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Abstract: In this paper we study the spectrum of self-adjoint Schrödinger operators in
L2(R2)with a new type of transmission conditions along a smooth closed curve� ⊆ R

2.
Although these oblique transmission conditions are formally similar to δ′-conditions on
� (instead of the normal derivative here the Wirtinger derivative is used) the spectral
properties are significantly different: it turns out that for attractive interaction strengths
the discrete spectrum is always unbounded from below. Besides this unexpected spectral
effect we also identify the essential spectrum, and we prove a Krein-type resolvent for-
mula and a Birman-Schwinger principle. Furthermore, we show that these Schrödinger
operators with oblique transmission conditions arise naturally as non-relativistic limits
of Dirac operators with electrostatic and Lorentz scalar δ-interactions justifying their
usage as models in quantum mechanics.

1. Introduction

In many quantummechanical applications one considers particles moving in an external
potential field which is localized near a set � of measure zero. Such strongly localized
fields can be modeled by singular potentials that are supported on � only; of particular
importance in this regard are δ and δ′-interactions. To be more precise, assume that �

splits R
2 into a bounded domain �+ and an unbounded domain �− = R

2\�+, and
consider the formal Schrödinger differential expressions

Hδ,α = −� + αδ� and Hδ′,α = −� + αδ′
�, α ∈ R. (1.1)

These singular perturbations of the free Schrödinger operator −� are characterized by
certain transmission conditions along the interface � for the functions in the operator
domain. For δ-interactions one considers functions f : R

2 → C such that the restrictions
f± = f � �± satisfy the transmission conditions

f+ = f− and − α

2

(
f+ + f−

) = (
∂ν f+ − ∂ν f−

)
on �, (1.2)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-023-04708-7&domain=pdf
http://orcid.org/0000-0002-3442-6777
http://orcid.org/0000-0001-8071-481X


3150 J. Behrndt, M. Holzmann, G. Stenzel

while δ′-interactions are modeled by the transmission conditions

f+ − f− = −α

2

(
∂ν f+ + ∂ν f−

)
and ∂ν f+ = ∂ν f− on �; (1.3)

here ∂ν f± is the normal derivative and ν = (ν1, ν2) the unit normal vector field on
� pointing outwards of �+. The spectra and resonances of the self-adjoint realizations
associated with the formal expressions (1.1) in L2(R2) are well understood, see, e.g.,
[8,9,12,13,15–18,24]. In particular, the essential spectrum is given by [0,∞) and the
discrete spectrum consists of at most finitely many points for every interaction strength
α < 0, while there is no negative spectrum if α ≥ 0.

In contrast to the transmission conditions (1.2) and (1.3) we are interested in a new
type of transmission conditions of the form

(ν1 + iν2)
(
f+ − f−

) = −α
(
∂z f+ + ∂z f−

)
and ∂z f+ = ∂z f− on �, (1.4)

where α ∈ R and ∂z = 1
2 (∂1 + i∂2) is the Wirtinger derivative. In the sequel such jump

conditionswill be referred to as oblique transmission conditions. Note that the conditions
(1.4) can be rewritten as

f+ − f− = −α

2

(
∂ν f+ + ∂ν f− + i∂t f+ + i∂t f−

)
and ∂z f+ = ∂z f− on �, (1.5)

where ∂t denotes the tangential derivative. Thus, on a formal level there is some analogy
to the δ′-transmission conditions in (1.3), but it will turn out that the properties of
the corresponding self-adjoint realization in L2(R2) differ significantly from those of
Schrödinger operators with δ′-interactions.

Tomakematters mathematically rigorous, assume that the curve� is the boundary of
a bounded and simply connectedC∞-domain�+ with open complement�− = R

2\�+,
denote the L2-based Sobolev space of first order by H1, let γ ±

D : H1(�±) → L2(�)

be the Dirichlet trace operators, and define for α ∈ R the Schrödinger operator with
oblique transmission conditions by

Tα f = (−� f+) ⊕ (−� f−) ,

dom Tα =
{
f ∈ H1(�+) ⊕ H1(�−)

∣∣ ∂z f+ ⊕ ∂z f− ∈ H1(R2),

(ν1 + iν2)
(
γ +
D f+ − γ −

D f−
) = −α

(
γ +
D(∂z f+) + γ −

D (∂z f−)
)}

.

(1.6)

The next theorem is the main result in this paper. We discuss the spectral properties
of the Schrödinger operators Tα and, in particular, we show in item (ii) that for every
α < 0 the operator Tα is necessarily unbounded from below and the discrete spectrum
in (−∞, 0) is infinite and accumulates to −∞. In items (iii) and (iv) we shall make use
of the potential operator 
λ : L2(�) → L2(R2) and the single layer boundary integral
operator S(λ) : L2(�) → L2(�) defined in (2.2) and (2.4), respectively.

Theorem 1.1. For any α ∈ R the operator Tα is self-adjoint in L2(R2) and the essential
spectrum is given by

σess(Tα) = [0,∞).

Furthermore, the following statements hold:

(i) If α ≥ 0, then σdisc(Tα) = ∅ and Tα is a nonnegative operator in L2(R2).
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(ii) If α < 0, then σdisc(Tα) is infinite, unbounded from below, and does not accumulate
to 0. Moreover, for every fixed n ∈ N the n-th discrete eigenvalue λn ∈ σdisc(Tα)

(ordered non-increasingly) admits the asymptotic expansion

λn = − 4

α2 +O(1) for α → 0−,

where the dependence on n appears in the O(1)-term.
(iii) For λ ∈ C\[0,∞) the Birman-Schwinger principle is valid:

λ ∈ σp(Tα) ⇐⇒ 1 ∈ σp
(
αλS(λ)

)
.

(iv) For λ ∈ ρ(Tα) = C\([0,∞) ∪ σp(Tα)) the operator I − αλS(λ) is boundedly
invertible in L2(�) and the resolvent formula

(Tα − λ)−1 = (−� − λ)−1 + α
λ

(
I − αλS(λ)

)−1

∗

λ

holds, where −� is the free Schrödinger operator defined on H2(R2).

To illustrate the significance of Theorem 1.1 we show that Schrödinger operators
with oblique transmission conditions arise naturally as non-relativistic limits of Dirac
operators with electrostatic and Lorentz scalar δ-interactions. To motivate this, consider
one-dimensional Dirac operators with δ′-interactions of strength α ∈ R supported in the
point � = {0}. These are first order differential operators in L2(R)2 and the singular
interaction is modeled by transmission conditions for functions in the operator domain,
which for sufficiently smooth f = ( f1, f2) ∈ L2(R)2 are given by

f1(0+) − f1(0−) = i
αc

2

(
f2(0+) + f2(0−)

)
and f2(0+) = f2(0−), (1.7)

where c > 0 is the speed of light. It is known that the associated self-adjoint Dirac
operators converge in the non-relativistic limit to a Schrödinger operator with a δ′-
interaction of strength α; cf. [2,19] and also [10,11] for generalizations. It is not difficult
to see that (1.7) can be rewritten as the transmission conditions associated with a Dirac
operator with a combination of an electrostatic and a Lorentz scalar δ-interaction of
strengths η = −αc2

2 and τ = αc2
2 , respectively, as they were studied in dimension one

recently in [7] and in higher space dimensions in, e.g., [3,5–7].
To find a counterpart of the above result in dimension two, consider a Dirac operator

with electrostatic and Lorentz scalar δ-shell interactions of strength η and τ , respectively,
supported on �, which is formally given by

Aη,τ = A0 + (ηI2 + τσ3) δ�; (1.8)

here A0 is the unperturbed Dirac operator, I2 is the 2×2-identity matrix and σ3 ∈ C
2×2

is given in (3.1). The differential expression Aη,τ gives rise to a self-adjoint operator

Aη,τ in L2(R2)2, see (3.3). If one chooses, as above, η = −αc2
2 and τ = αc2

2 and
computes the non-relativistic limit, then instead of a Schrödinger operator with a δ′-
interaction one gets the somewhat unexpected limit Tα . Of course, this is compatible
with the one-dimensional result described above, as the one-dimensional counterparts
of (1.3) and (1.5) coincide, since there are no tangential derivatives in R. However, in
higher dimensions Schrödinger operators with oblique transmission conditions should
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be viewed as the non-relativistic counterparts of Dirac operators with transmission con-
ditions generalizing (1.7). Related results on non-relativistic limits of three-dimensional
Dirac operators with singular interactions can be found in [4,5,21]. The precise result
about the non-relativistic limit described above is stated in the following theorem and
shown in Sect. 3.

Theorem 1.2. Let α ∈ R. Then for all λ ∈ C\R one has

lim
c→∞

(
A−αc2/2,αc2/2 − (λ + c2/2)

)−1 =
(

(Tα − λ)−1 0
0 0

)
,

where the convergence is in the operator norm and the convergence rate is O ( 1
c

)
.

Notations Throughout this paper �+ ⊆ R
2 is a bounded and simply connected

C∞-domain and �− = R
2\�+ is the corresponding exterior domain with boundary

� = ∂�− = ∂�+. The unit normal vector field on � pointing outwards of �+ is
denoted by ν. Moreover, for z ∈ C\[0,∞) we choose the square root

√
z such that

Im
√
z > 0 holds. The modified Bessel function of order j ∈ N0 is denoted by K j .

For s ≥ 0 the spaces Hs(R2)n , Hs(�±)n , and Hs(�)n are the standard L2-based
Sobolev spaces ofC

n-valued functions defined onR
2,�±, and�, respectively. If n = 1

we simply write Hs(R2), Hs(�±), and Hs(�). For negative s < 0 we define the spaces
Hs(R2)n and Hs(�)n as the anti-dual spaces of H−s(R2)n and H−s(�)n , respectively.
We denote the restrictions of functions f : R

2 → C
n onto �± by f±; in this sense

we write H1(R2\�)n = H1(�+)
n ⊕ H1(�−)n and identify f ∈ H1(R2\�)n with

f+ ⊕ f−, where f± ∈ H1(�±)n . In the following γ ±
D : H1(�±) → L2(�) denote the

Dirichlet trace operators and we shall write γD : H1(R2) → L2(�) for the Dirichlet
trace on H1(R2); sometimes these trace operators are also viewed as bounded mappings
to H1/2(�).

For a Hilbert spaceH we write L(H) for the space of all everywhere defined, linear,
and bounded operators on H. Furthermore, the domain, kernel, and range of a linear
operator T from a Hilbert space G toH are denoted by dom T , ker T , and ran T , respec-
tively. The resolvent set, the spectrum, the essential spectrum, the discrete spectrum,
and the point spectrum of a self-adjoint operator T are denoted by ρ(T ), σ(T ), σess(T ),
σdisc(T ), and σp(T ). The eigenvalues of compact self-adjoint operators K ∈ L(H) are
denoted by μn(K ) and are ordered by their absolute values.

2. Proof of Theorem 1.1

In this section the main result of this paper will be proved. For this, some families of
integral operators are used. Define for λ ∈ C\[0,∞) the function Lλ by

Lλ(x) =
√

λ

2π
K1

(−i
√

λ|x |) x1 − i x2
|x | , x = (x1, x2) ∈ R

2\{0}, (2.1)

and the operator 
λ : L2(�) → L2(R2) by


λϕ(x) =
∫

�

Lλ(x − y)ϕ(y)dσ(y), ϕ ∈ L2(�), x ∈ R
2\�. (2.2)
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Moreover, forλ ∈ C\[0,∞)wemake use of the single layer potential SL(λ) : L2(�) →
H1(R2) and the single layer boundary integral operator S(λ) : L2(�) → L2(�) asso-
ciated with −� − λ that are defined by

SL(λ)ϕ(x) =
∫

�

1

2π
K0

(−i
√

λ|x−y|)ϕ(y)dσ(y), ϕ ∈ L2(�), x ∈ R
2\�, (2.3)

and

S(λ)ϕ(x) =
∫

�

1

2π
K0

(−i
√

λ|x − y|)ϕ(y)dσ(y), ϕ ∈ L2(�), x ∈ �. (2.4)

It is known that SL(λ) and S(λ) are bounded and ran S(λ) ⊆ H1(�); cf. [25, Theo-
rem 6.12 and Theorem 7.2]. In particular, S(λ) gives rise to a compact operator in Hs(�)

for every s ∈ [0, 1]. Furthermore, S(λ) is self-adjoint and positive for λ < 0 (see Step 1
in the proof of Proposition 2.2). Some properties of
λ and S(λ) that are important in the
proof of Theorem 1.1 are summarized in the following two propositions; cf. Appendix A
for the proof of Propositions 2.1 and 2.2.

Proposition 2.1. Let λ ∈ C\[0,∞) and let 
λ be given by (2.2). Then


λ = −2i∂z SL(λ) : L2(�) → L2(R2) (2.5)

is bounded and the following is true:

(i) 
λ gives rise to a bijective mapping 
λ : H1/2(�) → Hλ, where

Hλ := {
f ∈ H1(R2\�) | ∂z f+ ⊕ ∂z f− ∈ H1(R2), (−� − λ) f± = 0 on�±

}
.

(ii) 
∗
λ : L2(R2) → L2(�) is a compact operator, 
∗

λ = −2iγD∂z(−� − λ)−1, and
ran
∗

λ ⊆ H1/2(�).
(iii) For all ϕ ∈ H1/2(�) the jump relations

i(ν1 + iν2)
(
γ +
D(
λϕ)+ − γ −

D (
λϕ)−
) = ϕ,

−i
(
γ +
D∂z(
λϕ)+ + γ −

D ∂z(
λϕ)−
) = λS(λ)ϕ,

hold.

For λ < 0 denote by μn(S(λ)) the discrete eigenvalues of the positive self-adjoint
operator S(λ) ordered non-increasingly and with multiplicities taken into account.

Proposition 2.2. Let S(λ) be defined by (2.4) and let n ∈ N be fixed. Then the following
holds:

(i) The function (−∞, 0) � λ �→ λμn(S(λ)) is continuous, strictly monotonically
increasing and

lim
λ→0− λμn(S(λ)) = 0 and lim

λ→−∞ λμn(S(λ)) = −∞.

(ii) For a < 0 the unique solution λn(a) ∈ (−∞, 0) of λμn(S(λ)) = a (see (i)) admits
the asymptotic expansion λn(a) = −4a2+O(1) for a → −∞, where the dependence
on n appears in the O(1)-term.
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Proof of Theorem 1.1. Step 1. We verify that Tα is symmetric in L2(R2). Observe first
that for f ∈ dom Tα we have ∂z f± ∈ H1(�±) and � f± = 4∂z∂z f± ∈ L2(�±), and
hence Tα is well-defined.Moreover, asC∞

0 (R2\�) ⊆ dom Tα it is also clear that dom Tα

is dense. In order to show that Tα is symmetric, we note that integration by parts in �±
yields for f, g ∈ dom Tα

(−� f±, g±)L2(�±) = (−4∂z∂z f±, g±)L2(�±)

= 4(∂z f±, ∂zg±)L2(�±) ∓ 2
(
(ν1 − iν2)γ

±
D (∂z f±), γ ±

D g±
)
L2(�)

= 4(∂z f±, ∂zg±)L2(�±) ∓ 2
(
γ ±
D (∂z f±), (ν1 + iν2)γ

±
D g±)

)
L2(�)

.

(2.6)

Now, consider (2.6) for f = g and add the equations for �+ and �−. Then, using
γ +
D(∂z f+) = γ −

D (∂z f−) and the transmission condition for f ∈ dom Tα , one finds that

(
Tα f, f

)
L2(R2)

= 4
(‖∂z f+‖2L2(�+)

+ ‖∂z f−‖2L2(�−)

)

− (
γ +
D(∂z f+) + γ −

D (∂z f−), (ν1 + iν2)(γ
+
D f+ − γ −

D f−)
)
L2(�)

= 4‖∂z f+ ⊕ ∂z f−‖2L2(R2)
+ α‖γ +

D(∂z f+) + γ −
D (∂z f−)‖2L2(�)

∈ R.

(2.7)
Since this holds for all f ∈ dom Tα , we conclude that Tα is symmetric.

Step 2. Proof of the Birman-Schwinger principle in (iii): To show the first implication,
assume that λ ∈ C\[0,∞)with 1 ∈ σp(αλS(λ)) and choose ϕ ∈ ker (I −αλS(λ))\{0}.
Then it follows from the mapping properties of S(λ) that ϕ = αλS(λ)ϕ ∈ H1/2(�)

holds. Therefore, Proposition 2.1 (i) implies that f := 
λϕ ∈ Hλ fulfils f �= 0,
f ∈ H1(R2\�), ∂z f+ ⊕ ∂z f− ∈ H1(R2) and, as ϕ ∈ ker (1 − αλS(λ))\{0}, Proposi-
tion 2.1 (iii) implies

i(ν1 + iν2)
(
γ +
D f+ − γ −

D f−
) = ϕ = αλS(λ)ϕ = −iα

(
γ +
D(∂z f+) + γ −

D (∂z f−)
)
.

Hence, f ∈ dom Tα . Moreover, as f ∈ Hλ, we conclude f ∈ ker (Tα − λ)\{0} and
hence λ ∈ σp(Tα).

To show the second implication, we assume that λ ∈ σp(Tα) is given and we choose
f ∈ ker (Tα − λ)\{0}. Then, by Proposition 2.1 (i) there exists a unique ϕ ∈ H1/2(�)

such that f = 
λϕ. Moreover, using f ∈ dom Tα and Proposition 2.1 (iii) one finds
that

0 = i(ν1 + iν2)
(
γ +
D f+ − γ −

D f−
)
+ iα

(
γ +
D(∂z f+) + γ −

D (∂z f−)
) = (I − αλS(λ))ϕ.

Since ϕ �= 0, we conclude 1 ∈ σp(αλS(λ)).
Step 3. Next, we prove that Tα is a self-adjoint operator and the resolvent formula

in (iv). Let λ ∈ C\([0,∞)∪σp(Tα)) be fixed. First, we show that I −αλS(λ) gives rise
to a bijective map in Hs(�) for every s ∈ [0, 1]. Recall that S(λ) is compact in Hs(�).
Since I − αλS(λ) is injective for our choice of λ by the Birman-Schwinger principle
in (iii), Fredholm’s alternative shows that I − αλS(λ) is indeed bijective.

Recall that Tα is symmetric; cf. Step 1. Hence, to show that Tα is self-adjoint, it
suffices to verify that ran(Tα − λ) = L2(R2) holds for λ ∈ C\([0,∞) ∪ σp(Tα)). Fix
such a λ, let f ∈ L2(R2), and define

g = (−� − λ)−1 f + α
λ(I − αλS(λ))−1
∗
λ
f, (2.8)
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which is well-defined by the considerations above. Since 
∗
λ
f ∈ H1/2(�) by Propo-

sition 2.1 (ii) and (I − αλS(λ))−1 is bijective in H1/2(�), we conclude with Propo-
sition 2.1 (i) that 
λ(I − αλS(λ))−1
∗

λ
f ∈ Hλ ⊆ H1(R2\�). In particular, with

(−�−λ)−1 f ∈ H2(R2) this implies that g ∈ H1(R2\�) and ∂zg+ ⊕ ∂zg− ∈ H1(R2).
Moreover, with Proposition 2.1(ii)–(iii) we obtain that

i(ν1 + iν2)
(
γ +
Dg+ − γ −

D g−
)
+ iα

(
γ +
D(∂zg+) + γ −

D (∂zg−)
)

= α(I − αλS(λ))−1
∗
λ
f − α
∗

λ
f − α2λS(λ)(I − αλS(λ))−1
∗

λ
f

= α(I − αλS(λ))(I − αλS(λ))−1
∗
λ
f − α
∗

λ
f = 0

and hence, g ∈ dom Tα . As 
λ(I − αλS(λ))−1
∗
λ
f ∈ Hλ by Proposition 2.1 (i), we

conclude

(−� − λ) g± = (−� − λ)
(
(−� − λ)−1 f

)
± + α (−� − λ)

(

λ(I − αλS(λ))−1
∗

λ
f
)
±

= (−� − λ)
(
(−� − λ)−1 f

)
± = f±,

i.e. (Tα − λ)g = f . Since f ∈ L2(R2) was arbitrary, we conclude that ran (Tα − λ) =
L2(R2) and that Tα is self-adjoint. Moreover, the resolvent formula in item (iv) follows
from (2.8).

Step 4. Next, we show σess(Tα) = [0,∞). For this fix some λ ∈ C\R. Since 
∗
λ

:
L2(R2) → L2(�) is compact by Proposition 2.1 (ii), the resolvent formula in (iv)
implies that (Tα − λ)−1 − (−� − λ)−1 is a compact operator in L2(R2). Consequently,
Weyl’s Theorem [27, Theorem XIII.14] yields that σess(Tα) = σess(−�) = [0,∞).

Step 5. Proof of (i): Let α ≥ 0. Then, (2.7) implies that Tα is non-negative and hence,
σ(Tα) ⊂ [0,∞). Since the latter set coincides with σess(Tα), see Step 4, we conclude
σdisc(Tα) = ∅.

Step 6. Proof of (ii): Let α < 0. Since σess(Tα) = [0,∞), it follows from the
Birman-Schwinger principle in (iii) that

σdisc(Tα) = {λn | n ∈ N} =
{
λ < 0 | ∃n ∈ N such that λμn(S(λ)) = α−1

}

holds. Note that by Proposition 2.2 the equation λμn(S(λ)) = α−1 has a unique solution
λn for all n ∈ N. Moreover, for any n ∈ N there cannot be infinitely many k �= n with
λn = λk , since otherwise α−1 < 0 would be an eigenvalue with infinite multiplicity
of the self-adjoint and compact operator λn S(λn). Thus σdisc(Tα) is indeed an infinite
set. Furthermore, as S(λ) is a positive self-adjoint operator in L2(�); cf. Step 1 in
the proof of Proposition 2.2, we have by definition μn(S(λ)) ≥ μn+1(S(λ)) implying
λμn(S(λ)) ≤ λμn+1(S(λ)). Therefore, the monotonicity of the map λ �→ λμn(S(λ))

from Proposition 2.2 yields λn+1 ≤ λn for all n ∈ N. This shows that 0 cannot be an
accumulation point of the sequence (λn)n∈N and as σess(Tα)∩(−∞, 0) = ∅ the sequence
(λn)n∈N has no finite accumulation points, that is, σdisc(Tα) must be unbounded from
below.

It remains to prove the asymptotic expansion in item (ii). By the above considerations
λn is determined as the unique solution of λμn(S(λ)) = α−1. Clearly, if α → 0−, then
a := α−1 → −∞. Hence, it follows from Proposition 2.2 (ii) with a = α−1 that
λn = − 4

α2 +O(1) for α → 0− and that the dependence on n appears in the O(1)-term.
��
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3. Proof of Theorem 1.2

In this section we show that Tα is the non-relativistic limit of a family of Dirac operators
with electrostatic and Lorentz scalar δ-shell potentials formally given by (1.8), whose
interaction strengths are suitably scaled. First, we recall the rigorous definition of the
operator Aη,τ associated with (1.8), see [5–7] for details. Let

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, and σ3 =

(
1 0
0 − 1

)
(3.1)

be the Pauli spin matrices and denote the 2 × 2 identity matrix by I2. Furthermore, for
x = (x1, x2) ∈ R

2 we will use the abbreviations

σ · x = σ1x1 + σ2x2 and σ · ∇ = σ1∂1 + σ2∂2. (3.2)

We define Dirac operators with electrostatic and Lorentz scalar δ-shell interactions of
strengths η, τ ∈ R in L2(R2)2 by

Aη,τ f =
(

−ic(σ · ∇) +
c2

2
σ3

)
f+ ⊕

(
−ic(σ · ∇) +

c2

2
σ3

)
f−,

dom Aη,τ =
{
f ∈ H1(�+)

2 ⊕ H1(�−)2
∣∣

ic(σ · ν)
(
γ +
D f+ − γ −

D f−
)
+
1

2
(ηI2 + τσ3)

(
γ +
D f+ + γ −

D f−
) = 0

}
.

(3.3)

It is shown in [6,7] that Aη,τ is self-adjoint in L2(R2)2, whenever η2 − τ 2 �= 4c2,
and as in [5] one sees that these operators are the self-adjoint realisations of the formal
differential expression (1.8). In the above definition we are using units such that � = 1
and consider the mass m = 1

2 , but we keep the speed of light c as a parameter for the
discussion of the non-relativistic limit c → ∞.

Throughout this sectionwemake use of the self-adjoint freeDirac operator A0, which
coincides with the operatorA0,0 given in (3.3) and which is defined on H1(R2)2. For

λ ∈ ρ(A0) = C\((−∞,− c2
2 ] ∪ [ c22 ,∞)

)
the integral kernel of the resolvent of A0 is

given by Gλ(x − y), where Gλ(x) is defined for x ∈ R
2\{0} by

Gλ(x) = 1

2πc

√
λ2

c2
− c2

4
K1

⎛

⎝−i

√
λ2

c2
− c2

4
|x |

⎞

⎠ 1

|x | (σ · x)

+
1

2πc
K0

⎛

⎝−i

√
λ2

c2
− c2

4
|x |

⎞

⎠
(

λ

c
I2 +

c

2
σ3

)
; (3.4)

cf. [6, equation (3.2)]. With this function we define the two families of integral operators

�λϕ(x) =
∫

�

Gλ(x − y)ϕ(y)dσ(y), ϕ ∈ L2(�)2, x ∈ R
2\�,

Cλϕ(x) = lim
ε→0+

∫

�\B(x,ε)

Gλ(x − y)ϕ(y)dσ(y), ϕ ∈ L2(�)2, x ∈ �,
(3.5)
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where B(x, ε) is the ball of radius ε centered at x . Both operators �λ : L2(�)2 →
L2(R2)2 and Cλ : L2(�)2 → L2(�)2 are well-defined and bounded; cf. [6, Proposi-
tion 3.3 and equation (3.7)].

In the following lemma, which is a preparation for the proof of Theorem 1.2, we will
use the matrices

M1 =
(
1 0
0 0

)
, M2 =

(
0 1
0 0

)
, and M3 =

(
0 0
0 1

)
;

products of scalar operators and matrices are understood componentwise, e.g.

(−� − λ)−1M1 =
(

(−� − λ)−1 0
0 0

)
: L2(R2)2 → L2(R2)2.

Lemma 3.1. Let λ ∈ C\R. Then there exists a constant K > 0, depending only on λ

and �, such that the estimates

∥∥(
A0 − (λ + c2/2)

)−1 − (−� − λ)−1 M1
∥∥ ≤ K

c
, (3.6a)

∥∥c�λ+c2/2M3 − 
λM2
∥∥ ≤ K

c
, (3.6b)

∥∥cM3�
∗
λ+c2/2 − M�

2 
∗
λ

∥∥ ≤ K

c
, (3.6c)

∥∥c2M3Cλ+c2/2M3 − λS(λ)M3
∥∥ ≤ K

c
, (3.6d)

are valid for all sufficiently large c > 0.

Proof. We use a similar strategy as in the proof of [4, Proposition 5.2]. In the following
let λ ∈ C\R be fixed. Then λ + c2

2 ∈ C\R and hence all operators in (3.6a)–(3.6d) are
well-defined. One verifies by direct calculation that for sufficiently large c > 0 and all
t ∈ [0, 1]

0 <
1

2

∣∣∣
√

λ

∣∣∣ ≤
∣
∣∣∣∣∣

√

λ + t
λ2

c2

∣
∣∣∣∣∣
≤ 3

2

∣∣∣
√

λ

∣∣∣ and
1

2
Im

√
λ ≤ Im

√

λ + t
λ2

c2
(3.7)

hold. With the well-known asymptotic expansions of the modified Bessel functions and
K ′
1(z) = −K0(z) − 1

z K1(z), (see [1]) one shows that there exist constants K̂ , κ, R > 0,
depending only on λ, such that

∣∣∣∣
∣∣
K j

⎛

⎝−i

√

λ + t
λ2

c2
|x |

⎞

⎠

∣∣∣∣
∣∣
≤ K̂

{ |x |−1, for |x | < R,

e−κ|x |, for |x | ≥ R,
(3.8)

and ∣∣
∣∣∣∣
K ′
1

⎛

⎝−i

√

λ + t
λ2

c2
|x |

⎞

⎠

∣∣
∣∣∣∣
≤ K̂

{ |x |−2, for |x | < R,

e−κ|x |, for |x | ≥ R,
(3.9)

hold for all x ∈ R
2\{0}, j ∈ {0, 1}, t ∈ [0, 1], and sufficiently large c > 0.
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Next, with Gλ+c2/2 defined by (3.4) we find

Gλ+c2/2(x) = 1

2πc

√

λ +
λ2

c2
K1

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ 1

|x | (σ · x)

+
1

2πc
K0

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠
(

λ

c
I2 + cM1

)
. (3.10)

Let

Uλ(x) = 1

2π
K0

(−i
√

λ|x |), x ∈ R
2\{0},

be the integral kernel of the resolvent of the free Laplace operator; cf. [28, Chapter 7.5].
Then

Gλ+c2/2(x) −Uλ(x)M1 = t1(x) + t2(x) + t3(x)

holds, where the matrix-valued functions t1, t2, and t3 are given by

t1(x) = 1

2πc

√

λ +
λ2

c2
K1

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ σ · x
|x | ,

t2(x) = 1

2π

⎛

⎝K0

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ − K0
(−i

√
λ|x |)

⎞

⎠ M1,

t3(x) = λ

2πc2
K0

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ I2.

With (3.7) and (3.8) applied with t = 1 one finds that there exist constants k1, κ, R > 0,
depending only on λ, such that for j ∈ {1, 3} and sufficiently large c > 0 one has

∣
∣t j (x)

∣
∣ ≤ k1

c

{ |x |−1, for |x | < R,

e−κ|x |, for |x | ≥ R.

To estimate t2, we use K ′
0 = −K1 and obtain with the fundamental theorem of calculus,

(3.7), and (3.8)
∣∣
∣∣∣∣
K0

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ − K0

(
−i

√
λ|x |

)
∣∣
∣∣∣∣
≤

∫ 1

0

∣∣
∣∣∣∣

d

dt
K0

⎛

⎝−i

√

λ + t
λ2

c2
|x |

⎞

⎠

∣∣
∣∣∣∣
dt

=
∫ 1

0

|λ|2|x |
∣∣∣∣

√
λ + t λ2

c2

∣∣∣∣

1

2c2

∣∣∣
∣∣∣
K1

⎛

⎝−i

√

λ + t
λ2

c2
|x |

⎞

⎠

∣∣∣
∣∣∣
dt

≤ k2
c2

{
1, for |x | < R,

e− κ
2 |x |, for |x | ≥ R,

(3.11)
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with a constant k2 which depends only on λ. Thus, if we define k3 = 2k1 +
k2R
2π , then

∣
∣Gλ+c2/2(x) −Uλ(x)M1

∣
∣ ≤ k3

c

{ |x |−1, for |x | < R,

e− κ
2 |x |, for |x | ≥ R.

This estimation for the integral kernel yields with the Schur test; cf. [4, Proposition A.3]
for a similar argument,

∥
∥(

A0 − (λ + c2/2)
)−1 − (−� − λ)−1 M1

∥
∥ ≤ K

c

for all sufficiently large c > 0, which is the first claimed estimate (3.6a).
Next, we prove (3.6b). Recall that the integral kernel Lλ of 
λ is given by (2.1).

Using that σ1M3 = M2, σ2M3 = −iM2, and M1M3 = 0, we obtain with (3.10) the
decomposition

cGλ+c2/2(x)M3 − Lλ(x)M2 = τ1(x) + τ2(x) + τ3(x)

with

τ1(x) = 1

2π

⎛

⎝

√

λ +
λ2

c2
− √

λ

⎞

⎠ K1

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ x1 − i x2
|x | M2,

τ2(x) =
√

λ

2π

⎛

⎝K1

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ − K1
(−i

√
λ|x |)

⎞

⎠ x1 − i x2
|x | M2,

τ3(x) = λ

2πc
K0

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ M3.

Similar as above it can be shown that there exists a k4 > 0, depending only on λ, such
that for all j ∈ {1, 2, 3}

∣∣τ j (x)
∣∣ ≤ k4

c

{ |x |−1, for |x | < R,

e− κ
2 |x |, for |x | ≥ R;

to see the estimate for τ2 one has to use (3.9). With the help of the Schur test the
estimate (3.6b) follows (see also [4, PropositionA.4] for a similar argument); the constant
k4 depends in this case on λ and �. The estimate in (3.6c) follows by taking adjoints.

It remains to prove (3.6d). Taking M3(σ · x)M3 = 0, which holds for any x ∈ R
2,

and (3.11) into account we obtain that
∣∣c2M3Gλ+c2/2(x)M3 − λUλ(x)M3

∣∣

= |λ|
2π

∣
∣∣∣∣∣
K0

⎛

⎝−i

√

λ +
λ2

c2
|x |

⎞

⎠ − K0
(−i

√
λ|x |)

∣
∣∣∣∣∣
≤ k5

c2

holds for all x ∈ R
2\{0}. Using the dominated convergence theorem, one sees that

(
c2M3Cλ+c2/2M3 f

)
(x) =

∫

�

c2M3Gλ+c2/2(x − y)M3 f (y)dσ(y)



3160 J. Behrndt, M. Holzmann, G. Stenzel

holds for all f ∈ L2(�)2 and x ∈ �, i.e. the integral does not have to be understood as
principal value. Thus we obtain with the Schur test [23, III. Example 2.4] that

∥∥c2M3Cλ+mc2M3 − λS(λ)M3
∥∥ ≤ K

c2
.

In this case, the constant K depends on λ and�. This yields (3.6d) and finishes the proof
of this lemma. ��

Now we are prepared to prove Theorem 1.2 and show that A−αc2/2,αc2/2 converges
in the non-relativistic limit to Tα defined in (1.6).

Proof of Theorem 1.2. Let λ ∈ C\R be fixed. Then it follows from [7, Lemma 5.4,
Proposition 5.5, Theorem 5.6, and Lemma 5.9] (see also [6, Theorem 4.6]) that the
operator I2 − αc2M3Cλ+c2/2 : L2(�)2 → L2(�)2 is boundedly invertible and the
resolvent of A−αc2/2,αc2/2 − c2/2 is given by

(
A−αc2/2,αc2/2−(λ + c2/2)

)−1 = (
A0 − (λ + c2/2)

)−1

+ �λ+c2/2

(
I − αc2M3Cλ+c2/2

)−1
αc2M3�

∗
λ+c2/2

.
(3.12)

Because of M3 = M2
3 it follows from [26, Proposition 2.1.8] that

σ
(
M3Cλ+c2/2

) ∪ {0} = σ
(
M3Cλ+c2/2M3

) ∪ {0}.
In particular, this yields that the operator I − αc2M3Cλ+c2/2M3 is boundedly invertible
in L2(�)2 for all c > 0 and a direct calculation shows

(I − αc2M3Cλ+c2/2)
−1M3 = M3(I − αc2M3Cλ+c2/2M3)

−1. (3.13)

Recall that for λ ∈ C\R also I − αλS(λ) is boundedly invertible in L2(�); cf. Theo-
rem 1.1 (iv). Hence, we obtain from Lemma 3.1 and [23, IV. Theorem 1.16] that

∥∥(I − αc2M3Cλ+c2/2M3)
−1 − (I − αλS(λ)M3)

−1
∥∥ ≤ K

c
(3.14)

holds for all sufficiently large c > 0 with a constant K > 0 which depends only on λ,
α, and �.

To conclude, note that (3.12) and (3.13) yield

(
A−αc2/2,αc2/2−(λ + c2/2)

)−1 = (
A0 − (λ + c2/2)

)−1

+ c�λ+c2/2M3(I − αc2M3Cλ+c2/2M3)
−1αcM3�

∗
λ+c2/2

,

while Theorem 1.1 (iv) and M2M3M�
2 = M1 show

(Tα − λ)−1M1 = (−� − λ)−1M1 + 
λ(I − αλS(λ))−1α
∗
λ
M1

= (−� − λ)−1M1 + 
λM2(I − αλS(λ)M3)
−1αM�

2 
∗
λ
.

Using Lemma 3.1 and (3.14) the last two displayed formulae finally lead to the claimed
convergence result and it also follows that the order of convergence is O( 1c ). ��
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A. Proof of Propositions 2.1 and 2.2

Recall that for λ ∈ C\[0,∞) the operators 
λ, SL(λ), and S(λ) are defined by
(2.2), (2.3), and (2.4), respectively. First, we collect some properties of the single
layer potential SL(λ) that are needed in the following. It is well-known that SL(λ) :
H1/2(�) → H2(R2\�) gives rise to a bounded operator, that (−� − λ)SL(λ)ϕ = 0
in R

2\�, and that for ϕ ∈ H1/2(�) the jump relations

γ +
D(SL(λ)ϕ)+ = γ −

D (SL(λ)ϕ)− and ∂ν(SL(λ)ϕ)+ − ∂ν(SL(λ)ϕ)− = ϕ (A.1)

hold; cf. [25] or [22, Section 3.3]. Furthermore, for the single layer boundary integral
operator S(λ) from (2.4) we have S(λ) = γDSL(λ) and for all ϕ ∈ L2(�) the repre-
sentations

SL(λ)ϕ = (−� − λ)−1γ ′
Dϕ and S(λ)ϕ = γD(−� − λ)−1γ ′

Dϕ (A.2)

hold (see [22,25]); here γD : H1(R2) → L2(�) and γ ′
D : L2(�) → H−1(R2) is the

anti-dual operator.

Proof of Proposition 2.1. First, we prove item (ii). For λ ∈ C\[0,∞) define the operator


̂λ := −2iγD∂z(−� − λ)−1. (A.3)

Since (−� − λ)−1 : L2(R2) → H2(R2) and γD : H1(R2) → H1/2(�) are bounded,
we get that 
̂λ : L2(R2) → H1/2(�) is well-defined and bounded. Furthermore,
as H1/2(�) is compactly embedded in L2(�) by Rellich’s embedding theorem, the
operator 
̂λ : L2(R2) → L2(�) is compact. Note that 
̂λ is an integral operator with
integral kernel

k(x, y) = −2i∂z
1

2π
K0

(
−i

√
λ|x − y|

)

=
√

λ

2π
K1

(
−i

√
λ|x − y|

) x1 − y1 + i(x2 − y2)

|x − y|
= Lλ(y − x),

www.cost.eu
http://creativecommons.org/licenses/by/4.0/
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where we used K ′
0 = −K1 in the second step and

√
λ = −

√
λ in the last step (recall

that Im
√

ω > 0 for ω ∈ C\[0,∞)). Hence, we conclude that


λ = 
̂∗
λ : L2(�) → L2(R2)

is bounded and that all claims in item (ii) are true.
Next, we show (2.5). Let ϕ ∈ L2(�) and f ∈ H1(R2). Since � = 4∂z∂z = 4∂z∂z ,

we see that ∂z(−� − λ)−1 f = (−� − λ)−1∂z f . Hence, item (ii) and (A.2) imply

(
λϕ, f )L2(�) = (
ϕ,−2iγD∂z(−� − λ)−1 f

)
L2(R2)

= (
ϕ,−2iγD(−� − λ)−1∂z f

)
L2(R2)

= ( − 2i∂z SL(λ)ϕ, f
)
L2(R2)

.

Since H1(R2) is dense in L2(R2), we conclude that (2.5) is true. In particular, this and
the properties of the single layer potential mentioned at the beginning of this appendix
imply that


λ : H1/2(�) → H1(R2\�) (A.4)

is bounded and for ϕ ∈ H1/2(�) we have

i∂z (
λϕ)± = 2∂z∂z (SL(λ)ϕ)± = 1

2
�(SL(λ)ϕ)± = −λ

2
(SL(λ)ϕ)± . (A.5)

Since SL(λ)ϕ ∈ H1(R2) it follows that ∂z (
λϕ)+ ⊕ ∂z (
λϕ)− ∈ H1(R2) holds for
any ϕ ∈ H1/2(�).

Now, we show (iii). Let ϕ ∈ H1/2(�). With (A.5) we see that

−i
(
γ +
D∂z(
λϕ)+ + γ −

D ∂z(
λϕ)−
) = λγDSL(λ)ϕ = λS(λ)ϕ

holds. Moreover, we obtain with SL(λ)ϕ ∈ H2(R2\�)

i(ν1 + iν2)γ
±
D (−2i∂z SL(λ)ϕ)± = ∂ν (SL(λ)ϕ)± − i∂t (SL(λ)ϕ)± ,

where ∂t is the tangential derivative on �. As SL(λ)ϕ ∈ H1(R2), one has the relation
∂t (SL(λ)ϕ)+ = ∂t (SL(λ)ϕ)− and consequently with (A.1)

i(ν1 + iν2)
(
γ +
D(
λϕ)+ − γ −

D (
λϕ)−
) = ∂ν (SL(λ)ϕ)+ − ∂ν (SL(λ)ϕ)− = ϕ.

This finishes the proof of (iii).
It remains to prove item (i). By applying the Wirtinger derivative ∂z to (A.5) one gets

with (2.5) that

−�(
λϕ)± = −4∂z∂z (
λϕ)± = −2iλ∂z (SL(λ)ϕ)± = λ (
λϕ)±

holds for all ϕ ∈ L2(�) in the distributional sense. This, (A.4), (A.5), and the properties
of SL(λ) described at the beginning of this appendix show that 
λϕ ∈ Hλ for all ϕ ∈
H1/2(�) and therefore the mapping 
λ : H1/2(�) → Hλ is well-defined. Moreover,
it follows from (iii) that this mapping is injective. To prove that 
λ : H1/2(�) → Hλ

is surjective, let f ∈ Hλ be fixed. Define ϕ = i(ν1 + iν2)(γ +
D f+ − γ −

D f−) ∈ H1/2(�)

and g = 
λϕ ∈ Hλ. By (iii) we have that

γ +
D( f − g)+ − γ −

D ( f − g)− = γ +
D f+ − γ −

D f− + i(ν1 − iν2)ϕ = 0.
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This shows f − g ∈ H1(R2). Moreover, due to f, g ∈ Hλ we have that ∂z( f − g) ∈
H1(R2), which implies f − g ∈ H2(R2). Combining this with f, g ∈ Hλ we find that
f − g ∈ ker (−� − λ) = {0}, i.e. f = g = 
λϕ. Thus 
λ : H1/2(�) → Hλ is also
surjective and all claims in assertion (i) are shown. ��
Proof of Proposition 2.2. The proof of item (i) is divided into 3 separate steps. In Step 1
we show that the map (−∞, 0) � λ �→ μn(S(λ)) ∈ (0,∞) is continuous and strictly
monotonically increasing, and in Step 2 we verify that the same is true for the map
(−∞, 0) � λ �→ λμn(S(λ)) ∈ (−∞, 0). Using these results, we complete the proof of
assertion (i) in Step 3.

Step 1. Let n ∈ N. We show that the map (−∞, 0) � λ �→ μn(S(λ)) ∈ (0,∞)

is continuous and strictly monotonically increasing. To verify that μn(S(λ)) > 0 for
λ ∈ (−∞, 0), it suffices to prove that S(λ) is a positive self-adjoint operator. From the
definition of S(λ) in (2.4) it follows that S(λ) is self-adjoint. Next, let ϕ ∈ L2(�) with
ϕ �= 0 and set f := SL(λ)ϕ. Using the properties of SL(λ) described at the beginning
of this appendix one finds that f �= 0 and

(
S(λ)ϕ, ϕ

)
L2(�)

= (
γD f, ∂ν f+ − ∂ν f−

)
L2(�)

= (
f+,� f+

)
L2(�+)

+ ‖∇ f+‖2L2(�+)
+

(
f−,� f−

)
L2(�−)

+ ‖∇ f−‖2L2(�−)

≥ (
f+,� f+

)
L2(�+)

+
(
f−,� f−

)
L2(�−)

= −λ‖ f ‖2L2(R2)
> 0.

Therefore, μn(S(λ)) > 0 must be true.
Next, we show that (−∞, 0) � λ �→ μn(S(λ)) ∈ (0,∞) is monotonically increasing

and continuous. With (A.2) one sees that S(·) : C\[0,∞) → L(L2(�)) is holomorphic
and that d

dλ
S(λ) = γD(−� − λ)−2γ ′

D holds. In particular, for any ϕ ∈ L2(�) the
function (−∞, 0) � λ �→ (S(λ)ϕ, ϕ)L2(�) is continuously differentiable and

d

dλ

(
S(λ)ϕ, ϕ

)
L2(�)

= (
(−� − λ)−1γ ′

Dϕ, (−� − λ)−1γ ′
Dϕ

)
L2(�)

= ‖SL(λ)ϕ‖2L2(R2)
≥ 0

is true. Thus, the min–max principle implies that the map (−∞, 0) � λ �→ μn(S(λ))

is monotonically increasing for every n ∈ N. Furthermore, due to the holomorphy of
S(·) : C\[0,∞) → L(L2(�)) and the estimate

|μn(S(η)) − μn(S(λ))| ≤ ‖S(η) − S(λ)‖, η, λ < 0,

(see [29, Satz 3.17]), we find that (−∞, 0) � λ �→ μn(S(λ)) is continuous for n ∈ N.
It remains to show that the latter map is strictly monotonically increasing. Define

for α ∈ R\{0} the operator-valued function B1 : C\[0,∞) → L(L2(�)) by B1(λ) =
I − αS(λ). By the properties of S(λ) it is easy to see that B1 is holomorphic and B1(λ)

is a Fredholm operator with index 0 for any fixed λ, since S(λ) is compact in L2(�).
Moreover, by [18, Theorem 1.2] there exists a constant K > 0 such that

‖S(λ)‖ ≤ K√
2 + |λ| ln

√

2 +
1

|λ| , λ ∈ C\[0,∞). (A.6)

Hence, there exists λ0 < 0 such that ‖S(λ)‖ < |α|−1 is valid for all λ < λ0. This implies
that B1(λ) is boundedly invertible for every λ < λ0. Therefore, by [20, Chapter XI.,
Corollary 8.4] the set

Mα,1 = {
λ ∈ C\[0,∞)

∣∣ B1(λ) = I − αS(λ) is not invertible
}
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is at most countable and does not have an accumulation point in C\[0,∞). Now assume
that λ1 < λ2 < 0 satisfy μn(S(λ1)) = μn(S(λ2)) =: α−1 for some n ∈ N. Then
it follows from the monotonicity of λ �→ μn(S(λ)) that [λ1, λ2] ⊆ Mα,1, which is
a contradiction to the fact that Mα,1 is at most countable. Therefore, the mapping
(−∞, 0) � λ �→ μn(S(λ)) is continuous and strictly monotonically increasing for
n ∈ N.

Step 2. To show the continuity and strict monotonicity of the map (−∞, 0) � λ �→
λμn(S(λ)) for all n ∈ N, we note first that the continuity follows from the continuity of
themap λ �→ μn(S(λ)) shown in Step 1. In order to prove themonotonicity, we use again
d
dλ

S(λ) = γD(−� − λ)−2γ ′
D and compute for a fixed ϕ ∈ L2(�) and λ ∈ (−∞, 0)

with the help of (2.5) and (A.2)

d

dλ

(
λS(λ)ϕ, ϕ)L2(�) = (

S(λ)ϕ + λγD(−� − λ)−2γ ′
Dϕ, ϕ

)
L2(�)

= ( − 4γD(−� − λ)−1∂z∂z(−� − λ)−1γ ′
Dϕ, ϕ

)
L2(�)

= ‖
λϕ‖2L2(R2)
≥ 0.

Thus, the min-max principle yields the monotonicity of the mapping (−∞, 0) � λ �→
λμn(S(λ)). To see the strict monotonicity, we use a similar strategy as in Step 1 and
define for α ∈ R\{0} the holomorphic mapping B2 : C\[0,∞) → L(L2(�)) by
B2(λ) = I −αλS(λ). Again, B2(λ) is a Fredholm operator with index zero for any fixed
λ and it follows from (A.6) that there exists λ3 < 0 such that ‖λS(λ)‖ < |α|−1 holds for
all λ ∈ (λ3, 0). In particular, B2(λ) is boundedly invertible for all λ ∈ (λ3, 0). It follows
from [20, Chapter XI., Corollary 8.4] that the set

Mα,2 = {
λ ∈ C\[0,∞)

∣∣ B2(λ) = I − αλS(λ) is not invertible
}

is at most countable and does not have an accumulation point inC\[0,∞). Now the same
argument as in Step 1 shows that (−∞, 0) � λ �→ λμn(S(λ)) is strictly monotonously
increasing.

Step 3. To study the limiting behaviour of λμn(S(λ)) for λ → 0, note that (A.6)
implies ‖λS(λ)‖ → 0 for λ → 0− and hence,

lim
λ→0− λμn(S(λ)) = 0, n ∈ N. (A.7)

Next, we consider the limit of λμn(S(λ)) for λ → −∞. For this purpose, results on
Schrödinger operators with δ-interactions will be used. Define for α < 0 the sesquilinear
form

hδ,α[ f, g] = (∇ f,∇g
)
L2(R2)

+ α
(
γD f, γDg

)
L2(�)

, f, g ∈ dom hδ,α = H1(R2).

By [9,14] the form hδ,α is semi-bounded and closed, and one can show for the self-adjoint
operator Hδ,α , which is associated with hδ,α by the first representation theorem, that
σess(Hδ,α) = [0,∞), that its discrete spectrum σdisc(Hδ,α) is finite, and for λ ∈ (−∞, 0)
one has that

λ ∈ σp(Hδ,α) ⇐⇒ −1 ∈ σp(αS(λ)); (A.8)

see for instance [9, Lemma 2.3 and Theorem 4.2] and [8, Theorems 3.5 and 3.14]. Recall
that the eigenvaluesμn(S(λ)) are ordered non-increasingly withmultiplicities taken into
account. If we order the discrete eigenvalues of Hδ,α in an increasing way then the strict
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monotonicity of λ �→ μn(S(λ)) implies that the k-th discrete eigenvalue Ek(α) (if it
exists) satisfies the equation −1 = αμk(S(Ek(α))).

Let n ∈ N. Then by [14, Theorem 1] the operator Hδ,α has at least n negative discrete
eigenvalues (counted with multiplicities) if −α > 0 is sufficiently large, and the n-th
discrete eigenvalue En(α) of Hδ,α admits the asymptotic expansion

En(α) = −α2

4
+ μn(H) +O(α−1 ln |α|), α → −∞. (A.9)

Here H is a fixed semibounded differential operator on � that is independent of α and
has purely discrete spectrum μ1(H) ≤ μ2(H) ≤ . . . . Thus for α → −∞ we obtain
with (A.8) that

α

4
+

|μn(H)| + 1

α
≤ En(α)μn(S(En(α))) = − En(α)

α
≤ α

4
− |μn(H)| + 1

α
. (A.10)

This shows
lim

λ→−∞ λμn(S(λ)) = −∞ (A.11)

and finishes the proof of item (i).
To show item (ii), we note first that by (A.7), (A.11), and the strict monotonicity

and continuity of the mapping λ �→ λμn(S(λ)) it is clear that for any a < 0 there is a
unique solution λn(a) of λμn(S(λ)) = a. Let μn(H) be as in (A.9), define the numbers
k± = ±(|μn(H)| + 1) and let

α± = −2|a|
(√

1 +
k±
a2

+ 1

)

= −4|a| − k±
|a| + f±(a) (A.12)

with some functions f±(a) = O(a−3) for large |a| > 0, where the latter representation
holds due to a Taylor series expansion. Then one has

a = α±
4

− k±
α±

(A.13)

and it follows with (A.10) that

En(α+)μn(S(En(α+))) ≤ α+

4
− |μn(H)| + 1

α+
= a = λn(a)μn(S(λn(a))

and

λn(a)μn(S(λn(a)) = a = α−
4

+
|μn(H)| + 1

α−
≤ En(α−)μn(S(En(α−))).

Since λ �→ λμn(S(λ)) is monotone we find

En(α+) ≤ λn(a) ≤ En(α−). (A.14)

From (A.12) we obtain
1

4
α2± = 4a2 + 2k± + g±(a)

with functions g±(a) = O(a−2) for large |a| > 0 and hence (A.9) implies
∣∣En(α±) + 4a2 + 2k± + g±(a) − μn(H)

∣∣ ≤ C1
∣∣α−1± ln |α±|∣∣ (A.15)
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for some constant C1 > 0. Note that there exist positive constants C2,C3 > 0 such that
C2|a| ≤ |α±| ≤ C3|a| holds for large |a| > 0. With this we conclude from (A.15) that

∣∣En(α±) + 4a2 + 2k± − μn(H)
∣∣ ≤ C4

∣∣a−1 ln |a|∣∣ (A.16)

holds for some constant C4 > 0 and for large |a| > 0. Taking (A.14) and (A.16) into
account, one concludes finally that

|λn(a) + 4a2| ≤ 3|μn(H)| + 2 +O(a−1 ln |a|) = O(1) for a → −∞.

��
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