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Abstract. In this note, we investigate the nonelliptic differential expression

A = −div sgn∇
on a rectangular domain � in the plane. The seemingly simple problem of associ-
ating a self-adjoint operator with the differential expression A in L2(�) is solved
here. Such indefinite Laplacians arise in mathematical models of metamaterials
characterized by negative electric permittivity and/or negative magnetic permea-
bility.

1 Introduction

Consider the domains �+ = (0, 1) × (0, 1) and �− = (−1, 0) × (0, 1), and let
� = (−1, 1) × (0, 1) and C = {0} × (0, 1). We study the nonelliptic differential
expression A defined on the rectangle � by

(1.1) A f = −div (sgn∇ f ),

where

sgn(x, y) =

⎧⎨⎩1, (x, y) ∈ �+,

−1, (x, y) ∈ �−.

Our aim is to associate a self-adjoint operator in L2(�) with Dirichlet boundary
conditions on ∂� to A. Informally speaking, in this seemingly simple toy problem,
this is the partial differential operator

A f = A f =

(
−� f+
� f−

)
,

domA =

{
f =

(
f+
f−

)
:

f±, � f± ∈ L2(�±), f |∂� = 0,
f+|C = f−|C, ∂n+ f+|C = ∂n− f−|C

}
,

(1.2)
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where f± denote the restrictions of the function f ∈ L2(�) onto �±, and the nor-
mal derivatives ∂n+ and ∂n− point outward of �± (and hence in opposite directions
at C). The main peculiarity here is the interface condition

∂n+ f+|C = ∂n− f−|C, f = ( f+, f−)� ∈ domA,

for the normal derivatives, which is due to the sign change and discontinuity of the
coefficient sgn at C. Our main result states that (when the Dirichlet and Neumann
traces are properly interpreted) the operator A in (1.2) is self-adjoint in L2(�).

The non-standard interface condition is responsible for unexpected spectral
properties of A. Although the domain � is bounded, it turns out that the essential
spectrum of A is not empty, namely, 0 is an isolated eigenvalue of infinite multi-
plicity. The remaining part of the spectrum of A consists of discrete eigenvalues
which accumulate at +∞ and −∞. We note that the differential equationA f = λ f
can, of course, be solved by separation of variables; the main feature of this note
is the description of the domain of the corresponding self-adjoint operator A with
explicit boundary and interface conditions.

We point out that domA contains functions which do not belong to any local
Sobolev space Hs, s > 0, in a neighbourhood of the interface C. This leads to the
difficulties that Green’s identity is not valid for functions f, g ∈ domA, and the
definition of the (local) Dirichlet and Neumann traces is rather subtle and requires
a particularly careful analysis. Here we employ recent results on the extension of
trace maps onto maximal domains of Laplacians on (quasi-)convex and Lipschitz
domains from [2, 12] and rely on the description of the traces of H 2(�±)-functions
in [13]. Finally, it turns out that the operator A can be viewed as a kind of Krein-
von Neumann extension of a non-semibounded symmetric operator with infinite
defect and domain contained in H 2(�+) × H 2(�−); thus, only the functions in
the infinite dimensional eigenspace ker A do not possess Hs-regularity near the
interface C.

We emphasize that our result complements the results in [4], where the related
problem

(1.3) Aε f = −div (ε∇ f ), ε(x, y) =

⎧⎨⎩ε+, (x, y) ∈ �+,

−ε−, (x, y) ∈ �−,

with ε± > 0 was treated under the assumption ε+ �= ε− with the help of boundary
integral methods on more general domains � ⊂ R

2; for related problems, see also
[3, 8, 9, 14, 19, 20]. It is shown in [4] that if ε+ �= ε−, the operator

(1.4) Aε f = Aε f, domAε =
{

f ∈ H 1
0 (�) : Aε f ∈ L2(�)

}
,
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is self-adjoint, has a compact resolvent, and has eigenvalues accumulating to +∞
and −∞. The borderline case ε+ = ε− that we investigate in this note was excluded
in [4] and the other works (except for the 1-dimensional situation [20], which is
intrinsically different). We also mention that abstract representation theorems for
indefinite quadratic forms and related form methods in [18] (see also [11, 19]
and [25, 27]) are not directly applicable to the present problem, nor do they lead
to a self-adjoint operator in L2(�). The eigenvalue problem Aε f = λ f in our
rectangular geometry was previously considered in [19] with the help of separation
of variables (cf. Section 5), from which it follows that 0 is an eigenvalue of infinite
multiplicity, provided that ε+ = ε−.

The indefinite differential expressions (1.1) and (1.3) arise in mathematical
models of metamaterials which are characterized by negative electric permittivity
and/or negative magnetic permeability; see [24, 26] for a physical survey and [5,
7, 10] for a rigorous justification of the models via a homogenization of Maxwell’s
equations in geometrically non-trivial periodic structures. More specifically, our
rectangular model can be thought as simulating an interface between a dielectric
material in �+ and a metamaterial in �−. It has been known since the seminal
work [8] that the problem of the type Aε f = ρ in � with a smooth interface is
well-posed in H 1

0 (�) if and only if the contrast κ := ε+/ε− differs from 1. By
proving that (1.2) is self-adjoint, we provide a correct functional setting for the
problem on a rectangle in the critical situation κ = 1. Moreover, we show that the
eigenvalues and eigenfunctions of Aε converge to eigenvalues and eigenfunctions
of the operator A as κ → 1.

An alternative approach to theoretical studies of metamaterials is to add a small
imaginary number to the negative value of sgn, arguing that “real systems are
always slightly lossy”; see, e.g., [24]. This leads to a complexified differential
expression

(1.5) Bη f = −div (εη∇ f ), εη(x, y) =

⎧⎨⎩1, (x, y) ∈ �+,

−1 + iη, (x, y) ∈ �−,

with η > 0, which immediately provides a well-defined operator

(1.6) Bη f = Bη f, domBη =
{

f ∈ H 1
0 (�) : Bη f ∈ L2(�)

}
.

Indeed, the rotated operator e−i(π/2−η)Bη is an m-sectorial operator with vertex 0
and semi-angle π/2−η, which is defined via the associated sectorial form defined
on H 1

0 (�); cf. [21, Sec. VI]. It follows that Bη is an operator with compact re-
solvent for every η > 0, albeit non-self-adjoint now. Let us note that considering
the complexified problem Bη f = ρ in the limit as η → 0 is a conventional way
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of describing the cloaking effects in metamaterials (of different geometric struc-
ture) through the “anomalous localized resonance”; see [6, 23]. We show that the
eigenvalues and eigenfunctions of Bη converge to eigenvalues and eigenfunctions
of our operator A as η → 0. Recall that A f = ρ is generally ill-posed since 0 is an
eigenvalue of infinite multiplicity.

This note is organized as follows. In Section 2, we establish a modified version
of Green’s identity and other preliminary results that we frequently use later. In
Section 3, we introduce an auxiliary closed symmetric operator R and study its
properties. We prove the self-adjointness of A in Section 4, considering a gen-
eralized Krein–von Neumann extension of R. In that section, we also discuss
qualitative spectral properties of A. More quantitative results about the spectrum
of A and the aforementioned convergence results are established in Section 5.

2 A generalized Green’s identity on the maximal
domain

The Dirichlet realizations AD± associated to ∓� in L2(�±) play an important role
in the sequel. Recall that

(2.1) AD± = ∓�, domAD± = H 1
0 (�±) ∩ H 2(�±)

are self-adjoint operators on L2(�±) with compact resolvents, that AD+ is uni-
formly positive, and that AD− is uniformly negative. Here the H 2-regularity is a
consequence of �± being convex; cf. [15, 16]. Observe that

domAD± =
{

f± ∈ H 2(�±) : γD f± = 0
}
,

where γD denotes the Dirichlet trace operator defined on H 2(�±).
The self-adjoint Neumann operators are given by

AN± = ∓�, domAN± =
{

f± ∈ H 2(�±) : γN± f± = 0
}
,

where γN± are the Neumann trace operators defined on H 2(�±) with normal point-
ing outwards �±.

We also make use of the spaces

GN (∂�±) := ran
(
γN±(domAD±)

)
=
{
γN± f± : f± ∈ H 2(�±), γD f± = 0

}
,

GD(∂�±) := ran
(
γD(domAN±)

)
=
{
γD f± : f± ∈ H 2(�±), γN± f± = 0

}
,

which were characterized in [12] and denoted by N 1/2(∂�±) and N 3/2(∂�±), re-
spectively, and also appear in [2] in a more general setting. We equip GN (∂�±)
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and GD(∂�±) with the natural norms [12, (6.6) and (6.42)]. If n± and t± denote the
unit normal pointing outwards and a corresponding tangential vector, respectively,
and ∂t± is the tangential derivative on ∂�±, then according to [13, Theorem 3],(

γN± f±
)
t± ∈ (H 1/2(∂�±)

)2
for all γN± f± ∈ GN (∂�±), and(

∂t±γD f±
)
n± ∈ (H 1/2(∂�±)

)2
for all γD f± ∈ GD(∂�±), where

H 1/2(∂�±) =
{
ϕ ∈ L2(∂�±) :

∫
∂�±

∫
∂�±

|ϕ(α) − ϕ(β)|2
|α− β|2 dα dβ < ∞

}
.

The following statement on the decomposition of functions in GN (∂�±) and
GD(∂�±) into two parts with supports on C and C± := ∂�±\C, respectively, is
a direct consequence of the abovementioned fact.

Lemma 2.1. Every function ϕ ∈ GN (∂�±) (respectively, ϕ ∈ GD(∂�±)) ad-
mits a decomposition of the form

(2.2) ϕ = (ϕ|C)∼ + (ϕ|C±)∼,

where (ϕ|C)∼ ∈ GN (∂�±) (respectively, (ϕ|C)∼ ∈ GD(∂�±)) is the extension of ϕ|C
to ∂�± by 0, and (ϕ|C±)∼ ∈ GN (∂�±) (respectively, (ϕ|C±)∼ ∈ GD(∂�±)) is the
extension of ϕ|C± to ∂�± by 0.

Consider the symmetric operators S± = ∓�, dom S± = H 2
0 (�±), and their

adjoints

(2.3) S∗
± = ∓�, dom S∗

± =
{

f± ∈ L2(�±) : � f± ∈ L2(�±)
}
.

Since 0 �∈ σ(AD,±), one has the direct sum decompositions

(2.4) dom S∗
± = domAD± +̇ ker S∗

±.

In the following, we often decompose functions f± ∈ dom S∗± accordingly, that is,
we write

(2.5) f± = fD± + f0±, fD± ∈ domAD±, f0± ∈ ker S∗
±.

It is also important to note that the spaces ker S∗± ∩ H 2(�±) are dense in ker S∗±,
where the latter spaces are equipped with the L2-norm (or, equivalently, with the
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graph norm of S∗±). This fact can be shown with the help of the density result [12,
(6.30)] for s = 0.

Recall from [12, Theorem 6.4] that the Dirichlet traces γD admit continuous
and surjective extensions

γ̃D : dom S∗
± → (

GN (∂�±)
)∗
,

where dom S∗± is equipped with the graph norm and (GN (∂�±))∗ is the conjugate
dual space of GN (∂�±) equipped with the corresponding norm. It is important to
note that

(2.6) ker γ̃D = ker γD = domAD± = H 1
0 (�±) ∩ H 2(�±),

where the first equality has been shown in [2, Section 4.1] and the other identities
are clear from the above.

We denote the duality pairing between GN (∂�±) and (GN (∂�±))∗ in the form

GN (∂�±)∗〈ψ,ϕ〉GN (∂�±), ψ ∈ GN (∂�±)∗, ϕ ∈ GN (∂�±),

and occasionally write ψ(ϕ) in this situation.
Note for later use that the Neumann traces γN± admit continuous and surjective

extensions
γ̃N± : dom S∗

± → (
GD(∂�±)

)∗;
this fact was observed in [12, Theorem 6.10]. Here, again dom S∗± is equipped with
the graph norm and (GD(∂�±))∗ is the conjugate dual space of GD(∂�±), equipped
with the corresponding norm.

The next proposition shows that a modified Green’s identity (with the Neumann
trace γN± f± replaced by the regularized Neumann trace γN± fD±) remains valid
on the maximal domains dom S∗±. This fact is essentially a consequence of [12,
Theorem 6.4]. We also mention that analogous extensions of Green’s identity are
well known for elliptic operators on smooth domains; see, e.g., [17].

Proposition 2.2. The Green’s identity(
S∗

± f±, g±
)
L2(�±) − ( f±, S∗

±g±
)
L2(�±)

= ±GN (∂�±)∗〈γ̃D f±, γN±gD±〉GN (∂�±) ∓ GN (∂�±)〈γN± fD±, γ̃Dg±〉GN (∂�±)∗

holds for all f± = fD± + f0± and g± = gD± + g0± in dom S∗±.

Proof. We show the identity only on L2(�+); the same argument applies to
the identity on �−. Let f+ = fD+ + f0+, g+ = gD+ + g0+ ∈ dom S∗

+, and recall from
[12, Theorem 6.4] that the identity(

S∗
+ f+, gD+

)− ( f+,AD+gD+
)

= GN (∂�+)∗〈γ̃D f+, γN+gD+〉GN (∂�+)
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holds, where (·, ·) is the inner product on L2(�+). It is clear that since AD+ is
self-adjoint in L2(�+),(

AD+ fD+, gD+
)− ( fD+,AD+gD+

)
= 0.

Moreover, as f0+, g0+ ∈ ker S∗
+,(

S∗
+ f0+, g0+

)− ( f0+, S
∗
+g0+
)

= 0.

Taking this into account, we compute

(S∗
+ f+, g+) − ( f+, S

∗
+g+)

=
(
S∗

+( fD+ + f0+), gD+ + g0+
)− ( fD+ + f0+, S

∗
+(gD+ + g0+)

)
=
(
AD+ fD+, g0+

)
+
(
S∗

+ f0+, gD+
)− ( f0+,AD+gD+

)− ( fD+, S
∗
+g0+
)

=
(
AD+ fD+, g0+

)− ( fD+, S
∗
+g0+
)
+
(
S∗

+ f0+, gD+
)− ( f0+,AD+gD+

)
= −GN (∂�+)〈γN+ fD+, γ̃Dg0+〉GN (∂�+)∗ + GN (∂�+)∗〈γ̃D f0+, γN+gD+〉GN (∂�+)

= GN (∂�+)∗〈γ̃D f+, γN+gD+〉GN (∂�+) − GN (∂�+)〈γN+ fD+, γ̃Dg+〉GN (∂�+)∗,

where we have used ker γ̃D = ker γD from (2.6) in the last identity. �
Next we consider the subspaces

G± :=
{
ϕ ∈ GN (∂�±) : ϕ|C = 0

}
of GN (∂�±), which consist of functions vanishing on C. Denote by G ⊥± ⊂ (GN (∂�±))∗

the corresponding annihilators

G ⊥
± =

{
ψ ∈ (GN (∂�±))∗ : ψ(ϕ) = 0 for all ϕ ∈ G±

}
.

Roughly speaking, G ⊥± can be viewed as the linear subspaces of functionals from
(GN (∂�±))∗ that vanish on C± = ∂�±\C. It is important to note that

(2.7) G ⊥
± ∼= (GN (∂�±)/G±

)∗
.

In particular, if ψ(ϕ) = 0 for some ϕ ∈ GN (∂�±) and all ψ ∈ G ⊥± , then ϕ = 0 when
identified with elements in the quotient space GN (∂�±)/G±, and hence ϕ ∈ G±,
that is, ϕ|C = 0.

3 An auxiliary symmetric operator R

In the next proposition, we consider a restriction R of the self-adjoint operator
AD+ ⊕ AD− in L2(�) and determine the adjoint of R. It turns out that the operator
A in (1.2) is a self-adjoint extension of R (and hence a restriction of the adjoint
operator R∗).
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Proposition 3.1. The operator

R f = A f =

(
−� f+
� f−

)
,

domR =

{
f =

(
f+
f−

)
: f± ∈ H 2(�±) ∩ H 1

0 (�±), γN+ f+|C = γN− f−|C
}

is a closed symmetric operator with equal infinite deficiency indices in L2(�), and
R ⊂ AD+ ⊕ AD−. The adjoint operator is given by

R∗ f = A f =

(
−� f+
� f−

)
,

domR∗ =

{
f =

(
f+
f−

)
: f±, � f± ∈ L2(�±), γ̃D f± ∈ G ⊥

± , γ̃D f+|C = γ̃D f−|C
}
,

where the boundary condition γ̃D f+|C = γ̃D f−|C is understood as

GN (∂�+)∗〈γ̃D f+, ϕ〉GN (∂�+)
= GN (∂�−)∗〈γ̃D f−, ϕ〉GN (∂�−)

for all ϕ ∈ GN (∂�±) such that ϕ|C± = 0.

Proof. The proof consists of three steps. First, we define the operator

T f := A f =

(
−� f+
� f−

)
,

domT :=

{
f =

(
f+
f−

)
: f±, � f± ∈ L2(�±), γ̃D f± ∈ G ⊥

± , γ̃D f+|C = γ̃D f−|C
}
,

and show in Steps 1 and 2 that T ∗ = R. In Step 3, we verify that T is closed, so
that R∗ = T ∗∗ = T = T .

Step 1: R ⊂ T ∗. Fix some f = ( f+, f−)� ∈ domR, and note that f± = fD± in
the decomposition (2.4)–(2.5). As both T and R are restrictions of the orthogonal
sum S∗

+ ⊕S∗− of the maximal operators in (2.3), it follows from Proposition 2.2 that
for any g ∈ domT decomposed in the form g± = gD± + g0±,(

R f, g
)
L2(�) − ( f,Tg

)
L2(�) =

(
(S∗

+ ⊕ S∗
−) f, g

)
L2(�) − ( f, (S∗

+ ⊕ S∗
−)g
)
L2(�)

=
(
S∗

+ f+, g+
)
L2(�+) − ( f+, S∗

+g+
)
L2(�+) +

(
S∗

− f−, g−
)
L2(�−) − ( f−, S∗

−g−
)
L2(�−)

= GN (∂�+)∗〈γ̃D f+, γN+gD+〉GN (∂�+) − GN (∂�+)〈γN+ fD+, γ̃Dg+〉GN (∂�+)∗

− GN (∂�−)∗〈γ̃D f−, γN−gD−〉GN (∂�−) + GN (∂�−)〈γN− fD−, γ̃Dg−〉GN (∂�−)∗

= −GN (∂�+)〈γN+ f+, γ̃Dg+〉GN (∂�+)∗ + GN (∂�−)〈γN− f−, γ̃Dg−〉GN (∂�−)∗,
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where in the last step we have used the fact that f± = fD±, and f± ∈ H 1
0 (�±) for

f = f+ ⊕ f− ∈ domR, so that γ̃D f± = 0; cf. (2.6). Next we decompose γN± f± in
the form

(3.1) γN± f± =
(
γN± f±|C

)∼ +
(
γN± f±|C±

)∼
,

where both extensions by 0 on the right hand side belong to the space GN (∂�±)
(see Lemma 2.1) and, in particular,(

γN± fD±|C±
)∼ ∈ G±.

Since g ∈ domT , we have γ̃Dg± ∈ G ⊥± ; therefore,

GN (∂�±)〈
(
γN± f±|C±

)∼
, γ̃Dg±〉GN (∂�±)∗ = 0.

We conclude that

(3.2)
(
R f, g

)
L2(�) − ( f,Tg

)
L2(�) = −GN (∂�+)〈

(
γN+ f+|C

)∼
, γ̃Dg+〉GN (∂�+)∗

+ GN (∂�−)〈
(
γN− f−|C

)∼
, γ̃Dg−〉GN (∂�−)∗ .

Since f ∈ domR and g ∈ domT , we obtain

γN+ f+|C = γN− f−|C and γ̃Dg+|C = γ̃Dg−|C.

This and (3.2) imply that (R f, g)L2(�) − ( f,Tg)L2(�) = 0 holds for all g ∈ domT .
Therefore, f ∈ domT ∗ and T ∗ f = R f . We have shown R ⊂ T ∗.

Step 2: T ∗ ⊂ R. Observe first that the orthogonal sum of the Dirichlet operator
AD+ ⊕ AD− is a self-adjoint restriction of T , and hence

(3.3) T ∗ ⊂ AD+ ⊕ AD− ⊂ T.

Let f = ( f+, f−)� ∈ domT ∗. Then f± ∈ H 2(�±) ∩ H 1
0 (�±), and f± = fD± in the

decomposition (2.4)–(2.5). It remains to show that the boundary condition

(3.4) γN+ f+|C = γN− f−|C
is satisfied. For this, note that by (2.6), we also have γ̃D f± = 0. For g ∈ domT ,
we obtain in the same way as in Step 1 that

0 =
(
T ∗ f, g

)
L2(�) − ( f,Tg

)
L2(�)

= −GN (∂�+)〈γN+ f+, γ̃Dg+〉GN (∂�+)∗ + GN (∂�−)〈γN− f−, γ̃Dg−〉GN (∂�−)∗ .
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Next we decompose γN± f± as in (3.1) and use the fact that γ̃Dg± ∈ G ⊥± . As in
Step 1, this leads to

0 = GN (∂�+)〈
(
γN+ f+|C

)∼
, γ̃Dg+〉GN (∂�+)∗ − GN (∂�−)〈

(
γN− f−|C

)∼
, γ̃Dg−〉GN (∂�−)∗

for all g = (g+, g−)� ∈ domT . Furthermore, since γ̃Dg+|C = γ̃Dg−|C, we obtain

0 = GN (∂�+)〈
(
γN+ f+|C

)∼−(γN− f−|C
)∼
, γ̃Dg+〉GN (∂�+)∗

for all g = (g+, g−)� ∈ domT and hence for all ψ = γ̃Dg+ ∈ G ⊥
+ . It now follows

from (2.7) and the observation below (2.7) that the function(
γN+ f+|C

)∼−(γN− f−|C
)∼

vanishes on C. Thus the boundary condition (3.4) is satisfied. We have shown
f ∈ domT and hence R∗ ⊂ T .

Step 3: T is closed. Let ( fn) ⊂ domT such that fn → f and T fn → h for some
f = ( f+, f−)�, h = (h+, h−)� ∈ L2(�). Since T ⊂ S∗

+ ⊕ S∗− and S∗
+ ⊕ S∗− is closed,

f± ∈ dom S∗± and S∗± f± = h±. It remains to show that the boundary conditions

γ̃D f± ∈ G ⊥
± and γ̃D f+|C = γ̃D f−|C

are satisfied. But this follows immediately, since fn± → f± in the graph norm of
S∗± and γ̃D is continuous with respect to the graph norm, so that γ̃D fn± → γ̃D f± in
(GN (∂�±))∗. �

The following lemma states that the Neumann traces of the functions from
ker R∗ coincide on C. This property is essentially a consequence of the symmetry
of the domain � and the function sgn(·) with respect to the interface C. For com-
pleteness we mention that the functions

(3.5) f0,k(x, y) =

{
sinh(kπ(1 − x)) sin(kπy), (x, y) ∈ �+,

sinh(kπ(1 + x)) sin(kπy), (x, y) ∈ �−,
k ∈ N = {1, 2, . . .},

span a dense set in ker R∗; cf. Proposition 5.1(iv).

Lemma 3.2. Let R and R∗ be as in Proposition 3.1. Then
(i) the space ker R∗ is infinite dimensional, and the functions f0 ∈ ker R∗ satisfy

(3.6) γ̃N+ f0+|C = γ̃N− f0−|C,
that is,

GD (∂�+)∗〈γ̃N+ f0+, ϕ〉GD (∂�+) = GD (∂�−)∗〈γ̃N− f0−, ϕ〉GD (∂�−)

holds for all ϕ ∈ GD(∂�±) such that ϕ|C± = 0;
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(ii) R is invertible and has closed range.

Proof. (i) As AD+ ⊕ AD− ⊂ R∗ and 0 �∈ σ(AD±), we have the direct sum
decomposition domR∗ = dom

(
AD+ ⊕ AD−

)
+̇ ker R∗. Together with (2.6), this

yields that the mapping

(3.7) �̃D : ker R∗ → GN (∂�+) × GN (∂�−), f0 =

(
f0+

f0−

)
�→
(
γ̃D f0+

γ̃D f0−

)

is invertible. Suppose now that f0 = ( f0+, f0−)� ∈ ker R∗ and assume, in addition,
that f0± ∈ H 2(�±). Then� f0± = 0, and the boundary conditions have the explicit
form

(3.8) γD f0±|C± = 0 and γD f0+|C = γD f0−|C;

here, γD is the Dirichlet trace operator defined on H 2(�±). It follows that the
function h(x, y) := f0+(−x, y), x ∈ (−1, 0), y ∈ (0, 1), belongs to L2(�−) and
satisfies�h = 0, γDh|C = γD f0+|C and γDh|C− = 0. Hence ( f0+, h)� ∈ ker R∗; but
as the map �̃D in (3.7) is invertible, we conclude f0− = h. In particular, we obtain

γN− f0−|C = γN−h|C = γN+ f0+|C,

where γN± denotes the Neumann trace operator on H 2(�±). As γ̃N± are extensions
of γN± , this yields GD (∂�+)∗〈γ̃N+ f0+, ϕ〉GD (∂�+)

= GD (∂�−)∗〈γ̃N− f0−, ϕ〉GD (∂�−) for all
ϕ ∈ GD(∂�±) such that ϕ|C± = 0. We have shown that any function f0 ∈ ker R∗

possessing the additional property f0± ∈ H 2(�±) satisfies the condition (3.6). The
general case follows from the facts that R∗ ⊂ S∗

+⊕S∗− and ker S∗±∩H 2(�±) is dense
in ker S∗± and the continuity of the extended Neumann trace maps γ̃N± .

(ii) Since R ⊂ AD+ ⊕ AD− ⊂ R∗ and 0 �∈ σ(AD±), it follows that ker R = {0}.
To see that ranR is closed, assume that R fn → g, n → ∞, for some g ∈ L2(�). It
is clear that also (AD+ ⊕AD−) fn → g, n → ∞; and from 0 �∈ σ(AD±), we conclude
that

fn → f :=
(
A−1

D+ ⊕ A−1
D−
)
g, n → ∞.

Since R is closed, f ∈ domR and R f = g. �

4 The self-adjoint operator A and its qualitative
spectral properties

In this section, we present the main result of this note. The operator A (informally
written in (1.2)) is now defined rigorously with explicit boundary conditions as a
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restriction of the maximal operator S∗
+ ⊕ S∗−. It is shown that A is self-adjoint in

L2(�), and it turns out that A can be viewed as a generalized Krein-von Neumann
extension of the non-semibounded symmetric operator R; see also Proposition 4.2
below.

Theorem 4.1. The operator

A f = A f =

(
−� f+
� f−

)
,

domA =

{
f =

(
f+
f−

)
:

f±, � f± ∈ L2(�±), γ̃D f± ∈ G ⊥± ,
γ̃D f+|C = γ̃D f−|C, γ̃N+ f+|C = γ̃N− f−|C

}
,

(4.1)

is self-adjoint in L2(�) and coincides with the operator R∗ � domR +̇ ker R∗. The
boundary conditions γ̃D f+|C = γ̃D f−|C and γ̃N+ f+|C = γ̃N− f−|C are understood as

GN (∂�+)∗〈γ̃D f+, ϕ〉GN (∂�+)
= GN (∂�−)∗〈γ̃D f−, ϕ〉GN (∂�−)

for all ϕ ∈ GN (∂�±) such that ϕ|C± = 0, and

GD (∂�+)∗〈γ̃N f+, ψ〉GD (∂�+)
= GD (∂�−)∗〈γ̃N f−, ψ〉GD (∂�−)

for all ψ ∈ GD(∂�±) such that ψ|C± = 0, respectively.

Proof. We first show that A ⊂ A∗. Since A ⊂ R∗ ⊂ S∗
+ ⊕ S∗−, for f, g ∈ domA

decomposed in the usual form f± = fD± + f0±, g± = gD± + g0± (see (2.4)–(2.5)),(
A f, g

)
L2(�) − ( f,Ag

)
L2(�) =

(
(S∗

+ ⊕ S∗
−) f, g

)
L2(�) − ( f, (S∗

+ ⊕ S∗
−)g
)
L2(�)

= GN (∂�+)∗〈γ̃D f+, γN+gD+〉GN (∂�+) − GN (∂�+)〈γN+ fD+, γ̃Dg+〉GN (∂�+)∗

− GN (∂�−)∗〈γ̃D f−, γN−gD−〉GN (∂�−) + GN (∂�−)〈γN− fD−, γ̃Dg−〉GN (∂�−)∗ ;

cf. Proposition 2.2 and Step 1 of the proof of Proposition 3.1. Taking into account
that γ̃D f±, γ̃Dg± ∈ G ⊥± and decomposing γN± fD± and γN±gD± as

γN± fD± =
(
γN± fD±|C

)∼ +
(
γN± fD±|C±

)∼
,

γN±gD± =
(
γN±gD±|C

)∼ +
(
γN±gD±|C±

)∼
,

where the extensions by 0 on the right-hand side belong to the spaces GN (∂�±) by
Lemma 2.1, we find that(
A f , g

)
L2(�) − ( f,Ag

)
L2(�) = GN (∂�+)∗〈γ̃D f+,

(
γN+gD+|C

)∼〉GN (∂�+)

− GN (∂�+)〈
(
γN+ fD+|C

)∼
, γ̃Dg+〉GN (∂�+)∗ − GN (∂�−)∗〈γ̃D f−,

(
γN−gD−|C

)∼〉GN (∂�−)

+ GN (∂�−)〈
(
γN− fD−|C

)∼
, γ̃Dg−〉GN (∂�−)∗ .
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As f, g ∈ domA, we also have γ̃D f+|C = γ̃D f−|C and γ̃Dg+|C = γ̃Dg−|C, and hence
the terms on the right-hand side simplify to

GN (∂�+)∗〈γ̃D f+,
(
γN+gD+|C

)∼ − (γN−gD−|C
)∼〉GN (∂�+)

− GN (∂�+)〈
(
γN+ fD+|C

)∼ − (γN− fD−|C
)∼
, γ̃Dg+〉GN (∂�+)∗ .

(4.2)

According to Lemma 3.2(ii), the functions f0±, g0± ∈ ker R∗ satisfy γ̃N+ f0+|C =
γ̃N− f0−|C and γ̃N+g0+|C = γ̃N−g0−|C. Thus

0 = γ̃N+ f+|C − γ̃N− f−|C = γ̃N+( fD+ + f0+)|C − γ̃N−( fD− + f0−)|C
= γN+ fD+|C − γN− fD−|C

and

0 = γ̃N+g+|C − γ̃N−g−|C = γ̃N+(gD+ + g0+)|C − γ̃N−(gD− + g0−)|C
= γN+gD+|C − γN−gD−|C,

and hence the corresponding entries in (4.2) vanish, that is,(
A f, g

)
L2(�) − ( f,Ag

)
L2(�) = 0, f, g ∈ domA.

We have shown that A ⊂ A∗.
Next we verify that the operator R0 := R∗ � domR +̇ ker R∗ is contained in

A. The inclusion domR ⊂ domA is obvious; hence it remains to show that
ker R∗ ⊂ domA. It is clear from the definition of domR∗ that any function
f0 = ( f0+, f0−) ∈ ker R∗ satisfies the boundary conditions for functions in domA,
with the exception of the condition γ̃N+ f0+|C = γ̃N− f0−|C. But this last condition
holds by Lemma 3.2(i). Therefore, R0 ⊂ A. We claim that R0 is self-adjoint. In
fact, R0 is symmetric since for f = fR + f0 ∈ domR +̇ ker R∗,

(R0 f, f )L2(�) =
(
R0( fR + f0), fR + f0

)
L2(�) = (R fR, fR)L2(�).

Moreover, by Lemma 3.2(ii), 0 is a point of regular type of R, that is, ker R = {0}
and ranR is closed. This leads to the direct sum decomposition

ran (R0 − μ) = ran (R − μ) +̇ ker R∗ = L2(�), μ ∈ C \ R,

from which we then conclude that R0 is a self-adjoint operator in L2(�). In sum-
mary, we have shown that A is a symmetric operator which contains the self-
adjoint operator R0, so A = R0 is self-adjoint. �

Finally we state a result on the spectral properties of the operator A. Our proof
is a variant of that of [1, Lemma 2.3]; see also [22].
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Proposition 4.2. Let A be the self-adjoint operator from Theorem 4.1. Then 0
is an isolated eigenvalue of infinite multiplicity, and the corresponding eigenspace
is given by ker R∗. The spectrum in R\{0} is discrete (i.e., composed of isolated
eigenvalues of finite multiplicities) and accumulates at +∞ and −∞.

Proof. It is clear that the eigenspace ker A = ker R∗ is an infinite dimensional
closed subspace of L2(�). Moreover,

(4.3) H := ranA = (ker A)⊥ = (ker R∗)⊥ = ranR

is closed, according to Lemma 3.2(ii). In the following, we denote the orthogonal
projection onto the subspace H by P and the embedding of H into L2(�) by ι. We
denote the restriction of A to H by A′. Note that A′ is a bijective self-adjoint oper-
ator on the Hilbert space H, so that 0 �∈ σ(A′). With respect to the decomposition
L2(�) = H ⊕ H⊥, we have A = A′ ⊕ 0, and hence

(4.4) A f = ιA′P f, f ∈ domA.

We also use below the facts that the orthogonal sum AD = AD+ ⊕ AD− of the
Dirichlet operators AD± is a self-adjoint operator on L2(�) and that 0 �∈ σ(AD).

Now let f = fR + f0 ∈ domA, where fR ∈ domR and f0 ∈ ker A. As R ⊂ AD

and R ⊂ A, we have

f = fR + f0 = A−1
D R fR + f0 = A−1

D A fR + f0 = A−1
D A f + f0,

and hence

P f = P
(
A−1

D A f + f0
)

= PA−1
D A f = PA−1

D ιA′P f,

where we have used (4.4) in the last equality. This leads to

A′−1(A′P f ) = P f = PA−1
D ι(A′P f );

and as 0 �∈ σ(A′), we conclude that A′−1 = PA−1
D ι. Since A−1

D is a compact operator
on L2(�), A′−1 is a compact operator on H. Moreover, for g ∈ H,

(4.5) (A′−1g, g)H = (PA−1
D ιg, g)H = (A−1

D ιg, ιg)L2(�).

Since S+ ⊕ S− ⊂ R, we conclude that for all f± ∈ dom S± = H 2
0 (�±),

(S+ f+, 0)� ∈ ranR = H and (0, S− f−)� ∈ ranR = H.

It follows that both the spaces H ∩ L2(�±) are infinite dimensional. It is clear
that the form on the right-hand side of (4.5) is positive (negative) for functions in
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H ∩ L2(�+) (respectively, H ∩ L2(�−)). This implies that both the positive and
negative spectra of A′−1 are infinite. It now follows from the compactness that
the spectrum of A′ (and hence of A) in R\{0} is discrete and accumulates at +∞
and −∞. �

5 Quantitive spectral properties of the self-adjoint
operator A

According to Proposition 4.2, the spectrum of the self-adjoint operator A consists
of eigenvalues which accumulate at +∞ and −∞. The eigenvalue 0 is of infinite
multiplicity and the multiplicities of the nonzero eigenvalues are finite. In the
next proposition, we identify the eigenvalues of A with the roots of an elementary
algebraic equation and specify the eigenfunctions of A.

Proposition 5.1. Let A be the self-adjoint operator from Theorem 4.1. Then
(i) the spectrum of A is symmetric with respect to 0;
(ii) σ(A) =

⋃∞
n=1

⋃∞
m =−∞{λn,m}, where {λn,m}m∈Z for each fixed n ∈ N is an

increasing sequence of simple roots of the algebraic equation

(5.1)
tanh

√
λ + (nπ)2√

λ + (nπ)2
=

tan
√
λ− (nπ)2√
λ− (nπ)2

for λ �= ±(nπ)2; we arrange the sequence in such a way that λn,0 = 0 (0 is a
solution of (5.1) for any n ∈ N).

(iii) for each n ∈ N, (5.1) has no root in (−(nπ)2, 0) ∪ (0, (nπ)2); in particular,(
[−π2, 0) ∪ (0, π2]

) ∩ σ(A) = ∅;
(iv) the eigenfunction of A corresponding to λn,m is given by

fn,m(x, y) = ψn,m(x)χn(y),

where χn(y) =
√

2 sin(nπy) and

(5.2) ψn,m(x) =

⎧⎨
⎩

Nn,m sinh
√
λn,m + (nπ)2 sin

(√
λn,m − (nπ)2 (1 − x)

)
, x > 0,

Nn,m sin
√
λn,m − (nπ)2 sinh

(√
λn,m + (nπ)2 (1 + x)

)
, x < 0 ,

with any Nn,m ∈ C \ {0}; with the normalization constants Nn,m satisfying

|Nn,m|−2 = sinh2
√
λn,m + (nπ)2

⎡⎣1
2

−
sin
(
2
√
λn,m − (nπ)2

)
4
√
λn,m − (nπ)2

⎤⎦
+ sin2

√
λn,m − (nπ)2

⎡⎣−1
2

+
sinh

(
2
√
λn,m + (nπ)2

)
4
√
λn,m + (nπ)2

⎤⎦ ,
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the functions fn,m (n ∈ N, m ∈ Z) form a complete orthonormal set in L2(�).

Proof. The eigenvalues λ and the corresponding eigenfunctions f of A can
be obtained as nontrivial solutions of the differential equations ∓� f± = λ f± in
�±, subject to the boundary and interface conditions determined in (4.1). From
this boundary transmission problem, it is immediately seen that if λ is an eigen-
value of A (with eigenfunction f (x, y)), then −λ is also an eigenvalue of A (with
eigenfunction f (−x, y)). This establishes (i).

The other properties (ii)–(iv) are obtained by a separation of variables. Decom-
posing any eigenfunction f ∈ L2(�) of A into the transverse orthonormal Dirichlet
basis {χn}∞n=1, i.e., writing

f (x, y) =
∞∑

n=1

ψn(x)χn(y), χn(y) =
√

2 sin(nπy),

we easily obtain from the boundary transmission problem in� that for each n ∈ N,
the function ψn = (ψn+, ψn−)� ∈ L2((0, 1)) × L2((−1, 0)) is a nontrivial solution
of the problem

−ψ′′
n+ = (λ− (nπ)2)ψn+ in (0, 1),

ψ′′
n− = (λ + (nπ)2)ψn− in (−1, 0),

(5.3)

subject to the boundary and interface conditions

(5.4) ψn+(1) = ψn−(−1) = 0, ψn+(0) = ψn−(0), and ψ′
n+(0) = −ψ′

n−(0).

Solving the differential equations in (5.3) in terms of exponentials and subjecting
the latter to the boundary and interface conditions (5.4), we find that any non-
trivial solution ψn is of the form (5.2) with the constraint that the eigenvalue λ
solves (5.1). There are infinitely many such solutions because (5.1) always con-
tains an oscillatory tangent function for large values of λ. For each fixed n ∈ N, we
arrange the roots of (5.1) in an increasing sequence {λn,m}m∈Z such that λn,0 = 0.
Notice that λ = ±(nπ)2 are not admissible solutions of (5.3) for any n ∈ N.
This is consistent with (5.1), because the limit λ → ±(nπ)2 casts (5.1) into
tanh

√
2(nπ2) =

√
2(nπ2), which is never satisfied for nonzero n. We have thus

proved (ii), except for the simplicity of the roots of (5.1), which will be established
at the end of this proof.

As for (iv), it remains only to recall that eigenfunctions of a self-adjoint oper-
ator with pure point spectrum form a complete orthonormal set when normalized
properly (Nn,m is chosen so that all ψn,m have norm 1 in L2((−1, 1)) and χn are
already normalized to 1 in L2((0, 1))).



AN INDEFINITE LAPLACIAN ON A RECTANGLE 517

Now we turn to (iii). Recall that we already know that no eigenvalue can equal
±(nπ)2 with n ∈ N. To show that (5.1) has no root in (0, (nπ)2), it suffices to show
that the function

G(λ) =

√
λ + (nπ)2

tanh
√
λ + (nπ)2

−
√

(nπ)2 − λ

tanh
√

(nπ)2 − λ

does not vanish in (0, (nπ)2). This follows since G(0) = 0 and

G′(λ) =
1
4

[
sinh

(
2
√
λ + (nπ)2

)
− 2
√
λ + (nπ)2√

λ + (nπ)2 sinh2
√
λ + (nπ)2

+
sinh

(
2
√

(nπ)2 − λ
)

− 2
√

(nπ)2 − λ√
(nπ)2 − λ sinh2

√
(nπ)2 − λ

]
> 0,

for λ ∈ (0, (nπ)2), where the crucial inequality is due to the elementary bound
sinh(x) > x, valid for all x > 0. Since (5.1) is symmetric with respect to the trans-
formation λ �→ −λ, the claim on the absence of roots extends to the symmetric set
(−(nπ)2, 0) ∪ (0, (nπ)2).

It remains to prove the simplicity of roots stated in (ii). By symmetry of (5.1),
it again suffices to show it for non-negative roots λn,m only. Define

(5.5) F (λ) =
tanh

√
λ + (nπ)2√

λ + (nπ)2
− tan

√
λ− (nπ)2√
λ− (nπ)2

.

Then λn,m is a root of (5.1) if and only if F (λn,m) = 0. Using this identity, it is
straightforward to cast the derivative of F at λn,m into the form

F ′(λn,m) = − tanh2
√
λn,m + (nπ)2

λn,m + (nπ)2
+

(nπ)2

λ2
n,m − (nπ)4

[
tanh

√
λn,m + (nπ)2√

λn,m + (nπ)2
− 1

]
.

We know by (iii) that if λn,m > 0, then λn,m > (nπ)2. Using the elementary bound
tanh(x) < x for all x > 0, we thus obtain

F ′(λn,m) < − tanh2
√
λn,m + (nπ)2

λn,m + (nπ)2
< 0.

On the other hand, employing standard algebraic expressions for hyperbolic func-
tions, it is easy to check that the formula for F ′(λn,m) above reduces for λn,0 = 0
to

F ′(0) =
2nπ− sinh(2nπ)

2(nπ)3 cosh2(nπ)
< 0,

where the inequality follows by the elementary bound used above in the proof
of (iii). In summary, F ′(λ) �= 0 whenever F (λ) = 0, which proves the simplicity
of the roots of (5.1) and completes the proof of the proposition. �
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The simplicity of roots of (5.1) stated in point (ii) of the above proposition does
not mean that all the eigenvalues of A are simple. Indeed, we already know from
Proposition 4.2 that 0 is an eigenvalue of infinite multiplicity.

In order to establish the convergence results announced in the Introduction in
a unified way, we consider now the more general differential expression

(5.6) Tδ f = −div (aδ ∇ f ), aδ (x, y) =

⎧⎨⎩1, (x, y) ∈ �+,

− 1
1+δ , (x, y) ∈ �−,

where δ is an arbitrary complex number with |δ | < 1. We also introduce the
associated operator

(5.7) Tδ f = Tδ f, domTδ =
{

f ∈ H 1
0 (�) : Tδ f ∈ L2(�)

}
.

Clearly, by choosing δ appropriately, we can cast the eigenvalue problems for
the self-adjoint operator Aε from (1.4) and the (up to a rotation) m-sectorial op-
erator Bη from (1.6) into the form of the eigenvalue problem for Tδ . The latter
reads

−� f+ = λ f+ in �+ ,

� f− = (1 + δ )λ f− in �− ,
(5.8)

where, in addition, f = ( f+, f−)� ∈ domTδ ⊂ H 1
0 (�) satisfies the interface con-

dition

(5.9) (1 + δ )∂n+ f+|C = ∂n− f−|C .

Proposition 5.2. Let Tδ be the operator introduced in (5.7). There exists an
absolute constant c > 0 such that for |δ | ≤ c,

(i) σp(Tδ ) =
⋃∞

n=1

⋃∞
m =−∞{λδn,m}, where {λδn,m}m∈Z for each fixed n ∈ N is a

sequence of roots of the algebraic equation

(5.10) (1 + δ )
tanh

√
(1 + δ )λ + (nπ)2√

(1 + δ )λ + (nπ)2
=

tan
√
λ− (nπ)2√
λ− (nπ)2

for λ �= (nπ)2 and λ �= −(nπ)2/(1 + δ );
(ii) the eigenfunction of Tδ corresponding to λδn,m is given by

f δn,m(x, y) = ψδn,m(x)χn(y),

where χn(y) =
√

2 sin(nπy) and
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(5.11)

ψδn,m(x) =

⎧⎨⎩N δ
n,m sinh

√
(1 + δ )λδn,m + (nπ)2 sin

(√
λδn,m − (nπ)2 (1 − x)

)
, x > 0,

N δ
n,m sin

√
λδn,m − (nπ)2 sinh

(√
(1 + δ )λδn,m + (nπ)2 (1 + x)

)
, x < 0,

with any N δ
n,m ∈ C \ {0}; with the normalization constants N δ

n,m satisfying

|N δ
n,m|−2 =

∣∣ sinh
(√

(1 + δ )λδn,m + (nπ)2
) ∣∣2

×
⎡⎣sinh

(
2 Im

√
λδn,m − (nπ)2

)
4 Im

√
λδn,m − (nπ)2

−
sin
(
2Re

√
λδn,m − (nπ)2

)
4Re

√
λδn,m − (nπ)2

⎤⎦
+
∣∣∣sin(√λδn,m − (nπ)2

)∣∣∣2
×
[

−
sin
(
2 Im

√
(1 + δ )λδn,m + (nπ)2

)
4 Im

√
(1 + δ )λδn,m + (nπ)2

+
sinh

(
2Re

√
(1 + δ )λδn,m + (nπ)2

)
4Re

√
(1 + δ )λδn,m + (nπ)2

]
,

the functions f δn,m (n ∈ N, m ∈ Z) are normalized to 1 in L2(�).

Proof. The results follow by the separation of variables, as in the proof of
Proposition 5.1. Contrary to the symmetric situation δ = 0, however, (5.10) can
have solutions λ = (nπ)2 and λ = −(nπ)2/(1 + δ ). Compatibility conditions for
the existence of such solutions are

(5.12)
tanh

√
(2 + δ )(nπ)2√

(2 + δ )(nπ)2
=

1
1 + δ

,
tanh

√
2+δ
1+δ (nπ)2√

2+δ
1+δ (nπ)2

= 1 + δ,

respectively, (they can be obtained from (5.10) after the limit λ → (nπ)2 and
λ → −(nπ)2/(1 + δ ), respectively). We claim that these “exceptional” solutions
do not exist for all δ small in the absolute value, uniformly in n ∈ N. This can
be proved straightforwardly by comparing the real parts of the left- and right-hand
sides of (5.12). More specifically, we have∣∣∣∣Re

(
tanh z

z

)∣∣∣∣ =
1

|z|2
∣∣∣∣z1 sinh(2z1) + z2 sin(2z2)

cosh(2z1) + cos(2z2)

∣∣∣∣ ≤ 1
|z1|

sinh(2|z1|) + 1
cosh(2|z1|) − 1

for all z = z1 + iz2 ∈ C with z1 = Re z �= 0, where the right hand side is decreasing
as a function of |z1|. Employing the elementary inequality |Re

√
ξ | ≥ |√Re ξ |
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(valid for every ξ ∈ C with Re ξ ≥ 0) and |δ | < 1, we estimate∣∣∣Re
√

(2 + δ )(nπ)2
∣∣∣ ≥ ∣∣∣√(2 + Re δ )(nπ)2

∣∣∣ ≥ π,∣∣∣∣∣Re

√
2 + δ
1 + δ

(nπ)2
∣∣∣∣∣ ≥
∣∣∣∣∣
√(

1 +
1 + Re δ

1 + 2Re δ + |δ |2
)

(nπ)2
∣∣∣∣∣ ≥ π .

Consequently, a necessary condition for equality to hold in (5.12) is

0.32 ≈ 1
π

sinh(2π) + 1
cosh(2π) − 1

≥ min
{

Re
(

1
1 + δ

)
, Re (1 + δ )

}
≥ 1 − |δ |

(1 + |δ |)2 ,

which is clearly impossible if |δ | is small enough (the present estimates yield c ≥
0.38). �

We are now in a position to establish the convergence of the eigenvalues and
eigenfunctions of Tδ to the eigenvalues and eigenfunctions of A as δ → 0. In
the next theorem, we show, in particular, that the operators Aε and Bη in the
Introduction represent an “approximation” of the self-adjoint operator A, at least
on the spectral level. However, the resolvents of Aε and Bη are compact for all
κ �= 1 and η > 0, while the resolvent of A is not compact (0 is an eigenvalue of
infinite multiplicity).

Theorem 5.3. For n ∈ N and m ∈ Z, let λn,m and ψn,m be the eigenvalues
and eigenfunctions, respectively, of A specified in Proposition 5.1, and let λδn,m
and ψδn,m be the eigenvalues and eigenfunctions, respectively, of Tδ specified in
Proposition 5.2. For any n ∈ N, the sequence {λδn,m}m∈Z can be arranged so that

lim
δ→0

∣∣λδn,m − λn,m

∣∣ = 0 and lim
δ→0

∥∥ψδn,m − ψn,m

∥∥
L∞(�) = 0.

Proof. The convergence of the eigenvalues follows by the Implicit Function
Theorem applied to

H (λ, δ ) = (1 + δ )
tanh

√
(1 + δ )λ + (nπ)2√

(1 + δ )λ + (nπ)2
− tan

√
λ− (nπ)2√
λ− (nπ)2

.

Clearly, H (λ, 0) = F (λ), where F is introduced in (5.5) based on (5.1). Hence
H (λn,m, 0) = 0. We need only to check that the derivative ∂1H (λn,m, 0) does not
vanish. However, ∂1H (λn,m, 0) = F ′(λn,m) �= 0, due to the proof of simplicity of
the roots of (5.1) established in the proof of Proposition 5.1. The convergence of
the eigenfunctions is then clear from the expressions (5.2) and (5.11). �
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Birkhäuser/Springer, Cham, 2015, pp. 397–452.

[26] D.R. Smith, J. B. Pendry and M.C.K. Wiltshire, Metamaterials and negative refractive index,
Science 305 (2004), 788–792.

[27] S. Trostorff and M. Waurick, A note on elliptic type boundary value problems with maximal
monotone relations, Math. Nachr. 287 (2014), 1545–1558.

Jussi Behrndt
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