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Abstract. The aim of this paper is to prove two perturbation results for a
selfadjoint operator A in a Krein space H which can roughly be described
as follows: (1) If ∆ is an open subset of R and all spectral subspaces for
A corresponding to compact subsets of ∆ have finite rank of negativity, the
same is true for a selfadjoint operator B in H for which the difference of the
resolvents of A and B is compact. (2) The property that there exists some
neighbourhood ∆∞ of ∞ such that the restriction of A to a spectral subspace
for A corresponding to ∆∞ is a nonnegative operator in H, is preserved un-
der relative Sp perturbations in form sense if the resulting operator is again
selfadjoint. The assertion (1) is proved for selfadjoint relations A and B. (1)
and (2) generalize some known results.
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1. Introduction

Let A be a definitizable selfadjoint operator in a Krein space (H, [·, ·]), i.e. the resol-
vent set ρ(A) is nonempty and there exists a polynomial p such that [p(A)x, x] ≥ 0
holds for all x ∈ D(p(A)). Then A has a spectral function (see [17]) and with the
help of this spectral function the real points of the spectrum σ(A) can be classi-
fied in points of positive and negative type and critical points. Spectral points of
positive and negative type can also be characterized with the help of the resolvent
of A (see e.g. [7], [11]) or by approximative eigensequences (see [15], [18]), which
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allows, in a convenient way, to carry over the sign type classification of spectral
points to non-definitizable selfadjoint operators and relations in Krein spaces.

Sign types of spectral points, which are a special feature of the spectral theory
in Krein spaces, are closely connected with spectral decomposition properties. For
example, if any point of some bounded closed interval [a, b] is either of positive
or of negative type with respect to some selfadjoint operator A, then A can be
decomposed into a direct orthogonal sum of a definitizable selfadjoint operator A1

with spectrum in [a, b] and a selfadjoint operator A2 such that σ(A2) ∩ (a, b) = ∅,
that is, A is locally definitizable. In view of these connections between sign types
and decomposability, results on stability properties of the sets of spectral points
of positive and negative type play an important role in the perturbation theory in
Krein spaces.

In [18] it was shown, for a bounded selfadjoint operator A, that if all points of
a bounded closed interval ∆ are either regular or of positive type with respect to A,
then with the exception of no more than a finite number of points the same is true
after a symmetric compact perturbation K. Moreover, on the spectral subspaces
corresponding to A+K and subintervals of ∆ the inner product [·, ·] has a finite
number of negative squares. A similar result was proved in [8]. In [8] A is not
assumed to be bounded, but there are additional assumptions.

The first objective of the present paper is to generalize these results. In
Theorem 2.4 we consider unbounded selfadjoint operators and selfadjoint linear
relations and drop the additional conditions from [8]. We allow that the unper-
turbed and the perturbed operator are selfadjoint with respect to different Krein
space inner products. It is assumed that the difference of the Gram operators of
these inner products fulfils some “local” compactness condition which is usual in
local scattering theory. Essentially, the proof of Theorem 2.4 is a variant of the
proof of Theorem 5.1 in [18]. Instead of the Lyubich-Matsaev spectral subspace
results here we make use of a functional calculus for unitary operators in Krein
spaces with finite order growth of the resolvent in a neighbourhood of some arcs
of the unit circle (see [7]). For different inner products with compact difference
of the corresponding Gram operators, for a bounded unperturbed operator and
a compact perturbation Theorem 2.4 is a consequence of the perturbation result
[19, Theorem 6.1] on holomorphic operator functions (see also [1]). If the difference
of the Gram operators is compact and there is a real point which is regular for
the unperturbed and the perturbed relation, Theorem 2.4 can be deduced from
[19, Theorem 6.1] with the help of a linear fractional transformation.

The second objective of this paper is to generalize a result from [9]. In Sec-
tion 3 we consider selfadjoint operators in a Krein space which can be decomposed
as a direct orthogonal sum of a bounded selfadjoint and a nonnegative selfadjoint
operator. Then the spectrum of positive type as well as the spectrum of nega-
tive type may have ∞ as an accumulation point. Such operators and a class of
relatively compact perturbations in form sense were studied in [9]. In one of the
main results of [9] it is proved that under some conditions the perturbed operator
admits a decomposition of the same type. Making use of the perturbation result
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for unbounded operators of Section 2, here we improve that result from [9] by
dropping an assumption on the spectral properties of the perturbed operator. In
contrast to [9] we do not exclude the case where the spectral function of the un-
perturbed operator is unbounded near ∞ and, at the same time, the unperturbed
and the perturbed operator are selfadjoint with respect to different Krein space
inner products.

2. Sign types of spectral points of two selfadjoint relations with
compact resolvent difference

2.1. Notations and definitions

In Section 2 we study linear relations in a separable Krein space (H, [·, ·]), i.e.
linear subspaces of H2. Linear operators in H are viewed as linear relations via
their graphs. For the usual definitions of the linear operations with relations, the
inverse, the adjoint etc., we refer to [3].

The resolvent set ρ(S) of a closed linear relation S is the set of all z ∈ C such
that (S − z)−1 ∈ L(H), the spectrum σ(S) of S is the complement of ρ(S) in C.
The extended spectrum σ̃(S) of S is defined by σ̃(S) = σ(S) if S is a bounded
operator and σ̃(S) = σ(S)∪{∞} otherwise. An eigenvalue λ ∈ C of a closed linear
relation S is called normal if the root manifold Lλ corresponding to λ is finite-
dimensional and there is a projection P with PH = Lλ which reduces S, i.e. S is
the direct sum in H2 of the subspaces S ∩ (PH)2 and S ∩ ((1−P )H)2 of H2, such
that λ ∈ ρ(S∩ ((1−P )H)2). The set of normal eigenvalues of S will be denoted by
σp,norm(S). The essential spectrum of S is defined by σess(S) = σ(S)\σp,norm(S).

We recall the definitions of the approximate point spectrum and the spectra
of positive and negative type of a closed linear relation S (see [11]). For equiv-
alent descriptions of the spectra of positive and negative type we refer to [11,
Theorem 3.18].

Definition 2.1. We say that λ ∈ C belongs to the approximate point spectrum of
S, denoted by σap(S), if there exists a sequence

(
xn
yn

)
∈ S, n = 1, 2, . . . , such

that ‖xn‖ = 1 and limn→∞ ‖yn − λxn‖ = 0. We define the extended approximate
point spectrum σ̃ap(S) of S by σ̃ap(S) := σap(S) ∪ {∞} if 0 ∈ σap(S

−1), and
σ̃ap(S) := σap(S) if 0 6∈ σap(S

−1).

We remark, that the boundary points of σ̃(S) in C belong to σ̃ap(S).

Definition 2.2. A point λ ∈ σap(S) is said to be of positive type (negative type)
with respect to S, if for every sequence

(
xn
yn

)
∈ S, n = 1, 2 . . . , with ‖xn‖ = 1 and

limn→∞ ‖yn − λxn‖ = 0 we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0).

If ∞ ∈ σ̃ap(S), ∞ is said to be of positive type (negative type) with respect to S if
for every sequence

(
xn
yn

)
∈ S, n = 1, 2 . . . , with limn→∞ ‖xn‖ = 0 and ‖yn‖ = 1
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we have

lim inf
n→∞

[yn, yn] > 0 (resp. lim sup
n→∞

[yn, yn] < 0).

The set of all points of positive type (negative type) with respect to S will be
denoted by σ++(S) (resp. σ−−(S)).

If A is selfadjoint, all points of positive or negative type belong to R. Analo-
gously, if U is a unitary operator in the Krein space (H, [·, ·]), all points of positive
or negative type lie on the unit circle T.

If K, K1, K2 are separable Hilbert spaces S∞(K1,K2) denotes the set of all
compact operators from K1 to K2. If s1(A) ≥ s2(A) ≥ . . . are the s-numbers of

A ∈ S∞(K1,K2), i.e. the eigenvalues of (A∗A)
1

2 where multiplicity is counted, we
set

Sp(K1,K2) :=
{
A ∈ S∞(K1,K2) :

(∑

j

sj(A)p
) 1

p

=: ‖A‖Sp
<∞

}
, p ∈ [1,∞).

Let Sp(K) := Sp(K,K), p ∈ [1,∞) ∪ {∞}; we will simply write Sp when no
confusion can arise. By F we denote the class of operators of finite rank.

2.2. A criterion for compact resolvent difference

Let, in the following, (H, (·, ·)) be a separable Hilbert space and let G1 and G2 be
bounded selfadjoint operators in H with 0 ∈ ρ(G1) ∩ ρ(G2). We define the inner
products [·, ·]1 := (G1·, ·) and [·, ·]2 := (G2·, ·) in H. Then H1 := (H, [·, ·]1) and
H2 := (H, [·, ·]2) are Krein spaces. We do not exclude that H1 or H2 is a Hilbert
space. Let A1 and A2 be selfadjoint relations in H1 and H2, respectively. Assume
that the difference of the resolvents of A1 and A2 is compact, i.e. the following
condition (I) is fulfilled.

(I): There exists a µ ∈ C such that

µ ∈ ρ(A1) ∩ ρ(A2)

and

(A1 − µ)−1 − (A2 − µ)−1 ∈ S∞ (2.1)

hold.

Condition (I) implies that we have (A1 − µ′)−1 − (A2 − µ′)−1 ∈ S∞ for any
point µ′ ∈ ρ(A1) ∩ ρ(A2). This follows from the relation

(A1 − µ′)−1 − (A2 − µ′)−1 =

=
(
1 + (µ′−µ)(A2 − µ′)−1

)(
(A1−µ)−1− (A2−µ)−1

)(
1 + (µ′−µ)(A1 − µ′)−1

)
.
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The following proposition contains a criterion for (2.1). Observe that G1A1

and G2A2 are selfadjoint relations in the Hilbert space (H, (·, ·)). Therefore, C\R

belongs to ρ(GkAk), k = 1, 2.

Proposition 2.3. Let p ∈ [1,∞) ∪ {∞} and assume that G1 − G2 ∈ Sp and that
there is a µ ∈ C\R with µ ∈ ρ(A1) ∩ ρ(A2). Then

(A1 − µ)−1 − (A2 − µ)−1 ∈ Sp (2.2)

if and only if

(G1A1 − µ)−1 − (G2A2 − µ)−1 ∈ Sp.

Proof. As

(G1A1 − µ)−1 − (G2A2 − µ)−1 = (A1 −G−1
1 µ)−1G−1

1 − (A2 −G−1
2 µ)−1G−1

2

= (A1 −G−1
1 µ)−1(G−1

1 −G−1
2 ) +

(
(A1 −G−1

1 µ)−1 − (A2 −G−1
2 µ)−1

)
G−1

2

it is sufficient to prove that

(A1 −G−1
1 µ)−1 − (A2 −G−1

2 µ)−1 ∈ Sp

is equivalent to (2.2). This equivalence follows from the relation
(
(A1 − λ)−1 − (A2 − λ)−1

)(
1 + (λG−1

1 − λ)(A1 − λG−1
1 )−1

)

−
(
1 + (A2 − λ)−1(λ− λG−1

2 )
)(

(A1 − λG−1
1 )−1 − (A2 − λG−1

2 )−1
)
∈ Sp

(2.3)

since 0 ∈ ρ
(
1+ (λG−1

1 −λ)(A1 −λG−1
1 )−1

)
and 0 ∈ ρ

(
1+ (A2 −λ)−1(λ−λG−1

2 )
)
.

Indeed, we have
(
1 + (λG−1

1 − λ)(A1 − λG−1
1 )−1

)−1
= 1 + (λ− λG−1

1 )(A1 − λ)−1

and
(
1 + (A2 − λ)−1(λ− λG−1

2 )
)−1

= 1 + (A2 − λG−1
2 )−1(λG−1

2 − λ).

It remains to verify (2.3). Evidently, we have

(A2 − λ)−1(λ− λG−1
1 )(A1 − λG−1

1 )−1

− (A2 − λ)−1(λ− λG−1
2 )(A1 − λG−1

1 )−1 =: S ∈ Sp.

Addition of this relation and the relations

(A1 − λ)−1 − (A1 − λG−1
1 )−1 + (A1 − λ)−1(λG−1

1 − λ)(A1 − λG−1
1 )−1 = 0,

−(A2 − λ)−1 + (A2 − λG−1
2 )−1 + (A2 − λ)−1(λ− λG−1

2 )(A2 − λG−1
2 )−1 = 0

gives (2.3).

�
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2.3. Preservation of Pontryagin local spectral subspaces

Let, in the rest of Section 2, Ω be a domain of the extended complex plane C which
is symmetric with respect to the real axis R such that Ω ∩ R 6= ∅. We denote the
open upper half-plane by C

+. We assume that A1 and A2 satisfy, besides condition
(I), the following condition.

(II): There exists a point µ0 ∈ Ω ∩ C+ with µ0 ∈ ρ(A1) ∩ ρ(A2). Moreover, either

Ω\R ⊂ ρ(A1) ∪ σp,norm(A1) (2.4)

or

Ω\R ⊂ ρ(A2) ∪ σp,norm(A2). (2.5)

Then (2.1) holds with µ replaced by µ0. The relations (2.4) and (2.5) can be
expressed with the help of similar relations for the bounded operators (A1 − µ0)

−1

and (A2 − µ0)
−1, respectively. Then, from (2.1) and well-known perturbation re-

sults, it follows that (2.4) and (2.5) are equivalent.

Theorem 2.4. Let A1 and A2 be selfadjoint relations in H1 and H2, respectively,
such that the conditions (I) and (II) are fulfilled. Assume that for every (in R)
compact set ∆0 ⊂ Ω∩R there exists a finite union ∆1 of open connected subsets of
Ω ∩ R with ∆0 ⊂ ∆1, ∆1 ⊂ Ω ∩ R and a selfadjoint projection F1 in H1 such that
(F1H1, [·, ·]1) is a Pontryagin space with finite rank of negativity and the following
holds:

(i) If, for some λ ∈ ρ(A1) and some bounded operator T ,

T (A1 − λ)−1 = (A1 − λ)−1T,

then F1T = TF1.
(ii) σ̃(A1 ∩ (F1H1)

2) ⊂ σ̃(A1) ∩ ∆1.
(iii) σ̃(A1 ∩ ((1 − F1)H1)

2) ⊂ σ̃(A1)\∆1.
(iv) (G1 −G2)F1 ∈ S∞.

Then for every in R compact subset ∆0 ⊂ Ω ∩ R there exists a finite union
∆2 of open connected subsets of Ω∩R with ∆0 ⊂ ∆2, ∆2 ⊂ Ω∩R and a selfadjoint
projection F2 in H2 such that (F2H2, [·, ·]2) is a Pontryagin space with finite rank
of negativity, and (i)-(iv) holds with F1, A1, H1, ∆1 replaced by F2, A2, H2, ∆2.

From this theorem, with the help of the spectral function for locally definite
relations ([7], [18], [11]), we obtain the following corollary.

Corollary 2.5. Let A1 and A2 be selfadjoint relations in H1 and H2, respectively,
such that the conditions (I) and (II) are fulfilled. Assume that G1 −G2 ∈ S∞ and
Ω ∩ R ⊂ ρ(A1) ∪ σ++(A1). Then the conclusion of Theorem 2.4 is true.

Proof of Theorem 2.4. 1. We consider the linear fractional transformations ψ and
φ defined by

ψ(λ) = −1 + (µ0 − µ0)(λ− µ0)
−1 and ϕ(z) = (µ0z + µ0)(z + 1)−1,
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where µ0 is as in condition (II). ψ maps the open upper half-plane C
+ onto the

open unit disc D, and ψ ◦ ϕ is the identity mapping. ψ(Ω) is a domain of C

symmetric with respect to the unit circle T, which contains neighbourhoods of 0
and ∞, and it holds ψ(Ω) ∩ T 6= ∅. We define the operators

Uk := ψ(Ak) = −1 + (µ0 − µ0)(Ak − µ0)
−1, k = 1, 2. (2.6)

Uk is a unitary operator in the Krein space Hk. Then (2.1) with µ = µ0 implies

U1 − U2 ∈ S∞. (2.7)

Condition (II) implies

ψ(Ω)\T ⊂
(
ρ(U1) ∪ σp,norm(U1)

)
∩
(
ρ(U2) ∪ σp,norm(U2)

)
.

Let ∆0 be a subset of Ω∩R which is compact in R. We choose ∆1 and F1 as
in the assumptions of the theorem. Then F1 commutes with U1 and we have

σ(U1|F1H1) ⊂ σ(U1) ∩ ψ(∆1),

σ(U1|(1 − F1)H1) ⊂ σ(U1)\ψ(∆1).
(2.8)

Let

F1H1 = K+[+̇]K− (2.9)

be a fundamental decomposition of F1H1 and let F1,+ and F1,− be the correspon-
ding projections in F1H1. Then dimK− <∞. We write the restriction V of U1 to
F1H1 as operator matrix,

V =

(
V11 V12

V21 V22

)

with respect to the fundamental decomposition (2.9). The operators V12, V21, V22

are of finite rank, and by the general form of a unitary operator in a Pontryagin
space [4, Supplement] there exists a unitary operator V+ in the Hilbert space K+

such that V11−V+ is of finite rank. Let ν be a point of ψ(∆1) and define a unitary
operator V ′ in F1H1 by

V ′ =

(
V+ 0
0 ν

)
.

Then V − V ′ is of finite rank. We define a Hilbert scalar product 〈·, ·〉′1 on F1H1

by

〈x, y〉′1 := [(F1,+ − F1,−)x, y]1, x, y ∈ F1H1.

V ′ is a unitary operator also in (F1H1, 〈·, ·〉′1). We set

U ′
1 := V ′F1 + U1(1 − F1)

and

[x, y]′1 := 〈F1x, F1y〉
′
1 + [(1 − F1)x, (1 − F1)y]1, x, y ∈ H.
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Then U ′
1 is a unitary operator in the Krein space (H, [·, ·]′1) =: H′

1 and we have

U1 − U ′
1 ∈ F . (2.10)

Let G′
1 be the Gram operator of [·, ·]′1 with respect to (·, ·). Then G1−G

′
1 is of finite

rank. It is sufficient to verify, that the difference of the Gram operators of [·, ·]1
and [·, ·]′1 with respect to some suitably chosen Hilbert scalar product equivalent
to (·, ·) has this property. This is easy to see.

If A′
1 denotes the selfadjoint relation ϕ(U ′

1) then µ0 ∈ ρ(A′
1) and by (2.10)

(A′
1 − µ0)

−1 − (A1 − µ0)
−1 ∈ F .

By the construction of U ′
1 the set Ω\R is contained in ρ(A′

1)∪σp,norm(A′
1). Let F̃1

be the spectral projection corresponding to the unitary operator V ′ in the Hilbert

space (F1H1, 〈·, ·〉′1) and the set ψ(∆1), and denote by F ′
1 the projection F̃1F1 in

H1. Then H′
1, A

′
1 and F ′

1 satisfy the conditions fulfilled by H1, A1 and F1 at the
beginning of the proof. In particular, we have

(G′
1 −G2)F

′
1 = (G′

1 −G1)F
′
1 + (G1 −G2)F1F

′
1 ∈ S∞.

Moreover, (F ′
1H

′
1, [·, ·]

′
1) is a Hilbert space. Therefore, in the following we can and

will restrict ourselves to the case when (F1H1, [·, ·]1) is a Hilbert space. Note that
this implies ψ(∆1) ⊂ σ++(U1) ∪ ρ(U1).

2. In this part of the proof we will show that any point λ ∈ ψ(∆1) either
belongs to σ++(U2) ∪ ρ(U2) or is an eigenvalue with (at least) one nonpositive
eigenvector with respect to [·, ·]2. We proceed as in the proof of Theorem 5.1 from
[18]; in addition, we need the following fact.

Claim. For λ ∈ ψ(∆1) and a sequence (xn), n = 1, 2, . . . , in H, ‖xn‖ = 1,
with limn→∞ ‖(U1 − λ)xn‖ = 0 which converges weakly to zero we have

lim inf
n→∞

[xn, xn]1 = lim inf
n→∞

[xn, xn]2.

Indeed, the inner products [·, ·]1 and [·, ·]2 are related by

[·, ·]2 = [(1 +G−1
1 (G2 −G1))·, ·]1.

By assumption (G2 −G1)F1 ∈ S∞ and limn→∞ ‖(1 − F1)xn‖ = 0, which follows
from λ ∈ ψ(∆1) and (iii), we find

lim inf
n→∞

[xn, xn]2 = lim inf
n→∞

[(1 +G−1
1 (G2 −G1))F1xn, F1xn]1

= lim inf
n→∞

[F1xn, F1xn]1 = lim inf
n→∞

[xn, xn]1,

and the claim is proved.

Let λ ∈ ψ(∆1). It remains to prove, that in the case λ ∈ σ(U2)\σ++(U2) there
exists an eigenvector of U2 corresponding to λ which is nonpositive with respect
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to [·, ·]2. Since λ is a boundary point of σ(U2) and does not belong to σ++(U2)
there exists a sequence (xn), n = 1, 2, . . . , in H, ‖xn‖ = 1, such that

lim
n→∞

‖(U2 − λ)xn‖ = 0 and lim
n→∞

[xn, xn]2 ≤ 0 (2.11)

holds. It is no restriction to assume that the sequence (xn) converges weakly. Let
x0 := w − limn→∞ xn, then x0 6= 0, as otherwise (2.7) and the first relation of
(2.11) would imply

lim
n→∞

‖(U1 − λ)xn‖ = 0,

and, since λ ∈ σ++(U1) ∪ ρ(U1), the claim above would imply

lim inf
n→∞

[xn, xn]2 = lim inf
n→∞

[xn, xn]1 > 0,

which contradicts λ 6∈ σ++(U2) ∪ ρ(U2). From (2.11) we have (U2 − λ)x0 = 0. We
show that x0 is nonpositive in H2. This is evident, if for yn := xn−x0, n = 1, 2, . . . ,
limn→∞ ‖yn‖ = 0 holds. Assume that inf ‖yn‖ > 0. By w − limn→∞ yn = 0, (2.7)
and (2.11) we have

lim
n→∞

‖(U1 − λ)yn‖ = lim
n→∞

‖(U2 − λ)yn‖ = 0,

hence lim infn→∞[yn, yn]1 > 0. Then making use of the claim proved above we find

0 < lim inf
n→∞

[yn, yn]2 = lim inf
n→∞

[xn, xn]2 − [x0, x0]2,

and the second relation of (2.11) yields [x0, x0]2 < 0.

3. In this part of the proof we show that the set of the points which do not
belong to σ++(U2) ∪ ρ(U2) is discrete in ψ(∆1). Moreover we show, that for a
suitable δ ∈ (0, 1)

Λ :=
{
µ ∈ C | µ = reiϑ, eiϑ ∈ ψ(∆1), r ∈ (δ, 1) ∪ (1, δ−1)

}

is contained in ρ(U1)∩ ρ(U2). Obviously it is sufficient to prove the following: For
every λ ∈ ψ(∆1) there exists a neighbourhood U(λ) of λ in C such that

U(λ)\{λ} ⊂ σ++(U2) ∪ ρ(U2).

For the convenience of the reader we repeat the proof of this fact from [18].
Assume the contrary. Then there exists a sequence (λn) ⊂ ψ(∆1)∪(ψ(Ω)\T),

n = 1, 2 . . . , with λn 6= λ−1
m for n 6= m such that limn→∞ λn = λ and λn does not

belong to σ++(U2)∪ρ(U2). If, for some n, λn ∈ ψ(∆1), it follows from part 2 of the
proof that λn is an eigenvalue of U2 with at least one nonpositive eigenvector φn

in H2. If λn ∈ ψ(Ω)\T, then λn is a normal eigenvalue of U2 with a [·, ·]2-neutral

eigenvector φn. As λn 6= λ−1
m if n 6= m, we have [φn, φm]2 = 0. Then

L := clsp {φn | n = 1, 2, . . .}

is a nonpositive invariant subspace of U2.
We consider the operator W := (U2 − λ)|L. As all λn − λ are eigenvalues

of W , W cannot have closed range and finite-dimensional kernel, since this would
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imply the existence of a neighbourhood of 0 which consists of eigenvalues of W
(see [5]), a contradiction to the fact that λ is no inner point of σ(U2). We remark
that W has closed range and finite-dimensional kernel if and only if there exists
a subspace M ⊂ L with codimLM < ∞, such that W |M is an isomorphism of M

onto R(W |M).

Suppose that R(W ) is not closed or dim ker W = ∞. Then, for ε > 0
and an arbitrary subspace M ⊂ L with finite codimension in L there exists
an f ∈ M such that ‖f‖ = 1 and ‖Wf‖ < ε. Thus we can choose a (·, ·)-
orthonormal sequence (fn) ⊂ L, n = 1, 2 . . . , such that limn→∞ ‖(U2 −λ)fn‖ = 0.
Then, by (2.7), limn→∞ ‖(U1 − λ)fn‖ = 0 and, since ψ(∆1) ⊂ σ++(U1) ∪ ρ(U1),
we have lim infn→∞[fn, fn]1 > 0. Then the claim in part 2 of the proof yields
lim infn→∞[fn, fn]2 > 0, a contradiction to fn ∈ L.

4. Next we verify that U1 and U2 admit the functional calculus introduced
in [7]. Furthermore, we find an open set ∆2 and define a selfadjoint projection F2

in H2 with the help of this functional calculus such that the conditions (i)-(iii) of
the theorem with F1, A1, H1, ∆1 replaced by F2, A2, H2, ∆2 are fulfilled.

Arcs on the unit circle are denoted similarly to real intervals. For example,
(ã, b̃) denotes the open arc run over by a point moving from ã to b̃ in counterclock-
wise direction.

We choose a finite number of arcs (aj , bj), j = 1, . . . , n, of T such that their
closures [aj , bj ] are pairwise disjoint and for

γ :=

n⋃

j=1

(aj , bj)

the following holds:

(a) ψ(∆0) ⊂ γ, γ ⊂ ψ(∆1).
(b) The points aj , bj , j = 1, . . . , n, belong to σ++(U2) ∪ ρ(U2).
(c) Every component of ψ(∆1) contains exactly one of the arcs (aj , bj).

Further, we choose arcs (a
(1)
j , a

(2)
j ) 3 aj , (b

(1)
j , b

(2)
j ) 3 bj , j = 1, . . . , n, such that

their closures are pairwise disjoint and contained in ψ(∆1). In addition, we assume
for the union

γ0 :=
n⋃

j=1

(a
(1)
j , a

(2)
j ) ∪ (b

(1)
j , b

(2)
j )

that γ0 ∩ ψ(∆0) = ∅ and

γ0 ⊂ (σ++(U1) ∪ ρ(U1)) ∩ (σ++(U2) ∪ ρ(U2)) . (2.12)

We connect every arc (aj , bj) by a smooth simple curve

Cj ⊂ ρ(U1) ∩ ρ(U2) ∩ ψ(Ω) ∩ D
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with the point 0 such that Cj ∩ Ck = {0} for j 6= k. Then, making use of the fact
that no point of ψ(∆1) is an accumulation point of σ(U2)\T, which was proved in
part 3 of the proof, we find an open neighbourhood O in C of

ψ(∆1) ∪
n⋃

j=1

(Cj ∪ Ĉj), Ĉj := {z−1 : z ∈ Cj},

with the following properties:

(α) O is a T-symmetric domain of C, O ∩ D is simply connected.
(β) O ∩ T = ψ(∆1), O ⊂ ψ(Ω).
(γ) O\T ⊂ ρ(U1) ∩ ρ(U2).

Let K := (C\O) ∪ (T\γ0). Then we have T\K = γ0.
By (2.12) and on account of [11, Theorem 3.18] there exists an r0 ∈ (0, 1)

such that

sup
{
‖(Uk − reiϕ)−1‖|1− |r|| : eiϕ ∈ γ0, r ∈ (r0, 1) ∪ (1, r−1

0 )
}
<∞, k = 1, 2,

holds. Therefore, by [7, Proposition 1.2] the Riesz-Dunford functional calculi for
U1 and U2 can be extended by continuity to A2

K . Here A2
K is the space of all

functions f defined on T ∪K such that f |T ∈ C2(T) and f is locally holomorphic
on K, with an inductive limit topology introduced in [7].

Let (εm), m = 1, 2, . . . , be a decreasing null sequence of positive numbers.
Assume that

[a
(2)
j , b

(1)
j ] ⊂ (aje

iε1 , bje
−iε1), j = 1, . . . , n.

We set

γ(m) :=

n⋃

j=1

(aje
iεm , bje

−iεm), m = 1, 2, . . . .

Then γ =
⋃∞

j=1 γ(m). Let (χm), m = 1, 2, . . . , be a sequence of functions belonging

to A2
K with the following properties:

(1) χm(z) = 0 if z ∈ (T ∪K)\γ(m); χm+1(z) = 1 if z ∈ γ(m), m = 1, 2, . . . .
(2) 0 ≤ χm(z) ≤ 1, z ∈ T, m = 1, 2, . . . .

Since the functions χm are real on T, the operators χm(U2) are selfadjoint in H2.
If m > l, χm(z)− χl(z) is nonnegative for all z ∈ T∪K and equal to zero outside
γ0. By (2.12) and in view of [7, Proposition 2.1] and [11, Theorem 3.18] the A2

K

functional calculus restricted to functions with support in γ0 is positive. Therefore,

[(χm(U2) − χl(U2))x, x]2 ≥ 0, x ∈ H, m > l.

It is easy to see that the selfadjoint operators χm(U2), m = 1, 2, . . . , in H2 are
uniformly bounded. Hence the strong limit

s− lim
m→∞

χm(U2) =: F2
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exists, and F2 is selfadjoint. Repeating the above reasoning with the functions χm

replaced by their squares χ2
m, we find that the strong limit s − limm→∞ χ2

m(U2)
exists. It is equal to F 2

2 . Since for every m = 2, 3, . . . , we have

χm(z) ≥ (χm(z))2 ≥ χm−1(z), z ∈ T,

it follows that F2 = F 2
2 , that is, F2 is a selfadjoint projection in H2. F2 commutes

with all bounded operators that commute with U2 since this is true for all operators
χm(U2), m = 1, 2, . . . . Hence by (2.6) F2 satisfies condition (i) with A1 replaced
by A2.

We have

σ(U2|F2H2) ⊂ σ(U2) ∩ γ. (2.13)

Indeed, let µ 6∈ γ and g ∈ A2
K equal to one on a neighbourhood of γ such that

h : z 7→ (z−µ)−1g(z) belongs to A2
K . Then the restriction of h(U2) to F2H2 is the

bounded inverse of (U2 − µ)|F2H2. In a similar way one verifies that

σ(U2|(1 − F2)H2) ⊂ σ(U2)\γ. (2.14)

We set

∆2 := ϕ(γ).

Then the relations (2.13) and (2.14) imply (ii) and (iii) with A1, F1, ∆1 replaced
by A2, F2, ∆2. Note that ∆0 ⊂ ∆2.

5. In order to prove that F2 defined in part 4 of the proof satisfies condition
(iv) we consider a function χ ∈ A2

K with supp χ ⊂ ψ(∆1) which is equal to one
in some neighbourhood of γ. It is not difficult to see that one can approximate χ
in A2

K by a sequence of locally holomorphic functions on σ(U1) which uniformly
converges to zero in some neighbourhood of σ(U1)\ψ(∆1). Then by (2.8) we have

χ(U1) = F1χ(U1). (2.15)

By (2.7)

(U1 − λ)−1 − (U2 − λ)−1 = (U2 − λ)−1(U2 − U1)(U1 − λ)−1 ∈ S∞.

Hence for every function χ̃ which is locally holomorphic on σ(U1)∪σ(U2) we have
χ̃(U1) − χ̃(U2) ∈ S∞. On account of the continuity of the A2

K functional calculus
with respect to the operator norm we find

χ(U1) − χ(U2) ∈ S∞. (2.16)

Then by condition (iv), (2.15) and (2.16),

(G1 −G2)F2 = (G1 −G2)χ(U2)F2 =

= (G1 −G2)(χ(U2) − χ(U1))F2 + (G1 −G2)F1χ(U1)F2 ∈ S∞.
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6. It remains to prove that (F2H2, [·, ·]2) is a Pontryagin space with finite
rank of negativity.

We choose αj , βj ∈ T, j = 1, 2, . . . , n, such that αj ∈ (a
(1)
j , aj), βj ∈ (bj , b

(2)
j ),

j = 1, 2, . . . , n. We set

γ′ :=

n⋃

j=1

(αj , βj)

and define a function f by

f(z) :=





∏n
j=1(z − αj)

2
(

1
z
− 1

αj

)2

(z − βj)
2
(

1
z
− 1

βj

)2

if z ∈ γ′

0 if z ∈ (K ∪ T)\γ′
.

This function is locally holomorphic on K. We have f |T ∈ C3(T), and f is positive
on γ′. Therefore, f ∈ A2

K and it follows as in part 5 of the proof that

f(U1) − f(U2) ∈ S∞. (2.17)

The restriction U1|F1H1 is unitary in the Hilbert space (F1H1, [·, ·]1). Let
F1(γ

′) be the spectral projection corresponding to U1|F1H1 and γ′. Since f can
be approximated in A2

K by a sequence of functions locally holomorphic on T ∪K
which on a neighbourhood of σ(U1)\ψ(∆1) uniformly converges to zero, we have
f(U1) = f(U1)F1. The restriction of f(U1) to F1H1 coincides with f(U1|F1H1);
and by the functional calculus for unitary operators in Hilbert space we have

f(U1|F1H) = f(U1|F1H)F1(γ
′).

Therefore the operator f(U1) can be written as

f(U1) =

(
f(U1,γ′) 0

0 0

)
(2.18)

with respect to the decomposition H1 = H′
1[+̇]H′′

1 , where

H′
1 := F1(γ

′)F1H1, H′′
1 := ((1 − F1(γ

′))F1 + (1 − F1))H1,

and U1,γ′ is the restriction of U1 to the Hilbert space (H′
1, [·, ·]1).

If J ′′
1 is a fundamental symmetry of the Krein space (H′′

1 , [·, ·]1) and we define

J1 :=
( 1 0

0 J′′

1

)
, then

(x, y)∼ := [J1x, y]1, x, y ∈ H,

is a Hilbert scalar product on H. The Gram operators of [·, ·]1 and [·, ·]2 with

respect to (·, ·)∼ are J1 and G̃2 := J1G
−1
1 G2, respectively. Then by

(J1 − G̃2)F1 = −J1G
−1
1 (G2 −G1)F1 ∈ S∞,
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(J1 − G̃2)F1(γ
′)F1 is compact. If

(
G̃2,11 G̃2,12

G̃2,21 G̃2,22

)

is the operator matrix corresponding to G̃2 with respect to the decomposition
H1 = H′

1[+̇]H′′
1 , then

(J1 − G̃2)F1(γ
′)F1 =

(
1 − G̃2,11 0

−G̃2,21 0

)
∈ S∞

and also G̃2,12, which is the adjoint of G̃2,21 with respect to (·, ·)∼, is compact.
Therefore,

(
G̃2,11 G̃2,12

G̃2,21 G̃2,22

)
−

(
1 0

0 G̃2,22

)
=

(
G̃2,11 − 1 G̃2,12

G̃2,21 0

)
∈ S∞ (2.19)

and, on account of 0 ∈ ρ(G̃2), we have 0 ∈ ρ(G̃2,22) ∪ σp,norm(G̃2,22). Let P0 be

the finite-rank orthogonal projection on ker G̃2,22 in (H′′
1 , (·, ·)

∼). We introduce a
new inner product in H by
[(

x′

x′′

)
,

(
y′

y′′

)]

3

:=

((
1 0

0 G̃2,22 + P0

)(
x′

x′′

)
,

(
y′

y′′

))∼
, x′, y′∈ H′

1;x
′′, y′′∈ H′′

1 .

Since 0 ∈ ρ(G̃2,22 + P0), [·, ·]3 is a Krein space inner product. By (2.19), the
difference of the Gram operators of [·, ·]2 and [·, ·]3 with respect to (·, ·)∼ is compact.
By (2.18) the operator f(U1) is selfadjoint in (H, [·, ·]3).

If L− is a maximal uniformly negative subspace of
(
H′′

1 , ((G̃2,22 + P0) ·, ·)
)
,

then {(
0
x

) ∣∣∣ x ∈ L−

}

is a maximal uniformly negative invariant subspace of f(U1) in (H, [·, ·]3). Then,
in view of (2.17) and (2.18), we can apply the invariant subspace result [16, The-
orem 6] of H. Langer: The selfadjoint operator f(U2) in H2 has a maximal non-
positive invariant subspace M−, such that

σess(f(U2)|M−) = {0}. (2.20)

By (2.18) the spectrum of the selfadjoint operator f(U1) in (H, [·, ·]3) is contained
in the real interval [0,M1], M1 := maxz∈T f(z). Moreover,

(0,M1] ⊂ σ++(f(U1)) ∪ ρ(f(U1)) (2.21)

with respect to [·, ·]3. As in the proof of relation (2.13) we see that the spectrum
of the selfadjoint operator f(U2) in H2 is also contained in [0,M1], and that

σ(f(U2)|F2H) ⊂ [M0,M1], (2.22)
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where M0 := inf {f(z) : z ∈ γ}. By the definition of γ ′ and f we have M0 > 0.
Since the difference of the Gram operators of [·, ·]3 and [·, ·]2 is compact and the
relations (2.21) and (2.17) hold, we find, as in parts 2 and 3 of the proof, that
there is a t0 ∈ (0,M0) with t0 ∈ σ++(f(U2)) ∪ ρ(f(U2)). Let E0 be the spectral
projection corresponding to f(U2) and the interval (t0,M1 + 1), which can be
constructed in the same way as F2 (see part 4).

We claim that F2H2 ⊂ E0H2. Indeed, since F2 and E0 both commute with
U2, F2 and E0 commute. Therefore,

F2H2 = E0F2H2[+̇](1 −E0)F2H2.

Writing 1 −E0 as a strong limit of Riesz-Dunford integrals,

1 −E0 = s− lim
δ↘0

s− lim
ε↘0

1

2πi

∫ t0+δ

−1

{(f(U2) − (t+ iε))−1

− (f(U2) − (t− iε))−1} dt,

(2.23)

and making use of (2.22) we see that (1 −E0)F2 = 0, that is F2H2 ⊂ E0H2.

To prove that (F2H2, [·, ·]2) is a Pontryagin space with finite rank of nega-
tivity, it is sufficient to show this for (E0H2, [·, ·]2). We make use of the maximal
nonpositive f(U2)-invariant subspace M−. Since, in view of (2.23), E0 maps M−

into itself, we have

M− = E0M−[+̇](1 −E0)M−.

This implies that E0M− is a maximal nonpositive subspace of E0H2.

Let E(t0) be the orthogonal projection in H2 on the eigenspace of f(U2)
corresponding to t0. E(t0) can be constructed in a similar way as E0 and F2.
Therefore, E(t0) maps M− into itself. Since t0 is not an eigenvalue of f(U2)|M−,
we have E(t0)M− = {0}. It follows that, for x ∈ M−, E0x can be written in the
form

E0x = −
1

2πi

∫

C

(f(U2) − λ)−1 dλ x,

where C is the boundary of

{s1 + is2 : s1 ∈ (t0,M1 + 1), s2 ∈ (−1, 1)}

and the integral is understood in the sense of principal value. Since for λ 6= λ the
operator (f(U2)−λ)−1|M− coincides with ((f(U2)|M−)−λ)−1 and t0 belongs to
ρ(f(U2)|M−), E0 restricted to M− coincides with the Riesz-Dunford projection
corresponding to f(U2)|M− and the set (t0,M1 + 1) ∩ σ(f(U2)|M−). By (2.20)
this Riesz-Dunford projection is of finite rank: its range E0M− is the span of
a finite number of finite-dimensional algebraic eigenspaces of f(U2)|M−, that is,
dimE0M− < ∞. It follows that E0H2 is a Pontryagin space with finite rank of
negativity. This completes the proof of Theorem 2.4.

�
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In the case when A1 and A2 are unbounded operators we have the following
corollary of Theorem 2.4.

Corollary 2.6. Let A1 and A2 be selfadjoint operators in H1 and H2, respectively,
such that condition (I) holds. Assume that there exists a selfadjoint projection E

in H1 such that EH1 is a Pontryagin space with finite rank of negativity, and E

reduces A1, i.e., EA1 ⊂ A1E, and let the following conditions (i′) and (ii′) be
fulfilled.

(i′) σ̃(A1|(1 −E)H1) ∩ Ω = ∅.
(ii′) (G1 −G2)E ∈ S∞.

Then, for every R-symmetric domain Ω′ with Ω′ ∩ R 6= ∅ and Ω
′
⊂ Ω, there exists

a selfadjoint projection F in H2 such that FH2 is a Pontryagin space with finite
rank of negativity, F reduces A2, and the following holds.

(a) σ̃(A2|FH2) ⊂ Ω.
(b) σ̃(A2|(1 − F )H2) ∩ Ω′ = ∅.
(c) (G1 −G2)F ∈ S∞.

Proof. Since A1|EH1 is a selfadjoint operator in the Pontryagin space (EH1, [·, ·]1),
σ̃(A1|EH1)∩(Ω\R) consists of at most finitely many normal eigenvalues of A1. By
this fact and (i′) condition (II) of Theorem 2.4 is fulfilled. For every finite union
∆1 of open connected subsets of Ω∩R, ∆1 ⊂ Ω∩R, such that the boundary points
of ∆1 in R are no critical points of A1|EH1 the spectral projection

E(∆1, A1|EH1) ∈ L(EH1)

is defined, and the selfadjoint projection E(∆1, A1|EH1)E in H1 fulfils the condi-
tions of Theorem 2.4. In particular, the assumption (ii′) implies

(G1 −G2)E(∆1, A|EH1)E ∈ S∞.

Then by Theorem 2.4 there exists a finite union ∆2 of open connected subsets of
Ω ∩ R such that Ω′ ∩ R ⊂ ∆2, ∆2 ⊂ Ω ∩ R, and a selfadjoint projection F2 in H2

such that the conclusion of Theorem 2.4 holds. By Theorem 2.4 and the remark
following condition (II) the set σ̃(A2) ∩ (Ω′\R) consists of at most finitely many
normal eigenvalues of A2. The Riesz-Dunford projection F0 corresponding to A2

and σ̃(A2) ∩ (Ω′\R) has finite rank. Then the range of

F := F2 + F0

is a Pontryagin space with finite rank of negativity and F fulfils (a), (b) and (c).

�
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3. Perturbations preserving the nonnegativity with respect to the
indefinite inner product over a neighbourhood of infinity

3.1. Selfadjoint operators nonnegative over a neighbourhood of ∞
and associated forms

In this section we consider a selfadjoint operator A in the Krein space (H, [·, ·])
which is an orthogonal direct sum of some bounded selfadjoint operator A0 and
some nonnegative selfadjoint operator A∞ with ρ(A∞) 6= ∅, and a class of, in gen-
eral, unbounded perturbations of A which preserve this decomposition property.
For such an operator A we have

(rσ(A0),∞) ⊂ σ++(A) ∪ ρ(A) and (−∞,−rσ(A0)) ⊂ σ−−(A) ∪ ρ(A),

where rσ(A0) denotes the spectral radius of A0, and a domain Ω ⊂ C with ∞ ∈ Ω
which satisfies the assumptions of Theorem 2.4 may not exist. Moreover, simple
examples show that the perturbations considered in Theorem 2.4, in general, do
not preserve this decomposition property of A.

We recall that a selfadjoint operator B in (H, [·, ·]) is said to have l negative
squares if the the form [B·, ·] on D(B) has l negative squares.

Definition 3.1. Let U∞ be an R-symmetric simply connected domain of C with
∞ ∈ U∞ and 0 6∈ U∞. We say that the selfadjoint operator A in (H, [·, ·]) is
nonnegative (has a finite number of negative squares) over U∞ if there exists a
selfadjoint projection E∞ such that A can be written as a diagonal operator matrix

A =

(
A0 0
0 A∞

)

with respect to the decomposition H = (1−E∞)H[+̇]E∞H, where A0 is a bounded
selfadjoint operator in ((1 − E∞)H, [·, ·]) with σ(A0) ⊂ C\U∞ and A∞ is a non-
negative operator (resp. an operator with a finite number of negative squares) in
E∞H with 0 ∈ ρ(A∞).

For A nonnegative over U∞, and E∞, A∞ as in Definition 3.1 and every
bounded interval ∆ ⊂ U∞ ∩ R, we define

E(∆, A) :=

(
0 0
0 E(∆, A∞)

)

with respect to the decomposition H = (1−E∞)H[+̇]E∞H, where E(·, A∞) is the
spectral function of A∞. It is easy to see that E(·, A) is the uniquely determined
local spectral function of A on U∞ ∩ R with the usual properties (see e.g. [11]).
We shall say that E(·, A) is bounded at ∞ if

sup {‖E(∆, A)‖ : ∆ compact interval,∆ ⊂ U∞ ∩ R} <∞. (3.1)

This holds if and only if there is a Hilbert scalar product (·, ·)∞ on E∞H equivalent
to (·, ·) such that A∞ is selfadjoint in (E∞H, (·, ·)∞). In the notation of [9] and
other papers the property (3.1) is expressed by saying that ∞ is not a singular
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critical point of A, ∞ 6∈ cs(A). Here we do not introduce the set of critical points
of a locally definitizable operator.

If A has a finite number of negative squares over U∞ and if E∞, A0 and A∞

are as in Definition 3.1, then A∞ is definitizable (see e.g. [17]) and, hence, has a
spectral function E(·, A∞). Moreover, there exists an s > 0 such that

{z ∈ C : |z| ≥ s} ⊂ U∞

and E(R\[−s, s], A∞) is defined, A∞|E(R\[−s, s], A∞)E∞H is nonnegative and
the spectrum of A∞|(1−E(R\[−s, s], A∞))E∞H is contained in {z ∈ C : |z| ≤ s}.
Therefore, A is nonnegative over

U∞(s) := {z ∈ C : |z| > s} ∪ {∞}. (3.2)

Let A be nonnegative over some neighbourhood of ∞ and let G be the Gram
operator of the Krein inner product [·, ·] with respect to the fixed Hilbert scalar
product (·, ·), (Gx, y) = [x, y], x, y ∈ H. Then H := GA is selfadjoint in (H, (·, ·))
and, since there is a decomposition A = AE∞ + A(1 − E∞) as in Definition 3.1,
bounded from below. Then, for

c > c(H) := inf {c ∈ R : ((H + c)x, x) ≥ 0 for all x ∈ D(H)},

we have

((H + c)x, x) ≥ (c− c(H))(x, x)

for all x ∈ D(H). Evidently, for two different c1, c2 > c(H) the corresponding
scalar products

(x, y) 1

2
,cj

:= ((H + cj)x, y), x, y ∈ D(H), j = 1, 2,

are equivalent. We denote by D[H ] the completion of D(H) with respect to (·, ·) 1

2
,c

for some c > c(H). As the scalar products (·, ·) and (·, ·) 1

2
,c are coordinated, D[H ]

can be considered as a linear subspace of H. D[H ] equipped with the extension of
the scalar product (·, ·) 1

2
,c is a Hilbert space. If we regard D[H ] as a Hilbertable

topological linear space, then for given A and [·, ·] the space D[H ] does not depend
on the choice of the Hilbert scalar product (·, ·). We define D[A] := D[H ].

We associate with A the extension a of the form [A·, ·] to D[A]. a is a densely
defined closed symmetric sesquilinear form bounded from below, and, evidently, it
coincides with the form usually associated with the semibounded operator H in
the Hilbert space (H, (·, ·)). We have

c(H) = inf {c ∈ R : a[x, x] + c(x, x) ≥ 0 for all x ∈ D[A]}.

On the other hand, let t be a densely defined closed symmetric sesquilinear
form bounded from below with domain D(t) in the Hilbert space (H, (·, ·)). Then
there exists a uniquely determined selfadjoint operator T in (H, (·, ·)) such that
D(T ) ⊂ D(t) and (Tu, v) = t[u, v] for every u ∈ D(T ) and every v ∈ D(t) (see [13,
Theorem VI.2.1]). Let again G be the Gram operator of [·, ·] with respect to (·, ·).
Then S = G−1T is the uniquely determined selfadjoint operator in (H, [·, ·]) such
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that D(S) ⊂ D(t) and [Su, v] = t[u, v] for every u ∈ D(S) and every v ∈ D(t). S
will be called the selfadjoint operator associated with t in (H, [·, ·]) (cf. [2, §2]).

We fix some γ > inf {α ∈ R : t[x, x] + α(x, x) ≥ 0 for all x ∈ D(t)}. Then
D(t) equipped with the inner product

(x, y)t := t[x, y] + γ(x, y), x, y ∈ D(t), (3.3)

is a Hilbert space which will be denoted by Ht (see [13, VI.§1.3]). Let Ht,− be the
completion of H with respect to the quadratic norm

‖x‖a,− = sup{|[x, y]| : y ∈ Ht, (y, y)t ≤ 1}, x ∈ H. (3.4)

The form [·, ·] can be extended by continuity to Ht ×Ht,− and to Ht,− ×Ht. This
extended form will also be denoted by [·, ·]. Moreover, for every y ∈ Ht there is an
element z ∈ Ht,− such that

(x, y)t = [x, z] (3.5)

holds for all x ∈ Ht (see [10]). That is, Ht,− is the dual space of Ht with respect
to the duality [·, ·]. The linear mapping

ι : Ht 3 y 7→ z ∈ Ht,− (3.6)

defined by (3.5) is an isometric isomorphism of Ht onto Ht,−. If S is the selfadjoint
operator associated with t in (H, [·, ·]), then S can be extended by continuity to

an operator S̃ ∈ L(Ht,Ht,−) such that the relation [S̃x, y] = t[x, y] holds for all
x, y ∈ Ht (see [10]).

If A and a are as above, then A is the selfadjoint operator in (H, [·, ·]) asso-
ciated with a, D(a) = D[A] and (·, ·)a, defined as in (3.3) with γ > inf {α ∈ R :
a[x, x]+α(x, x) ≥ 0 for all x ∈ D(a)} fixed, coincides with the extension of (·, ·) 1

2
,γ

to D(a).

Definition 3.2. A sesquilinear form v (not necessarily symmetric) in H is said to
be relatively compact (relatively Sp, 1 ≤ p < ∞) with respect to t if D(v) ⊃ D(t),
v is continuous on Ht and the operator V defined by

v[x, y] = (Vx, y)t, x, y ∈ Ht,

is compact (resp. belongs to the class Sp(Ht)).

Let v and t be as in Definition 3.2. We remark that the condition V ∈ S∞(Ht)
(resp. V ∈ Sp(Ht)) does not depend on the choice of the constant γ in the defi-
nition of (·, ·)t. If ι is the mapping defined in (3.6), V := ιV belongs to the class
S∞(Ht,Ht,−) (resp. Sp(Ht,Ht,−)). We have v[x, y] = [V x, y] for all x, y ∈ Ht.
Since V can be approximated in L(Ht,Ht,−) by operators of finite rank, and H is
dense in Ht,− the t-bound of v is zero ([13, VI.§1.6]). Therefore t+v, D(t+v) = D(t),
is a closed sectorial sesquilinear form (see [13, Theorem VI.1.33]), and we have

(t + v)[x, y] = [(S̃ + V )x, y], x, y ∈ Ht.
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By [13, Theorem VI.2.1] there exists a uniquely determined closed operator Q
in (H, [·, ·]) such that GQ is sectorial and maximal quasi-accretive in (H, (·, ·)),
D(Q) ⊂ D(t + v) and

[Qx, y] = (GQx, y) = (t + v)[x, y]

for every x ∈ D(Q) and y ∈ Ht. Therefore,

[Qx, y] = [(S̃ + V )x, y], x ∈ D(Q), y ∈ Ht,

and, hence, Qx = (S̃+V )x for all x ∈ D(Q). If S
+
^ V denotes the range restriction

of S̃ + V ∈ L(Ht,Ht,−) to H, i.e.

D(S
+
^ V ) = {x ∈ Ht|(S̃ + V )x ∈ H},

S
+
^ V = (S̃ + V )|D(S

+
^ V ),

(3.7)

we have Q ⊂ S
+
^ V . Since G(S

+
^ V ) is quasi-accretive and GQ is maximal

quasi-accretive, we find Q = S
+
^ V .

In the case of a nonempty resolvent set of S the notation (3.7) for the range
restriction was used, e.g., in [9] for a more general class of perturbations of S.

3.2. A consequence of Krein’s lemma

The following lemma will be used in Section 3.3. It is a simple consequence of
Krein’s lemma (see [14]).

Lemma 3.3. Let (B, (·, ·)) be a Hilbert space which is densely and continuously
embedded into a Krein space (H, [·, ·]). Assume that there exists a positive bounded
and boundedly invertible operator W in H such that WB ⊂ B. If T ∈ Sp(B) for
some p ∈ [1,∞) and

[Tx, y] = [x, Ty], x, y ∈ B, (3.8)

then T can be extended to an operator T̃ ∈ Sp(H).

Proof. If we define 〈x, y〉 := [W−1x, y], x, y ∈ H, then, by the assumptions on W ,
(H, 〈·, ·〉) is a Hilbert space. Since by the closed graph theorem W |B is a bounded
operator in B, we have WT ∈ Sp(B). Moreover, by (3.8)

〈(WT )x, y〉 = 〈x, (WT )y〉, x, y ∈ B.

Then by Krein’s Lemma ([14, Theorem 1])WT can be extended by continuity
to a bounded selfadjoint operator (WT )∼ in (H, 〈·, ·〉). By [14, Theorem 3] the
operator (WT )∼ belongs to Sp(H), and σ(WT ) = σ((WT )∼) holds. Moreover,
every λ ∈ σ(WT )\{0} is a semisimple eigenvalue of WT and ker(WT − λ) and
ker((WT )∼ − λ) coincide.

If λ+,i (λ−,j) denote the positive (resp. negative) eigenvalues of WT or
(WT )∼ and we assume that λ+,i+1 ≤ λ+,i and λ−,j ≤ λ−,j+1 where multiplicity
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of the eigenvalues is counted, then by [6, III.§7.3] we have
∑

i

|λ+,i|
p +

∑

j

|λ−,j |
p ≤ ‖WT‖p

Sp(B) <∞.

In view of the selfadjointness of (WT )∼ this implies (WT )∼ = WT̃ ∈ Sp(H) and,

therefore, T̃ ∈ Sp(H).
�

3.3. Perturbations of selfadjoint operators nonnegative over a
neighbourhood of ∞

Let in the following H1, H2, G1 and G2 be defined as at the beginning of Section 2.
The following theorem is the main result of Section 3.

Theorem 3.4. Let A1 be a selfadjoint operator in H1 nonnegative over U∞(r1) for
some r1 > 0 (see (3.2)), and let a be the closed symmetric form corresponding to
A1. Assume that for the form domain of A1 equipped with the Hilbert scalar product
(3.3) where γ > c(G1A1), i.e. for Ha, the following conditions are fulfilled.

(a) G−1
2 G1 maps Ha onto itself.

(b) The restriction of 1−G−1
2 G1 to Ha belongs to Sp(Ha) for some p∈ [1,∞).

Let v be a symmetric form which is relatively Sp with respect to a, and let A2 be
the selfadjoint operator in H2 associated with the form a + v.

Then there exists an r2 > 0 such that A2 is nonnegative over U∞(r2). More-
over, E(·, A1) is bounded at ∞ if and only if E(·, A2) is bounded at ∞.

Proof. 1. In this part of the proof we verify that each of the forms [·, ·]1, [·, ·]2 leads
to the same “negative” space Ha,− and that 1 − G−1

2 G1 can be extended to an
operator belonging to Sp(Ha,−).

By the closed graph theorem the restriction G21 := G−1
2 G1|Ha regarded as

an operator in Ha is an isomorphism. Hence there exist m1,m2 > 0 such that

m1‖y‖a ≤ ‖G21y‖a ≤ m2‖y‖a, y ∈ Ha, (3.9)

where ‖y‖2
a = (y, y)a. On H we introduce the “negative norms” ‖ · ‖a,−,j , j = 1, 2,

(see (3.4)), by

‖x‖a,−,j = sup {|[x, y]j | : y ∈ Ha, ‖y‖a ≤ 1}, x ∈ H.

Then the relations

‖x‖a,−,1 = sup {|[x, y]1| : y ∈ Ha, ‖y‖a = 1}

= sup {|[G−1
2 G1x, y]2| : y ∈ Ha, ‖y‖a = 1}

= sup {|[x,G21y]2| : y ∈ Ha, ‖y‖a = 1}

and (3.9) show that the norms ‖ · ‖a,−,1 and ‖ · ‖a,−,2 are equivalent on H. The
completion of H with respect to one of the quadratic norms ‖ · ‖a,−,1 or ‖ · ‖a,−,2

equipped with the extension of the scalar product corresponding to ‖·‖a,−,1 will be
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denoted by Ha,−. Each of the forms [·, ·]1 and [·, ·]2 can be extended by continuity
to Ha ×Ha,− and to Ha,− ×Ha. The linear mappings

ιk :Ha 3 y 7→ uk ∈ Ha,−, k = 1, 2, where (x, y)a = [x, uk]k for all x ∈ Ha, (3.10)

are isomorphisms of Ha onto Ha,−.

The operator G−1
2 G1 is an isometry of (H, ‖ · ‖a,−,1) onto (H, ‖ · ‖a,−,2). The

extension by continuity of G−1
2 G1 to an operator in Ha,− is denoted by G̃21. We

have

[G21x, y]2 = [x, y]1 = [x, G̃21y]2, x ∈ Ha, y ∈ Ha,−, (3.11)

and

[x, (G̃21 − 1)y]2 = [x, y]1 − [x, y]2 = [(G21 − 1)x, y]2, x ∈ Ha, y ∈ Ha,−.

Therefore, the adjoint of G21 − 1 ∈ L(Ha) is given by ι−1
2 (G̃21 − 1)ι2. Hence by

condition (b) we have

G̃21 − 1 ∈ Sp(Ha,−). (3.12)

2. Now we show that A1 and A2 satisfy the assumptions of [9, Theorem 3.10]
as well as the assumptions of Theorem 2.4 for certain domains Ω, with the excep-
tion of the conditions on G1 and G2 in Theorem 2.4.

Let Ã1 be the extension of A1 to an operator in L(Ha,Ha,−). Then

[Ã1x, y]1 = a[x, y], x, y ∈ Ha.

Define an operator V1 ∈ Sp(Ha,Ha,−) by

[V1x, y]1 = v[x, y], x, y ∈ Ha.

Ã1, V1 and Ã1 + V1 are [·, ·]1-symmetric. Let

R̃ := G̃21(Ã1 + V1) = Ã1 + V1 + (G̃21 − 1)(Ã1 + V1). (3.13)

We have V1 +(G̃21 − 1)(Ã1 +V1) ∈ Sp(Ha,Ha,−). By (3.11) R̃ is [·, ·]2-symmetric,

[R̃x, y]2 = [x, R̃y]2, x, y ∈ Ha. (3.14)

Let R be the range restriction of R̃ considered as operator in H2, i.e.

R = R̃|{x ∈ Ha : R̃x ∈ H} = Ã1
+
^ (V1 + (G̃21 − 1)(Ã1 + V1)) (3.15)

(see Section 3.1). By [9, Proposition 3.1] there exists an η0 > r1 such that

{iη : η ∈ R, |η| > η0} ⊂ ρ(R). (3.16)

Then (3.14) implies

[(R − iη)x, y]2 = [x, (R + iη)y]2, η ∈ R, |η| > η0, x, y ∈ D(R),

and, hence, we find

[(R − iη)−1u, v]2 = [u, (R+ iη)−1v]2, η ∈ R, |η| > η0, u, v ∈ H.
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Therefore (R + iη)−1 is the adjoint of (R − iη)−1 in the Krein space H2, and it
follows that R is selfadjoint in H2. Since in view of (3.13), for every x ∈ D(R),
y ∈ D[A1],

[Rx, y]2 = [R̃x, y]2 = [G̃21(Ã1 + V1)x, y]2 = [(Ã1 + V1)x, y]1

= a[x, y] + v[x, y],
(3.17)

R coincides with the semibounded selfadjoint operator A2 in H2 associated with
the form a + v. By [9, Lemma 2.3] we have

(A1 − iη)−1 − (A2 − iη)−1 ∈ Sp(H). (3.18)

Let

Ω+ := U∞(r1)\
(
(−∞,−r1) ∪ {∞}

)
, Ω− := U∞(r1)\

(
(r1,∞) ∪ {∞}

)
. (3.19)

Then, by the nonnegativity of A1 over U∞(r1) and the relations (3.16) and (3.18),
the assumptions of Theorem 2.4, except condition (iv) on the difference of the
Gram operators, are fulfilled with Ω replaced by Ω+ or Ω−.

3. In this part of the proof we assume that the local spectral function E(·, A1)
of A1 is bounded at ∞, and we prove Theorem 3.4 under this assumption. First
we show that the difference of the Gram operators G1 and G2 belongs to Sp(H).
On account of

G1 −G2 = G1(1 −G−1
1 G2) (3.20)

it is sufficient to verify that 1 −G−1
1 G2 ∈ Sp(H).

Let, for some s > r1, Es := E(R\(−s, s), A1), Es,+ := ([s,∞), A1) and
Es,− := E((−∞,−s], A1). Then Es = Es,+ + Es,− maps Ha continuously into
itself as this is true for 1 −Es. By

[A1Es,±x,Es,±x]1 ≤ [A1Esx,Esx]1, x ∈ D(A1),

we have

‖Es,±x‖
2
a = [A1Es,±x,Es,±x]1 + γ(Es,±x,Es,±x)

≤ [A1Esx,Esx]1 + γ‖Es,±‖
2‖Esx‖

2, x ∈ D(A1),

i.e. the projections Es,± map (EsHa, ‖ · ‖a) continuously into itself. Therefore, if
J0 is some fundamental symmetry of the Krein space ((1 −E∞)H, [·, ·]1),

W := J0(1 −Es) + (Es,+ −Es,−)Es ∈ L(H)

maps Ha continuously into itself. Moreover W 2 = 1 and [Wx, x]1 > 0 for all
x ∈ H, x 6= 0.

The operator 1 −G−1
1 G2 ∈ L(H) is the extension by continuity of

1 −G−1
21 = −G−1

21 (1 −G21) ∈ Sp(Ha).
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Since G−1
21 is the restriction of G−1

1 G2 to Ha we have

[G−1
21 x, y]1 = [x,G−1

21 y]1, x, y ∈ Ha.

Then Lemma 3.3 applied to B := Ha, W as above and T := 1 − G−1
21 gives

1 −G−1
1 G2 ∈ Sp(H). Hence, by (3.20), G1 −G2 ∈ Sp(H).
We have shown that in the case when the local spectral function of A1 is

bounded at ∞, all assumptions of Theorem 2.4 with Ω replaced by Ω+ or Ω− (see
(3.19)) are satisfied. Then it follows, in particular, that no point of Ω+∩R = (r1,∞)
and no point of Ω− ∩ R = (−∞,−r1) is an accumulation point of the nonreal
spectrum of A2.

Then the assumptions of [9, Theorem 3.10] are fulfilled with the exception of
the condition that the nonreal spectrum of A1 has no more than a finite number
of nonreal accumulation points. It is easy to see that the latter assumption can
be dropped in [9, Theorem 3.10]. It was proved in [9, proof of Theorem 3.10] (the
text of that theorem does not completely describe what is shown in the proof, see
[12, footnote p.103]) that, for some r2 ≥ r1, A2 is nonnegative over U∞(r2) and
that the local spectral function of A2 is bounded at ∞.

4. In the rest of the proof we assume that the local spectral function of A1

is not bounded at ∞. In this part of the proof we show that the conclusion of
Theorem 3.4 holds for A1 replaced by its “regularization” A′

1 (see [9, §2.4]).
Let G be the Hilbertable topological linear space corresponding to the middle

of the interpolation scale between Ha and Ha,−,

G := [Ha,Ha,−] 1

2

(see e.g. [20, chapter 1]), and let (·, ·)G be a Hilbert scalar product on G which
induces the topology of G. Then [·, ·]1 restricted to Ha is continuous with respect
to the topology of G (see [9], [10]). The extension by continuity of [·, ·]1 to G will be
denoted by [·, ·](1). It was shown in [9] and [10] that G(1) := (G, [·, ·](1)) is a Krein

space. Since the isomorphism G̃21 of Ha,− is the extension of the isomorphism G21

of Ha, by interpolation G21 and G−1
21 are continuous with respect to the topology

of G, and the extension G21,G of G21 to an operator in G is an isomorphism of G.
It follows that the continuous sesquilinear form [·, ·](2) on G, defined by

[x, y](2) := [G−1
21,Gx, y](1), x, y ∈ G, (3.21)

is the extension to G of [·, ·]2 restricted to Ha, and it is a Krein space inner product
in G. We set G(2) := (G, [·, ·](2)). If G(j), j = 1, 2, denotes the Gram operator of
[·, ·](j) with respect to (·, ·)G , then (3.21) gives

G(1) −G(2) = G(1)(1 −G−1
21,G). (3.22)

We define an operator A′
1 in G by range restriction of Ã1 to G:

A′
1 := Ã1|{x ∈ Ha : Ã1x ∈ G}
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(cf. [9, §2.4]). As, for u ∈ G, v ∈ Ha, [u, v](1) = [u, v]1, where [·, ·]1 is the inner
product of H1 extended to Ha,− ×Ha, we have

[A′
1x, y](1) = [Ã1x, y]1 = [x, Ã1y]1 = [x,A′

1y](1), x, y ∈ D(A′
1).

In view of ρ(A1) ⊂ ρ(A′
1) (see [9, (2.7)]) it follows as in part 2 of the proof that

A′
1 is selfadjoint in G(1). By [9, Lemma 2.1] we have D[A′

1] = D[A1] = Ha. Clearly,
A′

1 is the operator associated with a in G(1).

If Er, r > r1, denotes the spectral projection E(R\(−r, r), A1), the decom-
position

H1 = (1 −Er)H1[+̇]ErH1

reduces A1 and A1|ErH1 is nonnegative. If |η| > η0 (see (3.16)), the latter fact is
equivalent to

Re [(A1 − iη)−1Erx,Erx]1 =

= [A1(A1 − iη)−1Erx, (A1 − iη)−1Erx]1 ≥ 0, x ∈ H.
(3.23)

Since 1 −Er maps Ha continuously into itself the same is true for Er. We denote
the restriction of Er to Ha also by Er, then

Ha = (1 −Er)Ha+̇ErHa.

The adjoint of Er ∈ L(Ha) with respect to the [·, ·]1-duality is the extension by

continuity of Er to an operator in Ha,− which will be denoted by Ẽr. From the
fact that the topologies of Ha and Ha,− coincide on (1−Er)H it follows that the

spaces (1 −Er)H, (1 −Er)Ha and (1 − Ẽr)Ha,− coincide.

If Ĩ denotes the natural embedding of Ha into Ha,−, then Ã1 − iηĨ , |η| > η0,

is an isomorphism from Ha onto Ha,− (see [9]). The restriction of (Ã1 − iηĨ)−1Ẽr

to H coincides with (A1 − iη)−1Er. Since ErH is dense in ẼrHa,− the relation
(3.23) implies

Re [(Ã1 − iηĨ)−1Ẽrx, Ẽrx]1 ≥ 0, x ∈ Ha,−. (3.24)

The restriction of (Ã1 − iηĨ)−1 to G coincides with (A′
1 − iη)−1. By interpolation

between Er ∈ L(Ha) and Ẽr ∈ L(Ha,−) we obtain a projection Er,G in G. Since
Er is symmetric in (Ha, [·, ·]1), Er,G is selfadjoint in G(1). The operator Er and the

restriction of (A1 − iη)−1 to Ha commute, hence the operators (A′
1 − iη)−1 and

Er,G commute. Therefore the decomposition

G(1) = (1 −Er,G)G(1)[+̇]Er,GG(1)

reduces A′
1. By Er,GG ⊂ ẼrHa,− and (3.24) we have

Re [(A′
1 − iη)−1Er,Gx,Er,Gx](1) ≥ 0, x ∈ G,

therefore A′
1 is a nonnegative operator in Er,GG(1). Since (1−Er)H = (1−Er,G)G

and

A1|(1 −Er)H = A′
1|(1 −Er,G)G,
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the operator A′
1 is nonnegative over U∞(r). By [9, Lemma 2.1] the local spectral

function E(·, A′
1) of A′

1 is bounded at ∞.
We define A′

2 by

A′
2 := R̃|{x ∈ Ha : R̃x ∈ G}

(see (3.13)). As in part 2 of the proof one verifies that the operator A′
2 is selfadjoint

in G(2), and by (3.17) we have

[A′
2x, y](2) = a[x, y] + v[x, y], x ∈ D(A′

2), y ∈ Ha.

Hence A′
2 is the operator associated to the form a + v in G(2). The relation (3.18)

holds with A1, A2 replaced by A′
1, A

′
2.

Let, as in part 3 of the proof, for some s > r, E ′
s := E(R\(−s, s), A′

1),
E′

s,+ := E([s,∞), A′
1), E

′
s,− := E((−∞,−s], A′

1) and let J ′
0 be a fundamental

symmetry in ((1 −E′
s)G, [·, ·](1)). Lemma 3.3 applied in the case where B := Ha,

W ′ := J ′
0(1 −E′

s) + (E′
s,+ −E′

s,−)E′
s ∈ L(G)

and T := 1 −G−1
21 gives 1 −G−1

21,G ∈ Sp(G). By (3.22) we have

G(1) −G(2) ∈ Sp(G).

Then, again making use of Theorem 2.4, we see that A′
1, A

′
2, G(1), G(2) fulfil

all conditions of [9, Theorem 3.10]. Therefore there is an r′ ≥ r such that A′
2 is

nonnegative over U∞(r′) in G(2), and the local spectral function of A′
2 is bounded

at ∞.

5. Now we show that the nonnegativity of A′
2 over U∞(r′) implies the non-

negativity of A2 over U∞(r2) for any r2 > r′.
We define the spectral projection

E′
r2

:= E(R\(−r2, r2), A
′
2)

in G(2). The operator A′
2 is nonnegative in E′

r2
G(2). By [9, Lemma 2.7] we have

D[A′
1] = D[A′

2] = Ha.

Therefore, the operator E ′
r2

, regarded as an operator in Ha is continuous. The
extension by continuity of E ′

r2
∈ L(Ha) to a projection in Ha,− will be denoted

by Ẽ′
r2

. From

Re [(A′
2 − iη)−1E′

r2
x,E′

r2
x](2) ≥ 0, x ∈ G,

it follows, that

Re [(R̃ − iηĨ)−1Ẽ′
r2
x, Ẽ′

r2
x]2 ≥ 0, x ∈ Ha,−. (3.25)

Again, the topologies of Ha and Ha,− coincide on (1−E′
r2

)G, therefore the spaces

(1 −E′
r2

)G, (1 −E′
r2

)Ha and (1 − Ẽ′
r2

)Ha,− coincide. Hence the operator 1− Ẽ′
r2

maps Ha,− continuously into Ha. Then 1 − Ẽ′
r2

maps H continuously into itself

and the same is true for Ẽ′
r2

. We denote by Fr2
the operator Ẽ′

r2
|H regarded



Compact Perturbations 27

as a bounded operator in H. Since E ′
r2

∈ L(Ha) is a symmetric projection with
respect to [·, ·]2, Fr2

is a selfadjoint projection in H2. By (3.15) and (3.17) the

range restriction of R̃ to H2 coincides with A2. The projection Fr2
commutes with

(A2 − iη)−1, |η| > η0 (see (3.16)), since the same is true for E ′
r2

and (A′
2 − iη)−1

in Ha. It follows from (3.25), that for x ∈ H

Re [(A2 − iη)−1Fr2
x, Fr2

x] ≥ 0

holds. On the other hand, A2|(1−Fr2
)H is bounded. Therefore A2 is nonnegative

over U∞(r2).
It remains to show that the local spectral function of A2 is unbounded at

∞. Assume that this does not hold. Then, if we regard A2 as the unperturbed
operator and A1 as the perturbed operator, the assumptions of the theorem are
fulfilled. By the first part of the proof we find that the spectral function of A1 is
bounded at ∞, a contradiction.

�

In the following corollary we make use of the notation introduced at the end
of Section 3.1.

Corollary 3.5. Let A1, G1 and G2 be as in Theorem 3.4 and assume that the

conditions (a) and (b) are fulfilled. Let V ∈ Sp(Ha,Ha,−) and let A2 = A1
+
^ V

be selfadjoint in H2. Then the conclusions of Theorem 3.4 are true.

Proof. Since A2 is selfadjoint in H2, the extension of A2 by continuity to an ope-

rator Ã2 ∈ L(Ha,Ha,−) is symmetric with respect to [·, ·]2. Let Ã1 ∈ L(Ha,Ha,−)

and G̃21 be as in the proof of Theorem 3.4. We have Ã2 = Ã1 + V and by (3.12)

G̃21

−1
− 1 = −G̃21

−1
(G̃21 − 1) ∈ Sp(Ha,−).

The operator

G̃21

−1
Ã2 = Ã1 + V + (G̃21

−1
− 1)(Ã1 + V )

is symmetric with respect to [·, ·]1. Since, by assumption, Ã1 is symmetric with
respect to [·, ·]1, the same holds for

V + (G̃21

−1
− 1)(Ã1 + V ) ∈ Sp(Ha,Ha,−).

Therefore the operator

V := ι−1
1 (V + (G̃21

−1
− 1)(Ã1 + V )) ∈ Sp(Ha)

(see (3.10)) is symmetric in Ha = (D[A1], (·, ·)a). Then

v[x, y] := (Vx, y)a, x, y ∈ Ha,

is a continuous symmetric sesquilinear form which is relatively Sp with respect
to a, and A2 is the selfadjoint operator in H2 associated with a + v. Hence, the
assumptions of Theorem 3.4 are fulfilled.

�
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