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Abstract
In this paper the two-dimensional Dirac operator with a general hermitian δ-
shell interaction supported on a straight line is introduced as a self-adjoint
operator and its spectral properties are investigated in detail. In particular, it
is demonstrated that the singularly continuous spectrum is always empty and
that by switching a certain δ-shell interaction on, it is possible to generate an
eigenvalue in the gap of the spectrum of the free operator or to partially or
even fully close the gap. This suggests that the studied operators may serve as
interesting continuum toy-models for Dirac materials. Finally, approximations
by Dirac operators with regular potentials are presented.
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1. Introduction

In this paper we study the two-dimensional Dirac operator formally given by

Ĥη,τ,λ,ω := σ1(−i∂x)+σ2(−i∂y)+σ3m+(σ0η+σ3τ +(σ · t)λ+(σ ·n)ω)δΣ,
(1.1)

where m,η,τ,λ,ω ∈ R, σi with i= 1,2,3 are the usual Pauli matrices defined in (2.1) below,
σ0 is the 2× 2 identity matrix, δΣ is the Dirac δ-distribution supported on the straight line
Σ := {(0,y)| y ∈ R}, and t and n are the tangential and normal vector along Σ, respectively;
the notation σ · x= σ1x1 +σ2x2 was used for a vector x= (x1,x2). The singular term in (1.1)
is called the δ-shell potential. Since {σi}3i=0 constitutes a basis of the space of 2× 2 hermitian
matrices, we deal with a general hermitian δ-shell interaction. The first two interaction terms
σ0η and σ3τ in (1.1) are referred to as the electrostatic and the Lorentz scalar interaction,
respectively. The two remaining terms (σ · t)λ and (σ ·n)ω were recently related to the mag-
netic interaction [11]. The expression in (1.1) is rigorously defined as a differential operator in
an L2-space with the help of transmission conditions for the functions in the operator domain.

The operator in (1.1) may serve as a toy-model for graphene and similar Dirac materials.
In fact, Dirac operators with rectangular translationally invariant vector potentials, which may
be scaled to potentials that converge in the distributional sense to (σ · t)λδΣ, have been stud-
ied before as models of graphene with deformation induced perturbations or very localized
magnetic barriers, see, e.g. [13, 24, 27]. Another application is related to the fact that there
may appear defects in the synthesized graphene, grain boundaries being the most common
ones [21]. For a line defect, the corresponding continuum model was derived in [31], see also
[32, 33]. It coincides with the model studied in the current paper in the sense that the trans-
mission condition deduced there is the same as the transmission condition for functions in the
domain of Ĥη,τ,λ,ω . Let us stress that most of the cited papers are concerned with scattering
issues. In this paper we want to study, for the first time, the self-adjointness and the spectral
properties of the two-dimensional Dirac operator with a general δ-shell interaction supported
on a straight line.

Concerning the mathematical study of the operator in (1.1), it turns out that Ĥη,τ,λ,ω is
always unitarily equivalent to an operator of the same type but with ω= 0; cf section 4 and
[11]. Therefore, it is sufficient to study a three-parametric family of operators, which will
be denoted by Ĥη,τ,λ := Ĥη,τ,λ,0. The investigation of Ĥη,τ,λ with general interaction sup-
ports was initiated in dimension three in [2], where Σ is a smooth and compact surface and
τ = λ= 0, and continued under various assumptions (see the review paper [25]), and then in
dimension two Ĥη,τ,λ was studied with similar techniques as in the three-dimensional case
first for Σ being a smooth closed non-self-intersecting curve and λ= 0 in [5]. Subsequently, a
general hermitian δ-shell interaction supported on the closed curve with possibly non-constant
coupling constants was introduced and analyzed in [11]. In particular, Ĥη,τ,λ was proven to
be self-adjoint in L2(R2;C2) when λ= 0 or if(

η2 − τ 2 −λ2

4
− 1

)2

−λ2 6= 0 (1.2)

using advanced boundary triple techniques, see, e.g. [4, 7]. We say that we are in the non-
critical case if (1.2) holds true. In the opposite (critical) case, it is known that the functions
in the domain of Ĥη,τ,λ are less regular than in the non-critical case. Note that for λ= 0, the
criticality condition yields η2 − τ 2 = 4 and, in the complementary case when η = τ = 0, it
yields λ=±2. The case (η,τ,λ) = (0,0,±2) is both critical and confining, where the latter
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means that Ĥη,τ,λ decouples into a direct sum of two operators acting on functions defined on
the open domains inR2 that are separated byΣ. This happens if and only if η2 − τ 2 −λ2 =−4.
From a physical point of view, confinement means that the δ-potential is impenetrable for
particles. The self-adjointness of Ĥ0,0,±2 was shown in [11] employing the supersymmetric
structure of the operator, see [35].

Let us briefly summarize the spectral properties of Ĥη,τ,λ that were obtained in [5, 11] when
Σ is a closed curve. In the non-critical case, the essential spectrum is given by

σess(Ĥη,τ,λ) = (−∞,−|m|]∪ [|m|,+∞)

and the discrete spectrum is finite. If λ= 0 and η2 − τ 2 = 4 then

σess(Ĥη,τ,0) = (−∞,−|m|]∪
{
−τ
η
m

}
∪ [|m|,+∞).

Finally, for (η,τ,λ) = (0,0,±2), σ(Ĥ0,0,±2) = (−∞,−|m|]∪ [|m|,+∞),±m are eigenvalues
of infinite multiplicity, and there is a sequence of embedded eigenvalues {±

√
m2 +λk}k∈N,

where the λk’s are the eigenvalues of the Dirichlet Laplacian on the bounded domain enclosed
by Σ.

If Σ is a general unbounded curve, the self-adjointness of Ĥη,τ,λ is not fully studied so far.
We view the current model as an explicitly solvable example of what spectral behavior may
be expected for the two-dimensional Dirac operator with a δ-shell interaction supported on
an unbounded curve. So far, there are only the papers [28, 29] dealing with the non-critical
case under quite general assumptions that contain less explicit results, and the publication [6]
by the authors of the present paper for the case when Σ is a straight line and τ = λ= 0. The
spectrum of Ĥη,0,0 may be now very different from the case when Σ was a closed curve. In the
non-critical case, the gap (−|m|, |m|) is partially closed by either negative or positive energies
and the spectrum is purely continuous, see (6.7) or [6, theorem 1.1]. In the critical case, i.e. for
η =±2,

σ(Ĥ±2,0,0) = (−∞,−|m|]∪{0}∪ [|m|,+∞),

where the point 0 is an isolated eigenvalue of infinite multiplicity and the rest of the spectrum
is purely continuous. Hence, when the interaction strength changes from a non-critical to a
critical interaction strength, then a part of the continuous spectrum collapses into an eigenvalue
of infinite multiplicity.

In the present paper, we will employ the partial Fourier transform and work with the direct
integral of a family of one-dimensional Dirac operators. In more detail, we will start with
the free two-dimensional Dirac operator, whose spectrum is purely absolutely continuous and
equal to (−∞,−|m|]∪ [|m|,+∞), and decompose it into the direct integral of the following
fiber operators

H[k] = σ1(−i∂x)+σ2k+σ3m, (1.3)

which are nothing but the one-dimensional Dirac operators perturbed by the hermitian term
σ2k, where k ∈ R is the momentum in the y-direction. Then we add the standard one-
dimensional point interaction at x= 0 to every H[k]. The associated operators are known to
be self-adjoint. Finally, we introduce the two-dimensional Dirac operator with a δ-shell inter-
action supported on the line Σ as the direct integral of these operators. The resulting operator
is self-adjoint by construction. Moreover, its spectral properties follow from those of its fibers.
The spectra of the one-dimensional Dirac operators with point interactions have been studied
before in [8], but now we have to include an additional perturbation, namely σ2k. We will
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conclude that there are at most two discrete eigenvalues in the spectrum of each of the one-
dimensional fibers and the rest of its spectrum is purely absolutely continuous, see theorem 5.2.
Using an abstract criterion for the absence of singular continuous spectrum of direct integrals
of self-adjoint operators (see appendix) we will show that the spectrum of the full operator
Ĥη,τ,λ may be very different from both the spectrum of the free operator and the spectrum
of the Dirac operator with a δ-shell interaction supported on a closed curve. For certain spe-
cial values of the coupling parameters, there is an isolated or embedded eigenvalue of infinite
multiplicity in the spectrum of Ĥη,τ,λ and the rest of the spectrum is purely absolutely continu-
ous. For the remaining values of the coupling parameters, the spectrum is purely absolutely
continuous. The gap (−|m|, |m|) in the spectrum of the free operator may be fully or partially
closed; cf theorem 6.2 for details. A part of the spectrum of Ĥη,τ,λ is due to the energy bands
z : k 7→ z(k), where z(k) are eigenvalues of the corresponding fiber operators. Remarkably, for
certain values of the coupling parameters these bands are linear. If z= z(k) is constant then z
is an eigenvalue of infinite multiplicity in the spectrum of Ĥη,τ,λ. If z is linear but non-constant
then there exist a sort of edge states that are localized close to Σ and propagate in y-direction
with constant speed dz/dk, see section 6.3.

The singular potential term in (1.1) (with ω= 0) is realized by a transmission condition
along the line Σ in the definition of Ĥη,τ,λ. To understand the nature of the delta-shell interac-
tion it is tempting to approximate δΣ by a family (Wε)ε>0 of scaled regular (and even bounded)
potentials that converge to δΣ in the sense of distributions. This way, one gets a family of
operators

Ĥε
η,τ,λ := Ĥ+(σ0η+σ3τ +σ2λ)Wε,

where Ĥ is the free two-dimensional Dirac operator. Surprisingly, Ĥε
η,τ,λ does not converge to

Ĥη,τ,λ as ε→ 0. Instead, we will show that the strong resolvent limit of Ĥε
η,τ,λ is ĤCη,Cτ,Cλ,

where C ∈ R depends non-trivially on η, τ, and λ, see theorem 7.2. The same renormalization
of the coupling constants has been observed before in different settings [11, 19, 22, 23, 36,
38]. Note that if one starts in the one-dimensional situation with non-local potentials, e.g. pro-
jections on Wε, instead of the local ones, then the renormalization of the coupling constants
in the limit ε→ 0 does not occur [16, 36].

The paper is organized as follows. In section 2, we recall basic properties of the free two-
dimensional Dirac operator and introduce the fiber operators (1.3) that appear in its direct
integral decomposition. In section 3, we add a general hermitian point interaction to these
fiber operators. Then we show in section 4 that without loss of generality we may study just a
three-parametric subfamily of point interactions. The spectra of the fiber operators with addi-
tional point interactions are analyzed in section 5. The two-dimensional Dirac operator with
a δ-shell interaction supported on a straight line is introduced and its spectral properties are
studied in section 6. Section 7 is devoted to approximations of δ-shell interactions by regular
potentials. Finally, in appendix we briefly recall some properties of direct integrals of self-
adjoint operators and we prove a criterion on the absence of singular continuous spectrum.

2. Two-dimensional free Dirac operator

In this section we recall the definition and some basic properties of the two-dimensional free
Dirac operator Ĥ. Let

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
(2.1)
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be the Pauli matrices, denote by σ0 the 2× 2 identity matrix, and let m ∈ R. Then

Ĥ= σ1(−i∂x)+σ2(−i∂y)+σ3m≡−iσ ·∇+σ3m,

Dom(Ĥ) = H1(R2;C2),
(2.2)

is self-adjoint in theHilbert space L2(R2;C2); here and in the followingH1 denotes the Sobolev
space of C2-valued L2-functions with first order weak derivatives in L2. After the partial
Fourier–Plancherel transform in the y-variable Fy→k the operator Ĥ in (2.2) decomposes into
the direct integral,

Fy→kĤF−1
y→k =

ˆ ⊕

R
H[k]dk,

where each fiber acts as

H[k] = σ1(−i∂x)+σ2k+σ3m=

(
m −i(∂x+ k)

−i(∂x− k) −m

)
,

Dom(H[k]) = H1(R;C2),

(2.3)

and we identify L2(R2;C2) =
´ ⊕
R L2(R;C2)dk; cf appendix. With the help of the Fourier trans-

form in the x-variable one shows that the fiber operators H[k], k ∈ R, are unitarily equivalent
to the multiplication operator associated with the matrix-valued function(

m p− ik
p+ ik −m

)
(2.4)

in L2(R,dp;C2). Consequently, the operators H[k] are self-adjoint in L2(R;C2) and, since the
eigenvalues of the matrix (2.4) are ±

√
m2 + k2 + p2, we have

σ(H[k]) = σac(H[k]) =
(
−∞,−

√
m2 + k2

]
∪
[√

m2 + k2,+∞
)
; (2.5)

see [26] and [37, theorem 1.1] for similar considerations when k= 0 and in the three-
dimensional case, respectively. A direct calculation shows that

(H[k])2 = σ0(−∂xx+m2 + k2), Dom((H[k])2) = H2(R;C2).

Hence, we get for z /∈ σ(H[k]) and f ∈ L2(R;C2)

(H[k]− z)−1f= (H[k] + z)
(
σ0(−∂xx+m2 + k2 − z2)

)−1
f=
ˆ
R
Gz(· − y)f(y)dy

with

Gz(x) =
i

2ξk(z)
eiξk(z)|x|

(
z+m ξk(z)sgn(x)− ik

ξk(z)sgn(x)+ ik z−m

)
, (2.6)

and ξk(z) :=
√
z2 − k2 −m2, where the complex square root is chosen such that Im

√
w> 0 for

w ∈ C \ [0,+∞). Here we used the fact that the integral kernel of (−∂xx−w)−1 is

i
2
√
w
ei
√
w|x−y|.

3. Adding a point interaction to the fiber operators

In this section we consider the formal first order differential expression

D[k] = σ1(−i∂x)+σ2k+σ3m (3.1)

5
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and the perturbed differential expression

D[k]η,τ,λ,ω = D[k] + (σ0η+σ3τ +σ2λ+σ1ω)δ, (3.2)

where η,τ,λ,ω ∈ R, and δ is the Dirac δ-distribution supported at x= 0. Our aim is to associate
a self-adjoint operator H[k]η,τ,λ,ω in L2(R;C2) to (3.2) using appropriate transmission condi-
tions at x= 0 for the functions in the operator domain. Note that for η = τ = λ= ω = 0 the
expression D[k]η,τ,λ,ω reduces to D[k] in (3.1), where the corresponding self-adjoint operator
H[k] is given in (2.3).

Consider ψ ≡ ψ− ⊕ψ+ ∈ H1(R−;C2)⊕H1(R+;C2) and denote the traces of ψ− and ψ+

at x= 0 by ψ(0−) and ψ(0+), respectively. Recall that the traces coincide with the boundary
values of the continuous representatives ofψ− andψ+, respectively. Integration by parts shows
that the distribution D[k]ψ acts on φ ∈ C∞

0 (R;C2) as

(D[k]ψ,φ) =
ˆ
R
ψ(σ1(i∂x)−σ2k+σ3m)φdx

=

ˆ 0

−∞
(σ1(−i∂x)+σ2k+σ3m)ψ−φdx+

ˆ ∞

0
(σ1(−i∂x)+σ2k+σ3m)ψ+φdx

− iσ1(ψ(0+)−ψ(0−))φ(0);

here (·, ·) denotes the duality product in (C∞
0 (R;C2)) ′ ×C∞

0 (R;C2). Therefore, in the sense
of distributions we conclude

D[k]ψ = D[k]ψ− ⊕D[k]ψ+ − iσ1(ψ(0+)−ψ(0−))δ. (3.3)

We define the product of the (not necessarily smooth) function ψ with the δ-distribution as

(ψδ,φ) :=
ψ(0+)+ψ(0−)

2
φ(0). (3.4)

Now we wantD[k]η,τ,λ,ωψ to be generated by an element in L2(R;C2), and hence the singular
contributions in

D[k]η,τ,λ,ωψ = D[k]ψ+(σ0η+σ3τ +σ2λ+σ1ω)ψδ

and (3.3) have to cancel out. Using (3.4) this yields

−iσ1(ψ(0+)−ψ(0−))+ (σ0η+σ3τ +σ2λ+σ1ω)
ψ(0+)+ψ(0−)

2
= 0,

and it is convenient to rewrite this as

(2iσ1 −Mη,τ,λ,ω)ψ(0+) = (2iσ1 +Mη,τ,λ,ω)ψ(0−) (3.5)

with

Mη,τ,λ,ω := σ0η+σ3τ +σ2λ+σ1ω =

(
η+ τ −iλ+ω
iλ+ω η− τ

)
.

The above considerations lead to the following definition of the perturbed operator
H[k]η,τ,λ,ω .

Definition 3.1. Let η,τ,λ,ω ∈ R andD[k], k ∈ R, be as in (3.1). The operatorH[k]η,τ,λ,ω asso-
ciated with the perturbed differential expression D[k]η,τ,λ,ω in L2(R;C2) is defined by

H[k]η,τ,λ,ωψ = D[k]ψ− ⊕D[k]ψ+

= (σ1(−i∂x)+σ2k+σ3m)ψ− ⊕ (σ1(−i∂x)+σ2k+σ3m)ψ+,

Dom(H[k]η,τ,λ,ω) =
{
ψ = ψ− ⊕ψ+ ∈ H1(R−;C2)⊕H1(R+;C2)|(3.5) holds

}
.
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In the following we shall examine the transmission conditions (3.5) of the functions
in Dom(H[k]η,τ,λ,ω). It is convenient to distinguish the two possible cases det(2iσ1 −
Mη,τ,λ,ω) 6= 0 and det(2iσ1 −Mη,τ,λ,ω) = 0. In the first case we have

det(2iσ1 −Mη,τ,λ,ω) = d− (2i−ω)2 6= 0,

where

d := η2 − τ 2 −λ2,

and hence we can further rewrite (3.5) in the form

ψ(0+) = Λψ(0−) (3.6)

with

Λ = (2iσ1 −Mη,τ,λ,ω)
−1(2iσ1 +Mη,τ,λ,ω)

=
1

d− (2i−ω)2

(
4+ 4λ+ω2 − d 4i(τ − η)
−4i(τ + η) 4− 4λ+ω2 − d

)
.

(3.7)

Note that

detΛ =
1

d− (2i−ω)2
(d− (2i+ω)2)

and hence |detΛ|= 1. Moreover, Λ is a multiple of a matrix with real diagonal terms and
purely imaginary off-diagonal terms. Therefore, the domain of H[k]η,τ,λ,ω is identical to the
domain of one of the self-adjoint extensions of H[0] restricted to the functions that vanish at
x= 0, that were studied in [8] (note that the transmission condition equivalent to (3.6) appeared
before in [12] and some special cases were investigated even earlier in [14]). The action of these
extensions is the same as the action of H[k]η,τ,λ,ω up to the term (−σ2k), which is bounded
and symmetric. Hence, we conclude that H[k]η,τ,λ,ω is also self-adjoint.

Remark 3.2. Although for every hermitian matrix Mη,τ,λ,ω such that det(2iσ1 −Mη,τ,λ,ω) 6=
0, Λ given by (3.7) is always the matrix describing the transmission condition of a certain self-
adjoint extension studied in [8], the converse is not true. More precisely, there are admissible
Λ’s (e.g. Λ =−σ0) that are not generated by anyMη,τ,λ,ω .

Let us now consider the second case det(2iσ1 −Mη,τ,λ,ω) = 0. This happens if and only if
ω= 0 and d=−4. Multiplying (3.5) by σ1 we get

(2iσ0 −σ1Mη,τ,λ,0)ψ(0+) = (2iσ0 +σ1Mη,τ,λ,0)ψ(0−).

Multiplying by (2iσ0 ±σ1Mη,τ,λ,0) on both sides of this identity and employing the fact that

(σ1Mη,τ,λ,0)
2 = d=−4, (3.8)

we obtain

(−8± 4iσ1Mη,τ,λ,0)ψ(0∓) = 0,

which is equivalent to

(2iσ1 ±Mη,τ,λ,0)ψ(0∓) = 0. (3.9)

On the other hand, functions obeying (3.9) clearly satisfy (3.5). Hence, in the present case we
may rewrite the domain of the operator H[k]η,τ,λ,0 in definition 3.1 in the form

Dom(H[k]η,τ,λ,0) =
{
ψ ≡ ψ− ⊕ψ+ ∈ H1(R−;C2)⊕H1(R+;C2)|(3.9) holds

}
.
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The operator H[k]η,τ,λ,0 (with d=−4) decouples into a direct sum of operators acting separ-
ately on L2(R−;C2) and L2(R+;C2). Let us look closer at the boundary conditions for ψ∓.
Note that the rank of the matrix in (3.9) is one and, except for the case τ = η and λ=∓2, the
condition (3.9) for ψ∓(0) is equivalent to

(τ − η)ψ2
∓(0) = i(λ± 2)ψ1

∓(0),

where the upper index denotes the components of the C2-valued function ψ. If τ = η together
with λ=∓2 we may rewrite (3.9) for ψ∓ as ψ2

−(0) =
iη
2 ψ

1
−(0) or ψ2

+(0) =− iη
2 ψ

1
+(0),

respectively. Therefore, in the case ω= 0 and d=−4 the boundary condition for each of the
subsystems is of the form ψ2

±(0) = iζ±ψ1
±(0), where ζ± ∈ R∪{+∞} (the choice ζ± =+∞

is understood as ψ1
±(0) = 0). It has already been established that the corresponding decoupled

operators are self-adjoint in L2(R±;C2) and their spectrum as a function of k was studied in
detail [15]. This special case will not be further analyzed in the current manuscript.

For the convenience of the reader we summarize the findings of this section in the following
theorem:

Theorem 3.3. For η,τ,λ,ω ∈ R and all k ∈ R the operator H[k]η,τ,λ,ω in definition 3.1 is self-
adjoint in L2(R;C2). Furthermore, the following holds:

(a) If ω 6= 0 or d= η2 − τ 2 −λ2 6=−4 then

Dom(H[k]η,τ,λ,ω) =
{
ψ = ψ− ⊕ψ+ ∈ H1(R−;C2)⊕H1(R+;C2)|ψ(0+) = Λψ(0−)

}
,

where Λ is the 2× 2-matrix in (3.7).
(b) If ω = 0 and d=−4 then H[k]η,τ,λ,0 decouples in the orthogonal sum of two self-adjoint

operators H[k]±η,τ,λ,0 in L
2(R±;C2), that is,

H[k]η,τ,λ,0 = H[k]−η,τ,λ,0 ⊕H[k]+η,τ,λ,0,

where

H[k]±η,τ,λ,0φ± = (σ1(−i∂x)+σ2k+σ3m)φ±

and

Dom(H[k]±η,τ,λ,0) =
{
φ= (φ1,φ2) ∈ H1(R±;C2)|(τ − η)φ2(0) = i(λ∓ 2)φ1(0)

}
if τ 6= η or λ 6=±2, and

Dom(H[k]−η,η,−2,0) =
{
φ ∈ H1(R−;C2)|φ2(0) = iη

2 φ
1(0)

}
,

Dom(H[k]+η,η,2,0) =
{
φ ∈ H1(R+;C2)|φ2(0) =− iη

2 φ
1(0)

}
.

We conclude this section by providing an explicit formula for the resolvent of H[k]η,τ,λ,ω . Let
z ∈ C \R. Recall that the Green function Gz is defined by (2.6) and introduce the matrix

Cz :=
i

2
√
z2 − k2 −m2

(
z+m −ik
ik z−m

)
=

i
2ξk(z)

(
z+m −ik
ik z−m

)
.

8
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Then one can check by a direct calculation that the matrix σ0 +Mη,τ,λ,ωCz is invertible and
that

(H[k]η,τ,λ,ω − z)−1f= (H[k]− z)−1f−Gz(·)(σ0 +Mη,τ,λ,ωCz)
−1Mη,τ,λ,ω

ˆ
R
Gz(−y)f(y)dy

(3.10)

holds for all f ∈ L2(R;C2). Indeed, if one defines the right hand side of this equation as g, then
g ∈ H1(R−;C2)⊕H1(R+;C2) and this function satisfies the transmission conditions in (3.5),
i.e. g ∈ Dom(H[k]η,τ,λ,ω). Moreover, as Gz is the fundamental solution for the expression
σ1(−i∂x)+σ2k+σ3m−σ0z, we get (H[k]η,τ,λ,ω − z)g= f. Putting this together with the fact
that (H[k]η,τ,λ,ω − z) is injective, we infer that the resolvent formula (3.10) is true. For similar
formulae as (3.10) in the case k= 0 we refer to [26, equation (2.4)] and [8, equation (19)]; this
kind of ansatz and expression for the resolvent of H[k]η,τ,λ,ω is often referred to as a so-called
Krein formula; see [1, § 106].

4. Unitary equivalences

In the same vein as in [11] the interaction term σ1ωδ may be ‘gauged away’. More concretely,
we will construct a unitary transform in L2(R;C2) such that H[k]η,τ,λ,ω is unitarily equivalent
to H[k]Xη,Xτ,Xλ,0 with some X ∈ R. Let χM stand for the indicator function of a set M. Since
H[k]η,τ,λ,ω and H[k]Xη,Xτ,Xλ,0 differ only in the transmission conditions at x= 0, it is quite
natural to start with the following ansatz for the unitary transform:

Uzφ := χR+
φ+ zχR−φ with z ∈ C, |z|= 1, φ ∈ L2(R;C2). (4.1)

We would like to find z ∈ C with |z|= 1 and X ∈ R such that

H[k]η,τ,λ,ω = UzH[k]Xη,Xτ,Xλ,0Uz̄. (4.2)

Note that (4.2) is valid if and only if the following equivalence holds:

ψ ∈ Dom(H[k]η,τ,λ,ω) if and only if Uz̄ψ ∈ Dom(H[k]Xη,Xτ,Xλ,0),

that is, for ψ = ψ− ⊕ψ+ ∈ H1(R−;C2)⊕H1(R+;C2) the condition

(2iσ0 −σ1Mη,τ,λ,ω)ψ(0+) = (2iσ0 +σ1Mη,τ,λ,ω)ψ(0−) (4.3)

holds if and only if the condition

(2iσ0 −σ1MXη,Xτ,Xλ,0)ψ(0+) = (2iσ0 +σ1MXη,Xτ,Xλ,0)z̄ψ(0−) (4.4)

is true. We may assume that ω 6= 0; otherwise, the problem has an obvious solution. Then the
matrices on both sides of (4.3) are invertible, because

det(2iσ0 ±σ1Mη,τ,λ,ω) = ω2 − 4− d± 4iω 6= 0.

Furthermore, we will assume that X is such that

det(2iσ0 ±σ1MXη,Xτ,Xλ,0) =−4− dX2 6= 0, (4.5)

and so we can also invert the matrices on both sides of (4.4). Using XMη,τ,λ,0 =MXη,Xτ,Xλ,0,
we get that (4.2) is equivalent to

(2iσ0 +σ1Mη,τ,λ,ω)(2iσ0 +Xσ1Mη,τ,λ,0)
−1 = z̄(2iσ0 −σ1Mη,τ,λ,ω)(2iσ0 −Xσ1Mη,τ,λ,0)

−1.

(4.6)

9



J. Phys. A: Math. Theor. 56 (2023) 045201 J Behrndt et al

With the help of (3.8), we infer that

(2iσ0 ±Xσ1Mη,τ,λ,0)(2iσ0 ∓Xσ1Mη,τ,λ,0) =−4− dX2.

Hence, we get

(2iσ0 ±Xσ1Mη,τ,λ,0)
−1 =

1
−4− dX2

(2iσ0 ∓Xσ1Mη,τ,λ,0).

Substituting this into (4.6), using (3.8) and Mη,τλ,ω =Mη,τ,λ,0 +ωσ1 we arrive at

(−4− dX+ 2iω)σ0 +(−ωX+ 2(1−X)i)σ1Mη,τ,λ,0 = z̄
(
(−4− dX− 2iω)σ0

+(−ωX− 2(1−X)i)σ1Mη,τ,λ,0
)
.

(4.7)

Since σ1Mη,τ,λ,0 is a linear combination of {σi}3i=1 and the system {σi}3i=0 is linearly inde-
pendent, this may happen if and only if

4+ dX− 2iω = z̄(4+ dX+ 2iω)

ωX− 2(1−X)i= z̄(ωX+ 2(1−X)i).
(4.8)

This yields

z=
4+ dX+ 2iω
4+ dX− 2iω

∧ z=
ωX+ 2(1−X)i
ωX− 2(1−X)i

. (4.9)

Note that the denominators in (4.9) are always non-zero, because ω 6= 0, and |z|= 1, as
required.

It remains to prove that X ∈ R exists such that the equalities in (4.9) hold simultaneously.
By comparing the two expressions for z in (4.9) one concludes that this is equivalent to finding
a real solution of

dX2 +(4− d+ω2)X− 4= 0, (4.10)

see also [11, theorem 2.1]. If d 6= 0 then we get

X=
1
2d

(
d− 4−ω2 ±

√
(d− 4−ω2)2 + 16d

)
(4.11)

with

(d− 4−ω2)2 + 16d= (d+ 4−ω2)2 + 16ω2 > 0,

and so there are always two real solutions of (4.10). If d= 0 then (4.10) reduces to (4+ω2)
X− 4= 0 with the real solution

X=
4

4+ω2
. (4.12)

Finally, if we started our considerations with X given by either (4.11) or (4.12) then (4.5)
would be always fulfilled, because otherwise d< 0 and X=±2/

√
−d which would not be

compatible with (4.11), as we assume ω 6= 0.
We summarize our findings in the following theorem:

Theorem 4.1. Let ω 6= 0, z be defined by either of the equations in (4.9) with X given by (4.11)
or (4.12) for d 6= 0 or d= 0, respectively. Then

H[k]η,τ,λ,ω = UzH[k]Xη,Xτ,Xλ,0Uz̄,

where the unitary mapping Uz is described in (4.1).

10
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Consequently, in what follows, wewill restrict ourselves to the caseω= 0.Moreover, to lighten
the notation, we will write

H[k]η,τ,λ := H[k]η,τ,λ,0.

If ω= 0, X=−4/d with d /∈ {−4,0}, and z=−1 then (4.8) and hence (4.7) are clearly
valid and still equivalent to (4.2). Therefore, we get

Proposition 4.2. Let d /∈ {−4,0} and U−1 be the unitary mapping given by (4.1). Then

H[k]η,τ,λ = U−1H[k]− 4
dη,−

4
d τ,−

4
dλ
U−1.

This has already been observed in the two-dimensional setting for compact curves in [11] and,
in special cases in [5, proposition 4.8 (i)] and in dimension three in [17, theorem 2.3 (d)] and
[3, proposition 4.2 (i)].

5. Spectra of fiber operators

In this section we investigate the spectrum of the self-adjoint fiber operators H[k]η,τ,λ =
H[k]η,τ,λ,0; see [8, 14, 15, 26] for related considerations. From now on we shall exclude
the confinement case and always assume that d 6=−4. Since, by (3.10), the difference of the
resolvents of H[k]η,τ,λ and H[k] is at most a rank two operator, we get

σess(H[k]η,τ,λ) = σess(H[k]) =
(
−∞,−

√
m2 + k2

]
∪
[√

m2 + k2,+∞
)

due to Weyl’s essential spectrum theorem. In fact mimicking the proof of [26, proposition 2.3]
and using (3.10) one can even show that

σac(H[k]η,τ,λ) =
(
−∞,−

√
m2 + k2

]
∪
[√

m2 + k2,+∞
)
,

σsc(H[k]η,τ,λ) = ∅, and σp(H[k]η,τ,λ)⊂
(
−
√
m2 + k2,

√
m2 + k2

)
,

i.e. outside the gap of σ(H[k]), the spectrum of H[k]η,τ,λ is purely absolutely continuous.
Furthermore, since σ(H[k])∩ (−

√
m2 + k2,

√
m2 + k2) = ∅ by (2.5) and the difference of the

resolvents of H[k]η,τ,λ and H[k] is at most a rank two operator it is also clear that there are at
most two simple eigenvalues or one eigenvalue of multiplicity at most two of H[k]η,τ,λ inside
(−

√
m2 + k2,

√
m2 + k2); see [9, chapter 9.3, theorem 3]. In the rest of this section we will

investigate these eigenvalues in more detail (and, actually, it will turn out that eigenvalues of
multiplicity two do not exist in the present situation).

Take z ∈ (−
√
m2 + k2,

√
m2 + k2) and look for non-trivial solutions of

H[k]η,τ,λψ = zψ.

For z 6=−m, the corresponding differential equation has the general solution

ψ(x) = C

(
1

i k+µ
z+m

)
e−µx+D

(
1

i k−µ
z+m

)
eµx,

where µ :=
√
m2 + k2 − z2 > 0. For z=−m (and hence k 6= 0) the solution is

ψ(x) = C

(
1

−imk

)
ekx+D

(
0
1

)
e−kx.

Now, the integrability condition for ψ yields

ψ(x) = C

(
1

i k+µ
z+m

)
Θ(x)e−µx+D

(
1

i k−µ
z+m

)
Θ(−x)eµx

11
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or

ψ(x) = C

(
1

−imk

)
Θ(−sgn(k)x)ekx+D

(
0
1

)
Θ(sgn(k)x)e−kx,

for z 6=−m or z=−m, respectively; here we have used

Θ(x) =

{
1 if x> 0,

0 if x⩽ 0.

The constants C and D must be chosen in a way that the transmission condition (3.6) at
x= 0 holds true. For z 6=−m, (3.6) is equivalent to

C

(
1

i k+µ
z+m

)
= DΛ

(
1

i k−µ
z+m

)
, (5.1)

and, for z=−m, it is equivalent to

C

(
1

−imk

)
= DΛ

(
0
1

)
or D

(
0
1

)
= CΛ

(
1

−imk

)
,

if k< 0 or k> 0, respectively. Since ω= 0, the matrix Λ in (3.7) has the form

Λ =
1

d+ 4

(
4+ 4λ− d 4i(τ − η)
−4i(τ + η) 4− 4λ− d

)
.

The discrete eigenvalues of H[k]η,τ,λ different from −m are exactly those values of z ∈
(−

√
m2 + k2,

√
m2 + k2) such that (5.1) has a non-trivial solution (C,D). This happens if and

only if 0= detR, where R is the matrix with columns
(

1
i k+µ
z+m

)
and −Λ

(
1

i k−µ
z+m

)
, which is equi-

valent to

i
k+µ

z+m

(
4+ 4λ− d+ 4i(τ − η)i

k−µ

z+m

)
=−4i(η+ τ)+ (4− 4λ− d)i

k−µ

z+m
,

and can be rearranged as√
m2 + k2 − z2 (d− 4) = 4(ηz+λk+ τm), (5.2)

where µ=
√
m2 + k2 − z2 is used. Similarly as above, if k< 0 then z=−m is an eigenvalue

of H[k]η,τ,λ if and only if

4− 4λ− d= 4(τ − η)
m
k
,

which is just (5.2) with z=−m and k< 0. If k> 0 then z=−m is an eigenvalue of H[k]η,τ,λ
if and only if

4+ 4λ− d=−4(τ − η)
m
k
.

This equality is equivalent to (5.2) with z=−m and k> 0. Consequently, in all cases it is
sufficient to study (5.2) when looking for the eigenvalues of H[k]η,τ,λ. The corresponding
(non-normalized) eigenfunctions are given as

ψ(x) = Λ

(
1

i k−µ
z+m

)
Θ(x)e−µx+

(
1

i k−µ
z+m

)
Θ(−x)eµx (5.3)
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and

ψ(x) =


Λ

(
0

1

)
Θ(x)ekx+

(
0

1

)
Θ(−x)e−kx if k< 0,(

1

−imk

)
Θ(−x)ekx+Λ

(
1

−imk

)
Θ(x)e−kx if k> 0,

(5.4)

for z 6=−m and z=−m, respectively.

5.1. The case d= 4

Note that

4= d= η2 − τ 2 −λ2 (5.5)

implies η 6= 0. Hence, if d= 4 then (5.2) has exactly one solution

z=−λk+ τm
η

. (5.6)

Moreover, using (5.5) and (5.6) one verifies that z2 < m2 + k2 is equivalent to 2λτkm<
(4+λ2)m2 +(4+ τ 2)k2, which holds true except for the case m= k= 0, due to the Young
inequality. Consequently, for m 6= 0 and k ∈ R we observe that z ∈ (−

√
m2 + k2,

√
m2 + k2);

for m= 0 this holds true for all k ∈ R \ {0}.

5.2. The case d ̸= 4

For the existence of a solution z ∈ (−
√
m2 + k2,

√
m2 + k2) to (5.2) we necessarily need

(d− 4)(ηz+λk+ τm)> 0. (5.7)

Squaring (5.2) we get the following quadratic equation in z:(
η2 +

(
d
4
− 1

)2
)
z2 + 2η(λk+ τm)z+(λk+ τm)2 − (m2 + k2)

(
d
4
− 1

)2

= 0, (5.8)

where the discriminant is

4

(
d
4
− 1

)2
[(

η2 +

(
d
4
− 1

)2

−λ2

)
k2 − 2λτmk+m2

(
η2 +

(
d
4
− 1

)2

− τ 2

)]
. (5.9)

Note that

η2 +

(
d
4
− 1

)2

−λ2 = τ 2 +

(
d
4
+ 1

)2

> 0

and

η2 +

(
d
4
− 1

)2

− τ 2 = λ2 +

(
d
4
+ 1

)2

> 0,

and hence the expression in the square brackets in (5.9) can be rewritten in the form(
τ 2 +

(
d
4
+ 1

)2
)
k2 − 2λτmk+

(
λ2 +

(
d
4
+ 1

)2
)
m2.

One verifies that the values of this polynomial in the variable k are strictly positive if m 6= 0
and non-negative if m= 0 (in which case there is a zero at k= 0). Since the case m= k= 0 is

13
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not allowed in this section (recall that we consider z ∈ (−
√
m2 + k2,

√
m2 + k2)) we conclude

that the discriminant (5.9) is strictly positive and hence (5.8) has the following pair of real
solutions

z± =

−η(λk+ τm)±
∣∣ d
4 − 1

∣∣√(τ 2 + ( d4 + 1
)2)

k2 − 2λτmk+
(
λ2 +

(
d
4 + 1

)2)
m2

η2 +
(
d
4 − 1

)2 . (5.10)

For all real solutions of (5.8) that satisfy (5.7), the equation (5.2) holds and all solu-
tions of (5.2) are clearly in [−

√
m2 + k2,

√
m2 + k2]. Moreover, z=±

√
m2 + k2 cannot

obey (5.7) and (5.8) simultaneously. Therefore, the solutions z± in (5.10) satisfying (5.7) lie
in (−

√
m2 + k2,

√
m2 + k2).

Remark 5.1. Form 6= 0, one verifies that the functions z± = z±(k) are either strictly convex or
strictly concave (by computing the second derivatives and using that the expression in (5.9) is
strictly positive). Consequently, there are five possibilities for the domains of z± = z±(k) that
are given exactly by those k’s for which (5.7) holds. Namely, these functions are defined either
on a bounded open interval or a union of two disjoint unbounded open intervals or a semi-
bounded open interval or R or nowhere. The case m= 0 is discussed later in section 6.1.2,
where we will show that z± = z±(k) are defined on certain unions of sets ∅, (−∞,0), and
(0,+∞).

We summarize the results obtained in this section in the following theorem:

Theorem 5.2. Let m,k ∈ R and assume that η,τ,λ ∈ R are such that d 6=−4. Then

σac(H[k]η,τ,λ) =
(
−∞,−

√
m2 + k2

]
∪
[√

m2 + k2,+∞
)

σsc(H[k]η,τ,λ) = ∅, and σp(H[k]η,τ,λ)⊂
(
−
√
m2 + k2,

√
m2 + k2

)
.

Furthermore, if m 6= 0 or k 6= 0, then (−
√
m2 + k2,

√
m2 + k2) is a gap in the essential spec-

trum of H[k]η,τ,λ and there are at most two isolated simple eigenvalues of H[k]η,τ,λ inside this
gap:

(a) If d= 4 then z given in (5.6) is the only eigenvalue of H[k]η,τ,λ.
(b) If d 6= 4 then exactly those z± given in (5.10) that obey (5.7) are eigenvalues of H[k]η,τ,λ.

In both cases, the corresponding eigenfunctions are given by (5.3) and (5.4).

6. Two-dimensional Dirac operators with a δ-shell interaction

In this section we investigate the two-dimensional Dirac operator with a δ-shell interaction
supported on the straight line {(0,y)|y ∈ R} associated with the formal differential expres-
sion (1.1). For η,τ,λ ∈ R such that d= η2 − τ 2 −λ2 6=−4, we first define an operator Hη,τ,λ

with the help of the direct integral of the fiber operators H[k]η,τ,λ by

(Hη,τ,λψ)(k) = H[k]η,τ,λψ(·,k),

Dom(Hη,τ,λ) =
{
ψ ∈ L2(R2,dxdk;C2)|ψ(·,k) ∈ Dom(H[k]η,τ,λ)a.e.,ˆ

R
‖H[k]η,τ,λψ(·,k)‖2dk<∞

}
,
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where L2(R2,dxdk;C2) =
´ ⊕
R L2(R,dx;C2)dk; cf appendix for a brief summary of the dir-

ect integral of Hilbert spaces and self-adjoint operators. Since the fiber operators H[k]η,τ,λ
are self-adjoint in L2(R;C2) and k 7→ H[k]η,τ,λ is measurable (in the sense that k 7→
〈f,(H[k]η,τ,λ − i)−1g〉L2(R;C2) is measurable), the operator Hη,τ,λ is self-adjoint in L2(R2;C2).
Now the Dirac operator with a δ-potential supported on the straight line is given by

Ĥη,τ,λ := F−1
y→kHη,τ,λFy→k, (6.1)

and since Fy→k is unitary it suffices to study the spectral properties of Hη,τ,λ. Furthermore,
in view of (A.2) and (A.3) the spectral analysis of Hη,τ,λ reduces to the spectral analysis of
the one-parametric family of the one-dimensional operators H[k]η,τ,λ. More precisely, in the
present situation we have z ∈ σ(Hη,τ,λ) if and only if∣∣{k ∈ R |σ(H[k]η,τ,λ)∩ (z− ε,z+ ε) 6= ∅}

∣∣> 0 for all ε > 0

and z ∈ σp(Hη,τ,λ) if and only if∣∣{k ∈ R |z ∈ σp(H[k]η,τ,λ)}
∣∣> 0; (6.2)

here |B| denotes the Lebesgue measure of B⊂ R. Recall also from the discussion after (A.3)
that each eigenvalue of Hη,τ,λ has infinite multiplicity. Combining this with theorem 5.2 and
corollary A.3 we will get a full picture of the spectrum of Hη,τ,λ in theorem 6.2 below.

Remark 6.1. In the purely electrostatic case, i.e. when τ = λ= 0, the spectrum of the operator
F−1
y→kHη,0,0Fy→k was studied in [6] with the help of boundary triples and Weyl functions. The

statements proved there are recovered in the present paper; cf section 6.4.1. We also note
that the methods used in [6] allow a more explicit description of the domain of the Dirac
operator (6.1) in terms of traces.

6.1. Eigenvalues

6.1.1. The case d= 4. If d= 4 then there is a single band z= z(k) in σp(H[k]η,τ,λ) given
by (5.6). For λ 6= 0, it is linear and non-constant. Therefore, it does not contribute to the point
spectrum of Hη,τ,λ. If λ= 0 then the band is constant and defined on R or R \ {0} for m 6= 0
or m= 0, respectively. In both cases, we conclude from (6.2) that

z=−τm
η

is an eigenvalue of Hη,τ,λ of infinite multiplicity.

6.1.2. The case d ̸= 4. If d 6= 4 (recall that the case d=−4 is not investigated) then accord-
ing to theorem 5.2, there are at most two energy bands z± given by (5.10) that may contribute
to an eigenvalue of the full operator. Ifm 6= 0 then the function z± = z±(k) is always non-linear
and the equation z±(k) = C has at most two solutions for any constant C ∈ R. Therefore, there
cannot be any eigenvalue in the spectrum of the full operator in this case.

If m= 0 then (5.10) simplifies to

z± =
−ηλk± | d4 − 1|

√
τ 2 +( d4 + 1)2 |k|

η2 +( d4 − 1)2
. (6.3)
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Only z± ∈ (−|k|, |k|) that satisfy (5.7), i.e.

(d− 4)

η−ηλ± sgn(k)| d4 − 1|
√
τ 2 +( d4 + 1)2

η2 +( d4 − 1)2
+λ

k> 0, (6.4)

are eigenvalues of H[k]η,τ,λ. Clearly, if (6.4) is satisfied for one k ∈ (0,+∞), then (6.4) holds
for all k ∈ (0,+∞); a similar consideration holds for k ∈ (−∞,0).We see now that z± = z±(k)
is a linear function on (−∞,0) or (0,+∞), respectively. Therefore, if z± is an eigenvalue of
Hη,τ,λ then z± = z±(k) must be constant on (−∞,0) or (0,+∞), respectively. Squaring the
necessary condition (5.2) for the discrete eigenvalues of H[k]η,τ,λ we get(

k2 − z2±
)
(d− 4)2 = 16

(
λ2k2 + 2ληz±k+ η2z2±

)
.

Assuming that z± = z±(k) is constant this yields

(d− 4)2 = 16λ2, ληz± = 0, −(d− 4)2z2± = 16η2z2±. (6.5)

From the last equation it follows that either z± = 0 or −(d− 4)2 = 16η2. Taking the first
equation in (6.5) into account, the latter equality implies λ= η = 0 and d= 4, which is not
possible. Hence, it remains to consider the case z± ≡ z= 0(= m). Then (5.2) and (5.7) take
the form

(d− 4)|k|= 4λk and (d− 4)λk> 0, (6.6)

respectively. If d− 4= 4λ then (6.6) holds true for all k> 0. If 4− d= 4λ then (6.6) holds
true for all k< 0. We conclude that z= 0 is an eigenvalue of infinite multiplicity of Hη,τ,λ,
whenever m= 0 and 0 6= d− 4=±4λ.

6.2. Continuous (bulk) spectrum

The band z= z(k) in (5.6) is everywhere defined, except for the case m= 0 when it is defined
on R \ {0}, and the functions z± = z±(k) given by (5.10) are defined on unions of at most
two disjoint open intervals, see remark 5.1. Moreover, z and z± are real-analytic on their
domains of definition and hence, they obey the assumptions of corollary A.3. Thus, we infer
that σsc(Hη,τ,λ) = ∅. Moreover, for d= 4,

σ(Hη,τ,λ) = (−∞,−|m|]∪ [|m|,+∞)∪Ran(z),

and for d 6= 4,

σ(Hη,τ,λ) = (−∞,−|m|]∪ [|m|,+∞)∪Ran(z+)∪Ran(z−).

If σp(Hη,τ,λ) = ∅ then σ(Hη,τ,λ) = σac(Hη,τ,λ). We have seen in the previous subsection
that in special cases there is a single eigenvalue due to a constant band. It may be either
embedded in the absolutely continuous spectrum or isolated. In the first case we still have
σ(Hη,τ,λ) = σac(Hη,τ,λ), because the absolutely continuous spectrum is closed by definition.
The full description of σ(Hη,τ,λ) is as follows:

Theorem 6.2. Let m ∈ R and assume that η,τ,λ ∈ R are such that d 6=−4. Then
σsc(Hη,τ,λ) = ∅ and the following holds:

(a) If d= 4 and λ 6= 0 then σac(Hη,τ,λ) = R and σp(Hη,τ,λ) = ∅.
(b) If d= 4 and λ= 0 then σac(Hη,τ,λ) = (−∞,−|m|]∪ [|m|,+∞). Moreover, z=−τm/η

is an eigenvalue of infinite multiplicity, which is isolated in (−|m|, |m|) for m 6= 0 and
embedded for m= 0.
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(c) If d 6= 4, then σac(Hη,τ,λ) = (−∞,−|m|]∪ [|m|,+∞)∪Ran(z+)∪Ran(z−). Moreover,
σp(Hη,τ,λ) = ∅, except when m= 0 and d− 4=±4λ( 6= 0) in which case z= 0 is an
embedded eigenvalue of infinite multiplicity.

We refer to [15] for a similar result in the (decoupled) case d=−4.

6.3. Linear bands

Quantum mechanical interpretation of the eigenvalues of a Hamiltonian is quite straightfor-
ward - these are just energies of the stationary states (which are described by the respective
eigenfunctions). The points of the absolutely continuous spectrum are energies at which the
system described by the Hamiltonian exhibits transport, see [10] for a possible mathematical
explanation of this relationship. In fact, if the Hamiltonian is invariant with respect to transla-
tions in one direction, one can apply the partial Fourier transform to decompose the operator
into a direct integral and then investigate some finer properties of such a transport. In partic-
ular, there is a direct way how to construct normalizable low-dispersing wave packets, which
are also referred to as the edge states, that propagate in the direction of the symmetry using
the eigenfunctions associated with an energy band [20]. For linear bands, such wave packets
do not disperse at all! Their group velocity is given by v= dz/dk, where z= z(k) stands for
the energy band and k is the momentum in the direction of the symmetry.

However, only few systems with exactly linear bands are known so far [15, 20, 27]. There-
fore, it is remarkable that the operatorHη,τ,λ considered in this paper may possess linear bands
for specific choices of the coupling constants. Firstly, we always get the linear band (5.6) when
d= 4. The group velocity of the dispersion-less wave packets equals

v=
dz
dk

=−λ
η
∈ (−1,1);

introducing the physical units to our model, this would mean that |v|< c (the speed of light) or
|v|< vF (the Fermi velocity) if we describe a relativistic particle or electronic states in a Dirac
material, respectively. Secondly, if d 6= 4 and m= 0, there may be linear bands (6.3) defined
on (−∞,0) or on (0,+∞); cf (6.4) and the discussion following this equation.

6.4. Special cases

Looking more closely at several important examples, we will show in this section that tun-
ing the coupling constants one can change the spectrum of the free operator Ĥ dramatically.
Applying theorem 6.2 for the unitarily equivalent operator H0,0,0 we infer that

σ(Ĥ) = σac(Ĥ) = (−∞,−|m|]∪ [|m|,+∞), σsc(Ĥ) = σp(Ĥ) = ∅.

We will see that the gap (−|m|, |m|) may be shrunk arbitrarily from the top, from the bottom
or even from both endpoints simultaneously. In particular, it is possible to close the gap. On
the other hand, it is also possible to create an eigenvalue of infinite multiplicity anywhere in
the gap, see the second point of theorem 6.2.

6.4.1. Purely electrostatic interaction. Let τ = λ= 0. Then d= 4 if and only if η =±2. Sub-
stituting this into (5.6) we get z= z(k)≡ 0. If η 6=±2 then the solutions (5.10) that obey (5.7)
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Figure 1. Purely electrostatic case withm= 1 and η= 1 (left), η= 2 (middle), and η= 3
(right). The bulk spectrum bounded by the curves ±

√
m2 + k2 is depicted in gray. The

thick black line shows the energy band. The spectrum of the full operator Hη,0,0 is
presented in blue. Note that for η= 2 the energy band is identically zero which implies
that zero is an eigenvalue of infinite multiplicity in the spectrum of Hη,0,0. The same
holds true when η =−2.

constitute the energy bands. One can rewrite (5.7) as follows

sgn(z) =

{
sgn(η) for η2 > 4

−sgn(η) for η2 < 4.

Furthermore, (5.10) simplifies to

z± =±|4− η2|
4+ η2

√
m2 + k2.

Therefore, there is only one eigenvalue of H[k]η,0,0 in the gap of σess(H[k]η,0,0), namely

z= sgn(η)
η2 − 4
η2 + 4

√
m2 + k2.

Consequently, we have

σ(Hη,0,0) =



(−∞,−|m|]∪{0}∪ [|m|,+∞) for η =±2

(−∞, 4−η2

4+η2 |m|]∪ [|m|,+∞) for η ∈ (−∞,−2)

(−∞,−|m|]∪ [ 4−η2

4+η2 |m|,+∞) for η ∈ (−2,0)

(−∞, η
2−4

η2+4 |m|]∪ [|m|,+∞) for η ∈ (0,2)

(−∞,−|m|]∪ [η
2−4

η2+4 |m|,+∞) for η ∈ (2,+∞).

(6.7)

This has already been observed in [6] employing a different approach. See figure 1 for plots of
the energy bands in several typical situations. Note that at η =±2 the spectrum changes quite
dramatically.

6.4.2. Purely Lorentz scalar interaction. Let η = λ= 0. Then d=−τ 2 6= 4. If τm< 0 then
there are eigenvalues

z± =±

√(
4− τ 2

4+ τ 2

)2

m2 + k2

of H[k]0,τ,0 in the gap of σess(H[k]0,τ,0). If τm⩾ 0 then there are no eigenvalues in this gap.
Note that these results are true also in the decoupled case when τ =±2, see [15]. We conclude
that
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Figure 2. Purely Lorentz scalar case with m= 1 and τ =−1 (left), τ =−2 (middle),
and τ =−2.5 (right). The bulk spectrum is depicted in gray and the thick black lines
show the energy bands again. If m> 0 then there are energy bands only for τ < 0. The
spectrum of the full operatorH0,τ,0 is presented in blue. For τ =−2 there are two linear
energy bands and the spectrum ofH0,τ,0 is the whole real line. The same holds true when
m< 0 and τ = 2.

σ(H0,τ,0) =

{
(−∞,−|m|]∪ [|m|,+∞) if τm⩾ 0

(−∞,− |4−τ 2|
4+τ 2 |m|]∪ [ |4−τ 2|

4+τ 2 |m|,+∞) if τm< 0.

Figure 2 depicts the energy bands in several typical situations.

6.4.3. Purely magnetic interaction. Let η = τ = 0. Then d=−λ2 6= 4. If

λk< 0

then

z± =±

√
m2 +

(
4−λ2

4+λ2

)2

k2

are eigenvalues ofH[k]0,0,λ in the gap of σess(H[k]0,0,λ). Ifλk⩾ 0 then there are no eigenvalues.
Again, these results remain valid also in the decoupled case λ=±2, as the case η = τ = 0 and
λ=±2 corresponds to z=±1 in [15]; then, one can read off the result from equations (22) and
(23) in [15]. In all cases we have σ(H0,0,λ) = σ(Ĥ) = (−∞,−|m|]∪ [|m|,+∞). Therefore, it
is not possible to reduce the gap in the spectrum of Ĥ by means of the magnetic δ-interaction.
For m= 0 and λk< 0, there are linear bands

z± =±|4−λ2|
4+λ2

|k|.

The energy bands for various values of λ andm are shown in figure 3. Since sgn(λ) determines
the orientation of the magnetic field and

k
dz+
dk

> 0, k
dz−
dk

< 0,

the condition λk< 0 may be physically interpreted as follows. The ‘positronic and electronic’
low dispersing wave-packets, i.e. packets constructed using the eigenfunctions associated with
z+ and z−, respectively, may propagate along the axis x= 0 in one direction only. This direction
is determined by the Lorentz force.
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Figure 3. Purely magnetic case with m= 1 and λ= 1 (left), m= 1 and λ=−0.5
(middle), m= 0 and λ= 1 (right). The bulk spectrum, the energy bands, and the spec-
trum of the full operator H0,0,λ are depicted in gray, black, and blue, respectively. Note
that the bands are supported on an open semi-axis only: for λ> 0 it is the negative semi-
axis and vice versa. If m= 0 there is a linear band. Note that the spectrum of H0,0,λ

always coincides with the spectrum of the free operator.

6.4.4. Spectral transition for d=4. As it was noted in section 6.4.1 there are some cases
where a continuous change of the coupling parameters may cause a dramatic change of the
spectral properties - a so-called spectral transition; see [6]. Here we want to discuss another
remarkable configuration causing a spectral transition, namely, when d= 4. By theorem 6.2,
if d= 4 and λ 6= 0, then one always has

σ(Hη,τ,λ) = σac(Hη,τ,λ) = R and σp(Hη,τ,λ) = σsc(Hη,τ,λ) = ∅.
If λ changes its value to zero, while keeping d= 4 fixed, then

σac(Hη,τ,λ) = (−∞,−|m|]∪ [|m|,+∞), σp(Hη,τ,λ) =

{
−τ
η
m

}
, and σsc(Hη,τ,λ) = ∅.

We see that for λ= 0 an eigenvalue of infinite multiplicity appears. This change is even more
dramatic for m 6= 0, as then the absolutely continuous spectrum in (−|m|, |m|) collapses to the
single point − τ

ηm.

7. Approximations by regular potentials

The problem of finding regular approximations when ω 6= 0 may be reduced to the case when
ω= 0 in a similar vein as described in [11, section 8]. Therefore, we still consider only the
case ω= 0 in this section.

7.1. Approximations of the fiber operators

First, one can try to approximateH[k]η,τ,λ by the one-dimensional Dirac operator with a scaled
regular potential which converges to the δ-distribution in the sense of distributions. This has
been done before when k= 0. The first rigorous results are due to Šeba [36], where approx-
imations in the norm resolvent sense were provided for the purely electrostatic and the purely
Lorentz scalar δ-interaction. Approximations of a general δ-interaction were found in [18] and
[19]; however, only in the strong resolvent sense. The norm resolvent convergence of these
approximations was proved in [38] for a three-parametric family of interactions. In fact, one
can show norm resolvent convergence of the approximations for the whole four-parametric
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family [34]. Since norm resolvent convergence is stable with respect to adding a constant her-
mitian perturbation, these results extend to the case k 6= 0.

We will now describe the approximating operators. Let h ∈ L1(R;R)∩L∞(R;R) be such
that
´
R h(x)dx= 1 and for ε> 0 define

hε(x) :=
1
ε
h
(x
ε

)
.

In the following, we assume d>−4; the way how we treat the case d<−4 is discussed after
theorem 7.1. Since Λ in the transmission condition (3.6) is invertible, there exists a hermitian
matrix A such that

exp(−iσ1A) = Λ. (7.1)

To see this we make a similar calculation as in [11, 38], rewrite

Λ =
4

4+ d

(
4− d
4

σ0 +λσ3 − iησ1 − τσ2

)
,

and use the ansatz

A≡ Aη̃,τ̃ ,λ̃ = η̃σ0 + τ̃σ3 + λ̃σ2

with

(η̃, τ̃ , λ̃) =


2√
d

(
arctan(

√
d/2)+ lπ

)
(η,τ,λ)with l ∈ Z for d> 0

(η,τ,λ) for d= 0
2√
−d

arctanh(
√
−d/2)(η,τ,λ) for d ∈ (−4,0).

(7.2)

Plugging this into

exp(B) = exp

(
TrB
2

)(
cosνσ0 +

sinν
ν

(
B− TrB

2
σ0

))
, ν :=

√
detB−

(
TrB
2

)2

,

which holds for all 2×2 matrices B, we find that (7.1) is fulfilled. Finally, if we put

H[k]ε
η̃,τ̃ ,λ̃

= H[k] +Aη̃,τ̃ ,λ̃hε = σ1(−i∂x)+σ2k+σ3m+Aη̃,τ̃ ,λ̃hε,

Dom(H[k]ε
η̃,τ̃ ,λ̃

) = Dom(H[k]) = H1(R;C2),

then the following result follows from [34], as the bounded perturbation σ2k does not influence
the convergence.

Theorem 7.1. Let η,τ,λ ∈ R be such that d= η2 − τ 2 −λ2 >−4 and let η̃, τ̃ , λ̃ ∈ R be as
in (7.2). Then

lim
ε→0

‖(H[k]η,τ,λ − z)−1 − (H[k]ε
η̃,τ̃ ,λ̃

− z)−1‖= 0, z ∈ C \R.

Note that it is much more difficult to deal with the decoupled case when d=−4; see [34]. If
d ∈ (−∞,−4) one can still use the theorem, after employing the unitary transformation from
proposition 4.2, see the discussion below the proof of theorem 2.5 in [11] for details. In fact, the
restriction d>−4 is the price we pay for our ansatz for A (and consequently, for the concise
formula (7.2)).

For the distributional limit of the approximating potential we get

lim
ε→0

Aη̃,τ̃ ,λ̃hε = Aη̃,τ̃ ,λ̃δ = (η̃σ0 + τ̃σ3 + λ̃σ2)δ.
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Except for the case when d= 0 this is different from the potential in the formal expression (3.2)
forH[k]η,τ,λ. Therefore, the renormalization of the coupling constant occurs during the approx-
imating procedure. In the one-dimensional relativistic setting, this effect was described for the
first time in [36] and generalized and studied in more detail in [18, 19, 38]. Remarkably, the
coupling constants have to be renormalized in the exactly samemanner in the two-dimensional
[11] and the three-dimensional [22, 23] setting.

7.2. Approximations of the full operator

Let us define

Hε
η̃,τ̃ ,λ̃

:=

ˆ ⊕

R
H[k]ε

η̃,τ̃ ,λ̃
dk.

By [30, theorem XIII.85] we have for z ∈ C \R

(Hε
η̃,τ̃ ,λ̃

− z)−1 =

ˆ ⊕

R
(H[k]ε

η̃,τ̃ ,λ̃
− z)−1dk,

(Hη,τ,λ − z)−1 =

ˆ ⊕

R
(H[k]η,τ,λ − z)−1dk.

We will prove the following result:

Theorem 7.2. Let η,τ,λ ∈ R be such that d= η2 − τ 2 −λ2 >−4. Then, for any z ∈ C \R and
all ψ ∈

´ ⊕
R L2(R,dx;C2)dk≡ L2(R2,dxdk;C2),

lim
ε→0

‖(Hη,τ,λ − z)−1ψ− (Hε
η̃,τ̃ ,λ̃

− z)−1ψ‖= 0,

where the coefficients η̃, τ̃ , and λ̃ are given in (7.2).

Wewould like to point out that theorem 7.2 also holds true for the critical interaction strengths,
i.e. when ( d4 − 1)2 −λ2 = 0. It is the first time, that such an approximation result is shown in
the critical case in a higher dimensional setting. Our proof relies on the direct integral decom-
position and theorem 7.1. Since the convergence of the fiber operators in theorem 7.1 is not
uniform in k ∈ R, this method yields just the strong convergence of the full resolvents.

Remark 7.3 (Purely magnetic interaction). If η = τ = 0 and λ ∈ (−2,0)∪ (0,2) then the
matrix part of the approximating potential is just a multiple of σ2,

A= λ̃σ2 = 2arctanh
λ

2
σ2.

(If |λ|> 2 we would get A= 2arctanh 2
λσ2 +πσ1.) Therefore, we have

F−1
y→kH

ε
0,0,λ̃

Fy→k = σ1(−i∂x)+σ2(−i∂y+ λ̃hε)+σ3m.

This is just the two-dimensional Dirac Hamiltonian with a magnetic field supported in the ε-
tubular neighborhood of the line x= 0. When m= 0 such operators were used to describe the
electron states (near one Dirac point) in graphene under the influence of either a perpendicular
magnetic field or a strain [13, 24, 27]. Note that the function hε determines the profile of the
‘magnetic barrier’. If hε = ε−1χ(−ε,ε) then we get a model which is analytically solvable -
see [24, section 2.1]. The narrow limit, ε→ 0, was treated only formally in [27], and so the
renormalization of the coupling constant was not derived there. Nevertheless, unless λ= 0, it is
always necessary. On the other hand, linear bands for the (what we call here) purely magnetic
δ-interaction were already observed in [27].
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Proof of Theorem 7.2. First, we note that for any two closed operators A,B acting in a Hilbert
space and z1,z2 ∈ ρ(A)∩ ρ(B) the relation

(A− z2)
−1 − (B− z2)

−1

=
(
1+(z2 − z1)(B− z2)

−1
)[
(A− z1)

−1 − (B− z1)
−1
](

1+(z2 − z1)(A− z2)
−1
)

holds; this can be seen by employing the first resolvent identity. Applying this for A=
(H[0]ε

η̃,τ̃ ,λ̃
− i)σ2, B= (H[0]η,τ,λ − i)σ2, z2 =−k, and z1 = 0, we obtain

(H[k]ε
η̃,τ̃ ,λ̃

− i)−1 − (H[k]η,τ,λ − i)−1

= σ2

(
((H[0]ε

η̃,τ̃ ,λ̃
− i)σ2 + k)−1 − ((H[0]η,τ,λ − i)σ2 + k)−1

)
= σ2

(
1− k((H[0]η,τ,λ − i)σ2 + k)−1

)[
σ2(H[0]

ε
η̃,τ̃ ,λ̃

− i)−1 −σ2(H[0]η,τ,λ − i)−1
]

×
(
1− k

(
(H[0]ε

η̃,τ̃ ,λ̃
− i)σ2 + k

)−1
)

=
(
σ2 − k(H[k]η,τ,λ − i)−1

)
σ2
[
(H[0]ε

η̃,τ̃ ,λ̃
− i)−1 − (H[0]η,τ,λ − i)−1

]
σ2

×
(
σ2 − k(H[k]ε

η̃,τ̃ ,λ̃
− i)−1

)
.

Since σ2 is unitary and ‖(C− i)−1‖⩽ 1 holds for any self-adjoint operator C, this implies∥∥(H[k]ε
η̃,τ̃ ,λ̃

− i)−1 − (H[k]η,τ,λ − i)−1
∥∥⩽ (1+ |k|)2

∥∥(H[0]ε
η̃,τ̃ ,λ̃

− i)−1 − (H[0]η,τ,λ − i)−1
∥∥.

(7.3)

For K> 0, define HK := {ψ ∈ L2(R2;C2)|ψ(·,k) = 0if |k|> K}. First, take any ψ ∈ HK and
put Dε[k] := (H[k]ε

η̃,τ̃ ,λ̃
− i)−1 − (H[k]η,τ,λ − i)−1. Then we have

∥∥∥∥ˆ ⊕

R
Dε[k]dk ψ

∥∥∥∥2 =

∥∥∥∥∥
ˆ ⊕

(−K,K)
Dε[k]ψ(·,k)dk

∥∥∥∥∥
2

=

ˆ
(−K,K)

‖Dε[k]ψ(·,k)‖2dk

⩽ sup
(−K,K)

‖Dε[k]‖2
ˆ
(−K,K)

‖ψ(·,k)‖2dk= sup
(−K,K)

‖Dε[k]‖2‖ψ‖2.

Using (7.3) we obtain the estimate∥∥∥∥ˆ ⊕

R
Dε[k]dk ψ

∥∥∥∥⩽ (1+K)2‖Dε[0]‖‖ψ‖. (7.4)

Next, for a fixed element ψ =
´ ⊕
R ψ(·,k)dk ∈ L2(R2;C2) and K> 0 define the function

ψK :=
´
(−K,K)ψ(·,k)dk ∈ HK. Using the dominated convergence theorem, one can show that

lim
K→∞

‖ψ−ψK‖= 0.

Finally, by the triangle inequality, (7.4), and the fact that ‖ψK‖⩽ ‖ψ‖, we get∥∥∥∥ˆ ⊕

R
Dε[k]dk ψ

∥∥∥∥ ⩽
∥∥∥∥ˆ ⊕

R
Dε[k]dk ψK

∥∥∥∥+∥∥∥∥ˆ ⊕

R
Dε[k]dk (ψ−ψK)

∥∥∥∥
⩽ (1+K)2‖Dε[0]‖‖ψ‖+

∥∥∥∥ˆ ⊕

R
Dε[k]dk

∥∥∥∥ ‖(ψ−ψK)
∥∥. (7.5)
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Since ∥∥∥∥ˆ ⊕

R
Dε[k]dk

∥∥∥∥⩽ ∥∥∥∥ˆ ⊕

R
(H[k]ε

η̃,τ̃ ,λ̃
− i)−1dk

∥∥∥∥+ ∥∥∥∥ˆ ⊕

R
(H[k]η,τ,λ − i)−1dk

∥∥∥∥⩽ 2,

the second term on the right-hand side of (7.5) can be made arbitrarily small by choosing K
large enough. With any fixed K the first term on the right-hand side of (7.5) tends to zero as
ε→ 0. We conclude that limε→0 ‖

´ ⊕
R Dε[k]dk ψ‖= 0.
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Appendix. Direct integrals of self-adjoint operators

In this section we will prove several abstract results concerning the direct integral of self-
adjoint operators. First, following [30, section XIII.16] we recall some necessary notations.
Let G be a separable complex Hilbert space with inner product 〈·, ·〉G and, for simplicity, let
M⊂ R be an interval. Moreover, let A(k), k ∈M, be a family of self-adjoint operators in
G such that M3 k 7→ 〈(A(k)− i)−1ψ,φ〉G is measurable for all ψ,φ ∈ G , and define in the
Hilbert space

H :=

ˆ ⊕

M
G dk

:=

{
ψ :M→ G |k 7→ ‖ψ(k)‖G is measurable, ‖ψ‖2H :=

ˆ
M

‖ψ(k)‖2G dk<∞
}

the operator

A :=

ˆ ⊕

M
A(k)dk (A.1)

by

(Aψ)(k) = A(k)ψ(k),

Dom(A) =

{
ψ ∈ H : ψ(k) ∈ Dom(A(k))a.e.,

ˆ
M

‖A(k)ψ(k)‖2G dk<∞
}
.
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It is well-known that A is self-adjoint in H and that

σ(A) =
{
z ∈ R|

∣∣{k ∈M|σ(A(k))∩ (z− ε,z+ ε) 6= ∅}
∣∣> 0 for all ε > 0

}
(A.2)

and

σp(A) =
{
z ∈ R|

∣∣{k ∈M|z ∈ σp(A(k))}
∣∣> 0

}
, (A.3)

where |B| denotes the Lebesgue measure of B⊂ R; see [30, theorem XIII.85]. Note that all
eigenvalues of A are of infinite multiplicity. Indeed, if λ ∈ σp(A), then for any normalized
ψ(k) ∈ ker(A(k)−λ) and each function χ which is non-zero on {k ∈M|z ∈ σp(A(k))}, such
that k 7→ χ(k)ψ(k) is square integrable, the vector k 7→ χ(k)ψ(k) belongs to ker(A−λ).

In the following theorem we provide a criterion implying that σ(A) consists only of abso-
lutely continuous spectrum and pure point spectrum. This criterion is used in section 6 to
analyze the spectrum of the operator Hη,τ,λ. We assume for each k ∈M that

σsc(A(k)) = ∅,

and that there exist at most countably manymeasurable sets In ⊂M andmeasurable functions
En : In → R such that for almost every k ∈M

σp(A(k)) =
⋃

{n|k∈In}

{En(k)}.

The formulation of the following theorem has rather general assumptions on En(k), after-
wards in corollary A.3 we discuss a special case which is easier applicable.

Theorem A.1. Suppose that A satisfies the above assumptions. Moreover, assume that for each
N ⊂ R with |N |= 0 the relation |E−1

n (N \σp(A))|= 0 holds for all n. Then

σsc(A) = ∅.

Proof. Let Hpp be the pure point subspace and let Hc = H ⊥
pp be the continuous subspace

associated with A. It suffices to verify thatHc is the absolutely continuous subspace associated
with A. To show this, denote by E and E(k) the spectral measures corresponding to A and A(k),
respectively. Let ψ ∈ Hc be fixed. We check that for N ⊂ R with Lebesgue measure zero the
relation ˆ

N
d〈Eψ,ψ〉H = 0 (A.4)

holds. In fact, we haveˆ
N

d〈Eψ,ψ〉H =

ˆ
M

ˆ
N

d〈E(k)ψ(k),ψ(k)〉G dk

=

ˆ
M

ˆ
N\σp(A)

d〈E(k)ψ(k),ψ(k)〉G dk;

see the proof of [30, theorem XIII.85] for the first equality and the second equality holds as
ψ ∈ Hc = H ⊥

pp and σp(A) is at most countable. By the assumption of this theorem, we can
decompose E(k) = E(k)ac +

∑
nPn(k), where the measure 〈E(k)acψ(k),ψ(k)〉G is absolutely

continuous with respect to the Lebesgue measure and Pn(k) is the orthogonal projection onto
ker(A(k)−En(k)). Then we have for each fixed k ∈M

ˆ
N\σp(A)

d〈E(k)acψ(k),ψ(k)〉G = 0
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and

ˆ
N\σp(A)

d〈Pn(k)ψ(k),ψ(k)〉G ⩽
{
‖ψ(k)‖2G for En(k) ∈N \σp(A),

0 for En(k) /∈N \σp(A).

Let us denote byχN\σp(A) the indicator function associated withN \σp(A). Then we conclude
that

ˆ
N

d〈Eψ,ψ〉H ⩽
ˆ
M

∑
n

‖ψ(k)‖2GχN\σp(A)(En(k)) dk

=
∑
n

ˆ
E−1
n (N\σp(A))

‖ψ(k)‖2G dk= 0,

since E−1
n (N \σp(A)) is a zero set by assumption. This shows (A.4) and yields the claimed

result.

In the following example we show that the assumption |E−1
n (N \σp(A))|= 0 for all zero sets

N is needed to conclude σsc(A) = ∅.

Example A.2. Let

C :=

{ ∞∑
n=1

an
3n

∣∣∣∣an ∈ {0,2} ∀n ∈ N

}
be the Cantor set. Choose for any fixed x ∈ [0,1] one fixed sequence of coefficients {an(x) :
an(x) ∈ {0,1},n ∈ N} such that

x=
∞∑
n=1

an(x)
2n

and consider the map E1 : [0,1]→ C given by

E1 (x) :=
∞∑
n=1

2an(x)
3n

.

Then E1 is strictly monotonously increasing, and hence injective and measurable. Consider in
L2([0,1]) =

´ ⊕
[0,1]Cdk the multiplication operator

A=

ˆ ⊕

[0,1]
A(k)dk, A(k)w= E1(k)w for k ∈ [0,1] and w ∈ C.

Clearly, σc(A(k)) = ∅, σ(A(k)) = σp(A(k)) = {E1(k)}, and σp(A) = ∅ follows from (A.3).
However, for the spectral measure EA associated with A, ψ ≡ 1, and the Lebesgue zero set
N = C we have〈

EA(C)ψ,ψ
〉
C =

ˆ 1

0
χE−1

1 (C)(k)dk= 1 6= 0,

i.e. ψ belongs to the singularly continuous subspace of A and hence, σsc(A) 6= ∅.

Finally, we deduce the following result about the spectrum of a self-adjoint operator defined as
a direct integral. The formulation is particularly simple to apply in the main part of the paper.
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Corollary A.3. Let the operator A be defined via a direct integral as in (A.1) such that for each
k ∈M

σsc(A(k)) = ∅,

and assume that there exist at most countable many open intervals In ⊂M and real analytic
functions En : In → R such that for almost every k ∈M

σp(A(k)) =
⋃

{n|k∈In}

{En(k)}.

Then σsc(A) = ∅ and the following assertions hold:

(a) σp(A) =
⋃
n∈CRanEn, where C = {n|En is constant};

(b) σ(A) is given by

⋃
n

RanEn ∪
{
z ∈ R|

∣∣{k ∈M|σac(A(k))∩ (z− ε,z+ ε) 6= ∅}
∣∣> 0 for all ε > 0

}
;

(c) σac(A) is given by

⋃
n/∈C

RanEn ∪
{
z ∈ R|

∣∣{k ∈M|σac(A(k))∩ (z− ε,z+ ε) 6= ∅}
∣∣> 0 for all ε > 0

}
,

where C is as in (a).

Proof. It suffices to prove the statement σsc(A) = ∅, as the remaining assertions (a)–(c) then
follow from (A.2) and (A.3). According to theorem A.1 we have to verify |E−1

n (N \σp(A))|=
0 for each measurable set N with |N |= 0. This will be done in two steps.

Step 1: First, assume that |E ′
n|> 0. This and a change of variables imply

0=
∣∣N \σp(A)

∣∣= ˆ
(N\σp(A))∩RanEn

dx+
ˆ
(N\σp(A))\RanEn

dx

=

ˆ
E−1
n (N\σp(A))

|E′
n(k)|dk+

ˆ
(N\σp(A))\RanEn

dx

=

ˆ
E−1
n (N\σp(A))

|E′
n(k)|dk⩾ 0.

Since |E ′
n|> 0, the last displayed formula can only be true if |E−1

n (N \σp(A))|= 0, which
shows the assertion.

Step 2: Assume now that En is an arbitrary real analytic function and that En is not constant,
as otherwise En yields a point in σp(A). Then the zeros of E ′

n can only accumulate to the
boundary of In and ifJl denote the open intervals in between the zeros ofE ′

n, then |E ′
n ↾Jl |> 0.

Hence, it follows for any measurable set N with |N |= 0 with the argument of Step 1 that

|E−1
n (N \σp(A))|=

∞∑
l=1

|(En ↾Jl)
−1(N \σp(A))|= 0,

which yields all claims.
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[16] Heriban L and Tušek M 2022 Non-self-adjoint relativistic point interaction in one dimension J.
Math. Anal. Appl. 516 126536

[17] Holzmann M, Ourmières-Bonafos T and Pankrashkin K 2018 Dirac operators with Lorentz scalar
shell interactions Rev. Math. Phys. 30 1850013

[18] Hughes R J 1997 Relativistic point interactions: approximation by smooth potentials Rep. Math.
Phys. 39 425–32

[19] Hughes R J 1999 Finite-rank perturbations of the Dirac operator J. Math. Anal. Appl. 238 67–81
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