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In this expository article some spectral properties of self-adjoint differential operators are investigated. The
main objective is to illustrate and (partly) review how one can construct domains or potentials such that the
essential or discrete spectrum of a Schrödinger operator of a certain type (e.g. the Neumann Laplacian) coin-
cides with a predefined subset of the real line. Another aim is to emphasize that the spectrum of a differential
operator on a bounded domain or bounded interval is not necessarily discrete, that is, eigenvalues of infinite
multiplicity, continuous spectrum, and eigenvalues embedded in the continuous spectrum may be present. This
unusual spectral effect is, very roughly speaking, caused by (at least) one of the following three reasons: The
bounded domain has a rough boundary, the potential is singular, or the boundary condition is nonstandard.
In three separate explicit constructions we demonstrate how each of these possibilities leads to a Schrödinger
operator with prescribed essential spectrum.
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1 Introduction

This paper is concerned with spectral theory of self-adjoint differential operators in Hilbert spaces. Before we
explain in more detail the topics and results we briefly recall the notions of discrete spectrum and essential spec-
trum, that play a key role here. Let A be a (typically unbounded) self-adjoint operator in an infinite dimensional
complex Hilbert spaceH, see also the beginning of Section 4 for more details on the adjoint of unbounded opera-
tors and the notion self-adjoint. The spectrum σ(A) ofA is a closed subset of the real line (which is unbounded if
and only if A is unbounded) that consists of all those points λ such that A− λ does not admit a bounded inverse.
In the case thatA−λ is not invertible λ is called an eigenvalue ofA and belongs to the point spectrum; in the case
that (A−λ)−1 exists as an unbounded operator the point λ belongs to the continuous spectrum. An eigenvalue is
discrete if it is an isolated point in σ(A) and the eigenspace ker(A−λ) is finite dimensional (such eigenvalues are
often also called normal eigenvalues). The set of discrete (or normal) eigenvalues of A is denoted by σdisc(A);
the complement of the discrete spectrum in σ(A) is called the essential spectrum of A and the notation σess(A)
is used for this set. It is clear that

σ(A) = σdisc(A) ∪̇σess(A)

and that σess(A) consists of all those spectral points which are in the continuous spectrum, all eigenvalues em-
bedded in the continuous spectrum and all isolated eigenvalues of infinite multiplicity. For the intuition it may
be helpful to keep in mind that essential spectrum can only appear in an infinite dimensional Hilbert space,
whereas the spectrum of any matrix is necessarily discrete and hence is always present (and the only type
of spectrum) of self-adjoint operators in finite dimensional Hilbert spaces. We refer the reader to the mono-
graphs [2, 17, 31, 59, 81, 82, 84] for more details on the spectrum of self-adjoint operators.
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2 J. Behrndt and A. Khrabustovskyi: Differential operators with prescribed spectrum

The main objective of this expository paper is to illustrate and (partly) review how one can explicitely construct
rough domains, singular potentials, or nonstandard boundary conditions with the property that the essential spec-
trum of a Schrödinger operator coincides with a predefined subset of the real line. The closely related problem
of constructing Schrödinger operators with predefined discrete spectrum is also briefly discussed. Very roughly
speaking, the results in Section 2 are contained in the well-known papers [8,29,53,54], whereas the main results
Theorem 3.3 and Theorem 4.3 in the later sections seem to be new.

More precisely, in Section 2 we treat Laplace operators subject to Neumann boundary conditions (Neumann
Laplacians) on bounded domains. It is often believed that self-adjoint Laplace-type operators on bounded do-
mains always have purely discrete spectrum (or, equivalenty, a compact resolvent). This is indeed true for Laplace
operators subject to Dirichlet boundary conditions (Dirichlet Laplacian), but, in general, not true for Neumann
Laplacians. In fact, the discreteness of the spectrum of the Neumann Laplacian is equivalent to the compactness
of the embedding H1(Ω) ↪→ L2(Ω), and for this a necessary and sufficient criterion was obtained by C.J. Am-
ick [8]; cf. Theorem 2.1. The standard example of a bounded domain for which essential spectrum for Neumann
Laplacian appears is a so-called called “rooms-and-passages” domain: a chain of bounded domains (“rooms”)
connected through narrow rectangles (“passages”), see Figure 1. Rooms-and-passages domains are widely used
in spectral theory and in the theory of Sobolev spaces in order to demonstrate various peculiar effects (see,
e.g., [8, 35, 45]). Some spectral properties of such domains were investigated in [26]. We also refer to the com-
prehensive monograph of V.G. Mazya [71] (see also earlier contributions [67–70]), where rooms-and-passages
together with many other tricky domains were treated. In the celebrated paper [54] R. Hempel, L. Seco, and
B. Simon constructed a rooms-and-passages domain such that the spectrum of the Neumann Laplacian coincides
with a prescribed closed set S ⊂ [0,∞) with 0 ∈ S. We review and prove their result in Theorem 2.4; here
also the continuous dependence of the eigenvalues of Neumann Laplacians on varying domains discussed in Ap-
pendix A plays an important role. We also briefly recall another type of bounded domains – so-called “comb-like”
domains – which allow to control the essential spectrum in the case 0 /∈ S. Rooms-and-passages domains can
also be used in a convenient way to control the discrete spectrum within compact intervals. We demonstrate this
in Theorem 2.6, where we establish a slightly weaker version of the following celebrated result by Y. Colin de
Verdière [29]: for arbitrary numbers 0 = λ1 < λ2 < · · · < λm there exists a bounded domain Ω ⊂ Rn such
that the spectrum of the Neumann Laplacian on Ω is purely discrete and its first m eigenvalues coincide with
the above numbers. One of the main ingredients in our proof is a multidimensional version of the intermediate
value theorem by R. Hempel, T. Kriecherbauer, and P. Plankensteiner in [53]. In fact, our Theorem 2.6 is also
contained in a more general result established in [53], where a domain was constructed in such a way that the
essential spectrum and a part of the discrete spectrum of the Neumann Laplacian coincides with prescribed sets.

In Section 3 we show that similar tools and techniques can be used for a class of singular Schrödinger operators
describing the motion of quantum particles in potentials being supported at a discrete set. These operators are
known as solvable models of quantum mechanics [3]. Namely, we will treat differential operators defined by the
formal expression

− d2

dz2
+
∑
k∈N

βk〈· , δ′zk〉δ
′
zk
,

where δ′zk is the distributional derivative of the delta-function supported at zk, 〈φ, δ′zk〉 denotes its action on the
test function φ and βk ∈ R ∪ {∞}. Such operators are called Schrödinger operator with δ′-interactions (or point
dipole interactions) and have been studied (also in the multidimensional setting) in numerous papers; here we
only refer the reader to [6,11–14,16,24,25,27,28,34,36–44,48,52,57,61–65,75,89] and the references therein.
We will show in Theorem 3.1 (see also Theorem 3.3) that the points zk and coefficients βk can be chosen in such
a way that the essential spectrum of the above operator coincides with a predefined closed set. In our proof we
make use of well-known convergence results for quadratic forms, which we briefly recall in Appendix B. Some of
our arguments are also based and related to results in the recent paper [63] by A. Kostenko and M.M. Malamud.

Finally, in Section 4 we consider a slightly more abstract problem which can also be viewed as a generaliza-
tion of some of the above problems: for a given densely defined symmetric operator S with infinite deficiency
indices, that is, S admits a self-adjoint extension A and dom(A)/dom(S) is infinite dimensional, and under the
assumption that there exists a self-adjoint extension with discrete spectrum (or, equivalently, compact resolvent),
we construct a self-adjoint extensions of S with prescribed essential spectrum (possibly unbounded from below
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and above). Here the prescribed essential spectrum is generated via a perturbation argument and a self-adjoint
operator Ξ that acts in an infinite dimensional boundary space and plays the role of a parameter in a boundary
condition. Our result is also related to the series of papers [4, 5, 19–23] by S. Albeverio, J. Brasche, M.M. Mala-
mud, H. Neidhardt, and J. Weidmann in which the existence of self-adjoint extensions with prescribed point
spectrum, absolutely continuous spectrum, and singular continuous spectrum in spectral gaps of a fixed underly-
ing symmetric operator was discussed.
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2 Essential and discrete spectra of Neumann Laplacians

The main objective of this section is to highlight some spectral properties of the Neumann Laplacian on bounded
domains. In the following let Ω be a bounded domain in Rn and assume that n ≥ 2. As usual the Hilbert space of
(equivalence classes of) square integrable complex functions on Ω is denoted by L2(Ω), and H1(Ω) denotes the
first order Sobolev space consisting of functions in L2(Ω) that admit weak derivatives (of first order) in L2(Ω).
An efficient method to introduce the Neumann Laplacian in a mathematically rigorous way is to consider the
sesquilinear form aΩ defined by

aΩ[u, v] =

∫
Ω

∇u · ∇v dx, dom(aΩ) = H1(Ω). (2.1)

It is clear that this form is densely defined in L2(Ω), nonnegative, and one can show that the form is closed,
i.e. the form domain H1(Ω) equipped with the scalar product aΩ[·, ·] + (·, ·)L2(Ω) is complete. The well-known
first representation theorem (see, e.g. [59, Chapter 6, Theorem 2.1]) associates a unique nonnegative self-adjoint
operator AΩ in L2(Ω) to the form aΩ such that the domain inclusion dom(AΩ) ⊂ dom(aΩ) and the equality

(AΩu, v)L2(Ω) = aΩ[u, v], u ∈ dom(AΩ), v ∈ dom(aΩ), (2.2)

hold. The operator AΩ is called the Neumann Laplacian on Ω. One can show that

• AΩu = −∆u, where −∆u is understood as a distribution.

• dom(AΩ) ⊂ H2
loc(Ω) ∩ H1(Ω).

• If ∂Ω is C2-smooth then

dom(AΩ) =
{
u ∈ H2(Ω) : ∂nu�∂Ω= 0

}
,

where ∂n denotes the normal derivative on ∂Ω.

Typically the boundary condition ∂nu �∂Ω= 0 is referred to as Neumann boundary condition, which also
justifies the terminology Neumann Laplacian. However, note that some regularity for the boundary of the domain
has to be required in order to be able to deal with a normal derivative. For completeness, we note that the
assumption of a C2-boundary above is not optimal (but almost) for H2-regularity of the domain of the Neumann
Laplacian.

The rest of this section deals with some spectral properties of Neumann Laplacians. First of all we discuss in
a preliminary situation that the Neumann Laplacian may have essential spectrum; since the domain Ω is bounded
this may be a bit surprising at first sight. In this context we then recall a well-known result due to R. Hempel,
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4 J. Behrndt and A. Khrabustovskyi: Differential operators with prescribed spectrum

L. Seco, and B. Simon from [54] how to explicitely construct a bounded rooms-and-passages-type domain (with
nonsmooth boundary) such that the essential spectrum of the Neumann Laplacian coincides with a prescribed
closed set. Another related topic is to construct Neumann Laplacians on appropriate domains such that finitely
many discrete eigenvalues coincide with a given set of points. Here we recall a famous result due to Y. Colin de
Verdière from [29], and supplement this theorem with a similar result which is proved with a simple rooms-and-
passages-type strategy. Actually, Theorem 2.6 is also a special variant of a more general result by R. Hempel,
T. Kriecherbauer, and P. Plankensteiner in [53].

2.1 Neumann Laplacians may have nonempty essential spectrum

Let AΩ be the self-adjoint Neumann Laplacian in L2(Ω) and denote by σess(AΩ) the essential spectrum of AΩ.
It is well-known that σess(AΩ) = ∅ (which is equivalent to the compactness of the resolvent of AΩ in L2(Ω)) if
and only if

the embedding iΩ : H1(Ω) ↪→ L2(Ω) is compact; (2.3)

cf. [87, Satz 21.3]. If the boundary ∂Ω is sufficiently regular (for example Lipschitz) then (2.3) holds; this result
is known as Rellich’s embedding theorem. However, in general the embedding iΩ need not be compact (see, e.g.,
the classical monograph of R. Courant and D. Hilbert [30]). In fact, C.J. Amick established in [8, Theorem 3] a
necessary and sufficient criterion for the compactness of the embedding operator iΩ, which we recall in the next
theorem.

Theorem 2.1 (Amick, 1978) The embedding iΩ in (2.3) is compact if and only if

ΓΩ := lim
ε→0

sup
u∈H1(Ω)

‖u‖2L2(Ωε)

‖u‖2H1(Ω)

= 0, (2.4)

where Ωε = {x ∈ Ω : dist(x, ∂Ω) < ε}.
Remark 2.2 Necessary and sufficient conditions for σess(AΩ) = ∅ have been also obtained in [66]. These

conditions are formulated in terms of capacities.
In [8] an example of a bounded domain Ω ⊂ R2 consisting of countably many rooms Rk and passages Pk

with ΓΩ > 0 was constructed (see Figure 1).

-� d̂k� -dk

Pk6?β
kRk

6

?

d
k

Fig. 1 Rooms-and-passages domain Ω

For the convenience of the reader we wish to recall this construction in the following. Note that we impose
slightly different assumptions on the rooms and passages as compared to [8]. Consider some sequences (dk)k∈N
and (d̂k)k∈N of positive numbers such that∑

k∈N
dk <∞ (2.5)

and assume that there is a constant C1 > 0 with the property

d̂k ≤ C1 min {dk; dk+1} . (2.6)

Note that (2.5)-(2.6) imply∑
k∈N

d̂k <∞ (2.7)
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and

lim
k→∞

dk = 0, lim
k→∞

d̂k = 0. (2.8)

One can choose, for example, dk = (2k − 1)−2, d̂k = (2k)−2, k ∈ N; then conditions (2.5) and (2.6) hold with
C1 ∈

[
9
4 ,∞

)
. Finally, let (βk)k∈N be a sequence of positive numbers such that for all k ∈ N

βk ≤ C2(d̂k)α (2.9)

with some α ≥ 3 and C2 > 0 such that

C2 ≤
1

C1
·
(

max
k∈N

d̂k

)1−α

. (2.10)

In the next step define the sequence (xk)k∈N by

xk :=
k∑
j=1

(dj + d̂j)− d̂k, (2.11)

and define the rooms Rk and passages Pk by

Rk := (xk − dk, xk)×
(
−dk

2
,
dk
2

)
(2.12)

and

Pk :=
[
xk, xk + d̂k

]
×
(
−βk

2
,
βk
2

)
, (2.13)

respectively. Finally, the union of Rk and Pk leads to the desired rooms-and-passages domain

Ω :=
⋃
k∈N

(Rk ∪ Pk) . (2.14)

From (2.5), (2.7), and (2.9) it is clear that Ω is bounded. Using (2.6), (2.9), (2.10) and taking into account that
α > 3 we obtain the estimate

βk ≤ C2(d̂k)α ≤ C2(d̂k)α−1C1 min {dk, dk+1} ≤ min {dk, dk+1} . (2.15)

Hence the thickness of the passage Pk is not larger than the sides of the adjacent rooms Rk and Rk+1, which also
shows that Ω is indeed an open set.

It will now be illustrated that for this particular domain Ω the quantity ΓΩ in (2.4) is positive, so that the
embedding in (2.3) is not compact. In particular, the essential spectrum of the Neumann Laplacian in L2(Ω) is
not empty. For this purpose consider the piecewise linear functions uk, k = 2, 3, . . . , defined by

uk(x) =



1

dk
, x = (x, y) ∈ Rk,

xk + d̂k − x
dkd̂k

, x = (x, y) ∈ Pk,

xk−1 − x
dk(xk−1 − xk + dk)

, x = (x, y) ∈ Pk−1,

0, otherwise.
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6 J. Behrndt and A. Khrabustovskyi: Differential operators with prescribed spectrum

Note that xk−1 − xk + dk = −d̂k−1 by (2.11). It is easy to see that the function uk belongs to H1(Ω). Next we
evaluate its L2-norm. One computes

‖uk‖2L2(Ω) = ‖uk‖2L2(Rk) + ‖uk‖2L2(Pk−1) + ‖uk‖2L2(Pk)

= 1 +
1

3(dk)2

(
βk−1d̂k−1 + βkd̂k

)
≤ 1 +

C2

3(dk)2

(
(d̂k−1)α+1 + (d̂k)α+1

)
. (2.16)

We also have (cf. (2.6))

d̂k−1 ≤ C1dk and d̂k ≤ C1dk. (2.17)

Using (2.17) and taking into account that limk→∞ dk = 0 and α ≥ 3, we obtain from (2.16):

‖uk‖2L2(Ω) = 1 + o(1) as k →∞. (2.18)

Now we estimate the L2-norm of ∇uk. Using (2.9) and (2.17) we get

‖∇uk‖2L2(Ω) = ‖∇uk‖2L2(Pk−1) + ‖∇uk‖2L2(Pk) =
1

(dk)2

(
βk−1

d̂k−1

+
βk

d̂k

)
≤ C2

(dk)2

(
(d̂k−1)α−1 + (d̂k)α−1

)
≤ 2C1C2(dk)α−3.

(2.19)

Moreover, it is clear that for any ε > 0 there exists k(ε) ∈ N such that supp(uk) ⊂ Ωε for all k ≥ k(ε).
This, (2.18), (2.19), and (2.8) yield ΓΩ > 0 (recall that α ≥ 3). As an immediate consequence we conclude the
following corollary.

Corollary 2.3 Let Ω be the bounded rooms-and-passages domain in (2.14) and let AΩ be the self-adjoint
Neumann Laplacian in L2(Ω). Then

σess(AΩ) 6= ∅

The natural question that arises in the context of Corollary 2.3 is what form the essential spectrum of the
Neumann Laplacian AΩ may have. This topic is discussed in the next subsection.

2.2 Neumann Laplacian with prescribed essential spectrum

In the celebrated paper [54] R. Hempel, L. Seco, and B. Simon have shown, using rooms-and-passages-type
domains of a similar form as above, that the essential spectrum of the Neumann Laplacian can be a rather arbitrary
closed subset of the real line. Below we briefly describe their construction.

We fix sequences (dk)k∈N and (d̂k)k∈N of positive numbers satisfying∑
k∈N

(dk + d̂k) <∞, (2.20)

and of course one then has (2.8). Let the domain Ω ⊂ R2 consist of countably many rooms Rk and passages Pk.
Furthermore, in each room we insert an additional “wall” Wαk

k (see Figure 2), and the resulting modified room
is then denoted by Rαkk = Rk \Wαk

k , so that

Ω =
⋃
k∈N

(
Rαkk ∪ Pk

)
=
⋃
k∈N

(
(Rk \Wαk

k ) ∪ Pk
)
. (2.21)

Here Rk and Pk are defined by (2.12) and (2.13) with βk satisfying

0 < βk ≤ min {dk; dk+1} ; (2.22)

cf. (2.15). The walls Wαk
k are given by

Wαk
k :=

{
x = (x, y) ∈ R2 : x = xk −

dk
2
, |y| ∈

[
αk
2
,
dk
2

]}
,
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Wαk
k
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��*

6

?

α
k

Fig. 2 Rooms-and-passages domain with additional walls

where it is assumed that the sequence (αk)k∈N satisfies

0 < αk ≤ dk. (2.23)

Theorem 2.4 (Hempel-Seco-Simon, 1991) Let S ⊂ [0,∞) be an arbitrary closed set such that 0 ∈ S. Then
there exist sequences (dk)k∈N, (d̂k)k∈N, (αk)k∈N, (βk)k∈N satisfying (2.20), (2.22), and (2.23) such that

σess(AΩ) = S. (2.24)

P r o o f. This sketch of the proof from [54] consists of three steps. In the first step, where we skip a pertur-
bation argument, it is shown that the original problem to ensure (2.24) for the Neumann Laplacian AΩ on the
domain Ω can be reduced to show the same property for a “decoupled” Neumann Laplacian Adec. The spectrum
of this operator can be described explicitly, which is done in the second step. Finally, in a third step the parame-
ters are adjusted in such a way that (2.24) holds.

Step 1. Let (dk)k∈N, (d̂k)k∈N, (αk)k∈N, and (βk)k∈N be some sequences that satisfy (2.20), (2.22), and (2.23).
Let Ω be the corresponding domain in (2.21) and letAΩ be the Neumann Laplacian on Ω defined via the quadratic
form as in (2.1)–(2.2). In the following we denote by ARαkk the Neumann Laplacian on the domain Rαkk =

Rk \Wαk
k , also defined via the quadratic form

aRαkk
[u, v] =

∫
R
αk
k

∇u · ∇v dx, dom
(
aRαkk

)
= H1(Rαkk ), (2.25)

in the same way as in (2.1)–(2.2). Informally speaking, the functions in the domain of this operator satisfy
Neumann boundary conditions on the boundary of the room Rk and, in addition, Neumann boundary conditions
on both sides of the additional wall Wαk

k . Furthermore, we will make use of self-adjoint Laplacians on the
interiors P̊k of the passages Pk with mixed Dirichlet and Neumann boundary conditions. More precisely, ADN

P̊k

denotes the self-adjoint Laplacian defined on a subspace of H1(P̊k), where it is assumed that the functions in the
domain satisfy Neumann boundary conditions on {x = (x, y) ∈ ∂P̊k : y = ±βk/2} and Dirichlet boundary
conditions on the remaining part {x = (x, y) ∈ ∂P̊k : x = xk ∨ x = xk + d̂k} of the boundary. Now consider
the “decoupled” operator

Adec =
⊕
k∈N

(
ARαkk

⊕ADN

P̊k

)
(2.26)

as an orthogonal sum of the self-adjoint operators ARαkk and ADN

P̊k
in the space

L2(Ω) =
⊕
k∈N

(
L2(Rαkk )⊕ L2(P̊k)

)
.

Then one can show that the resolvent difference (Adec + I)−1 − (AΩ + I)−1 of the Neumann Laplacian AΩ and
the decoupled operator Adec is a compact operator provided βk → 0 sufficiently fast as k → ∞. We fix such a
sequence (βk)k∈N; then from Weyl’s theorem (see, e.g., [82, Theorem XIII.14]) one concludes

σess(AΩ) = σess(Adec)
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8 J. Behrndt and A. Khrabustovskyi: Differential operators with prescribed spectrum

and hence it remains to show that
σess(Adec) = S.

Step 2. First we shall explain how the eigenvalues of the Neumann Laplacian on Rαkk depend on the size of the
wall Wαk

k inside Rk. In this step of the proof the value αk = 0 is also allowed (in this case the room Rαkk
decouples: it becomes a union of two disjoint rectangles). We denote the eigenvalues of ARαkk (counted with
multiplicities) and ordered as a nondecreasing sequence by (λj(R

αk
k ))j∈N. It is not difficult to check that the

corresponding forms aRαkk in (2.25) are monotone in the parameter αk, that is, for 0 ≤ αk ≤ α̃k ≤ dk one has

dom(aRαkk
) ⊃ dom(a

R
α̃k
k

),

aRαkk
[u, u] = a

R
α̃k
k

[u, u] for all u ∈ dom(a
R
α̃k
k

),

which means aRαkk ≤ a
R
α̃k
k

in the sense of ordering of forms. Then it follows from the min-max principle (see,
e.g., [31, Section 4.5]) that for each j ∈ N the function

[0, dk] ⊃ αk 7→ λj(R
αk
k ) (2.27)

is nondecreasing and by Theorem A.1 this function is also continuous. In the present situation it is clear that

λ1(Rαkk ) = 0, (2.28)

and

λ2(Rαkk ) =

{
0, αk = 0,

(π/dk)
2
, αk = dk,

(2.29)

and due to the monotonicity of the function (2.27) one also has

λ3(Rαkk ) ≥ λ3(R0
k) = (π/dk)

2
. (2.30)

Furthermore, if (µj(P̊k))j∈N denote the eigenvalues (counted with multiplicities) of ADN

P̊k
ordered as a nonde-

creasing sequence then one verifies that the first eigenvalue µ1(P̊k) is given by

µ1(P̊k) = (π/d̂k)2 (2.31)

for all k ∈ N. From the orthogonal sum structure in (2.26) it is clear that

σess(Adec) = acc
(
(λj(R

αk
k ))j,k∈N

)
∪ acc

(
(µj(P̊k))j,k∈N

)
,

where the symbol acc denotes the set of accumulation points of a sequence. Observe that the eigenvalues
(µj(P̊k))j∈N do not have any finite accumulation point (the smallest eigenvalue satisfies (2.31) and limk→∞ d̂k =
0 by assumption) and hence we obtain

σess(Adec) = acc
(
(λj(R

αk
k ))j,k∈N

)
.

Step 3. Now we complete the proof by adjusting the parameters in the above construction. Since by assumption
S is a closed subset of [0,∞) one can always find a sequence (sk)k∈N such that

sk > 0 and acc((sk)k∈N) =

{
S \ {0}, 0 is an isolated point of S,
S, otherwise.

(2.32)

Next, for each k ∈ N we fix a number dk > 0 such that

sk < (π/dk)2. (2.33)

Copyright line will be provided by the publisher



mn header will be provided by the publisher 9

In addition, we assume that the numbers dk are chosen small enough so that∑
k∈N

dk <∞.

We also fix a sequence of positive numbers (d̂k)k∈N such that∑
k∈N

d̂k <∞.

Using the continuity of the function (2.27) and taking into account (2.29) and (2.33) it is clear that there exists
αk ∈ (0, dk) such that the second eigenvalue λ2(Rαkk ) of the Neumann Laplacian ARαkk satisfies

λ2(Rαkk ) = sk (2.34)

for all k ∈ N. Furthermore, by construction we also have λ1(Rαkk ) = 0 and λj(Rαkk ) ≥ (π/dk)2 for j ≥ 3 (cf.
(2.30)), and hence we conclude together with limk→∞ dk = 0, (2.28), (2.32), (2.34), and 0 ∈ S that

acc
(
(λj(R

αk
k ))j,k∈N

)
= acc

(
(λj(R

αk
k ))j≤2, k∈N

)
= {0} ∪ acc((sk)k∈N) = S.

This implies σess(Adec) = S and completes the proof.

Besides (2.24) it is also shown in [54] that the absolutely continuous spectrum σac(AΩ) of AΩ is empty. The
argument is as follows: It is verified that the difference (AΩ + I)−2 − (Adec + I)−2 is a trace class operator, and
consequently the absolutely continuous spectra of AΩ and Adec coincide; cf. [83, page 30, Corollary 3]. Since
σ(Adec) is pure point one concludes σac(AΩ) = σac(Adec) = ∅. Note, that the absolutely continuous spectrum
of the Neumann Laplacian on a bounded domain is not always empty. For example, in [86] B. Simon constructed
a bounded set Ω having the form of a “jelly roll” such that σac(AΩ) = [0,∞).

In [54] R. Hempel, L. Seco, and B. Simon also constructed a domain for which (2.24) holds without the
restriction 0 ∈ S. For this purpose so-called comb-like domains are used, see Figure 3. To construct the comb
one attaches a sequence of “teeth” (Tαkk )k∈N to a fixed rectangleQ; the tooth Tαkk is obtained from a rectangle Tk
by removing an internal wall Wαk

k . The teeth have bounded lengths, shrinking widths, and are stacked together
without gaps.

The analysis is similar to the rooms-and-passages case. One can prove that the Neumann Laplacian AΩ on
such a comb-like domain Ω is a compact perturbation of the decoupled operator

Adec =

(⊕
k∈N

ADN

T
αk
k

)
⊕AQ,

whereAQ is the Neumann Laplacian onQ andADN

T
αk
k

is the Laplace operator on the tooth Tαkk subject to Neumann

boundary conditions on ∂Tαkk \ ∂Q and Dirichlet boundary conditions on ∂Tαkk ∩ ∂Q. The walls Wαk
k are

adjusted in such a way that the lowest eigenvalue of ADN

T
αk
k

coincides with a predefined number sk, while the next
eigenvalues tend to∞ as k →∞ and do not contribute to essential spectrum.

The important and somewhat surprising element of the rooms-and-passage and comb-like domain construc-
tions is the form of the decoupled operators with mixed Dirichlet and Neumann boundary conditions. The fact
that one chooses Dirichlet conditions on the common part of the boundaries of the passages Pk and modified
rooms Rαkk , and similarly on the common part of the boundaries of the modified teeth Tαkk and the rectangle Q is
due to the following well-known effect (see, e.g., [9,10,58]): the spectrum of the Neumann Laplacian on Q∪T ε,
where Q is a fixed domain and T ε is an attached “handle” of fixed length L and width ε, converges to the direct
sum of the Neumann Laplacian on Q and the one-dimensional Dirichlet Laplacian on (0, L) as ε→ 0.

Finally, we note that A.A. Kiselev and B.S. Pavlov [60] obtained Theorem 2.4 for (a kind of) Neumann
Laplacian on a bounded set consisting of an array of two-dimensional domains connected by intervals.
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Q

Tk

Wαk
k

�
��

Fig. 3 Comb-like domain

2.3 Neumann Laplacian with prescribed discrete spectrum

In this section we are interested in the discrete spectrum of Neumann Laplacians. First we recall a result by
Y. Colin de Verdière from [29].

Theorem 2.5 (Colin de Verdière, 1987) Let n ∈ N \ {1} and assume that

0 = λ1 < λ2 < · · · < λm, m ∈ N, (2.35)

are fixed numbers. Then there exists a bounded domain Ω ⊂ Rn such that the spectrum of the Neumann Laplacian
AΩ on Ω is purely discrete and

λk(Ω) = λk, k = 1, . . . ,m,

where (λk(Ω))k∈N denotes the sequence of the eigenvalues of AΩ numbered in increasing order with multiplici-
ties taken into account.

In fact, the main result in [29] concerns Riemannian manifolds: for arbitrary λk, k = 1, . . . ,m, satisfying
(2.35) and an arbitrary compact connected manifold one can construct a Riemannian metric on this manifold in
such a way that the firstm eigenvalues of the corresponding Laplace-Beltrami operator coincide with the numbers
λk, k = 1, . . . ,m. The idea of the proof of this theorem in [29] is to first construct a suitable differential operator
AΓ on a metric graph Γ such that the first m eigenvalues of AΓ coincide with λk, k = 1, . . . ,m. Then the graph
Γ is “blown” up to a tubular thin domain Ω in such a way that the first m eigenvalues of the Neumann Laplacian
AΩ on Ω are asymptotically close to the first m eigenvalues of AΓ provided the cross-section of Ω tends to zero.
For dimensions n ≥ 3 the above theorem is extended in [29] by allowing nonsimple eigenvalues. More precisely,
one can construct a domain in Rn, n ≥ 3, such that the first m eigenvalues of the Neumann Laplacian on this
domain coincide with the predefined numbers

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λm.

A similar theorem for the Dirichlet Laplacian (at least for n = 2) can not be expected. In fact, by a well-known
result of L.E. Payne, G. Pólya, and H.F. Weinberger from [78] the ratio between the k-th and the (k − 1)-th
Dirichlet eigenvalue (for compact domains in R2) is bounded from above (by a domain independent constant)
and hence the eigenvalues can not be placed arbitrarily on (0,∞).

Theorem 2.5 was later improved by R. Hempel, T. Kriecherbauer, and P. Plankensteiner in [53], where a
bounded domain Ω was constructed such that the essential spectrum and a finite part of the discrete spectrum of
AΩ coincide with predefined sets. In their construction comb-like domains were used; see Figure 3.

The next theorem may be viewed as a variant of Theorem 2.5, although it is actually a slightly weaker version.
In fact, we present this result here since it can be proved with a similar rooms-and-passages domain strategy as

Copyright line will be provided by the publisher



mn header will be provided by the publisher 11

Theorem 2.4. An important ingredient is a multidimensional version of the intermediate value theorem from [53];
cf. Lemma 2.7 below.

Theorem 2.6 Let n ∈ N \ {1} and assume that

0 < ν1 < ν2 < · · · < νm, m ∈ N,

are fixed numbers. Then there exists a bounded domain Ω ⊂ Rn such that the spectrum of the Neumann Laplacian
AΩ on Ω is purely discrete and

λm+k(Ω) = νk, k = 1, . . . ,m,

where (λl(Ω))l∈N denotes the sequence of the eigenvalues ofAΩ numbered in increasing order with multiplicities
taken into account.

P r o o f. We consider the case n = 2; the construction and the arguments in dimensions n ≥ 3 are similar and
left to the reader. The proof consists of several steps and in principle the strategy is similar to the one in the proof
of Theorem 2.4. More precisely, we fix an arbitrary open and bounded interval I ⊂ (0,∞) containing all the
points νk. First we consider the decoupled domain consisting of m pairwise disjoint rooms Rαkk = Rk \Wαk

k

stacked in a row (as before Rk is a square and Wαk
k is an internal wall in it). The first eigenvalue of the Neumann

Laplacian on Rαkk is zero. Moreover, under a suitable choice of dk and αk the second eigenvalue coincides
with νk and the third eigenvalue is larger than sup I. Consequently the first m eigenvalues of the Neumann
Laplacian on ∪mk=1R

αk
k are zero, the nextm eigenvalues are ν1, . . . , νm, and all further eigenvalues are contained

in (sup I,∞). Afterwards we connect the rooms by small windows of length ε (see Figure 4); the resulting
domain is denoted by Ω. If ε is small the spectrum changes slightly. Namely,

• the eigenvalues λ1(Ω), . . . , λm(Ω) remain in [0, inf I),

• the eigenvalues λm+1(Ω), . . . , λ2m(Ω) remain in small neighborhoods of ν1, . . . , νm, respectively, more-
over they still belong to I,

• the rest of the spectrum remains in (sup I,∞).

It remains to establish the coincidence of λk+m(Ω) and νk as k = 1, . . . ,m (so far they are only close as ε > 0
is sufficiently small), which is done by using a multidimensional version of mean value theorem from [53].
Roughly speaking, the shift of the eigenvalues that appears after inserting the small windows can be compensated
by varying the constants α1, . . . , αm appropriately. In the following we implement this strategy.

Step 1. Fix some positive numbers d1, . . . , dm and let α1, . . . , αm, and ε be nonnegative numbers satisfying

αk ∈ [0, dk] and ε ∈ [0, min
k=1,...,m

dk]. (2.36)

In the following we shall use the notation α := {α1, . . . , αm}. We introduce the domain Ωα,ε consisting of m
modified rooms Rαkk being stacked in a row and connected through a small window P εk of length ε. Each room
Rαkk is obtained by removing from a square with side length dk two additional walls of length (dk − αk)/2; see
Figure 4. More precisely, let xk :=

∑k
j=1 dj , define the rooms by

Rαkk =

(
(xk − dk, xk)×

(
−dk

2
,
dk
2

))
\Wαk

k ,

where the walls are

Wαk
k =

{
(x, y) ∈ R2 : x = xk −

dk
2
, |y| ∈

[
αk
2
,
dk
2

]}
and the windows are P εk = {xk} ×

(
− ε2 ,

ε
2

)
. Then the domain Ωα,ε that we will use is defined as

Ωα,ε =

(
m⋃
k=1

Rαkk

)
∪

(
m−1⋃
k=1

P εk

)
.
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Rα1
1 ?

6α1
?

6
ε

Fig. 4 Domain Ωα,ε for m = 3

The Neumann Laplacian on Ωα,ε will be denoted by AΩα,ε and it is important to observe that for ε = 0
this self-adjoint operator in L2(Ωα,ε) decouples in a finite orthogonal sum of Neumann Laplacians ARαkk on the
rooms Rαkk , that is, one has

AΩα,0 =

m⊕
k=1

ARαkk
(2.37)

with respect to the corresponding space decomposition

L2(Ωα,0) =

m⊕
k=1

L2(Rαkk ).

Note that L2(Ωα,0) = L2(Ωα,ε) and hence AΩα,ε and AΩα,0 act in the same space for all ε in (2.36).
It is clear from (2.37) that the spectrum of the decoupled operator AΩα,0 is the union of the spectra of the

Neumann Laplacians ARαkk , k = 1, . . . ,m. We recall (see Step 2 of the proof of Theorem 2.4) that the functions

[0, dk] 3 αk 7→ λj(R
αk
k ), j ∈ N, (2.38)

are continuous and nondecreasing. Moreover, one has

λ1(Rαkk ) = 0, λ2(Rαkk ) =

{
0, αk = 0,

(π/dk)2, αk = dk,
(2.39)

and

λ3(Rαkk ) ≥ λ3(R0
k) = (π/dk)2. (2.40)

Step 2. Now we approach the main part of the proof, where the parameters will be properly adjusted. Let
0 < ν1 < · · · < νm be as in the assumptions of the theorem and fix an open interval I such that

0 < inf I < ν1 and νm < sup I. (2.41)

Assume that the numbers d1, . . . , dm satisfy

sup I < min
k

(π/dk)
2
. (2.42)

Furthermore, let us choose a constant γ > 0 such that the intervals

[νk − γ, νk + γ], k = 1, . . . ,m,

are pairwise disjoint and

m⋃
k=1

[νk − γ, νk + γ] ⊂ I (2.43)
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holds. Next, we introduce the sets

Lk = {αk ∈ [0, dk] : λ2(Rαkk ) ∈ [νk − γ, νk + γ]} . (2.44)

Using the continuity and monotonicity of the function in (2.38) and taking into account (2.39), (2.41)-(2.43) we
conclude that each Lk is a nonempty compact interval. We set

α−k = minLk, α+
k = maxLk, and D =

m∏
k=1

[α−k , α
+
k ].

It is clear from (2.39), (2.41), and (2.43) that α±k > 0. From now on we assume that

α = {α1, . . . , αm} ∈ D.

As usual we denote the eigenvalues of the decoupled operatorAΩα,0 in (2.37) by (λj(Ω
α,0))j∈N, counted with

multiplicities and ordered as a nondecreasing sequence. It follows from λ1(Rαkk ) = 0 for k = 1, . . . ,m, that

λk(Ωα,0) = 0 for k = 1, . . . ,m.

Furthermore, (2.40), (2.42), (2.43), and (2.44) imply that the m+ k-th eigenvalues of the orthogonal sum AΩα,0

coincides with the second eigenvalue λ2(Rαkk ) of the Neumann Laplacian ARαkk as k = 1, . . . ,m:

λm+k(Ωα,0) = λ2(Rαkk ) ∈ Bγ(νk) for k = 1, . . . ,m. (2.45)

Moreover, it is clear from (2.40) and (2.42) that

λk(Ωα,0) > sup I for k = 2m+ 1, 2m+ 2, . . . .

We introduce the functions f0
k : D → R by

f0
k (α1, α2, . . . , αm) = λk+m(Ωα,0), k = 1, . . . ,m. (2.46)

It is important to note that due to (2.45) the value λk+m(Ωα,0) of the function f0
k depends only on the k-th

variable αk. Using this and taking into account that the mapping (2.38) is nondecreasing we get

f0
k (α+

1 , . . . , α
+
k−1, α

−
k , α

+
k+1, . . . , α

+
m)

= νk − γ < νk < νk + γ

= f0
k (α−1 , . . . , α

−
k−1, α

+
k , α

−
k+1, . . . , α

−
m). (2.47)

Step 3. Let (λj(Ω
α,ε))j∈N be the eigenvalues of the Neumann Laplacian AΩα,ε on Ωα,ε counted with multiplici-

ties and ordered as a nondecreasing sequence.
For ε ≥ 0 we introduce the functions fεk : D → R by

fεk(α1, α2, . . . , αm) = λk+m(Ωα,ε), k = 1, . . . ,m. (2.48)

Of course, for ε = 0 these functions coincide with the functions in (2.46). Observe that, in contrast to f0
k , for

ε > 0 the values λk+m(Ωα,ε) of fεk in general do not depend only on the k-th variable. It is important to note
that Theorem A.1 and Remark A.2 show that the functions

ε 7→ λj(Ω
α,ε), j ∈ N,

are continuous for each fixed α. Hence it follows together with (2.47) that

fεk(α+
1 , . . . , α

+
k−1, α

−
k , α

+
k+1, . . . , α

+
m) < νk

< fεk(α−1 , . . . , α
−
k−1, α

+
k , α

−
k+1, . . . , α

−
m)

(2.49)

for ε > 0 sufficiently small. From now on we fix ε > 0 for which (2.49) holds.
To proceed further we need the following multidimensional version of the intermediate value theorem, which

was established in [53, Lemma 3.5].
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14 J. Behrndt and A. Khrabustovskyi: Differential operators with prescribed spectrum

Lemma 2.7 (Hempel-Kriecherbauer-Plankensteiner, 1997) Let ak < bk, k = 1, . . . ,m, andD :=
∏m
k=1[ak, bk].

Assume that f : D → Rm is continuous and that each component function fk is nondecreasing in each of its
arguments. Let us suppose that F−k < F+

k , k = 1, . . . ,m, where

F−k = fk(b1, b2, . . . , bk−1, ak, bk+1, . . . , bm),

F+
k = fk(a1, a2, . . . , ak−1, bk, ak+1, . . . , bm).

Then for any F ∈
∏m
k=1[F−k , F

+
k ] there exists x ∈ D such that f(x) = F .

We apply this lemma to the function fε = (fε1 , . . . , f
ε
m) defined by (2.48). By Theorem A.1 and Remark A.2

fε : D → Rm is continuous. Moreover, by the min-max principle each component fεk of fε is nondecreasing
in each of its arguments. Using this and (2.49) we conclude that fε satisfies all assumptions in Lemma 2.7 and
hence there exists α ∈ D such that

fεk(α) = νk.

With this choice of α = {α1, . . . , αm} and d1, . . . , dm fixed as in the beginning of Step 2 (see (2.42)) it follows
that λm+k(Ωα,ε) = νk for k = 1, . . . ,m. This completes the proof of Theorem 2.6.

3 Singular Schrödinger operators with δ′-interactions

In this section we show that the methods used to control the spectrum of the Neumann Laplacian in the previous
section can also be applied to singular Schrödinger operators describing the motion of quantum particles in
potentials being supported at a discrete (finite or infinite) set of points. These operators are often referred to as
solvable models in quantum mechanics, since their mathematical and physical quantities (e.g., their spectrum)
can be determined explicitly. We refer to the monograph [3] for an introduction to this topic. We also note that in
the mathematical literature such operators are often called Schrödinger operators with point interactions.

The classical example of a Schrödinger operator with δ-interactions is the following formal expression

− d2

dz2
+
∑
k∈N

αkδzk ,

where δzk are Dirac delta-functions supported at the points zk ∈ R and αk ∈ R ∪ {∞}. In the present paper
we treat the closely related model of a Schrödinger operator with δ′-interactions (or point dipole interactions)
defined by the formal expression

− d2

dz2
+
∑
k∈N

βk〈· , δ′zk〉δ
′
zk
, (3.1)

where δ′zk is the distributional derivative of the delta-function supported at zk ∈ R, 〈φ, δ′zk〉 denotes its action on
the test function φ, and βk ∈ R∪ {∞}. The above formal expression can be realized as a self-adjoint operator in
L2 with the action − d2

dz2 and domain consisting of local H2-functions u that satisfy

u′(zk − 0) = u′(zk + 0), u(zk + 0)− u(zk − 0) = βku
′(zk ± 0)

(the case β = ∞ stands for a decoupling with Neumann conditions at zk ± 0). The existence of this model was
pointed out by A. Grossmann, R. Høegh-Krohn, M. Mebkhout in [52], the first rigorous mathematical treatment
of δ′-interactions is due to F. Gesztesy and H. Holden in [48]. Among the numerous subsequent contributions we
mention the more recent papers [62, 63] by A. Kostenko and M.M. Malamud, in which also the more elaborate
case |zk − zk−1| → 0 as |k| → ∞ was treated. In these papers self-adjointness, lower semiboundedness and
spectral properties of the underlying operators have been studied in detail.

Our goal and strategy is similar to [54] in the context of the Neumann Laplacian: We wish to construct an
operator of the form (3.1) with predefined essential spectrum; cf. Theorem 2.4. At this point we present the main
result of this section on a formal level without giving a precise definition of the underlying operator. This will be
done during its proof; cf. Theorem 3.3 for a more precise formulation of Theorem 3.1.
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Theorem 3.1 Let S ⊂ [0,∞) be an arbitrary closed set such that 0 ∈ S. Then there exists a bounded
interval (a, b) ⊂ R, a sequence of points (zk)k∈N in (a, b), and a sequence of positive numbers (βk)k∈N such
that the operator Aβ in L2(a, b) defined by the formal expression (3.1) satisfies

σess(Aβ) = S.

P r o o f. For the construction of the self-adjoint Schrödinger operator with δ′-interactions we use a similar idea
as in the construction of the rooms-and-passages domains in the previous section. Here we split the sequence of
points (zk)k∈N in (3.1) in two interlacing subsequences (xk)k∈N and (yk)k∈N, where the point yk is in the middle
of (xk−1, xk), and instead of βk we denote the interaction strengths at the points xk by pk and at the points yk by
qk. Instead of Aβ we shall write Ap,q for the corresponding Schrödinger operator with δ′-interactions, see Step
3 of the proof. The intervals (xk−1, xk) will play the role of the rooms, the interactions at the points xk will play
the role of the passages, and the interactions at the points yk will play the role of the additional walls inside the
rooms.

As in the proof of Theorem 2.4 we fix a sequence (sk)k∈N such that

sk > 0 and acc((sk)k∈N) =

{
S \ {0}, 0 is an isolated point of S,
S, otherwise,

(3.2)

and for each k ∈ N we choose numbers dk > 0 that satisfy

sk < (π/dk)2. (3.3)

Moreover, we can assume that the dk are chosen sufficiently small, so that∑
k∈N

dk <∞ (3.4)

and hence

lim
k→∞

dk = 0 (3.5)

holds. Finally, we set

x0 = 0, xk = xk−1 + dk, yk =
xk−1 + xk

2
, Ik = (xk−1, xk), k ∈ N,

and we consider the interval (a, b), where

a = x0 = 0 and b =
∑
k∈N

dk.

The proof consists of four steps. In the first step we discuss the spectral properties of the Schrödinger operator
Aqk,Ik on the interval Ik with a δ′-interaction of strength qk > 0 at yk and Neumann boundary conditions at the
endpoints of Ik. In the second step we consider the direct sum of these operators:

A∞,q =
⊕
k∈N

Aqk,Ik .

Note that the Neumann conditions at xk ± 0 can be regarded as δ′-interaction with infinite strength. Thus A∞,q
corresponds to the Schrödinger operator on (a, b) with δ′-interactions of strengths qk at the points yk and δ′-
interactions of strengths∞ at the points xk. The interaction strengths qk will be adjusted in such a way that the
essential spectrum ofA∞,q coincides with S. In fact, σess(A∞,q) is the union of the point 0 and all accumulation
points of a sequence formed by the second eigenvalues of Aqk,Ik . In the third step we perturb the decoupled
operator A∞,q linking the intervals Ik+1 and Ik by a δ′-interaction of a sufficiently large strength pk > 0 for all
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16 J. Behrndt and A. Khrabustovskyi: Differential operators with prescribed spectrum

k ∈ N; the corresponding operator is denoted by Ap,q . We will prove in the last step that the essential spectra of
Ap,q and A∞,q coincide if the interaction strengths pk tend to∞ for k →∞ sufficiently fast.

Step 1. Let qk ∈ (0,∞] and let aqk,Ik be the sesquilinear form in L2(Ik) defined by

aqk,Ik [u,v] =

∫
Ik

u′ · v′ dx

+
1

qk
(u(yk + 0)− u(yk − 0)) (v(yk + 0)− v(yk − 0)),

dom(aqk,Ik) = H1(Ik \ {yk});

for qk = ∞ we use the convention ∞−1 = 0. The form aqk,Ik is densely defined, nonnegative, and closed in
L2(Ik). Hence by the first representation theorem there is a unique nonnegative self-adjoint operator Aqk,Ik in
L2(Ik) such that dom(Aqk,Ik) ⊂ dom(aqk,Ik) and

(Aqk,Iku,v)L2(Ik) = aqk,Ik [u,v], u ∈ dom(Aqk,Ik), v ∈ dom(aqk,Ik).

Integration by parts shows that dom(Aqk,Ik) consists of all those functions u ∈ H2(Ik \ {yk}) that satisfy the
δ′-jump condition

u′(yk − 0) = u′(yk + 0) =
1

qk
(u(yk + 0)− u(yk − 0))

at the point yk and Neumann boundary conditions

u′(xk−1) = u′(xk) = 0

at the endpoints of Ik. Furthermore, the action of Aqk,Ik is given by

(Aqk,Iku)�(xk−1,yk)= −
(
u�(xk−1,yk)

)′′
, (Aqk,Iku)�(yk,xk)= −

(
u�(yk,xk)

)′′
.

The spectrum of the self-adjoint operator Aqk,Ik is purely discrete. We use the notation {λj(Aqk,Ik)}j∈N for the
corresponding eigenvalues counted with multiplicities and ordered as a nondecreasing sequence. Some properties
of these eigenvalues are collected in the next lemma. Here we will also make use of the Neumann Laplacian on
Ik, defined as usual via the form

a0,Ik [u,v] = (u′,v′)L2(Ik), dom(a0,Ik) = H1(Ik), (3.6)

and we shall denote this operator by A0,Ik . To avoid confusion we emphasize that the form domain H1(Ik)
of the Neumann Laplacian A0,Ik is smaller than the form domain H1(Ik \ {yk}) of the operators Aqk,Ik with
qk ∈ (0,∞]. Furthermore, we mention already here that the self-adjoint operator A∞,Ik is the direct sum of the
Neumann Laplacians on the intervals (xk−1, yk) and (yk, xk).

Lemma 3.2 For each j ∈ N

the function (0,∞] 3 qk 7→ λj(Aqk,Ik) is
monotonically decreasing and continuous, (3.7)

and one has

lim
qk→+0

λj(Aqk,Ik) = λj(A0,Ik). (3.8)

Proof of Lemma 3.2. The monotonicity of the function (3.7) follows from the min-max principle and the
monotonicity of the function qk 7→ aqk,Ik [u,u] for each fixed u ∈ H1(Ik). To prove the continuity of the
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function (3.7) consider qk, q̂k ∈ (0,∞], f ,g ∈ L2(Ik), and set u = (Aqk,Ik + I)−1f and v = (Aq̂k,Ik + I)−1g.
Then we have(

(Aqk,Ik + I)−1f − (Aq̂k,Ik + I)−1f ,g
)
L2(Ik)

=
(
u, (Aq̂k,Ik + I)v

)
L2(Ik)

−
(
(Aqk,Ik + I)u,v

)
L2(Ik)

= aq̂k,Ik [u,v]− aqk,Ik [u,v]

=

(
1

q̂k
− 1

qk

)
(u(yk + 0)− u(yk − 0)) (v(yk + 0)− v(yk − 0))

(3.9)

With I+
k = (yk, xk) and I−k = (xk−1, yk) one has the standard trace estimate (see, e.g. [18, Lemma 1.3.8])

|u(yk ± 0)|2 ≤ dk
2
‖u′‖2

L2(I±k )
+

4

dk
‖u‖2

L2(I±k )
, u ∈ H1(I±k ),

and with Ck = max{dk, 8d−1
k } we estimate∣∣u(yk + 0)− u(yk − 0)

∣∣2 ≤ 2|u(yk + 0)|2 + 2|u(yk − 0)|2

≤ dk‖u′‖2L2(Ik\{yk}) + 8d−1
k ‖u‖

2
L2(Ik)

≤ Ck
(
aqk,Ik [u,u] + ‖u‖2L2(Ik)

)
= Ck

(
(Aqk,Ik + I)u,u

)
L2(Ik)

= Ck
(
f , (Aqk,Ik + I)−1f

)
L2(Ik)

≤ Ck‖f‖L2(Ik)‖(Aqk,Ik + I)−1f‖L2(Ik)

≤ Ck‖f‖2L2(Ik),

(3.10)

where we have used qk > 0 in the third estimate. In the same way we get |v(yk+0)−v(yk−0)|2 ≤ Ck‖g‖2L2(Ik).
Hence (3.9) leads to the estimate∣∣((Aqk,Ik + I)−1f − (Aq̂k,Ik + I)−1f ,g

)
L2(Ik)

∣∣
≤ Ck

∣∣∣∣ 1

q̂k
− 1

qk

∣∣∣∣ ‖f‖L2(Ik)‖g‖L2(Ik),

and from this we conclude

‖(Aqk,Ik + I)−1 − (Aq̂k,Ik + I)−1‖ → 0 as q̂k → qk. (3.11)

It is well-known (see, e.g., [59,81] or [79, Corollary A.15]) that the norm-resolvent convergence in (3.11) implies
the convergence of the eigenvalues, namely for each j ∈ N we obtain

λj(Aq̂k,Ik)→ λj(Aqk,Ik) as q̂k → qk,

and hence the function in (3.7) is continuous.
It remains to prove (3.8). For this we will use Theorem B.2 from Appendix B. Note first that the set{

u ∈ H1(Ik \ {yk}) = dom(aqk,Ik) : sup
qk>0

aqk,Ik [u,u] <∞
}

coincides with the form domain dom(a0,Ik) = H1(Ik) of the Neumann Laplacian in (3.6). Moreover, for each
u,v from this set one has

lim
qk→0

aqk,Ik [u,v] = a0,Ik [u,v].

Since the spectra of the operators Aqk,Ik and A0,Ik are purely discrete Theorem B.2 shows (3.8).
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Now we return to the spectral properties of the self-adjoint operators Aqk,Ik . In particular, the eigenvalues of
the Neumann Laplacian A0,Ik on Ik and the direct sum of the Neumann Laplacians A∞,Ik on (xk−1, yk) and
(yk, xk) can be easily calculated. For our purposes it suffices to note that

λ1(A0,Ik) = λ1(A∞,Ik) = 0, (3.12)

λ2(A0,Ik) = (π/dk)
2
, λ2(A∞,Ik) = 0, (3.13)

λ3(A∞,Ik) = (2π/dk)
2
. (3.14)

It follows from (3.7), (3.12), and (3.14) that for any qk ∈ (0,∞] we have

λ1(Aqk,Ik) = 0, λ3(Aqk,Ik) ≥ (2π/dk)
2
. (3.15)

Also, using (3.7), (3.8), (3.13) and taking into account that 0 < sk < (π/dk)2 from (3.3) we conclude that there
exists qk > 0 such that

λ2(Aqk,Ik) = sk, k ∈ N. (3.16)

From now on we fix qk > 0 for which (3.16) holds.

Step 2. Now we consider the direct sum

A∞,q =
⊕
k∈N

Aqk,Ik (3.17)

of the nonnegative self-adjoint operators Aqk,Ik in the space

L2(a, b) =

∞⊕
k=1

L2(Ik).

In a more explicit form A∞,q is given by

(A∞,qu)�Ik = Aqk,Ikuk,

dom(A∞,q) =

{
u ∈ L2(a, b) : uk ∈ dom(Aqk,Ik),∑

k∈N
‖Aqk,Ikuk‖2L2(Ik) <∞

}
,

where uk := u �Ik stands for the restriction of the function u onto the interval Ik. Note that the corresponding
sesquilinear form a∞,q associated with A∞,q is

a∞,q[u, v] =
∑
k∈N

aqk,Ik [uk,vk],

dom(a∞,q) =

{
u ∈ L2(a, b) : uk ∈ dom(aqk,Ik),

∑
k∈N

aqk,Ik [uk,uk] <∞

}
.

It is clear that the operator A∞,q in (3.17) is self-adjoint and nonnegative in L2(a, b). Furthermore, it is not
difficult to check that

σess(A∞,q) = acc
(
(λj(Aqk,Ik))j,k∈N

)
holds. Taking into account that 0 ∈ S and using (3.2), (3.5), (3.15), (3.16), we arrive at

σess(A∞,q) = {0} ∪ acc
(
(sk)k∈N

)
= S.
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Step 3. In this step we perturb the decoupled operator A∞,q linking the intervals Ik+1 and Ik by a δ′-interaction
of sufficiently large strength pk > 0 for all k ∈ N. The corresponding self-adjoint operator will be denoted by
Ap,q . More precisely, for pk > 0, k ∈ N, we consider the sesquilinear form ap,q

ap,q[u, v] =
∑
k∈N

aqk,Ik [uk,vk]

+
∑
k∈N

1

pk
(u(xk + 0)− u(xk − 0)) (v(xk + 0)− v(xk − 0)),

dom(ap,q) =
{
u ∈ L2(a, b) : uk ∈ dom(aqk,Ik), ap,q[u, u] <∞

}
,

in L2(a, b). This form is nonnegative and densely defined in L2(a, b). Moreover, the form is closed by [63,
Lemma 2.6] and the corresponding nonnegative self-adjoint operator Ap,q is given by

(Ap,qu)�(a,b)\Z = −(u�(a,b)\Z)′′,

dom(Ap,q) =

{
u ∈ H2((a, b) \ Z) : u′(a) = 0,

u′(yk + 0) = u′(yk − 0) =
1

qk
(u(yk + 0)− u(yk − 0)) ,

u′(xk + 0) = u′(xk − 0) =
1

pk
(u(xk + 0)− u(xk − 0))

}
,

where Z = {xk : k ∈ N} ∪ {yk : k ∈ N}; cf. [63, Lemma 2.6 and Proposition 2.1]. Now consider

ρk := max

{
1

pkdk
,

1

pkdk+1

}
, k ∈ N,

and assume that

ρk → 0 as k →∞. (3.18)

Step 4. In this step we verify

σess(Ap,q) = σess(A∞,q). (3.19)

by showing that the difference of resolvents

Tp,q := (Ap,q + I)−1 − (A∞,q + I)−1

is a compact operator. Then (3.19) is an immediate consequence of the Weyl theorem, see, e.g. [82, Theorem
XIII.14]. We note that in a similar situation a related perturbation result and the invariance of the essential
spectrum was shown in [63, Theorem 1.3].

In the following let κn = supk∈[n,∞)∩N ρk. Then it follows from (3.18) that

κn <∞ for each n ∈ N and κn → 0 as n→∞. (3.20)

In a first step we claim that

dom(a∞,q) = dom(ap,q). (3.21)

In fact, the inclusion dom(ap,q) ⊂ dom(a∞,q) follows directly from the definition of the above form domains.
To prove the reverse inclusion we have to show that∑

k∈N

1

pk
|u(xk + 0)− u(xk − 0)|2 <∞ (3.22)
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for u ∈ dom(a∞,q). Using the standard trace estimates (see, e.g. [18, Lemma 1.3.8])

|u(xk + 0)|2 ≤ dk+1‖u′‖2L2(Ik+1) +
2

dk+1
‖u‖2L2(Ik+1),

|u(xk − 0)|2 ≤ dk‖u′‖2L2(Ik) +
2

dk
‖u‖2L2(Ik),

and taking into account that supk∈N dk < b− a and qk > 0 we obtain∑
k∈N

1

pk
|u(xk + 0)− u(xk − 0)|2

≤ 2
∑
k∈N

1

pk
|u(xk + 0)|2 + 2

∑
k∈N

1

pk
|u(xk − 0)|2

≤ 2
∑
k∈N

1

pk

(
dk+1‖u′‖2L2(Ik+1) +

2

dk+1
‖u‖2L2(Ik+1)

)
+ 2

∑
k∈N

1

pk

(
dk‖u′‖2L2(Ik) +

2

dk
‖u‖2L2(Ik)

)
≤ 2κ1

∑
k∈N

d2
k+1‖u′‖2L2(Ik+1) + 4κ1

∑
k∈N
‖u‖2L2(Ik+1)

+ 2κ1

∑
k∈N

d2
k‖u′‖2L2(Ik) + 4κ1

∑
k∈N
‖u‖2L2(Ik)

≤ 4κ1(b− a)2‖u′‖2L2(a,b) + 8κ1‖u‖2L2(a,b)

≤ 4κ1(b− a)2a∞,q[u, u] + 8κ1‖u‖2L2(a,b),

(3.23)

and thus (3.22) holds. We have shown (3.21).
Now let f, g ∈ L2(a, b) be arbitrary and consider the functions

u = (Ap,q + I)−1f ∈ dom(Ap,q) ⊂ dom(ap,q),

v = (A∞,q + I)−1g ∈ dom(A∞,q) ⊂ dom(a∞,q).

Using (3.21) and the fact that (A∞,q + I)−1 is a self-adjoint operator we get

(Tp,qf, g)L2(a,b) =
(
(Ap,q + I)−1f − (A∞,q + I)−1f, g

)
L2(a,b)

= (u, (A∞,q + I)v)L2(a,b) − ((Ap,q + I)u, v)L2(a,b)

= a∞,q[u, v]− ap,q[u, v]

= −
∑
k∈N

1

pk
(u(xk + 0)− u(xk − 0))(v(xk + 0)− v(xk − 0)).

(3.24)

Next we introduce the operators Γp,Γ∞ : L2(a, b)→ l2(N) defined by

(Γpf)k :=
1
√
pk

[
((Ap,q + I)−1f)(xk + 0)− ((Ap,q + I)−1f)(xk − 0)

]
,

(Γ∞g)k :=
1
√
pk

[
((A∞,q + I)−1g)(xk + 0)− ((A∞,q + I)−1g)(xk − 0)

]
,

on their natural domains

dom(Γp) =
{
f ∈ L2(a, b) : Γpf ∈ l2(N)

}
,

dom(Γ∞) =
{
g ∈ L2(a, b) : Γ∞g ∈ l2(N)

}
.
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Note that dom(Γp) coincides with the whole L2(a, b); this follows immediately from the ran(Ap,q + I)−1 ⊂
dom(ap,q). Let us prove that the operator Γp is compact. For this purpose we introduce the finite rank operators

Γnp : L2(a, b)→ l2(N), (Γnpf)k =

{
(Γpf)k, k ≤ n,
0, k > n.

Let f ∈ L2(a, b) = dom(Γp) and u = (Ap,q + I)−1f . Using the same arguments as in the proof of (3.23) and
(3.10) we obtain

‖Γnpf − Γpf‖2l2(N) =
∑
k: k>n

1

pk
|u(xk + 0)− u(xk − 0)|2

≤ 4κn+1(b− a)2
(
ap,q[u, u] + ‖u‖2L2(a,b)

)
+ 8κn+1‖u‖2L2(a,b)

= 4κn+1(b− a)2(f, u)L2(a,b) + 8κn+1‖u‖2L2(a,b)

≤ (4κn+1(b− a)2 + 8κn+1)‖f‖2L2(a,b)

(3.25)

and hence it follows from (3.20) that ‖Γnp − Γp‖l2(N) → 0 as n → ∞. Since Γnp are finite rank operators we
conclude that the operator Γp is compact. Furthermore, it is easy to see that Γ∞ is a bounded operator defined on
L2(a, b). Indeed, for g ∈ L2(a, b) and v = (A∞,q + I)−1g one verifies in the same way as in (3.23) and (3.25)
that

‖Γ∞g‖2l2(N) =
∑
k∈N

(pk)−1|v(xk + 0)− v(xk − 0)|2

≤ (4κ1(b− a)2 + 8κ1)‖g‖2L2(a,b).

Now (3.24) can be rewritten in the form

(Tp,qf, g)L2(a,b) = −(Γpf,Γ∞g)l2(N), f, g ∈ L2(a, b),

and hence we have Tp,q = −(Γ∞)∗Γp. Since Γp is compact and Γ∞ is bounded (thus (Γ∞)∗ is also bounded)
we conclude that Tp,q is compact.

For the convenience of the reader we now formulate Theorem 3.1 in a more precise form.
Theorem 3.3 Let S ⊂ [0,∞) be an arbitrary closed set such that 0 ∈ S and choose the sequences (sk)k∈N

and (dk)k∈N as in (3.2)–(3.4). Let (qk)k∈N and (pk)k∈N be sequences such that (3.16) and (3.18) hold. Then
the self-adjoint Schrödinger operator Ap,q with δ′-interactions of strengths (qk)k∈N and (pk)k∈N at the points
(yk)k∈N and (xk)k∈N, respectively, satisfies

σess(Ap,q) = S.

At the end of this section we note that there exist many other methods for the construction of Schrödinger
operators with predefined spectral properties. For example, F. Gesztesy, W. Karwowski, and Z. Zhao constructed
in [49, 50] a smooth potential V (which is a limit of suitably chosen N -soliton solutions of the Korteweg-de
Vries equation as N →∞) such that the Schrödinger operator H = − d2

dx2 +V has purely absolutely continuous
spectrum R+ and a prescribed sequence of points in R− is contained in the set of eigenvalues of H .

4 Essential spectra of self-adjoint extensions of symmetric operators

The aim of this slightly more abstract section is to discuss some possible spectral properties of self-adjoint
extensions of a given symmetric operator in a separable Hilbert space. In a similar context the existence of
self-adjoint extensions with prescribed point spectrum, absolutely continuous spectrum, and singular continuous
spectrum in spectral gaps of a fixed underlying symmetric operator was discussed in [4, 5, 19–23], see also [74]
for a related result on prescribed eigenvalue asymptotics or, e.g., the earlier contributions [7, 46, 47, 55]. Our
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main observation here is the fact that for a symmetric operator with infinite deficiency indices one can construct
self-adjoint extensions with prescribed essential spectrum; cf. Theorem 4.3 below.

In the following let H be a separable (infinite dimensional) complex Hilbert space with scalar product (·, ·).
Recall that a linear operator S inH is said to be symmetric if

(Sf, g) = (f, Sg), f, g ∈ dom(S).

We point out that a symmetric operator is in general not self-adjoint. More precisely, if the domain dom(S) of S
is dense inH then the adjoint S∗ of the operator S is given by

S∗h = k,

dom(S∗) =
{
h ∈ H : ∃ k ∈ H such that (Sf, h) = (f, k) for all f ∈ dom(S)

}
,

and the fact that S is symmetric is equivalent to the inclusion S ⊂ S∗ in the sense that dom(S) ⊂ dom(S∗) and
S∗f = Sf for all f ∈ dom(S). However, this is obviously a weaker property than the more natural physical
property of self-adjointness, that is, S = S∗. A symmetric operator is not necessarily closed (although closable)
and the spectrum of a symmetric operator which is not self-adjoint may cover the whole complex plane (or at
least the upper or lower complex halfplane). We also point out that the closure S of a symmetric operator S need
not be self-adjoint and it need not have self-adjoint extensions inH. A symmetric operator S is called essentially
self-adjoint if its closure S is self-adjoint, that is, S = S∗ – however, we shall not deal with essential self-adjoint
operators here. We emphasize that from a spectral theoretic point of view a symmetric operator (or an essentially
self-adjoint operator) which is not self-adjoint is not suitable as an observable in the description of a physical
quantum system.

It is an important issue to understand in which situations a symmetric operator admits self-adjoint extensions
and how these self-adjoint extensions can be described. These questions have already been discussed in the
classical contribution [76] by J. von Neumann. For completeness we recall that a self-adjoint operator A in H
is an extension of a densely defined symmetric operator S if S ⊂ A; since A is self-adjoint this is equivalent to
A ⊂ S∗. We start by recalling the so-called first von Neumann formula in the next theorem.

Theorem 4.1 Let S be a densely defined closed symmetric operator in H. Then the domain of the adjoint
operator S∗ admits the direct sum decomposition

dom(S∗) = dom(S) +̇ ker(S∗ − i) +̇ ker(S∗ + i). (4.1)

Note that S∗fi = ifi for all fi ∈ ker(S∗ − i) and similarly S∗f−i = −if−i for all f−i ∈ ker(S∗ + i). The
spaces ker(S∗ − i) and ker(S∗ + i) are usually called defect spaces of S and their dimensions are the deficiency
indices of S. It will turn out that the deficiency indices and isometric operators in between the defect spaces are
particularly important in the theory of self-adjoint extensions. One can show that the dimension of ker(S∗−λ+)
does not depend on λ+ ∈ C+ and the dimension of ker(S∗ − λ−) does not depend on λ− ∈ C−. However, for
fixed λ+ ∈ C+ and λ− ∈ C− and hence, in particular, for λ+ = i and λ− = −i, the dimensions of ker(S∗−λ+)
and ker(S∗− λ−) may be different. According to the second von Neumann formula both dimensions coincide if
and only if S admits self-adjoint extensions inH.

Theorem 4.2 Let S be a densely defined closed symmetric operator inH. Then there exist self-adjoint exten-
sions A of S inH if and only if

dim
(
ker(S∗ − i)

)
= dim

(
ker(S∗ + i)

)
.

If, in this case U : ker(S∗ − i) → ker(S∗ + i) is a unitary operator and dom(S∗) is decomposed as in (4.1),
then the operator A defined by

A(fS + fi + f−i) = SfS + ifi − if−i,
dom(A) =

{
f = fS + fi + f−i ∈ dom(S∗) : f−i = Ufi

}
,

(4.2)

is a self-adjoint extension of S and, vice versa, for any self-adjoint extensionA of S there exists a unitary operator
U : ker(S∗ − i)→ ker(S∗ + i) such that (4.2) holds.
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It is intuitively clear that for a densely defined symmetric operator with infinite deficiency indices (and hence
equal deficiency indices as H is assumed to be separable) there is a lot of flexibility for the unitary operators in
between the infinite dimensional defect subspaces. This flexibility also allows to construct self-adjoint extensions
with various different spectral properties.

Now we wish to consider the following particular situation. Let again S be a densely defined closed symmetric
operator inH with equal infinite deficiency indices and assume that there exists a self-adjoint extension of S such
that the resolvent is a compact operator. In this situation we shall construct another self-adjoint extension A
of S with prescribed essential spectrum in Theorem 4.3 below. In this context we also mention the following
variant of a remarkable result due to J. Brasche, which can be viewed as the final outcome of a long and fruitful
investigation originally initiated by H. Neidhardt and his coauthors: For a densely defined closed symmetric
operator S in H with equal infinite deficiency indices and a (finite or infinite) gap there exists a self-adjoint
extension with arbitrary spectrum within this gap; cf. [19, Theorem 27] for more details.

Theorem 4.3 Let S be a densely defined closed symmetric operator inH with equal infinite deficiency indices
and assume that there exists a self-adjoint extension of S with compact resolvent. Let G be a separable infinite
dimensional Hilbert space and let Ξ be a self-adjoint operator in G with R ∩ ρ(Ξ) 6= ∅. Then there exists a
self-adjoint extension A of S inH such that

σess(A) = σess(Ξ). (4.3)

In particular, for any closed set Σ ⊂ R with Σ 6= R there exists a self-adjoint extension A of S in H such that
σess(A) = Σ.

P r o o f. LetA0 be a self-adjoint extension of S inH such that the resolvent (A0−λ)−1 is a compact operator
for some, and hence for all, λ ∈ ρ(A0). Let us fix some point µ ∈ R ∩ ρ(A0) ∩ ρ(Ξ). Note that this is possible
since we have assumed R ∩ ρ(Ξ) 6= ∅ and the spectrum of A0 is a discrete subset of the real line due to the
compactness assumption. In the present situation the spaces ker(S∗ − λ+) and ker(S∗ − λ−) for λ± ∈ C±
are both infinite dimensional and one can show that here also the space ker(S∗ − µ) is infinite dimensional; this
follows, e.g., from the direct sum decomposition

dom(S∗) = dom(A0) +̇ ker(S∗ − µ) (4.4)

and the fact that S∗ is an infinite dimensional extension of A0. Moreover, it is no restriction to assume that
the Hilbert space G in the assumptions of the theorem coincides with ker(S∗ − µ) since any two separable
infinite dimensional Hilbert spaces can be identified via a unitary operator. Now observe the orthogonal sum
decomposition

H = ker(S∗ − µ)⊕ ran(S − µ)

and with respect to this decomposition we consider the bounded everywhere defined operator

Rµ := (A0 − µ)−1 +

[
(Ξ− µ)−1 0

0 0

]
. (4.5)

We claim that R−1
µ is a well-defined operator. In fact, if Rµh = 0 for some h ∈ H then (4.5) implies

(A0 − µ)−1h = −
[
(Ξ− µ)−1 0

0 0

]
h,

and since the left-hand side belongs to dom(A0) and the right-hand side is nonzero only in ker(S∗−µ) it follows
from the direct sum decomposition (4.4) that h = 0. This confirms that R−1

µ , and hence also

A := R−1
µ + µ

is a well-defined operator. It is clear from Rµ = (A − µ)−1 that µ ∈ ρ(A) and A is self-adjoint in H since the
same is obviously true for Rµ in (4.5). In order to determine the essential spectrum of A recall the Weyl theorem
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(see, e.g., [82, Theorem XIII.14]) which states that compact perturbations in resolvent sense do not change the
essential spectrum. In the present situation we have that

(A− µ)−1 −
[
(Ξ− µ)−1 0

0 0

]
= Rµ −

[
(Ξ− µ)−1 0

0 0

]
= (A0 − µ)−1

is a compact operator and hence the essential spectrum σess((A−µ)−1) coincides with the essential spectrum of
the diagonal block matrix operator, that is,

σess

([
(Ξ− µ)−1 0

0 0

])
= σess((Ξ− µ)−1) ∪ {0}.

This implies (4.3).

From the construction of the operator A in the proof of Theorem 4.3 the following representation can be
concluded:

A(f0 + fµ) = A0f0 + µfµ,

dom(A) =
{
f0 + fµ ∈ dom(A0) +̇ ker(S∗ − µ) :

(Ξ− µ)fµ = Pµ(A0 − µ)f0

}
;

(4.6)

here Pµ denotes the orthogonal projection inH onto ker(S∗−µ). In fact, since (4.5) is the resolvent (A−µ)−1 of
A it follows that the elements f ∈ dom(A) have the form f = Rµh, h ∈ H. Due to the direct sum decomposition
(4.4) we have Rµh = f = f0 + fµ with some f0 ∈ dom(A0) and some fµ ∈ ker(S∗ − µ), and when comparing
with (4.5) it follows that f0 = (A0−µ)−1h and fµ = (Ξ−µ)−1Pµh. Hence it is clear that f = Rµh ∈ dom(A)
satisfies the condition

(Ξ− µ)fµ = Pµ(A0 − µ)f0 (4.7)

in (4.6). On the other hand, if f = f0 + fµ ∈ dom(A0) +̇ ker(S∗ − µ) is such that (4.7) holds then one can
verify in a similar way that there exists h ∈ H such that f = Rµh, and hence f ∈ dom(A). Summing up we
have shown the representation (4.6).

Finally we note that the explicit form (4.6) of A comes via a restriction of the adjoint operator S∗ and the
decomposition (4.4); the domain of A is described by an abstract boundary condition depending on the choice of
the operator Ξ. This abstract result can of course be formulated in various explicit situations, e.g., for infinitely
many δ′-interactions as in Section 3 or for the Laplacian on a bounded domain as in Section 2, where the boundary
condition in (4.6) can be specified further.

Furthermore, the self-adjoint extensionsA andA0 can be described in the formalism of von Neumann’s second
formula in Theorem 4.2. If one fixes a unitary operator U0 : ker(S∗ − i)→ ker(S∗ + i) for the representation of
A0 in (4.2) then the unitary operator U : ker(S∗ − i)→ ker(S∗ + i) corresponding to the self-adjoint extension
A can be expressed in terms of U0 and the parameter Ξ. The technical details are left to the reader.

A Continuous dependence of the eigenvalues on varying domains

In this appendix we establish an auxiliary result on the continuous dependence of the eigenvalues of the Neumann
Laplacian on varying domains, which is useful and convenient for the proofs of Theorem 2.4 and Theorem 2.6.

For our purposes it is sufficient to consider the following geometric setting: Let Ω ⊂ R2 be a bounded
Lipschitz domain and assume that also the subdomains

Ω± = Ω ∩
{

(x, y) ∈ R2 : ±x > 0
}

are (bounded, nontrivial) Lipschitz domains. Furthermore, we assume that the set

Γ = Ω ∩
{

(x, y) ∈ R2 : x = 0
}

= ∂Ω− ∩ ∂Ω+
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is a (compact) interval with the endpoints (0, A) and (0, B) in R2, where A < B. For a, b ∈ [A,B] fixed such
that a ≤ b we introduce the domain Ωa,b by

Ωa,b = Ω− ∪ Ω+ ∪ Γa,b, where Γa,b = {0} × (a, b) (A.1)

(see Figure 5, left). Note that ΩA,B = Ω and Ωa,a = Ω− ∪Ω+ = Ω \ Γ. We denote by Y ⊂ [A,B]× [A,B] the
set of all admissible pairs {a, b}, that is,

Y =
{
{a, b} : A ≤ a ≤ b ≤ B

}
.

(0, a)

(0, b)

(0, A)

(0, B)

Fig. 5 Domain Ωa,b with one wall (left) and m = 3 walls (right)

Since the domain Ωa,b in (A.1) has the cone property (see, e.g. [1, Chapter IV, 4.3]) it follows from Rellich’s
theorem [1, Theorem 6.2] that the embedding H1(Ωa,b) ↪→ L2(Ωa,b) is compact. Therefore, the spectrum of the
Neumann Laplacian AΩa,b on Ωa,b is purely discrete. We denote by (λk(Ωa,b))k∈N the sequence of eigenvalues
of AΩa,b numbered in nondecreasing order with multiplicities taken into account.

Theorem A.1 For each k ∈ N the function {a, b} 7→ λk(Ωa,b) is continuous on Y .

Remark A.2 Theorem A.1 remains valid for more general domains Ωa,b obtained from Ω by adding m > 1
walls in the same way – see Figure 5 (right, here m = 3). In this case a = {a1, . . . , bm}, b = {b1, . . . , bm} with

Aj ≤ aj ≤ bj ≤ Bj , j = 1, . . . ,m, (A.2)

and {a, b} 7→ λk(Ωa,b) is continuous on {{a, b} ∈ R2m : (A.2) holds}.
For the proof of Theorem A.1 we will make use of a variant of an abstract result from [56] (originally formu-

lated and proved for operators in varying Hilbert spaces), which is here obtained as Corollary A.4 below. The
next proposition and its elegant proof were communicated to us by an anonymous referee.

Proposition A.3 Let Bn, n ∈ N, and B be compact normal operators in a Hilbert space H. Assume that the
following conditions hold:

(i) ∀f ∈ H : Bnf → Bf as n→∞;

(ii) for any bounded sequence (fn)n∈N inH there exists u ∈ H and a subsequence (nk)k∈N such thatBnkfnk →
u inH as k →∞.

Then

‖Bn −B‖ → 0 as n→∞. (A.3)

P r o o f. Let An := Bn −B, n ∈ N, and note that, due to the compactness of the operator B,

(ii) holds also with An instead of Bn. (A.4)

Let µn ∈ σ(An) be such that |µn| coincides with the spectral radius of An. Due to the compactness of An, µn is
an eigenvalue of An. Moreover, since An is also a normal operator, one has (see, e.g., [59, Ch. 5, Eq. 2.4])

‖An‖ = |µn|. (A.5)
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To prove (A.3) it suffices to show µn → 0 as n→∞. Assume the opposite: there exists a subsequence (nk)k∈N
such that

∀k ∈ N : |µnk | ≥ C1 for some C1 > 0. (A.6)

It follows from (i) and the Uniform Boundedness Principle (see, e.g. [81, Theorem III.9]) that the sequence of
norms (‖An‖)n∈N is bounded. Hence

∃C2 > 0 : |µnk | ≤ C2, k ∈ N. (A.7)

Let fnk , k ∈ N be an eigenfunction of Ank corresponding to µnk and normalized by

‖fnk‖H = 1. (A.8)

Due to (A.4), (A.7), (A.8) there is a subsequence (for simplicity, still denoted by (nk)k∈N) and µ ∈ C, u ∈ H
such that

µnk → µ as k →∞, (A.9)
Ankfnk → u strongly inH as k →∞. (A.10)

Due to (A.6) µ 6= 0. Taking into account that Ankfnk = µnkfnk , we conclude from (A.9)-(A.10) that

fnk → f := µ−1u strongly inH as k →∞. (A.11)

Finally, using (A.6), (A.8), (A.5), and (A.7) we get

0 < C1 ≤ |µnk | = ‖µnkfnk‖H = ‖Ank(fnk − f) +Ankf‖H
≤ |µnk |‖fnk − f‖H + ‖Ankf‖H
≤ C2‖fnk − f‖H + ‖Ankf‖H.

(A.12)

Due to (i) and (A.11) the right-hand-side of (A.12) tends to 0 as k →∞; a contradiction.

From Proposition A.3 we immediately get the following useful corollary.
Corollary A.4 Let Bn, n ∈ N, and B be compact non-negative operators in a Hilbert space H satisfying

assumptions (i) and (ii) in Proposition A.3. We denote by (µk(Bn))k∈N and (µk(B))k∈N the sequences of the
eigenvalues of Bn and B, respectively, numbered in nonincreasing order with multiplicities taken into account.
Then for each k ∈ N

µk(Bn)→ µk(B) as n→∞. (A.13)

Proof of Theorem A.1. Fix some {a, b} ∈ Y and consider an arbitrary sequence {an, bn} ∈ Y , n ∈ N, such
that limn→∞ an = a and limn→∞ bn = b. We have to show that for each k ∈ N

λk(Ωan,bn)→ λk(Ωa,b) as n→∞. (A.14)

The strategy is to apply Corollary A.4 to the resolvents of the Neumann Laplacians AΩan,bn
and AΩa,b . More

precisely, we consider the operators

Bn = (AΩan,bn
+ I)−1 and B = (AΩa,b + I)−1,

which are compact non-negative operators acting inH = L2(Ω) = L2(Ωa,b). We show below that these operators
satisfy the assumptions (i) and (ii) in Proposition A.3. Then it follows that (A.13) holds for each k ∈ N and from

µk(Bn) = (λk(Ωan,bn) + 1)−1 and µk(B) = (λk(Ωa,b) + 1)−1

we conclude (A.14).
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In order to check condition (i) let f ∈ L2(Ω) and set un = Bnf , n ∈ N. For φ ∈ H1(Ωan,bn) it follows from
the definition of the Neumann Laplacian AΩan,bn

that un satisfies

(∇un,∇φ)L2(Ωan,bn )+(un, φ)L2(Ωan,bn ) =
(
(AΩan,bn

+I)un, φ
)
L2(Ωan,bn )

= (f, φ)L2(Ωan,bn ). (A.15)

In particular, using (A.15) for φ = un we get

‖un‖2H1(Ωan,bn ) = ‖∇un‖2L2(Ωan,bn ) + ‖un‖2L2(Ωan,bn ) = (f, un)L2(Ωan,bn )

≤ ‖f‖L2(Ωan,bn )‖un‖L2(Ωan,bn ) ≤ ‖f‖L2(Ωan,bn )‖un‖H1(Ωan,bn ),

and therefore

‖un‖H1(Ωan,bn ) ≤ ‖f‖L2(Ωan,bn ). (A.16)

We set u±n = un�Ω± . Below we shall use the same ±-superscript notation for restrictions of other functions
onto Ω±. It follows from (A.16) that (u±n )n∈N is a bounded sequence in H1(Ω±) and hence there exist u± ∈
H1(Ω±) and a subsequence nk →∞ such that

u±nk ⇀ u± in H1(Ω±) (A.17)

(as usual the notation⇀ is used for the weak convergence). With the help of Rellich’s theorem we conclude from
(A.17) that

u±nk → u± in H1−κ(Ω±), κ ∈ (0, 1]. (A.18)

Finally, well-known mapping properties of the trace operator on H1(Ω±) (see, e.g., [73, Theorem 3.37]) together
with (A.18) lead to

γ±Γ u
±
nk
→ γ±Γ u

± in L2(Γ) (A.19)

as nk →∞, where γ±Γ u
± stands for the restriction of the trace of the function u± ∈ H1(Ω±) onto Γ.

Next we introduce the set of functions

Ĥ1(Ωa,b) =
{
u ∈ H1(Ωa,b) : ∃δ = δ(u) > 0 such that

u = 0 in δ-neighborhoods of (0, a) and (0, b)
}
.

It is known that Ĥ1(Ωa,b) is dense in H1(Ωa,b) (this is due to the fact that the capacity of the set {(0, a), (0, b)}
is zero; we refer to [80] for more details). Now let φ ∈ Ĥ1(Ωa,b). It is clear that for nk sufficiently large we also
have φ ∈ H1(Ωank ,bnk ) and hence (A.15) is valid. The identity (A.15) written componentwise reads as

(∇u−nk ,∇φ
−)L2(Ω−) + (∇u+

nk
,∇φ+)L2(Ω+) + (u−nk , φ

−)L2(Ω−) + (u+
nk
, φ+)L2(Ω+)

= (f−, φ−)L2(Ω−) + (f+, φ+)L2(Ω+),

and passing to the limit (we have weak convergence in H1(Ω±) by (A.17)) as nk →∞ we get

(∇u−,∇φ−)L2(Ω−) + (∇u+,∇φ+)L2(Ω+) + (u−, φ−)L2(Ω−) + (u+, φ+)L2(Ω+)

= (f−, φ−)L2(Ω−) + (f+, φ+)L2(Ω+).
(A.20)

Let us denote

u(x) =

{
u−(x), x ∈ Ω−,

u+(x), x ∈ Ω+.

Obviously u ∈ L2(Ω). Using (A.18) with κ = 1 we obtain

unk → u in L2(Ω). (A.21)
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Since unk ∈ H1(Ωank ,bnk ) it is clear that

γ−Γank ,bnk
u−nk = γ+

Γank ,bnk
u+
nk
,

where γ±Γank ,bnk
is the restriction of the trace onto Γank ,bnk = {0} × (ank , bnk). Therefore, (A.19) implies that

γ−Γa′,b′u
− = γ+

Γa′,b′
u+ for any interval (a′, b′) ⊂ (a, b) and, consequently,

γ−Γa,bu
− = γ+

Γa,b
u+.

As u± ∈ H1(Ω±) this implies u ∈ H1(Ωa,b) and (A.20) can be written in the form

(∇u,∇φ)L2(Ωa,b) + (u, φ)L2(Ωa,b) = (f, φ)L2(Ωa,b). (A.22)

Since Ĥ1(Ωa,b) is dense in H1(Ωa,b) this equality holds for any φ ∈ H1(Ωa,b). It is easy to see that (A.22) is
equivalent to u = Bf . This also shows that the limit function u is independent of the subsequence nk and hence
we conclude that (A.21) holds for any subsequence nk. Thus,

Bnf = un → u = Bf in L2(Ω)

as n→∞. We have verified assumption (i).
To check assumption (ii) in Proposition A.3 let (fn)n∈N be a bounded sequence in L2(Ω). The same arguments

as in the proof of (i) (cf. (A.16)) show that the sequence (Bnfn)n∈N is bounded in H1(Ω\Γ), and hence contains
a weakly convergent subsequence in H1(Ω \ Γ). Since the embedding

H1(Ω \ Γ) ↪→ L2(Ω \ Γ) = L2(Ω)

is compact (again we use Rellich’s embedding theorem) we conclude that there is a strongly convergent subse-
quence in L2(Ω), that is, condition (ii) is satisfied.

Remark A.5 Besides the continuity of the function {a, b} 7→ λk(Ωa,b) one can also conclude that it decreases
(resp., increases) monotonically with respect to a (resp., with respect to b). This follows easily from the min-
max principle (see, e.g., [31, Section 4.5]). Note, that, in general, when one perturbs a fixed domain Ω by
removing a subset Sa (a ∈ R is a parameter) the monotonicity of the eigenvalues of the Neumann Laplacian in
Ωa := Ω \ Sa does not follow from the the monotonicity of the underlying domains with respect to a, i.e., even
if Ωa ⊂ Ωã, it does not mean that λ(Ωa) ≥ λ(Ωã) (see [72, Section 2.3] for more details). This is in contrast
to Dirichlet Laplacian, where the monotonicity is always present – see, e.g., [51, 72, 77, 80] for the properties of
Dirichlet eigenvalues in so perturbed domains. However, in our configuration monotonicity nevertheless holds
for Neumann eigenvalues. This is due to a special structure of the removed set having the form of two walls with
zero thickness.

B Convergence results for monotone sequences of quadratic forms

We recall a well-known convergence result for a sequence of monotonically increasing quadratic forms from [85]
which is used in the proof of Theorem 3.1.

Consider a family {aq}q>0 of densely defined closed nonnegative sesquilinear forms in a Hilbert space H.
For simplicity we assume that the domain of aq is the same for all q, and we use the notation dom(aq) = H1.
Let Aq be the nonnegative self-adjoint operator associated with the form aq via the first representation theorem.
Now assume, in addition, that the family {aq}q>0 of forms increases monotonically as q decreases, i.e. for any
0 < q < q̃ <∞ one has

aq[u, u] ≥ aq̃[u, u], u ∈ H1. (B.1)

We define the limit form a0 as follows:

dom(a0) =

{
u ∈ H1 : sup

q>0
aq[u, u] <∞

}
, a0[u, v] = lim

q→0
aq[u, v].
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One verifies that a0 is a well-defined nonnegative symmetric sesquilinear form (which is not necessarily densely
defined) and, in fact, by [85] the limit form a0 is closed. Let us now assume that dom(a0) is dense in H, so that
one can associate a nonnegative self-adjoint operatorA0 with a0 via the first representation theorem.1 According
to [85] one then has convergence of the corresponding nonnegative self-adjoint operators in the strong resolvent
sense (see also [32, Proposition 4.1] or [15, Theorem 4.2]):

Theorem B.1 (Simon, 1978) For each f ∈ H one has

‖(Aq + I)−1f − (A0 + I)−1f‖ → 0 as q → 0. (B.2)

Now let us assume, in addition, that the spectra of the self-adjoint operators Aq and A0 are purely discrete.
We write (λk(Aq))k∈N and (λk(A0))k∈N for the eigenvalues of these operators counted with multiplicities and
ordered as nondecreasing sequences. In this case one can conclude the following spectral convergence:

Theorem B.2 For each k ∈ N one has

λk(Aq)→ λk(A0) as q → 0. (B.3)

P r o o f. The discreteness of the spectra of Aq and A0 is equivalent to the compactness of the resolvents
(Aq+I)−1 and (A0 +I)−1. Moreover, (B.1) implies (Aq+I)−1 ≤ (Aq̃+I)−1 provided 0 < q < q̃ <∞; cf. [85,
Proposition 1.1]. Then by [59, Theorem VIII-3.5] the strong convergence in (B.2) becomes even convergence in
the operator norm, that is,

‖(Aq + I)−1 − (A0 + I)−1‖ → 0 as q → 0. (B.4)

It is well-known (see, e.g., [33, Lemma XI.9.5] or [79, Corollary A.15]) that the norm resolvent convergence
(B.4) implies the convergence of the eigenvalues, i.e. (B.3) holds.
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