (Σ;CN ).

Each γ(s)(λ) is a densely defined bounded operator from the Hilbert space
L2(Σ;CN ) to L2(Rd;CN ) and an everywhere defined bounded operator from

H
s−1/2
α (Σ;CN ) to Hs

α(Rd \ Σ;CN ). Moreover,

γ(s)(λ)∗ : L2(Rd;CN )→ L2(Σ;CN )

is compact.
(iii) For λ ∈ ρ(A0) = C \ ((−∞,−m] ∪ [m,∞)) the values M (s)(λ) of the Weyl

function are given by

M (s)(λ) = Cλ � Hs−1/2
α (Σ;CN ).

Each M (s)(λ) is a densely defined bounded operator in L2(Σ;CN ) and a

bounded everywhere defined operator from H
s−1/2
α (Σ;CN ) to Hs−1/2(Σ;CN ).

Proof. Let s ∈ [ 1
2 , 1] be fixed. First, we show that

{
L2(Σ;CN ),Γ

(s)
0 ,Γ

(s)
1

}
is a quasi

boundary triplet. For this we note that T (s) = T (0) = S∗, as C∞0 (Ω±;CN ) is dense
inH0

α(Ω±;CN ) and the norm inHs
α(R3\Σ;CN ) and the graph norm induced by T (0)

are equivalent. Next, we verify that Green’s identity in Definition 2.1 (i) is fulfilled.
For this let f = f+ ⊕ f−, g = g+ ⊕ g− ∈ domT (s) = Hs

α(Ω+;CN ) ⊕Hs
α(Ω−;CN ).

Then integration by parts (5.2) applied in Ω± yields(
(−i(α · ∇) +mα0)f±, g±

)
L2(Ω±;CN )

−
(
f±, (−i(α · ∇) +mα0)g±

)
L2(Ω±;CN )

= ±
(
− i(α · ν)f±|Σ, g±|Σ

)
L2Σ;CN )

,

where it is used that −ν is the normal vector field pointing outwards of Ω−. By
adding these two formulas for Ω+ and Ω− one arrives at Green’s identity.

Next, we show that T (s) � ker Γ
(s)
0 = A0. As the free Dirac operator A0 is self-

adjoint, this shows that T (s) � ker Γ
(s)
0 is self-adjoint. The inclusion A0 ⊂ T (s) �

ker Γ
(s)
0 is clear. To verify the converse inclusion, let f ∈ ker Γ

(s)
0 . Then Green’s

identity yields for any ϕ ∈ C∞0 (Rd;CN )

(5.8)
(
f,−i(α · ∇)ϕ

)
L2(R3;CN )

=
(
(T (s) −mα0)f, ϕ

)
L2(R3;CN )

.

Hence, (α · ∇)f ∈ L2(Rd;CN ), which shows f ∈ Hs
α(Rd;CN ) = H1(Rd;CN ) =

domA0. Therefore, we conclude that T (s) � ker Γ
(s)
0 = A0 holds.

It remains to prove that ran (Γ
(s)
0 ,Γ

(s)
1 ) is dense in L2(Σ;CN )× L2(Σ;CN ). For

this, we prove

(5.9) ran (Γ
(s)
0 � ker Γ

(s)
1 ) = H1/2

α (Σ;CN )

and

(5.10) ran (Γ
(s)
1 � ker Γ

(s)
0 ) = H1/2(Σ;CN ).
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To see the inclusion ”⊂” in (5.9) we note that any function f ∈ ker Γ
(s)
1 satisfies

f+|Σ = −f−|Σ. One can show as in (5.8) that f+ ⊕ (−f−) ∈ Hs
α(Rd;CN ) =

H1(Rd;CN ) and thus, f ∈ H1(Ω+;CN )⊕H1(Ω−;CN ). Therefore, the definition of

Γ
(s)
0 yields the claimed inclusion. For the converse inclusion let ϕ ∈ H1/2

α (Σ;CN ).

Choose f± ∈ H1(Ω±;CN ) such that f±|Σ = ∓ i
2 (α · ν)ϕ. Then f ∈ ker Γ

(s)
1 and

Γ
(s)
0 f = ϕ. Since this can be done for all ϕ ∈ H1/2

α (Σ;CN ), we have shown (5.9).

To verify (5.10) note that the inclusion ”⊂” follows from ker Γ
(s)
0 = H1(Rd;CN )

and the definition of Γ
(s)
1 . For the converse inclusion let ϕ ∈ H1/2(Σ;CN ). Choose

f ∈ H1(Rd;CN ) such that f |Σ = ϕ. Then f ∈ ker Γ
(s)
0 and Γ

(s)
1 f = ϕ. Since

this can be done for all ϕ ∈ H1/2(Σ;CN ), we have verified (5.10). Hence, we

have shown that
{
L2(Σ;CN ),Γ

(s)
0 ,Γ

(s)
1

}
is indeed a quasi boundary triplet for all

s ∈ [ 1
2 , 1]. Thus, besides formula (5.7) assertion (i) is shown. Equation (5.7) will

be proved together with items (ii) and (iii).
Next, we show that γ(s)(λ)∗ is compact for all s. Formula (2.2) implies that

γ(s)(λ)∗ = Γ
(s)
1 (A0 − λ)−1. Since (A0 − λ)−1 : L2(Rd;CN ) → H1(Rd;CN ) is

bounded, we see that γ(s)(λ)∗ is actually independent of s and furthermore, that
γ(s)(λ)∗ : L2(Rd;CN )→ H1/2(Σ;CN ) is also bounded. Since H1/2(Σ;CN ) is com-
pactly embedded in L2(Σ;CN ), the claimed compactness of γ(s)(λ)∗ follows.

In the next step, we show items (ii) and (iii) and (5.7) for s = 1
2 . Consider for

ϕ ∈ L2(Σ;CN ) the function fλ := Φλϕ. Then fλ ∈ H1/2
α (Rd \Σ;CN ) = domT (1/2)

by Lemma 5.2 and by (5.5) we get Γ
(1/2)
0 fλ = ϕ. Therefore, ran Γ

(1/2)
0 = L2(Σ;CN ),

which is (5.7) for s = 1
2 . Moreover, as Gλ,d in (3.7) is a fundamental solution for

the Dirac equation the definition of Φλ shows that(
T (1/2) − λ

)
fλ = 0 in Rd \ Σ.

Hence, γ(1/2)(λ) = Φλ. Eventually, using the definition of Γ
(1/2)
1 and (5.5) we

conclude M (1/2)(λ) = Cλ and thus, M (1/2)(λ) is bounded in L2(Σ;CN ). This
shows all claims for s = 1

2 .

Next, we prove (ii) and (iii) for s = 1. First domT (1) = H1(Rd \Σ;CN ), the def-

inition of Γ
(1)
0 , and (5.9) imply ran Γ

(1)
0 = H

1/2
α (Σ;CN ). As {L2(Σ;CN ),Γ

(1)
0 ,Γ

(1)
1 }

is a restriction of the triplet for s = 1
2 we deduce from the already shown results

that

γ(1)(λ) = γ(1/2)(λ) � ran Γ
(1)
0 = Φλ � H1/2

α (Σ;CN )

and

M (1)(λ) = M (1/2)(λ) � ran Γ
(1)
0 = Cλ � H1/2

α (Σ;CN ).

Using the closed graph theorem and the fact that H
1/2
α (Σ;CN ) and H1(Rd \Σ;CN )

are boundedly embedded in L2(Σ;CN ) and L2(Rd;CN ), respectively, one gets that

γ(1)(λ) : ran Γ
(1)
0 = H1/2

α (Σ;CN )→ domT (1) = H1(Rd \ Σ;CN )

is bounded as well. The mapping properties of the trace map yield that also

M (1)(λ) : ran Γ
(1)
0 = H1/2

α (Σ;CN )→ ran Γ
(1)
1 = H1/2(Σ;CN )

is bounded. Hence, all claimed statements for s = 1 are shown.
In order to obtain the claimed results for s ∈ ( 1

2 , 1), we note first that an interpo-

lation argument shows that Φλ : Hs−1/2(Σ;CN ) → Hs
α(Rd \ Σ;CN ) = domT (s) is
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bounded. Together with (5.5) this shows that ran Γ
(s)
0 = H

s−1/2
α (Σ;CN ), i.e. (5.7)

for s ∈ ( 1
2 , 1). Hence, we have γ(s)(λ) = Φλ � Hs−1/2

α (Σ;CN ) and the trace theorem

shows that M (s)(λ) = Γ
(s)
1 γ(s)(λ) : H

s−1/2
α (Σ;CN ) → Hs−1/2(Σ;CN ) is bounded.

Thus, all claims are proved. �

In the next theorem we study the self-adjointness of a Dirac operator Aτ with
a Lorentz scalar δ-shell interaction of strength τ ∈ R \ {0}, which is formally given
by −i(α · ∇) +mα0 + τα0δΣ. In a similar way as in (4.2) we define Aτ by

Aτ := T (1/2) � ker
(
Γ

(1/2)
0 + τα0Γ

(1/2)
1

)
.

The operator Aτ is given more explicitly by

Aτf = (−i(α · ∇) +mα0)f+ ⊕ (−i(α · ∇) +mα0)f−,

domAτ =
{
f ∈ H1/2

α (Rd \ Σ;CN ) : i(α · ν)(f+|Σ − f−|Σ) +
τ

2
α0(f+|Σ + f−|Σ)

}
,

and it was investigated under various assumptions in [7, 13, 38, 47]. In the following
theorem we show, for the first time, the self-adjointness of Aτ , when the interaction
support Σ ⊂ Rd is an arbitrary closed bounded Lipschitz smooth hypersurface.

Theorem 5.4. For any τ ∈ R \ {0} the operator Aτ is self-adjoint in L2(Rd;CN )
and the following holds:

(i) For λ ∈ ρ(Aτ ) the resolvent of Aτ is given by

(Aτ − λ)−1 = (A0 − λ)−1 − Φλ

(
1

τ
α0 + Cλ

)−1

Φ∗
λ
.

(ii) σess(Aτ ) = σess(A0) = (−∞,−m] ∪ [m,∞).
(iii) σdisc(Aτ ) is finite and λ ∈ σdisc(Aτ ) if and only if 0 ∈ σp( 1

τ α0 + Cλ).

Remark 5.5. By Theorem 5.4 the operator Aτ is self-adjoint defined on a subset

of H
1/2
α (Rd \ Σ;CN ). If Σ is a smooth hypersurface, then it is known that Aτ is

self-adjoint and domAτ ⊂ H1(Rd \Σ;CN ), see [13, 38]. However, for more general
Lipschitz smooth hypersurfaces this smoothness in the operator domain can not
be expected, as it is shown explicitly in [41, Remark 1.9] in the two-dimensional
setting for polygonal domains.

Proof of Theorem 5.4. In order to show the self-adjointness of Aτ , it suffices, ac-
cording to Theorem 2.3 and the following discussion, to verify

ran
(
Γ

(1/2)
1 (A0 ± i)−1

)
= H1/2(Σ;CN ) ⊂ ran

(
1

τ
α0 +M

(1/2)
±i

)
= ran

(
1

τ
α0 + C±i

)
.

(5.11)

In order to see this, we prove that 1
τ α0 + C±i is bijective in L2(Σ;CN ). First, we

note that 1
τ α0 + C±i is injective, as otherwise the symmetric operator Aτ would

have the non-real eigenvalue ±i by Theorem 2.3. Next, by (2.3) we have that

C±i = M (1/2)(±i) = M (1/2)(0)± iγ(1/2)(0)∗γ(1/2)(±i) = C0 +K±i
and note that K±i = ±iγ(1/2)(0)∗γ(1/2)(±i) is compact in L2(Σ;CN ) due to Theo-
rem 5.3 (ii). Next, we compute(

1

τ
α0 + C±i

)2

=
1

τ2
IN + C2

0 +
1

τ

(
α0C±i + C±iα0

)
+K2

±i + C0K±i +K±iC0.
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Since C0 is self-adjoint, the operator 1
τ2 IN + C2

0 is a strictly positive self-adjoint
operator and hence it is a Fredholm operator with index zero. Next, due to the
anti-commutation relation (3.2) it is not difficult to see that

1

τ

(
α0C±i + C±iα0

)
=

1

τ
(2m± 2iα0)S(−m2 − 1),

where S(ν) is the single layer boundary integral operator for −∆ − ν. According
to [39, Lemma 3.4] the latter operator is compact. Since also K±i is compact, we

conclude that
(

1
τ α0 + C±i

)2
must be a Fredholm operator with index zero. Since

1
τ α0 + C±i is injective, we conclude that

(
1
τ α0 + C±i

)2
is also injective and hence,

as it has Fredholm index zero, it must be surjective. Therefore 1
τ α0 + C±i is also

bijective. This shows that (5.11) holds and thus, Aτ is self-adjoint.
Next, by Theorem 2.3 the claimed resolvent formula in (i) holds for λ = ±i.

The map 1
τ α0 +C±i is bijective and hence boundedly invertible. This, the mapping

properties of Φ±i and Φ∗∓i from Theorem 5.3, and Krein’s resolvent formula imply
assertion (ii). The resolvent formula in item (i) for λ ∈ ρ(Aτ ) is now a direct
consequence of Theorem 2.3. The fact that σdisc(Aτ ) is finite can be shown in the
same way as in [13, Proposition 3.8], while the Birman Schwinger principle in (iii)
follows again directly from Theorem 2.3 and the representation of M (1/2)(λ) from
Theorem 5.3. �
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[10] J. Behrndt and M. Holzmann. On Dirac operators with electrostatic δ-shell interactions of

critical strength. J. Spectral Theory 10: 147–184, 2020.
[11] J. Behrndt, M. Holzmann, A. Mantile, and A. Posilicano. Limiting absorption principle and

scattering matrix for Dirac operators with δ-shell interactions. J. Math. Phys. 61: 033504 (16
pages), 2020.

[12] J. Behrndt, M. Holzmann, and A. Mas. Self-adjoint Dirac operators on domains in R3. Ann.
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