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NON-REAL EIGENVALUES OF SINGULAR INDEFINITE

STURM-LIOUVILLE OPERATORS

JUSSI BEHRNDT, QUTAIBEH KATATBEH, AND CARSTEN TRUNK

(Communicated by Chuu-Lian Terng)

Abstract. We study a Sturm-Liouville expression with indefinite weight of
the form sgn(−d2/dx2+V ) on R and the non-real eigenvalues of an associated
selfadjoint operator in a Krein space. For real-valued potentials V with a
certain behaviour at ±∞ we prove that there are no real eigenvalues and that
the number of non-real eigenvalues (counting multiplicities) coincides with

the number of negative eigenvalues of the selfadjoint operator associated to
−d2/dx2 + V in L2(R). The general results are illustrated with examples.

1. Introduction

We consider a singular Sturm-Liouville differential expression of the form

(1.1) sgn (x)
(
−f ′′(x) + V (x)f(x)

)
, x ∈ R,

with the signum function as indefinite weight and a real-valued locally summable
function V . Under the assumption that −d2/dx2 + V is in the limit point case at
+∞ and −∞ the maximal operator A associated to (1.1) is selfadjoint in the Krein
space (L2(R), [., .]), where the indefinite inner product [·, ·] is defined by

(1.2) [f, g] =

∫
R

f(x)g(x) sgn (x) dx, f, g ∈ L2(R).

The spectral properties of indefinite Sturm-Liouville operators differ essentially
from the spectral properties of selfadjoint Sturm-Liouville operators in the Hilbert
space L2(R); e.g. the real spectrum of A necessarily accumulates to +∞ and −∞
and Amay have non-real eigenvalues which possibly accumulate to the real axis (see
[3, 4, 9, 14, 16, 20]). For further indefinite Sturm-Liouville problems, applications
and references, see, e.g., [2, 6, 7, 11, 13, 15, 23, 26].

The main objective of this paper is to study the number of non-real eigenvalues
of the operator A. For this it will be assumed that the negative spectrum of the
selfadjoint definite Sturm-Liouville operator Bf = −f ′′ + V f consists of κ < ∞
eigenvalues. Then the hermitian form [A·, ·] has exactly κ negative squares, and it
follows from the considerations in [9] and [21] that the spectrum σ(A) of A in the
open upper half-plane C+ consists of at most κ eigenvalues (counting multiplicities).
Inspired by results of I. Knowles from [18, 19], we give a sufficient condition on V
such that σ(A)∩C

+ consists of exactly κ eigenvalues (counting multiplicities) and
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the continuous spectrum of A covers the whole real line; see Theorem 2.3 and
Corollary 2.4 below. These results can be viewed as a partial answer to the open
problem X in [26, p. 300]. We present two explicitly solvable examples illustrating
our results. In the first example, potentials of hyperbolic secant type are considered
and with the help of numerical methods we find κ different eigenvalues in C+. The
second example shows that, in general, non-real eigenvalues of A may have non-
trivial Jordan chains, and hence the number of distinct eigenvalues in C

+ is less
than κ.

2. Eigenvalues of indefinite Sturm-Liouville operators

In this section we consider the indefinite Sturm-Liouville differential expression
on R given by (1.1), where V : R → R is a real function with V ∈ L1

loc(R). We
equip the Hilbert space (L2(R), (·, ·)) with the indefinite inner product [., .] defined
in (1.2) and denote the corresponding Krein space (L2(R), [·, ·]) by L2

sgn (R). As
a corresponding fundamental symmetry we choose J := sgn (·); hence we have
[·, ·] = (J ·, ·) and [J ·, ·] = (·, ·). For the basic properties of indefinite inner product
spaces and linear operators therein, we refer to [1] and [8].

Suppose that the definite Sturm-Liouville differential expression

(2.1) − d2

dx2
+ V

is in the limit point case at +∞ and −∞; that is, for each λ ∈ C\R there exist (up
to scalar multiples) unique solutions of the differential equation −y′′ + V y = λy
which are square integrable in a neighbourhood of +∞ and −∞, respectively. A
sufficient criterion for (2.1) to be in the limit point case at ±∞ is, e.g.

lim inf
|x|→∞

V (x)

x2
> −∞;

cf. [25, Satz 13.27] or [26, Example 7.4.1].1 Denote by Dmax the linear space of all
f ∈ L2(R) such that f and f ′ are absolutely continuous and −f ′′ + V f ∈ L2(R)
holds. Then it is well-known that the maximal operator

(2.2) Bf := −f ′′ + V f, domB = Dmax ,

associated to (2.1) is selfadjoint in the Hilbert space L2(R) and all eigenvalues are
real and simple; i.e., dimker(B−λ) = 1 for λ ∈ σp(B). As a consequence we obtain
the following statement for the operator A = JB.

Proposition 2.1. Assume that (2.1) is in the limit point case at ±∞. Then the
indefinite Sturm-Liouville operator defined by

(2.3) (Af)(x) = sgn (x)
(
−f ′′(x) + V (x)f(x)

)
, x ∈ R, domA = Dmax ,

is selfadjoint in the Krein space L2
sgn (R), and the eigenspaces ker(A−λ), λ ∈ σp(A),

have dimension one.

In the following it will be assumed that condition (I), stated below, holds.

(I) The set σ(B) ∩ (−∞, 0) consists of κ < ∞ eigenvalues.

1In the formulation of [26, Example 7.4.1] a minus sign is missing.
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Hence, the selfadjoint operator B in the Hilbert space L2(R) is semi-bounded from
below and the eigenvalues do not accumulate to zero from the negative half-axis. A
sufficient condition for (I) to hold is, e.g.,

∫
R
(1 + x2)|V (x)|dx < ∞ for continuous

V ; cf. [22].
We collect some properties of the non-real spectrum of the indefinite Sturm-

Liouville operator A in the next proposition. Recall first that the spectrum of a
selfadjoint operator in a Krein space is symmetric with respect to the real axis and
denote by Lλ(A) the algebraic eigenspace of A corresponding to an eigenvalue λ.

Proposition 2.2. The spectrum of the indefinite Sturm-Liouville operator A in
the open upper half-plane C+ consists of at most finitely many eigenvalues with

(2.4)
∑

λ∈σp(A)∩C+

dimLλ(A) ≤ κ,

where κ is as in (I). In particular, for some l ≤ κ we have

(2.5) C \ R ⊂ ρ(A) ∪ {λ1, λ̄1, . . . , λl, λ̄l}.

If V (x) = V (−x), x ∈ R, then σp(A) is symmetric with respect to the imaginary
axis.

Proof. Assumption (I) and the relation [Af, f ] = (JAf, f) = (Bf, f), f ∈ Dmax ,
imply that the hermitian form [A·, ·] has exactly κ negative squares; that is, there
exists a κ-dimensional subspace M in Dmax such that [Af, f ] < 0 if f ∈ M, f �= 0,
but no (κ+ 1)-dimensional subspace with this property. This, together with well-
known properties of operators with κ negative squares (see, e.g., [21], [9] and [5,
Theorem 3.1 and §4.2]) imply (2.4) and (2.5).

Moreover, if V is symmetric, then λ is an eigenvalue of A with corresponding
eigenfunction x 	→ y(x) if and only if −λ is an eigenvalue of A with corresponding
eigenfunction x 	→ y(−x). Therefore, as σp(A) is symmetric with respect to the
real axis, σp(A) is also symmetric with respect to the imaginary axis. �

Under some additional assumptions on V we prove in Theorem 2.3 the absence of
eigenvalues on the real axis and, hence, improve the estimate in (2.4). We mention
that in [15, Section 4] a similar result is proved if V satisfies

∫
R
(1+|x|)|V (x)|dx < ∞.

By σc(A) we denote the continuous part of the spectrum of A, i.e. the set of all
λ ∈ σ(A) \ σp(A) such that the range of A− λ is dense.

Theorem 2.3. Assume that condition (I) holds and that there exist real functions
q and r with V = q+ r such that lim|x|→∞ r(x) = lim|x|→∞ q(x) = 0, r is locally of
bounded variation and

(2.6) lim
t→∞

1

log t

∫ t

−t

|q(x)|dx = lim
t→∞

1

log t

∫ t

−t

|dr(x)| = 0,

where dr denotes the measure induced by r. Then σc(A)\{0} = R\{0} and hence
zero is the only possible real eigenvalue of the indefinite Sturm-Liouville operator
A. If, in addition, 0 �∈ σp(B), then we have σc(A) = R and

(2.7)
∑

λ∈σp(A)∩C+

dimLλ(A) = κ.
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Proof. Let λ be an eigenvalue of A and let y be a corresponding eigenfunction.
Then y satisfies the equations

(2.8) −y′′(x) + V (x)y(x) = λy(x), x ∈ (0,∞),

and

(2.9) y′′(x)− V (x)y(x) = λy(x), x ∈ (−∞, 0).

Condition (2.6) implies

lim
t→∞

1

log t

∫ t

0

|q(x)|dx = lim
t→∞

1

log t

∫ t

0

|dr(x)| = 0.

This and [19, Theorem 3.2] applied to (2.8) yield λ �∈ (0,∞). Similarly, (2.6) implies

lim
t→∞

1

log t

∫ 0

−t

|q(x)|dx = lim
t→∞

1

log t

∫ 0

−t

|dr(x)| = 0,

and, with [19, Theorem 3.2] applied to (2.9), we find λ �∈ (−∞, 0). Therefore, as
a selfadjoint operator in a Krein space has no real points in the residual spectrum
(see, e.g., [8, Corollary VI.6.2]), we obtain(

σ(A) ∩ (R\{0})
)
⊂ σc(A) and σp(A) ⊂ {0} ∪ C\R.

Moreover, from A = JB we get 0 ∈ σp(A) if and only if 0 ∈ σp(B). Hence, if
0 /∈ σp(B), we conclude σp(A) ⊂ C\R. Since the operator A has exactly κ negative
squares (cf. the proof of Proposition 2.2), it follows from, e.g. [5, Theorem 3.1], that
A has κ eigenvalues (counted with multiplicities) in C+ and thus (2.7) holds.

It remains to show R ⊂ σ(A). For this, consider the differential expressions

�+ = − d2

dx2 + V on R+ and �− = d2

dx2 − V on R−. By assumption �+ and �− are
regular at zero and in the limit point case at ∞ and −∞, respectively. Let A+

and A− be selfadjoint realizations of �+ and �− in the Hilbert spaces L2(R+) and
L2(R−), respectively, e.g. corresponding to Dirichlet boundary conditions at zero.
Under our assumptions

lim
x→∞

V (x) = 0 and lim
x→−∞

V (x) = 0,

and it is well known that [0,∞) ⊂ σ(A+) and (−∞, 0] ⊂ σ(A−) hold. Since the
rank of the operator

(A− λ)−1 −
(
(A+ ×A−)− λ

)−1
, λ ∈ ρ(A) ∩ ρ(A+ ×A−),

is at most two and σ(A+ ×A−) = R, we conclude R ⊂ σ(A). �

A sufficient condition on V such that condition (I), (2.6) and 0 /∈ σp(B) hold is
given in the next corollary; cf. [24, Theorem 14.10], [26, §6.3] and [18, Remark after
Corollary 3.3].

Corollary 2.4. Assume that there exists x0 > 0 with

(2.10) − 1

4x2
≤ V (x) ≤ 3

4x2
for all x ∈ R \ (−x0, x0).

Then σc(A) = R and ∑
λ∈σp(A)∩C+

dimLλ(A) = κ.
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Remark 2.5. We mention that (even under the condition (2.10)) for λ ∈ σp(A),
dimLλ(A) > 1 may happen; i.e. there exists a Jordan chain of length greater
than one, and the non-real spectrum does not consist of κ distinct eigenvalues. In
Section 4 we give an example for an indefinite singular Sturm-Liouville operator
with such a Jordan chain corresponding to a non-real eigenvalue.

3. A numerical example: Hyperbolic secant potentials

In this section we compute the non-real eigenvalues of singular indefinite Sturm-
Liouville operators with potentials given by

(3.1) Vκ(x) = −κ(κ+ 1)sech2(x), x ∈ R and κ ∈ N,

with the help of the software package Mathematica (Wolfram Research).
It is well known (see, e.g., [12]) that the number of negative eigenvalues of

the definite Sturm-Liouville operator Bf = −f ′′ + Vκf in (2.2) is exactly κ and
condition (I) from Section 2 holds. Moreover, Vκ satisfies (2.10), and hence by
Theorem 2.3 and Corollary 2.4 the continuous spectrum of the indefinite Sturm-
Liouville operator

(Af)(x) = sgn (x)
(
−f ′′(x) + Vκ(x)f(x)

)
, x ∈ R, domA = Dmax ,

in the Krein space L2
sgn (R) coincides with R and

∑
λ∈σp(A)∩C+ dimLλ(A) = κ

holds. In order to determine the non-real eigenvalues of A, we divide the problem
into two parts,

−y′′(x;λ) + Vκ(x)y(x;λ) = λy(x;λ), x ∈ R
+,

y′′(x;λ)− Vκ(x)y(x;λ) = λy(x;λ), x ∈ R
−.

(3.2)

Since the potential Vκ in (3.1) satisfies Vκ(x) = Vκ(−x) for x ∈ R, it follows that a

10 10
σc(A)

3

3

i

R

R

Figure 1. The case κ = 5.

function x 	→ h(x;λ), x ∈ R
+, is a so-

lution of the first differential equation
if and only if x 	→ h(−x;−λ), x ∈ R−,
is a solution of the second differential
equation in (3.2). Moreover, as both
singular endpoints ∞ and −∞ are in
the limit point case, each of the equa-
tions in (3.2) has (up to scalar multi-
ples) a unique square integrable solu-
tion. Since the functions in domA and
their derivatives are continuous at the
point 0 it follows that λ ∈ C \R is an

eigenvalue of A if and only if for the square integrable solution x 	→ h(x;λ), x ∈ R
+,

of the first equation in (3.2),

(3.3) h(0;λ) = γh(0;−λ) and h′(0;λ) = −γh′(0;−λ)

hold for some γ ∈ C. For non-real λ we have h(0;λ) �= 0 and h(0;−λ) �= 0, and
therefore (3.3) is satisfied if and only if the function

(3.4) µ 	→ M(µ) :=
h′(0;µ)

h(0;µ)
+

h′(0;−µ)

h(0;−µ)
, µ ∈ C\R,
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Figure 2. The operator (Ay)(x) := sgn (x)(−y′′(x)+V30(x)y(x)),
x ∈ R, where V30(x) = −30 · 31 sech2(x) has κ = 30 pairs of non-
real eigenvalues.

9900 9900

65

65

iR

σc(A) R

Figure 3. The operator (Ay)(x) := sgn (x)(−y′′(x) +
V100(x)y(x)), x ∈ R, where V100(x) = −100 · 101 sech2(x) has
κ = 100 pairs of non-real eigenvalues.

has a zero at λ. As the equations in (3.2) are explicitly solvable in terms of Legendre
functions we can determine numerically the zeros of M within the working default
precision of the software package Mathematica.

Figures 1, 2 and 3 show the non-real eigenvalues of A for the cases κ = 5, κ = 30
and κ = 100. Here we find 5, 30 and 100, respectively, distinct eigenvalues in C+,
and hence dimLλ(A) = 1 for each eigenvalue λ ∈ C\R; cf. Remark 2.5. Note also
that by the symmetry of Vκ there is at least one pair of eigenvalues on the imaginary
axis if κ is odd.
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4. A counterexample: Jordan chains of singular indefinite

Sturm-Liouville operators

In this section we show that the geometric eigenspaces of a singular indefinite
Sturm-Liouville operator in L2

sgn (R) in general do not coincide with the algebraic
eigenspaces. In other words, there exist eigenvalues with non-trivial Jordan chains,
and hence the number of non-real distinct eigenvalues is in general smaller than
the dimension of the algebraic eigenspace corresponding to the non-real spectrum;
cf. Remark 2.5. An explicit example of a non-trivial Jordan chain of a regular
indefinite Sturm-Liouville operator can be found in [10].

We consider a family

(Aηf)(x) = sgn (x)(−f ′′(x) + Vη(x)f(x)), x ∈ R, domAη = Dmax , η ≥ 0,

of indefinite Sturm-Liouville operators in the Krein space L2
sgn (R), where the po-

tentials Vη, η ≥ 0, are given by

Vη(x) =

{
0 |x| ≥ 1,

−η |x| < 1,
η ≥ 0.

The operators Aη, η ≥ 0, are selfadjoint in L2
sgn (R), and according to Theorem 2.3

and Corollary 2.4 there are no real eigenvalues and σc(Aη) covers the whole real
line. In the sequel we will show that the following statement holds.

Proposition 4.1. There exist an η0 > 0 and a λ0 ∈ C+ such that

2 = dimker(Aη0
− λ0)

2 > dimker(Aη0
− λ0) = 1.

In order to determine the eigenvalues of the operators Aη, we first consider the
underlying differential equations (3.2) with Vκ replaced by Vη. The same reasoning
as in Section 3 shows that the non-real eigenvalues of Aη are given by the zeros of
the function

(4.1) λ 	→ Mη(λ) :=
h′
η(0;λ)

hη(0;λ)
+

h′
η(0;−λ)

hη(0;−λ)
, λ ∈ C\R,

where hη(·;λ) is the square integrable solution of −y′′+Vηy = λy on R+. Denote by√
· the branch of the square root with cut along [0,∞) and

√
x ≥ 0 for x ∈ [0,∞).

Then it is easy to check that for λ �∈ [0,∞) the function

hη(x;λ) =

{
exp(i

√
λx) x > 1,

αη(λ) exp(i
√
λ+ ηx) + βη(λ) exp(−i

√
λ+ ηx) x ∈ [0, 1],

where

αη(λ) =
1

2

(
1 +

√
λ(λ+ η)−1

)
exp

(
i(
√
λ−

√
λ+ η)

)
and

βη(λ) =
1

2

(
1−

√
λ(λ+ η−1

)
exp

(
i(
√
λ+

√
λ+ η)

)
and its multiples are square integrable solutions of the first equation in (3.2) with
Vκ replaced by Vη.

The function Mη in (4.1) can be expressed in terms of αη and βη in the following
form:

Mη(λ) = i
√
λ+ η

αη(λ)− βη(λ)

αη(λ) + βη(λ)
+ i

√
η − λ

αη(−λ)− βη(−λ)

αη(−λ) + βη(−λ)
.
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Figure 4. In the first row the function µ 	→ Mη(iµ) is plotted for
µ > 0 and η = 3.1, η = 3.2 and η = 3.3, respectively. In the second
row the corresponding non-real eigenvalues of the operators A3.1,
A3.2 and A3.3 are shown.

We note that the values Mη(iµ), µ ∈ R\{0}, are real since the solutions fulfill

hη(x, λ̄) = hη(x, λ) for λ ∈ C\R. Let us summarize some observations in the
following lemma.

Lemma 4.2. A non-real number λ is an eigenvalue of the indefinite Sturm-Liouville
operator Aη if and only if Mη(λ) = 0. The restriction of Mη onto the imaginary
axis is a real-valued function, and the non-real eigenvalues of Aη are symmetric
with respect to the real and imaginary axes.

One can check numerically that the selfadjoint operator Bη = − d2

dx2 + Vη,

domBη = Dmax , in the Hilbert space L2(R) has exactly two negative eigenval-
ues for η = 3.1, η = 3.2 and η = 3.3; cf. [12]. By Corollary 2.4 for these η the
spectral subspace of Aη correponding to the eigenvalues in the upper half-plane C+

has dimension two.
The plots in the first row of Figure 4 show the function µ 	→ Mη(iµ), µ ∈ R

+,
for η = 3.1, η = 3.2 and η = 3.3, respectively. For η = 3.1 and η = 3.2 the
two zeros are the eigenvalues of A3.1 and A3.2 in the upper half-plane C+ which
lie on the positive imaginary axis. These eigenvalues and their counterparts in
C

− are plotted in the second row of Figure 4. For η = 3.3 the function µ 	→
Mη(iµ) has no zeros on the positive imaginary axis. Recall that a finite system of
eigenvalues is continuous under perturbations small in norm; see [17, IV.3.5]. Hence
the continuity and symmetry of the eigenvalues of Aη imply that the eigenvalues
of A3.3 are located as in the right lower plot in Figure 4. This can also be checked
numerically by computing the non-real roots of M3.3; see also Table 1. Again by
continuity properties of the point spectrum there exists an η0 ∈ (3.2, 3.3) such that
the spectrum of Aη0

in C+ (and hence also in C−) consists only of one eigenvalue
λ0 on the imaginary axis with corresponding algebraic eigenspace of dimension two.
Recall that the dimension of the geometric eigenspaces of Aη0

is at most one since
∞ and −∞ are in the limit point case. Hence there exists a Jordan chain of length
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Table 1. In bold face is the (approximative) value of η where the
eigenvalues λ1,η and λ2,η ofAη in C+ coincide and we have a Jordan
chain of length two. With further increasing η, the eigenvalues λ1,η

and λ2,η move away from the imaginary axis.

η λ1,η λ2,η

3.10000000000 0.26723799239 i 1.05923928894 i
3.26656565972 0.64287403712 i 0.72260288819 i
3.26796097363 0.67270918484 i 0.69312432044 i
3.26805876683 0.68293354062 i 0.68293354054 i
3.26805876685 0.68292928856 i 0.68292928856 i
3.26805890000 0.0003766+0.6829292 i -0.0003766+0.6829292 i
3.27021280983 0.0479471+0.6832050 i -0.0479471+0.6832050 i
3.28021280983 0.1143198+0.6844929 i -0.1143198+0.6844929 i
3.30000000000 0.1866925 + 0.687078 i -0.1866925 + 0.687078 i

two of Aη0
at the eigenvalue λ0 (and λ̄0). We remark that for the function (4.1) we

have Mη0
(λ0) = M ′

η0
(λ0) = 0.
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