PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 11, November 2009, Pages 3797–3806 S 0002-9939(09)09964-X Article electronically published on July 10, 2009

NON-REAL EIGENVALUES OF SINGULAR INDEFINITE STURM-LIOUVILLE OPERATORS

JUSSI BEHRNDT, QUTAIBEH KATATBEH, AND CARSTEN TRUNK

(Communicated by Chuu-Lian Terng)

ABSTRACT. We study a Sturm-Liouville expression with indefinite weight of the form $\operatorname{sgn}(-d^2/dx^2 + V)$ on \mathbb{R} and the non-real eigenvalues of an associated selfadjoint operator in a Krein space. For real-valued potentials V with a certain behaviour at $\pm \infty$ we prove that there are no real eigenvalues and that the number of non-real eigenvalues (counting multiplicities) coincides with the number of negative eigenvalues of the selfadjoint operator associated to $-d^2/dx^2 + V$ in $L^2(\mathbb{R})$. The general results are illustrated with examples.

1. INTRODUCTION

We consider a singular Sturm-Liouville differential expression of the form

(1.1)
$$\operatorname{sgn}(x)(-f''(x) + V(x)f(x)), \qquad x \in \mathbb{R},$$

with the signum function as indefinite weight and a real-valued locally summable function V. Under the assumption that $-d^2/dx^2 + V$ is in the limit point case at $+\infty$ and $-\infty$ the maximal operator A associated to (1.1) is selfadjoint in the Krein space $(L^2(\mathbb{R}), [\cdot, \cdot])$, where the indefinite inner product $[\cdot, \cdot]$ is defined by

(1.2)
$$[f,g] = \int_{\mathbb{R}} f(x)\overline{g(x)} \operatorname{sgn}(x) \, dx, \qquad f,g \in L^2(\mathbb{R}).$$

The spectral properties of indefinite Sturm-Liouville operators differ essentially from the spectral properties of selfadjoint Sturm-Liouville operators in the Hilbert space $L^2(\mathbb{R})$; e.g. the real spectrum of A necessarily accumulates to $+\infty$ and $-\infty$ and A may have non-real eigenvalues which possibly accumulate to the real axis (see [3, 4, 9, 14, 16, 20]). For further indefinite Sturm-Liouville problems, applications and references, see, e.g., [2, 6, 7, 11, 13, 15, 23, 26].

The main objective of this paper is to study the number of non-real eigenvalues of the operator A. For this it will be assumed that the negative spectrum of the selfadjoint definite Sturm-Liouville operator Bf = -f'' + Vf consists of $\kappa < \infty$ eigenvalues. Then the hermitian form $[A \cdot, \cdot]$ has exactly κ negative squares, and it follows from the considerations in [9] and [21] that the spectrum $\sigma(A)$ of A in the open upper half-plane \mathbb{C}^+ consists of at most κ eigenvalues (counting multiplicities). Inspired by results of I. Knowles from [18, 19], we give a sufficient condition on Vsuch that $\sigma(A) \cap \mathbb{C}^+$ consists of exactly κ eigenvalues (counting multiplicities) and

©2009 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors November 14, 2008, and, in revised form, February 14, 2009, and February 23, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A10; Secondary 47B50.

the continuous spectrum of A covers the whole real line; see Theorem 2.3 and Corollary 2.4 below. These results can be viewed as a partial answer to the open problem X in [26, p. 300]. We present two explicitly solvable examples illustrating our results. In the first example, potentials of hyperbolic secant type are considered and with the help of numerical methods we find κ different eigenvalues in \mathbb{C}^+ . The second example shows that, in general, non-real eigenvalues of A may have nontrivial Jordan chains, and hence the number of distinct eigenvalues in \mathbb{C}^+ is less than κ .

2. Eigenvalues of indefinite Sturm-Liouville operators

In this section we consider the indefinite Sturm-Liouville differential expression on \mathbb{R} given by (1.1), where $V : \mathbb{R} \to \mathbb{R}$ is a real function with $V \in L^1_{\text{loc}}(\mathbb{R})$. We equip the Hilbert space $(L^2(\mathbb{R}), (\cdot, \cdot))$ with the indefinite inner product $[\cdot, \cdot]$ defined in (1.2) and denote the corresponding Krein space $(L^2(\mathbb{R}), [\cdot, \cdot])$ by $L^2_{\text{sgn}}(\mathbb{R})$. As a corresponding fundamental symmetry we choose $J := \text{sgn}(\cdot)$; hence we have $[\cdot, \cdot] = (J \cdot, \cdot)$ and $[J \cdot, \cdot] = (\cdot, \cdot)$. For the basic properties of indefinite inner product spaces and linear operators therein, we refer to [1] and [8].

Suppose that the definite Sturm-Liouville differential expression

$$(2.1) \qquad \qquad -\frac{d^2}{dx^2} + V$$

is in the limit point case at $+\infty$ and $-\infty$; that is, for each $\lambda \in \mathbb{C} \setminus \mathbb{R}$ there exist (up to scalar multiples) unique solutions of the differential equation $-y'' + Vy = \lambda y$ which are square integrable in a neighbourhood of $+\infty$ and $-\infty$, respectively. A sufficient criterion for (2.1) to be in the limit point case at $\pm\infty$ is, e.g.

$$\liminf_{|x| \to \infty} \frac{V(x)}{x^2} > -\infty;$$

cf. [25, Satz 13.27] or [26, Example 7.4.1].¹ Denote by \mathcal{D}_{\max} the linear space of all $f \in L^2(\mathbb{R})$ such that f and f' are absolutely continuous and $-f'' + Vf \in L^2(\mathbb{R})$ holds. Then it is well-known that the maximal operator

(2.2)
$$Bf := -f'' + Vf, \qquad \operatorname{dom} B = \mathcal{D}_{\max},$$

associated to (2.1) is selfadjoint in the Hilbert space $L^2(\mathbb{R})$ and all eigenvalues are real and simple; i.e., dim ker $(B - \lambda) = 1$ for $\lambda \in \sigma_p(B)$. As a consequence we obtain the following statement for the operator A = JB.

Proposition 2.1. Assume that (2.1) is in the limit point case at $\pm \infty$. Then the indefinite Sturm-Liouville operator defined by

(2.3)
$$(Af)(x) = \operatorname{sgn}(x) \left(-f''(x) + V(x)f(x) \right), \quad x \in \mathbb{R}, \quad \operatorname{dom} A = \mathcal{D}_{\max},$$

is selfadjoint in the Krein space $L^2_{sgn}(\mathbb{R})$, and the eigenspaces ker $(A-\lambda)$, $\lambda \in \sigma_p(A)$, have dimension one.

In the following it will be assumed that condition (I), stated below, holds.

(I) The set $\sigma(B) \cap (-\infty, 0)$ consists of $\kappa < \infty$ eigenvalues.

¹In the formulation of [26, Example 7.4.1] a minus sign is missing.

Hence, the selfadjoint operator B in the Hilbert space $L^2(\mathbb{R})$ is semi-bounded from below and the eigenvalues do not accumulate to zero from the negative half-axis. A sufficient condition for (I) to hold is, e.g., $\int_{\mathbb{R}} (1+x^2) |V(x)| dx < \infty$ for continuous V; cf. [22].

We collect some properties of the non-real spectrum of the indefinite Sturm-Liouville operator A in the next proposition. Recall first that the spectrum of a selfadjoint operator in a Krein space is symmetric with respect to the real axis and denote by $\mathcal{L}_{\lambda}(A)$ the algebraic eigenspace of A corresponding to an eigenvalue λ .

Proposition 2.2. The spectrum of the indefinite Sturm-Liouville operator A in the open upper half-plane \mathbb{C}^+ consists of at most finitely many eigenvalues with

(2.4)
$$\sum_{\lambda \in \sigma_p(A) \cap \mathbb{C}^+} \dim \mathcal{L}_{\lambda}(A) \le \kappa$$

where κ is as in (I). In particular, for some $l \leq \kappa$ we have

(2.5)
$$\mathbb{C} \setminus \mathbb{R} \subset \rho(A) \cup \{\lambda_1, \bar{\lambda}_1, \dots, \lambda_l, \bar{\lambda}_l\}.$$

If V(x) = V(-x), $x \in \mathbb{R}$, then $\sigma_p(A)$ is symmetric with respect to the imaginary axis.

Proof. Assumption (I) and the relation $[Af, f] = (JAf, f) = (Bf, f), f \in \mathcal{D}_{\max}$, imply that the hermitian form $[A \cdot, \cdot]$ has exactly κ negative squares; that is, there exists a κ -dimensional subspace \mathcal{M} in \mathcal{D}_{\max} such that [Af, f] < 0 if $f \in \mathcal{M}, f \neq 0$, but no $(\kappa + 1)$ -dimensional subspace with this property. This, together with wellknown properties of operators with κ negative squares (see, e.g., [21], [9] and [5, Theorem 3.1 and §4.2]) imply (2.4) and (2.5).

Moreover, if V is symmetric, then λ is an eigenvalue of A with corresponding eigenfunction $x \mapsto y(x)$ if and only if $-\lambda$ is an eigenvalue of A with corresponding eigenfunction $x \mapsto y(-x)$. Therefore, as $\sigma_p(A)$ is symmetric with respect to the real axis, $\sigma_p(A)$ is also symmetric with respect to the imaginary axis.

Under some additional assumptions on V we prove in Theorem 2.3 the absence of eigenvalues on the real axis and, hence, improve the estimate in (2.4). We mention that in [15, Section 4] a similar result is proved if V satisfies $\int_{\mathbb{R}} (1+|x|)|V(x)|dx < \infty$. By $\sigma_c(A)$ we denote the continuous part of the spectrum of A, i.e. the set of all $\lambda \in \sigma(A) \setminus \sigma_p(A)$ such that the range of $A - \lambda$ is dense.

Theorem 2.3. Assume that condition (I) holds and that there exist real functions q and r with V = q + r such that $\lim_{|x|\to\infty} r(x) = \lim_{|x|\to\infty} q(x) = 0$, r is locally of bounded variation and

(2.6)
$$\lim_{t \to \infty} \frac{1}{\log t} \int_{-t}^{t} |q(x)| dx = \lim_{t \to \infty} \frac{1}{\log t} \int_{-t}^{t} |dr(x)| = 0,$$

where dr denotes the measure induced by r. Then $\sigma_c(A) \setminus \{0\} = \mathbb{R} \setminus \{0\}$ and hence zero is the only possible real eigenvalue of the indefinite Sturm-Liouville operator A. If, in addition, $0 \notin \sigma_p(B)$, then we have $\sigma_c(A) = \mathbb{R}$ and

(2.7)
$$\sum_{\lambda \in \sigma_p(A) \cap \mathbb{C}^+} \dim \mathcal{L}_{\lambda}(A) = \kappa.$$

Proof. Let λ be an eigenvalue of A and let y be a corresponding eigenfunction. Then y satisfies the equations

(2.8)
$$-y''(x) + V(x)y(x) = \lambda y(x), \qquad x \in (0, \infty),$$

and

(2.9)
$$y''(x) - V(x)y(x) = \lambda y(x), \quad x \in (-\infty, 0).$$

Condition (2.6) implies

$$\lim_{t \to \infty} \frac{1}{\log t} \int_0^t |q(x)| dx = \lim_{t \to \infty} \frac{1}{\log t} \int_0^t |dr(x)| = 0.$$

This and [19, Theorem 3.2] applied to (2.8) yield $\lambda \notin (0, \infty)$. Similarly, (2.6) implies

$$\lim_{t \to \infty} \frac{1}{\log t} \int_{-t}^{0} |q(x)| dx = \lim_{t \to \infty} \frac{1}{\log t} \int_{-t}^{0} |dr(x)| = 0,$$

and, with [19, Theorem 3.2] applied to (2.9), we find $\lambda \notin (-\infty, 0)$. Therefore, as a selfadjoint operator in a Krein space has no real points in the residual spectrum (see, e.g., [8, Corollary VI.6.2]), we obtain

$$(\sigma(A) \cap (\mathbb{R} \setminus \{0\})) \subset \sigma_c(A) \text{ and } \sigma_p(A) \subset \{0\} \cup \mathbb{C} \setminus \mathbb{R}$$

Moreover, from A = JB we get $0 \in \sigma_p(A)$ if and only if $0 \in \sigma_p(B)$. Hence, if $0 \notin \sigma_p(B)$, we conclude $\sigma_p(A) \subset \mathbb{C} \setminus \mathbb{R}$. Since the operator A has exactly κ negative squares (cf. the proof of Proposition 2.2), it follows from, e.g. [5, Theorem 3.1], that A has κ eigenvalues (counted with multiplicities) in \mathbb{C}^+ and thus (2.7) holds.

It remains to show $\mathbb{R} \subset \sigma(A)$. For this, consider the differential expressions $\ell_+ = -\frac{d^2}{dx^2} + V$ on \mathbb{R}^+ and $\ell_- = \frac{d^2}{dx^2} - V$ on \mathbb{R}^- . By assumption ℓ_+ and ℓ_- are regular at zero and in the limit point case at ∞ and $-\infty$, respectively. Let A_+ and A_- be selfadjoint realizations of ℓ_+ and ℓ_- in the Hilbert spaces $L^2(\mathbb{R}^+)$ and $L^2(\mathbb{R}^-)$, respectively, e.g. corresponding to Dirichlet boundary conditions at zero. Under our assumptions

$$\lim_{x \to \infty} V(x) = 0 \quad \text{and} \quad \lim_{x \to -\infty} V(x) = 0,$$

and it is well known that $[0,\infty) \subset \sigma(A_+)$ and $(-\infty,0] \subset \sigma(A_-)$ hold. Since the rank of the operator

$$(A-\lambda)^{-1} - \left((A_+ \times A_-) - \lambda \right)^{-1}, \qquad \lambda \in \rho(A) \cap \rho(A_+ \times A_-),$$

is at most two and $\sigma(A_+ \times A_-) = \mathbb{R}$, we conclude $\mathbb{R} \subset \sigma(A)$.

A sufficient condition on V such that condition (I), (2.6) and $0 \notin \sigma_p(B)$ hold is given in the next corollary; cf. [24, Theorem 14.10], [26, §6.3] and [18, Remark after Corollary 3.3].

Corollary 2.4. Assume that there exists $x_0 > 0$ with

(2.10)
$$-\frac{1}{4x^2} \le V(x) \le \frac{3}{4x^2} \quad \text{for all} \quad x \in \mathbb{R} \setminus (-x_0, x_0).$$

Then $\sigma_c(A) = \mathbb{R}$ and

$$\sum_{\lambda \in \sigma_p(A) \cap \mathbb{C}^+} \dim \mathcal{L}_\lambda(A) = \kappa.$$

Remark 2.5. We mention that (even under the condition (2.10)) for $\lambda \in \sigma_p(A)$, dim $\mathcal{L}_{\lambda}(A) > 1$ may happen; i.e. there exists a Jordan chain of length greater than one, and the non-real spectrum does not consist of κ distinct eigenvalues. In Section 4 we give an example for an indefinite singular Sturm-Liouville operator with such a Jordan chain corresponding to a non-real eigenvalue.

3. A numerical example: Hyperbolic secant potentials

In this section we compute the non-real eigenvalues of singular indefinite Sturm-Liouville operators with potentials given by

(3.1)
$$V_{\kappa}(x) = -\kappa(\kappa+1)\operatorname{sech}^2(x), \quad x \in \mathbb{R} \text{ and } \kappa \in \mathbb{N},$$

with the help of the software package Mathematica (Wolfram Research).

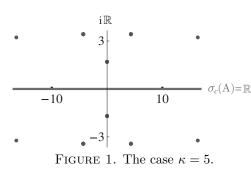
It is well known (see, e.g., [12]) that the number of negative eigenvalues of the definite Sturm-Liouville operator $Bf = -f'' + V_{\kappa}f$ in (2.2) is exactly κ and condition (I) from Section 2 holds. Moreover, V_{κ} satisfies (2.10), and hence by Theorem 2.3 and Corollary 2.4 the continuous spectrum of the indefinite Sturm-Liouville operator

$$(Af)(x) = \operatorname{sgn}(x) (-f''(x) + V_{\kappa}(x)f(x)), \quad x \in \mathbb{R}, \quad \operatorname{dom} A = \mathcal{D}_{\max},$$

in the Krein space $L^2_{\text{sgn}}(\mathbb{R})$ coincides with \mathbb{R} and $\sum_{\lambda \in \sigma_p(A) \cap \mathbb{C}^+} \dim \mathcal{L}_{\lambda}(A) = \kappa$ holds. In order to determine the non-real eigenvalues of A, we divide the problem into two parts,

(3.2)
$$\begin{aligned} -y''(x;\lambda) + V_{\kappa}(x)y(x;\lambda) &= \lambda y(x;\lambda), \qquad x \in \mathbb{R}^+, \\ y''(x;\lambda) - V_{\kappa}(x)y(x;\lambda) &= \lambda y(x;\lambda), \qquad x \in \mathbb{R}^-. \end{aligned}$$

Since the potential V_{κ} in (3.1) satisfies $V_{\kappa}(x) = V_{\kappa}(-x)$ for $x \in \mathbb{R}$, it follows that a



 $k_{x}(x) = V_{\kappa}(-x)$ for $x \in \mathbb{R}$, it follows that function $x \mapsto h(x; \lambda), x \in \mathbb{R}^{+}$, is a solution of the first differential equation if and only if $x \mapsto h(-x; -\lambda), x \in \mathbb{R}^{-}$, is a solution of the second differential equation in (3.2). Moreover, as both singular endpoints ∞ and $-\infty$ are in the limit point case, each of the equations in (3.2) has (up to scalar multiples) a unique square integrable solution. Since the functions in dom A and their derivatives are continuous at the point 0 it follows that $\lambda \in \mathbb{C} \setminus \mathbb{R}$ is an

eigenvalue of A if and only if for the square integrable solution $x \mapsto h(x; \lambda), x \in \mathbb{R}^+$, of the first equation in (3.2),

(3.3)
$$h(0;\lambda) = \gamma h(0;-\lambda) \text{ and } h'(0;\lambda) = -\gamma h'(0;-\lambda)$$

hold for some $\gamma \in \mathbb{C}$. For non-real λ we have $h(0; \lambda) \neq 0$ and $h(0; -\lambda) \neq 0$, and therefore (3.3) is satisfied if and only if the function

(3.4)
$$\mu \mapsto M(\mu) := \frac{h'(0;\mu)}{h(0;\mu)} + \frac{h'(0;-\mu)}{h(0;-\mu)}, \qquad \mu \in \mathbb{C} \setminus \mathbb{R},$$

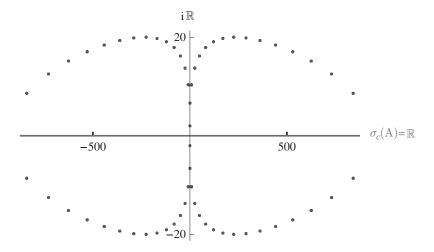


FIGURE 2. The operator $(Ay)(x) := \operatorname{sgn}(x)(-y''(x)+V_{30}(x)y(x)), x \in \mathbb{R}$, where $V_{30}(x) = -30 \cdot 31 \operatorname{sech}^2(x)$ has $\kappa = 30$ pairs of non-real eigenvalues.

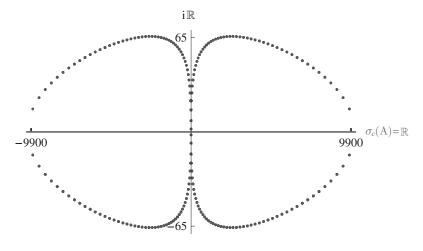


FIGURE 3. The operator $(Ay)(x) := \operatorname{sgn}(x)(-y''(x) + V_{100}(x)y(x)), x \in \mathbb{R}$, where $V_{100}(x) = -100 \cdot 101 \operatorname{sech}^2(x)$ has $\kappa = 100$ pairs of non-real eigenvalues.

has a zero at λ . As the equations in (3.2) are explicitly solvable in terms of Legendre functions we can determine numerically the zeros of M within the working default precision of the software package Mathematica.

Figures 1, 2 and 3 show the non-real eigenvalues of A for the cases $\kappa = 5$, $\kappa = 30$ and $\kappa = 100$. Here we find 5, 30 and 100, respectively, distinct eigenvalues in \mathbb{C}^+ , and hence dim $\mathcal{L}_{\lambda}(A) = 1$ for each eigenvalue $\lambda \in \mathbb{C} \setminus \mathbb{R}$; cf. Remark 2.5. Note also that by the symmetry of V_{κ} there is at least one pair of eigenvalues on the imaginary axis if κ is odd.

4. A COUNTEREXAMPLE: JORDAN CHAINS OF SINGULAR INDEFINITE STURM-LIOUVILLE OPERATORS

In this section we show that the geometric eigenspaces of a singular indefinite Sturm-Liouville operator in $L^2_{\text{sgn}}(\mathbb{R})$ in general do not coincide with the algebraic eigenspaces. In other words, there exist eigenvalues with non-trivial Jordan chains, and hence the number of non-real distinct eigenvalues is in general smaller than the dimension of the algebraic eigenspace corresponding to the non-real spectrum; cf. Remark 2.5. An explicit example of a non-trivial Jordan chain of a regular indefinite Sturm-Liouville operator can be found in [10].

We consider a family

$$(A_{\eta}f)(x) = \operatorname{sgn}(x)(-f''(x) + V_{\eta}(x)f(x)), \quad x \in \mathbb{R}, \quad \operatorname{dom} A_{\eta} = \mathcal{D}_{\max}, \quad \eta \ge 0,$$

of indefinite Sturm-Liouville operators in the Krein space $L^2_{\text{sgn}}(\mathbb{R})$, where the potentials $V_{\eta}, \eta \geq 0$, are given by

$$V_{\eta}(x) = \begin{cases} 0 & |x| \ge 1, \\ -\eta & |x| < 1, \end{cases} \quad \eta \ge 0.$$

The operators A_{η} , $\eta \geq 0$, are selfadjoint in $L^2_{\text{sgn}}(\mathbb{R})$, and according to Theorem 2.3 and Corollary 2.4 there are no real eigenvalues and $\sigma_c(A_{\eta})$ covers the whole real line. In the sequel we will show that the following statement holds.

Proposition 4.1. There exist an $\eta_0 > 0$ and a $\lambda_0 \in \mathbb{C}^+$ such that

2 = dim ker $(A_{\eta_0} - \lambda_0)^2$ > dim ker $(A_{\eta_0} - \lambda_0) = 1$.

In order to determine the eigenvalues of the operators A_{η} , we first consider the underlying differential equations (3.2) with V_{κ} replaced by V_{η} . The same reasoning as in Section 3 shows that the non-real eigenvalues of A_{η} are given by the zeros of the function

(4.1)
$$\lambda \mapsto M_{\eta}(\lambda) := \frac{h'_{\eta}(0;\lambda)}{h_{\eta}(0;\lambda)} + \frac{h'_{\eta}(0;-\lambda)}{h_{\eta}(0;-\lambda)}, \qquad \lambda \in \mathbb{C} \backslash \mathbb{R},$$

where $h_{\eta}(\cdot; \lambda)$ is the square integrable solution of $-y'' + V_{\eta}y = \lambda y$ on \mathbb{R}^+ . Denote by $\sqrt{\cdot}$ the branch of the square root with cut along $[0, \infty)$ and $\sqrt{x} \ge 0$ for $x \in [0, \infty)$. Then it is easy to check that for $\lambda \notin [0, \infty)$ the function

$$h_{\eta}(x;\lambda) = \begin{cases} \exp(i\sqrt{\lambda}x) & x > 1, \\ \alpha_{\eta}(\lambda)\exp(i\sqrt{\lambda+\eta}x) + \beta_{\eta}(\lambda)\exp(-i\sqrt{\lambda+\eta}x) & x \in [0,1], \end{cases}$$

where

$$\alpha_{\eta}(\lambda) = \frac{1}{2} \left(1 + \sqrt{\lambda(\lambda + \eta)^{-1}} \right) \exp(i(\sqrt{\lambda} - \sqrt{\lambda + \eta}))$$

and

$$\beta_{\eta}(\lambda) = \frac{1}{2} \left(1 - \sqrt{\lambda(\lambda + \eta^{-1})} \exp\left(i(\sqrt{\lambda} + \sqrt{\lambda + \eta})\right) \right)$$

and its multiples are square integrable solutions of the first equation in (3.2) with V_{κ} replaced by V_{η} .

The function M_{η} in (4.1) can be expressed in terms of α_{η} and β_{η} in the following form:

$$M_{\eta}(\lambda) = i\sqrt{\lambda + \eta} \, \frac{\alpha_{\eta}(\lambda) - \beta_{\eta}(\lambda)}{\alpha_{\eta}(\lambda) + \beta_{\eta}(\lambda)} + i\sqrt{\eta - \lambda} \, \frac{\alpha_{\eta}(-\lambda) - \beta_{\eta}(-\lambda)}{\alpha_{\eta}(-\lambda) + \beta_{\eta}(-\lambda)}.$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

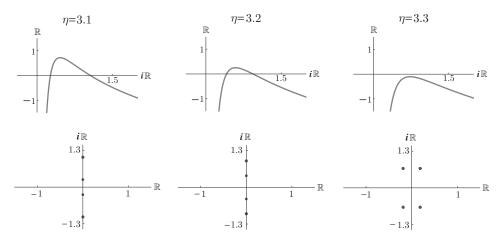


FIGURE 4. In the first row the function $\mu \mapsto M_{\eta}(i\mu)$ is plotted for $\mu > 0$ and $\eta = 3.1$, $\eta = 3.2$ and $\eta = 3.3$, respectively. In the second row the corresponding non-real eigenvalues of the operators $A_{3.1}$, $A_{3.2}$ and $A_{3.3}$ are shown.

We note that the values $M_{\eta}(i\mu)$, $\mu \in \mathbb{R}\setminus\{0\}$, are real since the solutions fulfill $h_{\eta}(x,\bar{\lambda}) = \overline{h_{\eta}(x,\lambda)}$ for $\lambda \in \mathbb{C}\setminus\mathbb{R}$. Let us summarize some observations in the following lemma.

Lemma 4.2. A non-real number λ is an eigenvalue of the indefinite Sturm-Liouville operator A_{η} if and only if $M_{\eta}(\lambda) = 0$. The restriction of M_{η} onto the imaginary axis is a real-valued function, and the non-real eigenvalues of A_{η} are symmetric with respect to the real and imaginary axes.

One can check numerically that the selfadjoint operator $B_{\eta} = -\frac{d^2}{dx^2} + V_{\eta}$, dom $B_{\eta} = \mathcal{D}_{\max}$, in the Hilbert space $L^2(\mathbb{R})$ has exactly two negative eigenvalues for $\eta = 3.1$, $\eta = 3.2$ and $\eta = 3.3$; cf. [12]. By Corollary 2.4 for these η the spectral subspace of A_{η} corresponding to the eigenvalues in the upper half-plane \mathbb{C}^+ has dimension two.

The plots in the first row of Figure 4 show the function $\mu \mapsto M_{\eta}(i\mu)$, $\mu \in \mathbb{R}^+$, for $\eta = 3.1$, $\eta = 3.2$ and $\eta = 3.3$, respectively. For $\eta = 3.1$ and $\eta = 3.2$ the two zeros are the eigenvalues of $A_{3.1}$ and $A_{3.2}$ in the upper half-plane \mathbb{C}^+ which lie on the positive imaginary axis. These eigenvalues and their counterparts in \mathbb{C}^- are plotted in the second row of Figure 4. For $\eta = 3.3$ the function $\mu \mapsto M_{\eta}(i\mu)$ has no zeros on the positive imaginary axis. Recall that a finite system of eigenvalues is continuous under perturbations small in norm; see [17, IV.3.5]. Hence the continuity and symmetry of the eigenvalues of A_{η} imply that the eigenvalues of $A_{3.3}$ are located as in the right lower plot in Figure 4. This can also be checked numerically by computing the non-real roots of $M_{3.3}$; see also Table 1. Again by continuity properties of the point spectrum there exists an $\eta_0 \in (3.2, 3.3)$ such that the spectrum of A_{η_0} in \mathbb{C}^+ (and hence also in \mathbb{C}^-) consists only of one eigenvalue λ_0 on the imaginary axis with corresponding algebraic eigenspace of dimension two. Recall that the dimension of the geometric eigenspaces of A_{η_0} is at most one since ∞ and $-\infty$ are in the limit point case. Hence there exists a Jordan chain of length TABLE 1. In bold face is the (approximative) value of η where the eigenvalues $\lambda_{1,\eta}$ and $\lambda_{2,\eta}$ of A_{η} in \mathbb{C}^+ coincide and we have a Jordan chain of length two. With further increasing η , the eigenvalues $\lambda_{1,\eta}$ and $\lambda_{2,\eta}$ move away from the imaginary axis.

η	$\lambda_{1,\eta}$	$\lambda_{2,\eta}$
3.10000000000	0.26723799239 i	$1.05923928894 \ i$
3.26656565972	$0.64287403712 \ i$	$0.72260288819 \ i$
3.26796097363	$0.67270918484 \ i$	$0.69312432044 \ i$
3.26805876683	$0.68293354062 \ i$	$0.68293354054 \ i$
3.26805876685	0.68292928856 i	0.68292928856 i
3.26805890000	0.0003766 + 0.6829292 i	$\hbox{-}0.0003766 \hbox{+} 0.6829292 \ i$
3.27021280983	$0.0479471 {+} 0.6832050 \ i$	$\hbox{-}0.0479471 \hbox{+} 0.6832050 \ i$
3.28021280983	0.1143198 + 0.6844929 i	$\hbox{-}0.1143198 \hbox{+} 0.6844929 \ i$
3.30000000000	0.1866925 + 0.687078 i	-0.1866925 + 0.687078 i

two of A_{η_0} at the eigenvalue λ_0 (and $\overline{\lambda}_0$). We remark that for the function (4.1) we have $M_{\eta_0}(\lambda_0) = M'_{\eta_0}(\lambda_0) = 0$.

ACKNOWLEDGEMENT

The authors thank Richard L. Hall for helpful discussions.

References

- T.Ya. Azizov and I.S. Iokhvidov, *Linear Operators in Spaces with an Indefinite Metric*, John Wiley and Sons, Chichester, New York, 1989. MR1033489 (90j:47042)
- R. Beals, Indefinite Sturm-Liouville problems and half-range completeness, J. Differential Equations 56 (1985), 391–407. MR780497 (86i:34032)
- J. Behrndt, On the spectral theory of singular indefinite Sturm-Liouville operators, J. Math. Anal. Appl. 334 (2007), 1439–1449. MR2338672 (2008e:47104)
- J. Behrndt, Q. Katatbeh and C. Trunk, Accumulation of complex eigenvalues of indefinite Sturm-Liouville operators, J. Phys. A: Math. Theor. 41 (2008), 244003. MR2455801
- J. Behrndt and C. Trunk, On the negative squares of indefinite Sturm-Liouville operators, J. Differential Equations 238 (2007), 491–519. MR2341434 (2008j:47035)
- P. Binding and P. Browne, Eigencurves for two-parameter selfadjoint ordinary differential equations of even order, J. Differential Equations 79 (1989), 289–303. MR1000691 (90e:47038)
- P. Binding and H. Volkmer, Eigencurves for two-parameter Sturm-Liouville equations, SIAM Review 38 (1996), 27–48. MR1379040 (97f:34015)
- 8. J. Bognar, Indefinite Inner Product Spaces, Springer, Berlin, 1974. MR0467261 (57:7125)
- B. Ćurgus and H. Langer, A Krein space approach to symmetric ordinary differential operators with an indefinite weight function, J. Differential Equations 79 (1989), 31-61. MR997608 (90j:47060)
- J. Fleckinger and A.B. Mingarelli, On the eigenvalues of nondefinite elliptic operators, Differential equations, Proc. Conf., Birmingham, Ala., 1983, North-Holland Math. Stud. 92, North-Holland, Amsterdam, 1984, 219–227. MR799351 (86j:35072)
- W. Greenberg, C.V.M. van der Mee and V. Protopopescu, Boundary Value Problems in Abstract Kinetic Theory, Oper. Theory Adv. Appl. 23, Birkhäuser Verlag, Basel, 1987. MR896904 (88k:82156)
- R.L. Hall, Square-well representation for potentials in quantum mechanics, J. Math. Phys. 33 (1992), 3472–3476. MR1182920 (93g:81018)
- H.G. Kaper, C.G. Lekkerkerker and J. Hejtmanek, Spectral Methods in Linear Transport Theory, Oper. Theory Adv. Appl. 5, Birkhäuser Verlag, Basel, 1982. MR685594 (85i:82079)

- 14. I.M. Karabash and M.M. Malamud, Indefinite Sturm-Liouville operators $(\operatorname{sgn} x)(-\frac{d^2}{dx^2} + q(x))$ with finite-zone potentials, Operators and Matrices **1** (2007), 301–368. MR2344680 (2008g:47083)
- I.M. Karabash, A.S. Kostenko and M.M. Malamud, The similarity problem for J-nonnegative Sturm-Liouville operators, J. Differential Equations 246 (2009), 964–997. MR2474582
- 16. I.M. Karabash and C. Trunk, Spectral properties of singular Sturm-Liouville operators with indefinite weight sgn x, to appear in Proc. Roy. Soc. Edinburgh Sect. A.
- T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften 132, Springer-Verlag, Berlin-New York, 1976. MR0407617 (53:11389)
- I. Knowles, On the number of L²-solutions of second order linear differential equations, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 1–13. MR529564 (80a:34017)
- I. Knowles, On the location of eigenvalues of second order linear differential operators, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 15–22. MR529565 (80d:34026)
- Q. Kong, M. Möller, H. Wu and A. Zettl, *Indefinite Sturm-Liouville problems*, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 639–652. MR1983691 (2004f:34039)
- H. Langer, Spectral functions of definitizable operators in Kreĭn spaces, Proceedings of a Functional Analysis conference held at Dubrovnik, Yugoslavia, November 2-14, 1981, Lecture Notes in Mathematics 948, Springer-Verlag, Berlin-Heidelberg-New York, 1982, 1-46. MR672791 (84g:47034)
- B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer, Dordrecht, 1991. MR1136037 (92i:34119)
- H. Volkmer, Sturm-Liouville problems with indefinite weights and Everitt's inequality, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 1097–1112. MR1415825 (98a:34096)
- J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math. 1258, Springer-Verlag, Berlin, 1987. MR923320 (89b:47070)
- 25. J. Weidmann, Lineare Operatoren in Hilberträumen, Teil II, Teubner, Stuttgart, 2003. MR2382320 (2008k:47002)
- A. Zettl, Sturm-Liouville Theory, Math. Surveys Monogr. 121, Amer. Math. Soc., Providence, RI, 2005. MR2170950 (2007a:34005)

DEPARTMENT OF MATHEMATICS MA 6-4, TECHNISCHE UNIVERSITÄT BERLIN, STRASSE DES 17. JUNI 136, D-10623 BERLIN, GERMANY

E-mail address: behrndt@math.tu-berlin.de

Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

 $E\text{-}mail \ address: \verb+qutaibeh@yahoo.com+$

Department of Mathematics, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany

E-mail address: carsten.trunk@tu-ilmenau.de