
1

Elliptic operators, Dirichlet-to-Neumann
maps and quasi boundary triples

Jussi Behrndt and Matthias Langer

Abstract The notion of quasi boundary triples and their Weyl functions
is reviewed and applied to self-adjointness and spectral problems for a class of
elliptic, formally symmetric, second order partial differential expressions with
variable coefficients on bounded domains.

1.1 Introduction

Boundary triples and associated Weyl functions are a powerful and ef-

ficient tool to parameterize the self-adjoint extensions of a symmetric

operator and to describe their spectral properties. There are numer-

ous papers applying boundary triple techniques to spectral problems

for various types of ordinary differential operators in Hilbert spaces;

see, e.g. [Behrndt and Langer, 2010; Behrndt, Malamud and Neidhardt,

2008; Behrndt and Trunk, 2007; Brasche, Malamud and Neidhardt, 2002;

Brüning, Geyler and Pankrashkin, 2008; Derkach, Hassi and de Snoo,

2003; Gorbachuk and Gorbachuk, 1991; Derkach and Malamud, 1995;

Karabash, Kostenko and Malamud, 2009; Kostenko and Malamud, 2010;

Posilicano, 2008] and the references therein.

The abstract notion of boundary triples and Weyl functions is strongly

inspired by Sturm–Liouville operators on a half-line and their Titch-

marsh–Weyl coefficients. To make this more precise, let us consider the

ordinary differential expression ` = −D2 + q on the half-line R+ =

(0,∞), where D denotes the derivative, and suppose that q is a real-

valued L∞-function. The maximal operator associated with ` in L2(R+)

is defined on the Sobolev space H2(R+) and turns out to be the adjoint

of the minimal operator Sf = `(f), domS = H2
0 (R+), where H2

0 (R+)

is the subspace of H2(R+) consisting of functions f that satisfy the
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boundary conditions f(0) = f ′(0) = 0. Here S is a densely defined

closed symmetric operator in L2(R+) with deficiency numbers (1, 1). In

this situation it is natural to define boundary mappings Γ0 and Γ1 on

the domain H2(R+) of the maximal operator S∗ (the adjoint of S) by

Γ0,Γ1 : domS∗ → C, Γ0f := f(0) and Γ1f := f ′(0).

The mapping (Γ0; Γ1)> : domS∗ → C×C is surjective, and the Lagrange

identity reads as

(S∗f, g)− (f, S∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ domS∗,

where on the right-hand side the standard inner product of the boundary

space C is used. The abstract Lagrange identity and the surjectivity of

(Γ0; Γ1)> are the defining relations for a boundary triple, in this case

the triple {C,Γ0,Γ1}. In a general situation, one has a triple {G,Γ0,Γ1}
where G is an auxiliary Hilbert space (the space of boundary values) and

Γ0,Γ1 are linear mappings from domS∗ to G; see Definition 1.1 below

for details. The self-adjoint extensions of the symmetric Sturm–Liouville

operator S can be parameterized in the form

Aαf = `(f), domAα =
{
f ∈ domS∗ : Γ1f = αΓ0f

}
,

where α ∈ R ∪ {∞}. For an arbitrary closed symmetric operator with

equal deficiency indices and a boundary triple {G,Γ0,Γ1} for its adjoint,

the domains of the self-adjoint extensions AΘ are characterized formally

in the same way, namely by the boundary conditions Γ1f = ΘΓ0f , where

Θ is a self-adjoint operator (or relation) in G; cf. Proposition 1.2.

If S is an arbitrary closed symmetric operator with equal deficiency

indices in some Hilbert space and {G,Γ0,Γ1} is a boundary triple for the

adjoint S∗, then the corresponding Weyl function M is defined as the

map Γ0fλ 7→ Γ1fλ, where fλ belongs to ker(S∗−λ) and λ ∈ C\R. In the

Sturm–Liouville case the Weyl function corresponding to the boundary

triple {C,Γ0,Γ1} is a scalar analytic function defined on C\R, which

maps Dirichlet boundary values fλ(0) of H2-solutions fλ of the differ-

ential equation `(u) = λu onto their Neumann boundary values f ′λ(0).

We note that the Weyl function M coincides with the Titchmarsh–Weyl

coefficient associated with `. In Sturm–Liouville theory it is well known

that the complete spectral information of the self-adjoint realizations is

encoded in the Titchmarsh–Weyl coefficient, that is, in the Weyl func-

tion of the boundary triple {C,Γ0,Γ1}. For example, the spectrum of

the Dirichlet operator equals the set of real numbers to which M cannot

be continued analytically; isolated eigenvalues coincide with poles of M .
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Similar considerations can be made for a regular Sturm–Liouville ex-

pression ` = −D2 + q on the interval [0, 1]; here a usual choice of a

boundary triple is

G = C2, Γ0f =

(
f(0)

f(1)

)
and Γ1f =

(
f ′(0)

−f ′(1)

)
,

and the poles of the corresponding Weyl function (which is a 2×2-matrix

function in this case) coincide with the eigenvalues of the Dirichlet op-

erator. For more details, see Section 1.2.

Motivated by the above considerations for the case of second order

ordinary differential operators it seems very desirable and natural to

adapt the boundary triple concept in such a form that it can be applied

to elliptic, formally symmetric, second order differential operators of the

form

L = −
n∑

j,k=1

∂j ajk ∂k + a

with variable coefficients ajk and a on a bounded domain Ω by choosing

the boundary mappings

Γ0f := f |∂Ω and Γ1f := − ∂f

∂νL

∣∣∣
∂Ω

= −
n∑

j,k=1

ajknj∂kf
∣∣
∂Ω

(1.1)

as the Dirichlet and (oblique) Neumann trace map, respectively. Here

n denotes the outward normal vector on ∂Ω. One of the main moti-

vations to choose the boundary maps in (1.1) is that in applications

usually Dirichlet and Neumann data are used and that (formally) the

corresponding Weyl function M coincides (up to a minus sign) with the

Dirichlet-to-Neumann map. For f, g ∈ H2(Ω), Green’s identity takes the

form

(Lf, g)− (f,Lg) = (Γ1f,Γ0g)− (Γ0f,Γ1g),

where the L2(Ω) and L2(∂Ω) inner products appear on the left-hand

and right-hand sides, respectively. However, H2(Ω) is only a core for the

maximal operator associated with L, which is defined on the set

Dmax = {f ∈ L2(Ω): L(f) ∈ L2(Ω)};

moreover, the mapping (Γ0; Γ1)> : H2(Ω) → L2(∂Ω) × L2(∂Ω) is not

surjective, but its range is only dense. Green’s identity in the above

form cannot be extended to functions f, g in Dmax. Therefore the triple

{L2(∂Ω),Γ0,Γ1} with Γ0 and Γ1 as in (1.1) is not a boundary triple in the
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usual sense and cannot be turned into one by enlarging the domain of the

boundary mappings. These simple observations led to a generalization of

the notion of boundary triples in [Behrndt and Langer, 2007]. There the

concept of quasi boundary triples was introduced in an abstract setting

and applied to second order elliptic differential operators on bounded

domains. The H2(Ω) setting, as well as the case of the larger domain

H
3/2
L (Ω) :=

{
f ∈ H3/2(Ω): L(f) ∈ L2(Ω)

}
for the boundary mappings was discussed there in detail. In contrast

to (ordinary) boundary triples there is no bijective correspondence of

self-adjoint extensions AΘ of the underlying symmetric operator S and

self-adjoint parameters Θ in the boundary space via the formula

Θ 7→ AΘ = S∗ � {f ∈ domS∗ : Γ1f = ΘΓ0f}.

However, sufficient conditions for self-adjointness can be given with the

help of a version of Krein’s formula (see Theorems 1.17, 1.18 and 1.21).

Many papers have been written on Krein’s formula; see, e.g. [Derkach

and Malamud, 1991; Gesztesy, Makarov and Tsekanovskii, 1998; Krĕın,

1946; Langer and Textorius, 1977; Pankrashkin, 2006; Saakjan, 1965]

for the general case and, e.g. [Gesztesy and Mitrea, 2008, 2009, 2011;

Grubb, 2008; Posilicano and Raimondi, 2009] for applications to PDEs.

Here we present a version of Krein’s formula that is slightly more general

than the one in [Behrndt and Langer, 2007] (but compare also [Behrndt,

Langer and Lotoreichik, 2011]):

(AΘ − λ)−1 = (AD − λ)−1 − γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗,

which holds for any Θ such that ρ(AΘ)∩ρ(AD) 6= ∅ (see Theorem 1.22,

and Theorem 1.16, and their corollaries for the abstract setting); here

γ(λ) is the so-called γ-field, which maps boundary values y onto solutions

f of the equation L(f) = λf with Γ0f = y.

Let us point out that a concept that is similar to quasi boundary triples

was introduced and studied by V. Ryzhov independently in [Ryzhov,

2007, 2009]. In [Malinen and Staffans, 2007, Section 6.2] the idea to re-

strict boundary mappings in connection with colligations and boundary

nodes is also used. A boundary triple concept for first order operators

was introduced in [Post, 2007]. Other generalizations of boundary triples

and abstract concepts of boundary mappings were studied, e.g. in [Ar-

linskĭı, 2000; Derkach et al., 2006, 2009; Kopachevskĭı and Krĕın, 2004;

Posilicano, 2004, 2008; Mogilevskĭı, 2006, 2009],

The aim of the present paper is to give an introduction to and an
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overview of the properties of quasi boundary triples, associated γ-fields

and Weyl functions, and to demonstrate how conveniently this technique

can be applied to boundary value and spectral problems for elliptic oper-

ators. For simplicity, we restrict ourselves to the case that the underlying

symmetric operator S is densely defined, so that the adjoint S∗ is an

operator and not a multi-valued linear relation. For the general case we

refer the reader to [Behrndt and Langer, 2007]. In Section 2 we start by

recalling the notion of boundary triples and Weyl functions and collect

some well-known properties of these objects. Furthermore, we show in

examples how boundary triples can be applied to ordinary, as well as el-

liptic differential operators. The boundary triple for an elliptic operator

from Section 1.2 can already be found in a slightly different context in

[Grubb, 1968] and was studied in slight variations in [Brown, Grubb and

Wood, 2009; Brown et al., 2009, 2008; Grubb; Malamud, 2010; Posili-

cano, 2008; Posilicano and Raimondi, 2009]. We emphasize that there

the boundary mapping Γ1 is a regularized variant of the Neumann trace

in (1.1) and that the corresponding Weyl function is not the Dirichlet-

to-Neumann map.

The notion of quasi boundary triples, their γ-fields and Weyl functions

is reviewed in Section 1.3. We also provide a full proof of Krein’s formula,

which is difficult to find in the literature in this form; cf. [Behrndt and

Langer, 2007; Behrndt, Langer and Lotoreichik, 2011]. Furthermore, we

give some sufficient criteria for self-adjointness of the extensions of the

underlying symmetric operator. In Section 1.4 the quasi boundary triple

concept is then applied to the elliptic differential expression L. Here

we have decided to work on the scale of spaces Hs
L(Ω), s ∈ [ 3

2 , 2], the

largest possible range of values of s for our purposes. We stress again that

the essential idea here is to use the Dirichlet and Neumann boundary

mappings Γ0 and Γ1 from (1.1) and to identify the corresponding Weyl

function with the Dirichlet-to-Neumann map from the theory of elliptic

differential equations. Furthermore, we compare and connect the quasi

boundary triple {L2(∂Ω),Γ0,Γ1} and its Weyl function with the regu-

larized (ordinary) boundary triple from Section 1.2 and the associated

Weyl function.

Let us finish this introduction by fixing some notation. For Hilbert

spaces H1, H2, denote by B(H1,H2) the space of everywhere defined

bounded linear operators from H1 to H2; moreover, we set B(H1) :=

B(H1,H1). For abstract boundary conditions we need linear relations

in the boundary space; so let us recall a couple of definitions. A linear

relation (or, in short, relation) T in a Hilbert space H is a subspace of
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the cartesian product H×H; operators are identified as linear relations

via their graphs. The elements in a linear relation T are denoted in the

form (f ; g)> or as column vectors. For a linear relation T we define its

domain, range, multi-valued part, inverse and adjoint as

domT :=
{
f : ∃ g such that (f ; g)> ∈ T

}
,

ranT :=
{
g : ∃ f such that (f ; g)> ∈ T

}
,

kerT :=
{
f : such that (f ; 0)> ∈ T

}
,

mulT :=
{
g : such that (0; g)> ∈ T

}
,

T−1 :=
{

(g; f)> : (f ; g)> ∈ T
}
,

T ∗ :=
{

(f ; g)> : (v, f) = (u, g) for all (u; v)> ∈ T
}
.

A linear relation T in a Hilbert space H is called symmetric if T ⊂
T ∗, and self-adjoint if T = T ∗. The relation T is called dissipative if

Im (g, f) ≥ 0 for all (f ; g)> ∈ T and accumulative if Im (g, f) ≤ 0 for all

(f ; g)> ∈ T ; T is called maximal dissipative (maximal accumulative) if

T is dissipative (or accumulative, respectively) and ran (T − λ) = H for

λ ∈ C− (λ ∈ C+, respectively), where C+ and C− denote the upper and

lower half-planes. The sum of two linear relations T1, T2 is defined as

T1 + T2 :=
{

(f ; g + h)> : (f ; g)> ∈ T1, (f ;h)> ∈ T2

}
.

The real and imaginary parts of a linear relation are defined as

ReT =
1

2

(
T + T ∗

)
, ImT =

1

2i

(
T − T ∗

)
.

1.2 Boundary triples and Weyl functions for
ordinary and partial differential operators

In this section we first review the concept of boundary triples and as-

sociated Weyl functions from abstract extension theory of symmetric

operators in Hilbert spaces. As a standard example we discuss the case

of a regular Sturm–Liouville operator. Furthermore, as a second example

a class of second order elliptic differential operators is studied.

Boundary triples and Weyl functions Let (H, (·,−)) be a

Hilbert space and let in the following S be a densely defined closed

symmetric operator in H. Everything what follows can be done also

for non-densely defined operators S, in which case the adjoint S∗ is a
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proper relation, but for simplicity we restrict ourselves to the case that

S is densely defined. This is also sufficient for the applications we have

in mind here. First we recall the notion of a boundary triple (originally

also called boundary value space), which nowadays is very popular in

extension theory of symmetric operators; cf. [Brown et al., 2008; Bruk,

1976; Brüning, Geyler and Pankrashkin, 2008; Derkach and Malamud,

1991, 1995; Gorbachuk and Gorbachuk, 1991; Kochubei, 1975; Malamud,

1992].

Definition 1.1 A triple {G,Γ0,Γ1} is said to be a boundary triple

for the adjoint operator S∗ if (G, (·, ·)) is a Hilbert space and Γ0,Γ1 :

domS∗ → G are linear mappings such that

(S∗f, g)− (f, S∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g) (1.2)

holds for all f, g ∈ domS∗ and the map Γ := (Γ0; Γ1)> : domS∗ → G×G
is surjective.

A boundary triple {G,Γ0,Γ1} for S∗ exists if and only if the deficiency

numbers n±(S) = dim ker(S∗ ± i) are equal, that is, if and only if S

admits self-adjoint extensions in H. It follows that dimG = n±(S), and

we point out that dimG may be infinite. Moreover, if S 6= S∗ then a

boundary triple for S∗ (if it exists) is not unique.

In the following let {G,Γ0,Γ1} be a boundary triple for S∗. Then the

map Γ = (Γ0; Γ1)> : domS∗ → G × G is closed, continuous with respect

to the graph norm of S∗, and

domS = ker Γ = ker Γ0 ∩ ker Γ1

holds. Furthermore, the restrictions of S∗ to the dense subspaces ker Γ0

and ker Γ1,

A0 := S∗ � ker Γ0 and A1 := S∗ � ker Γ1,

are self-adjoint extensions of S in H which are transversal, that is,

domA0 ∩domA1 = domS and domA0 + domA1 = domS∗ hold. With

the help of the boundary triple {G,Γ0,Γ1} all closed extensions of S

which are restrictions of S∗ can be parameterized in a convenient way;

see, e.g. [Derkach and Malamud, 1995, Proposition 1.4].

Proposition 1.2 Let {G,Γ0,Γ1} be a boundary triple for S∗. Then

Θ 7→ AΘ := S∗ � ker(Γ1 −ΘΓ0) (1.3)

establishes a bijective correspondence between the closed linear relations
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Θ in G and the closed extensions AΘ ⊂ S∗ of S. Furthermore, for every

closed linear relation Θ in G the identity

(AΘ)∗ = AΘ∗

holds, and AΘ is a self-adjoint (symmetric, (maximal) dissipative, (max-

imal) accumulative) operator in H if and only if Θ is a self-adjoint (sym-

metric, (maximal) dissipative, (maximal) accumulative, respectively) re-

lation in G.

We mention that the dense subspace ker(Γ1−ΘΓ0) on the right-hand

side of (1.3) coincides with{
f ∈ domS∗ : Γf = (Γ0f ; Γ1f)> ∈ Θ

}
= Γ−1(Θ) (1.4)

and that the expression Γ1 − ΘΓ0 has to be interpreted in the sense of

linear relations if mul Θ 6= {0}. Observe that a linear relation Θ in G
is self-adjoint if and only if there exists a pair {Φ,Ψ} of operators in G
with the properties

Φ,Ψ ∈ B(G), Ψ∗Φ = Φ∗Ψ and 0 ∈ ρ(Ψ± iΦ) (1.5)

such that

Θ =
{

(Φk; Ψk)> : k ∈ G
}

=
{

(h;h′)> ∈ G × G : Ψ∗h = Φ∗h′
}
. (1.6)

With the help of this representation the condition (1.4) can also be

written in the form{
f ∈ domS∗ : Ψ∗Γ0f = Φ∗Γ1f

}
,

and hence the corresponding self-adjoint operator AΘ in (1.3) is given

by

AΘ = S∗ � ker(Ψ∗Γ0 − Φ∗Γ1).

The following theorem from [Behrndt and Langer, 2010] is of a cer-

tain inverse nature and can be used to determine the adjoint of a given

symmetric operator with the help of boundary mappings that satisfy

(1.2) and a maximality condition. Very roughly speaking the problem of

determining the adjoint is reduced to the much easier problem of check-

ing self-adjointness. The method is inspired by the theory of isometric

and unitary operators between indefinite inner product spaces; see, e.g.

[Azizov and Iokhvidov, 1989; Derkach et al., 2006; Šmuljan, 1976].



Elliptic operators and quasi boundary triples 9

Theorem 1.3 Let T be a linear operator in H and let G be a Hilbert

space. Assume that Γ0,Γ1 : domT → G are linear mappings which satisfy

the following conditions:

(i) there exists a symmetric operator or relation Θ in G such that

T � ker(Γ1 −ΘΓ0)

is the extension of a self-adjoint operator A in H;

(ii) ran (Γ0; Γ1)> = G × G;

(iii) (Tf, g)− (f, Tg) = (Γ1f,Γ0g)− (Γ0f,Γ1g) for all f, g ∈ domT .

Then the operator

S := T � ker Γ0 ∩ ker Γ1

is a densely defined closed symmetric operator in H such that S∗ = T

and {G,Γ0,Γ1} is a boundary triple for S∗. Furthermore, Θ is a self-

adjoint operator or relation in G, and A = S∗ � ker(Γ1 − ΘΓ0) = AΘ

holds.

Next the notion and essential properties of the γ-field and Weyl func-

tion corresponding to a boundary triple are recalled. Let again S be

a densely defined closed symmetric operator in H and let {G,Γ0,Γ1}
be a boundary triple for S∗ with A0 = S∗ � ker Γ0. We first define

Nλ(S∗) := ker(S∗ − λ) for λ ∈ C. It follows from A0 = A∗0 that for all

λ ∈ ρ(A0) the domain of S∗ can be decomposed into a direct sum:

domS∗ = domA0 +̇Nλ(S∗) = ker Γ0 +̇Nλ(S∗). (1.7)

In particular, the restriction of the map Γ0 toNλ(S∗), λ ∈ ρ(A0), is injec-

tive, and as a consequence of ran Γ0 = G it follows that Γ0 � Nλ(S∗)→ G
is bijective.

Definition 1.4 The γ-field γ and Weyl function M corresponding to

{G,Γ0,Γ1} for S∗ are defined by

γ(λ) :=
(
Γ0 � Nλ(S∗)

)−1
,

M(λ) := Γ1γ(λ) = Γ1

(
Γ0 � Nλ(S∗)

)−1
,

λ ∈ ρ(A0).

In the next two propositions we collect the basic properties of the

γ-field and Weyl function of a boundary triple; see [Derkach and Mala-

mud, 1991, Lemma 1 and Theorem 1] and Proposition 1.14 (iv) for the

particular form of M in (1.9).
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Proposition 1.5 Let {G,Γ0,Γ1} be a boundary triple for S∗ with A0 =

S∗ � ker Γ0. Then the corresponding γ-field λ 7→ γ(λ) is a holomorphic

B(G,H)-valued function on ρ(A0), and the identities

γ(λ) =
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ) and γ(λ̄)∗ = Γ1(A0 − λ)−1

hold for all λ, µ ∈ ρ(A0).

Proposition 1.6 Let {G,Γ0,Γ1} be a boundary triple for S∗ with A0 =

S∗ � ker Γ0. Then the corresponding Weyl function M is a holomorphic

B(G)-valued function on ρ(A0), and the identities

M(λ)−M(µ)∗ = (λ− µ̄)γ(µ)∗γ(λ) (1.8)

and

M(λ) = ReM(λ0) + γ(λ0)∗
(
(λ− Reλ0)

+ (λ− λ0)(λ− λ̄0)(A0 − λ)−1
)
γ(λ0) (1.9)

hold for all λ, µ ∈ ρ(A0) and any fixed λ0 ∈ ρ(A0).

The identity (1.8) yields that the Weyl function M is a so-called

Nevanlinna (or Herglotz ) function, that is, M is holomorphic on C\R,

M(λ) = M(λ̄)∗ for all λ ∈ C\R and ImM(λ) is a non-negative op-

erator for all λ in the upper half-plane C+; see, e.g. [Gesztesy and

Tsekanovskii, 2000; Kac and Krĕın, 1974]. Moreover, it follows from

(1.8) that 0 ∈ ρ(ImM(λ)) if λ ∈ C\R, i.e. M is a uniformly strict

Nevanlinna function; cf. [Derkach et al., 2006, p. 5354]. Conversely, ev-

ery uniformly strict Nevanlinna function is the Weyl function of some

boundary triple (where S may be non-densely defined); see [Derkach

and Malamud, 1995, Section 5] and [Langer and Textorius, 1977]. We

also mention, that a B(G)-valued function N is a Nevanlinna function

if and only if there exist self-adjoint operators α, β ∈ B(G), β ≥ 0, and

a non-decreasing self-adjoint operator function t 7→ Σ(t) ∈ B(G) on R
such that

∫
R

1
1+t2 dΣ(t) ∈ B(G) and

N(λ) = α+ λβ +

∫ ∞
−∞

( 1

t− λ
− t

1 + t2

)
dΣ(t), λ ∈ C\R.

Let again {G,Γ0,Γ1} be a boundary triple for S∗. With the help of

the corresponding Weyl function M the spectral properties of the closed

extensions of S can be described. Roughly speaking the spectrum of

AΘ can be described by means of the singularities of the function λ 7→
(Θ−M(λ))−1. The following theorem, see, e.g. [Derkach and Malamud,
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1991, Propositions 1 and 2], illustrates this and provides a variant of

Krein’s formula for canonical extensions (which are not necessarily self-

adjoint).

Theorem 1.7 Let {G,Γ0,Γ1} be a boundary triple for S∗ with γ-field

γ and Weyl function M . Let A0 = S∗ � ker Γ0 and let AΘ be a closed ex-

tension of S corresponding to some Θ via (1.3)–(1.4). Then the following

statements hold for all λ ∈ ρ(A0):

(i) λ ∈ ρ(AΘ) if and only if 0 ∈ ρ(Θ−M(λ));

(ii) λ ∈ σi(AΘ) if and only if 0 ∈ σi(Θ−M(λ)), i = p, c, r, where σp,

σc, σr denote the point, continuous and residual spectrum, respec-

tively;

(iii) for all λ ∈ ρ(A0) ∩ ρ(AΘ),

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗.

We mention that Krein’s formula in Theorem 1.7 (iii) above can also

be written in the form

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)Φ
(
Ψ−M(λ)Φ

)−1
γ(λ̄)∗

if Θ is a self-adjoint relation in G which is represented by a pair {Φ,Ψ}
as in (1.6).

We point out that the spectral characterization with the help of the

Weyl function in Theorem 1.7 (i)–(ii) is only valid on ρ(A0); see [Brüning,

Geyler and Pankrashkin, 2008, Section 4] for a certain extension to

points which are isolated eigenvalues of A0. We also want to point out

that, if the symmetric operator S is simple, i.e. there exist no non-trivial

reducing subspaces on which S is self-adjoint, it is well known that in the

case Θ ∈ B(G) the function λ 7→ (Θ−M(λ))−1 can be minimally repre-

sented by the extension AΘ. In particular, this implies that the complete

spectrum of AΘ can be characterized with an analytic extension of the

function (Θ −M(·))−1. Moreover, again under the condition that S is

simple, the spectrum of A0 can be characterized with the singularities

of the Weyl function M ; cf. [Brasche, Malamud and Neidhardt, 2002].

Boundary triples for Sturm–Liouville operators Let (a, b)

be a bounded interval and let p, q, w be real-valued functions on (a, b)
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such that p, w > 0 almost everywhere and 1/p, q, w ∈ L1(a, b). In the

following we consider the regular Sturm–Liouville differential expression

` =
1

w

(
− d

dx
p
d

dx
+ q

)
and differential operators associated with `. For simplicity, only the reg-

ular case is discussed here, for singular problems in the limit circle case;

see, e.g. [Allakhverdiev, 1991; Behrndt and Langer, 2010]. The limit

point case is very well known and is also briefly discussed in the intro-

duction of the present paper.

Let L2
w(a, b) denote the space of (equivalence classes) of complex-

valued measurable functions on (a, b) such that |f |2w ∈ L1(a, b) and

equip L2
w(a, b) with the inner product

(f, g) =

∫ b

a

f(x)g(x)w(x)dx.

The differential operators associated with ` act in the Hilbert space

(L2
w(a, b), (·, ·)) and are defined as follows: let

Dmax =
{
f ∈ L2

w(a, b) : f, pf ′ absolutely continuous on (a, b)

and `(f) ∈ L2
w(a, b)

}
,

Dmin =
{
f ∈ Dmax : f(a) = (pf)′(a) = f(b) = (pf)′(b) = 0

}
,

and let Sf = `(f) with domS = Dmin be the minimal operator associ-

ated with `. Then S is a densely defined closed symmetric operator in

L2
w(a, b) with deficiency numbers n±(S) = 2. The maximal realization

of ` coincides with the adjoint of the minimal operator:

S∗f = `(f), domS∗ = Dmax.

As a basis for the two-dimensional space Nλ(S∗), λ ∈ C, we choose the

unique solutions ϕλ and ψλ of `(f) = λf fixed by the initial conditions

ϕλ(a) = 1, (pϕ′λ)(a) = 0,

ψλ(a) = 0, (pψ′λ)(a) = 1.

The proof of the next proposition is straightforward and left to the

reader.

Proposition 1.8 The triple {C2,Γ0,Γ1}, where

Γ0f :=

(
f(a)

f(b)

)
and Γ1f :=

(
(pf ′)(a)

−(pf ′)(b)

)
,
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is a boundary triple for the maximal operator

S∗f = `(f), domS∗ = Dmax

such that A0 = S∗ � ker Γ0 and A1 = S∗ � ker Γ1 are the Dirichlet

realization and the Neumann realizations of `. For λ ∈ ρ(A0) the corre-

sponding γ-field and Weyl function are given by

γ(λ)η = η1

(
ϕλ −

ϕλ(b)

ψλ(b)
ψλ

)
+ η2

1

ψλ(b)
ψλ, η =

(
η1

η2

)
∈ C2,

and

M(λ) =
1

ψλ(b)

(
−ϕλ(b) 1

1 −(pψ′λ)(b)

)
.

Note that the poles of M are exactly the eigenvalues of A0, i.e. the

Dirichlet eigenvalues.

Boundary triples for second order elliptic differential op-
erators Let Ω be a bounded domain in Rn, n > 1, with C∞-boundary

∂Ω and consider the second order differential expression

L = −
n∑

j,k=1

∂j ajk ∂k + a (1.10)

on Ω with real-valued coefficients ajk ∈ C∞(Ω), a ∈ L∞(Ω) such that

ajk = akj for all j, k = 1, . . . , n. In addition, it is assumed that the

ellipticity condition

n∑
j,k=1

ajk(x)ξjξk ≥ C
n∑
k=1

ξ2
k, ξ = (ξ1, . . . , ξn)> ∈ Rn, x ∈ Ω,

holds for some constant C > 0.

The Sobolev space of kth order on Ω is denoted by Hk(Ω), k ∈ N, and

the closure of C∞0 (Ω) in Hk(Ω) by Hk
0 (Ω). Sobolev spaces on the bound-

ary are denoted by Hs(∂Ω), s ∈ R. Let (·, ·)−1/2×1/2 and (·, ·)−3/2×3/2

be the extensions of the L2(∂Ω) inner product to H−1/2(∂Ω)×H1/2(∂Ω)

and H−3/2(∂Ω)×H3/2(∂Ω), respectively, and let

ι± : H±1/2(∂Ω)→ L2(∂Ω)

be isomorphisms such that (x, y)−1/2×1/2 = (ι−x, ι+y) holds for every

x ∈ H−1/2(∂Ω) and y ∈ H1/2(∂Ω).
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Recall that the Dirichlet operator

ADf = L(f), domAD = H2(Ω) ∩H1
0 (Ω),

associated with the elliptic differential expression L in (1.10) is self-

adjoint in L2(Ω) and the resolvent of AD is compact, cf. [Edmunds

and Evans, 1987, Theorem VI.1.4] and, e.g. [Lions and Magenes, 1972;

Wloka, 1987]. Furthermore, the minimal operator

Sf = L(f), domS = H2
0 (Ω),

is a densely defined closed symmetric operator in L2(Ω) with equal infi-

nite deficiency numbers, and the adjoint operator S∗f = L(f) is defined

on the maximal domain

domS∗ = Dmax =
{
f ∈ L2(Ω): L(f) ∈ L2(Ω)

}
. (1.11)

Let us fix some η ∈ R ∩ ρ(AD). Then for each function f ∈ Dmax

there is a unique decomposition f = fD + fη, where fD ∈ domAD and

fη ∈ Nη(S∗) = ker(S∗ − η); cf. (1.7).

Next we recall the definition and some properties of the Dirichlet and

(oblique) Neumann trace operators. Let n = (n1, . . . , nn)> be the unit

outward normal of Ω. It is well known that the map

C∞(Ω) 3 f 7→
{
f |∂Ω,

∂f

∂νL

∣∣∣
∂Ω

}
, where

∂f

∂νL
:=

n∑
j,k=1

ajknj∂kf, (1.12)

can be extended to a linear operator from Dmax into H−1/2(∂Ω) ×
H−3/2(∂Ω) and that for f ∈ Dmax and g ∈ H2(Ω), Green’s identity

(S∗f, g)−(f, S∗g)=

(
f |∂Ω,

∂g

∂νL

∣∣∣
∂Ω

)
− 1

2×
1
2

−
(
∂f

∂νL

∣∣∣
∂Ω
, g|∂Ω

)
− 3

2×
3
2

(1.13)

holds; see [Grubb, 1968; Lions and Magenes, 1972; Wloka, 1987].

The boundary triple in the following proposition can also be found in,

e.g. [Brown, Grubb and Wood, 2009; Brown et al., 2008; Grubb, 2009;

Malamud, 2010; Posilicano and Raimondi, 2009] and is already essen-

tially contained in the classical paper [Grubb, 1968]. In [Posilicano, 2008]

also a more abstract version of this construction was considered. For the

convenience of the reader we repeat the short proof of the next proposi-

tion from [Behrndt, 2010] which is based on the general observations in

[Grubb, 1968, 1971].
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Proposition 1.9 Let η ∈ R ∩ ρ(AD). The triple {L2(∂Ω),Γ0,Γ1},
where

Γ0f := ι−fη|∂Ω = ι−f |∂Ω and Γ1f := −ι+
∂fD
∂νL

∣∣∣
∂Ω

with f = fD + fη ∈ Dmax, fD ∈ domAD, fη ∈ ker(S∗ − η),

is a boundary triple for the maximal operator S∗f = L(f), domS∗ =

Dmax, such that AD = S∗ � ker Γ0. The corresponding γ-field and Weyl

function are, for λ ∈ ρ(AD) and y ∈ L2(∂Ω), given by

γ(λ)y =
(
I + (λ− η)(AD − λ)−1

)
fη(y),

M(λ)y = (η − λ)ι+
∂(AD − λ)−1fη(y)

∂νL

∣∣∣
∂Ω

respectively, where fη(y) is the unique function in ker(S∗− η) satisfying

ι−fη(y)|∂Ω = y.

Proof Let f, g ∈ Dmax be decomposed in the form f = fD + fη and

g = gD + gη. Since AD is self-adjoint and η ∈ R, we find

(S∗f, g)−(f, S∗g) = (ADfD, gη)−(fD, S
∗gη)+(S∗fη, gD)−(fη, ADgD).

Then fD|∂Ω = gD|∂Ω = 0 together with Green’s identity (1.13) implies

that

(S∗f, g)− (f, S∗g) = −
(
∂fD
∂νL

∣∣∣
∂Ω
, gη|∂Ω

)
1
2×−

1
2

+

(
fη|∂Ω,

∂gD
∂νL

∣∣∣
∂Ω

)
− 1

2×
1
2

= (Γ1f,Γ0g)− (Γ0f,Γ1g).

Hence (1.2) in Definition 1.1 holds. By the classical trace theorem the

map H2(Ω) ∩H1
0 (Ω) 3 fD 7→ ∂fD

∂νL
|∂Ω ∈ H1/2(∂Ω) is onto and the same

holds for the map ker(S∗ − η) 3 fη 7→ fη|∂Ω ∈ H−1/2(∂Ω), which is an

isomorphism according to [Grubb, 1971, Theorem 2.1]. Hence (Γ0; Γ1)>

maps domS∗ onto L2(∂Ω)×L2(∂Ω) and therefore {L2(∂Ω),Γ0,Γ1} is a

boundary triple for S∗ with AD = ker Γ0.

It remains to show that the corresponding γ-field and Weyl function

have the asserted form. For this let y ∈ L2(∂Ω), choose the unique

function fη(y) in ker(S∗ − η) such that y = ι−fη(y)|∂Ω, and set

fλ := (λ− η)(AD − λ)−1fη(y) + fη(y) (1.14)

for λ ∈ ρ(AD). Then (S∗ − λ)fλ = 0 and since (AD − λ)−1fη(y) ∈
domAD and fη(y) ∈ ker(S∗ − η), we obtain

Γ0fλ = ι−fη(y)|∂Ω = y,
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i.e. γ(λ)y = fλ = (I+(λ−η)(AD−λ)−1)fη(y). Finally, by the definition

of the Weyl function and (1.14) we have

M(λ)y = Γ1fλ = (η − λ) ι+
∂(AD − λ)−1fη(y)

∂νL

∣∣∣
∂Ω
.

Note that A1 = S∗ � ker Γ1 is not the Neumann operator but the

restriction of S∗ to the domain

domS +̇ ker(S∗ − η) = H2
0 (Ω) +̇ ker(S∗ − η).

If η = 0, then the operator A1 is the Krein–von Neumann or “soft”

extension of S, which was studied, e.g. in [Ashbaugh et al., 2010; Behrndt

and Langer, 2007; Everitt and Markus, 2003; Everitt, Markus and Plum,

2005; Grubb, 1968, 1983, 2006].

1.3 Quasi boundary triples and their Weyl functions

The notion of quasi boundary triples was introduced by the authors

in [Behrndt and Langer, 2007] with a particular focus on the applicabil-

ity to elliptic boundary value problems and elliptic differential operators.

The concept is a natural generalization of the concept of boundary triples

from the previous section and so-called generalized boundary triples from

[Derkach and Malamud, 1995, Section 6] and [Derkach et al., 2006, Sec-

tion 5.2]. In this section again (H, (·, ·)) is assumed to be a Hilbert space

and S a densely defined closed symmetric operator in H. The idea is

that boundary mappings are defined not on the domain of S∗ but only

on a core of S∗, and that the abstract Green identity is supposed to be

valid on this core. The restriction of S∗ to this core is called T in the

following.

Definition 1.10 A triple {G,Γ0,Γ1} is said to be a quasi boundary

triple for the operator S∗ if (G, (·, ·)) is a Hilbert space and there exists

an operator T such that T = S∗, and Γ0,Γ1 : domT → G are linear

mappings satisfying

(Tf, g)− (f, Tg) = (Γ1f,Γ0g)− (Γ0f,Γ1g) (1.15)

for all f, g ∈ domT , the range of the map Γ := (Γ0; Γ1)> : domT → G×G
is dense and A0 = T � ker Γ0 is self-adjoint in H.

A quasi boundary triple {G,Γ0,Γ1} for S∗ exists if and only if the

deficiency numbers of S are equal, and it follows that dimG = n±(S),
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just as for (ordinary) boundary triples. Clearly, every boundary triple

is also a quasi boundary triple, and we point out that for the case of

finite deficiency numbers also the converse holds. We also remark that

a quasi boundary triple with the additional property ran Γ0 = G is a

generalized boundary triple in the sense of [Derkach and Malamud, 1995,

Definition 6.1] (cf. [Behrndt and Langer, 2007, Corollary 3.7]) and that

quasi boundary triples are not necessarily boundary relations as studied

in [Derkach et al., 2006, 2009].

In the following, let {G,Γ0,Γ1} be a quasi boundary triple for S∗.

Then the map Γ = (Γ0; Γ1)> as a mapping from domT endowed with

the graph norm of T to G ×G is closable (which follows from (1.15) and

the assumption that ran Γ is dense), and

domS = ker Γ = ker Γ0 ∩ ker Γ1

holds; see [Behrndt and Langer, 2007, Proposition 2.2].

For a linear operator or relation Θ in G (not necessarily closed) we

define the extension AΘ of S in analogy to (1.3)–(1.4) by

AΘ := T � ker(Γ1 −ΘΓ0) = T � {f ∈ domT : Γf ∈ Θ}. (1.16)

In contrast to boundary triples, relation (1.16) in general does not in-

duce a bijective correspondence between the self-adjoint extensions of S

and the self-adjoint operators and relations Θ in G; cf. Proposition 1.2.

However, if Θ is symmetric (dissipative, accumulative) in G, then the

corresponding extension AΘ in (1.16) is also symmetric (dissipative, ac-

cumulative) inH, but simple counterexamples show that self-adjointness

of Θ does not even imply essential self-adjointness of AΘ; see [Behrndt

and Langer, 2007, Proposition 4.11].

The following result is a variant of Theorem 1.3 and will turn out to

be useful when defining quasi boundary triples for elliptic operators in

the next section. The advantage of this theorem is that one starts with

some operator T and then constructs S and one does not have to show

that domT is a core of S∗; this follows from the theorem. Moreover, one

only has to show that T � ker Γ0 is an extension of a self-adjoint operator

and not that it is equal to one. For the proof see [Behrndt and Langer,

2007, Theorem 2.3].

Theorem 1.11 Let T be a linear operator in H and let G be a Hilbert

space. Assume that Γ0,Γ1 : domT → G are linear mappings which satisfy

the following conditions:

(i) T � ker Γ0 is the extension of a self-adjoint operator A in H;
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(ii) ran (Γ0; Γ1)> is dense in G × G and ker Γ0 ∩ ker Γ1 is dense in H;

(iii) (Tf, g)− (f, Tg) = (Γ1f,Γ0g)− (Γ0f,Γ1g) for all f, g ∈ domT .

Then the operator

S := T � ker Γ0 ∩ ker Γ1

is a densely defined closed symmetric operator in H such that S∗ = T ,

and {G,Γ0,Γ1} is a quasi boundary triple for S∗ with A = T ∗ � ker Γ0 =

A0.

Let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗. In the following

we set G0 := ran Γ0 and G1 := ran Γ1. Because ran Γ is dense in G ×G, it

follows that G0 and G1 are dense subspaces of G. Since A0 = T � ker Γ0

is a self-adjoint extension of S in H, the decomposition

domT = domA0 +̇Nλ(T ), Nλ(T ) := ker(T − λ),

holds for all λ ∈ ρ(A0); cf. (1.7). The γ-field and Weyl function of a

quasi boundary triple are defined in analogy to Definition 1.4.

Definition 1.12 Let S be a densely defined closed symmetric operator

in H and let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ with

A0 = T � ker Γ0. Then the functions γ and M defined by

γ(λ) :=
(
Γ0 � Nλ(T )

)−1
,

M(λ) := Γ1γ(λ) = Γ1

(
Γ0 � Nλ(T )

)−1
,

λ ∈ ρ(A0), (1.17)

are called the γ-field and Weyl function corresponding to the quasi

boundary triple {G,Γ0,Γ1}.

Note that γ(λ) is a mapping from G0 to H, and M(λ) is a mapping

from G0 to G1 ⊂ G for λ ∈ ρ(A0). In the next propositions we collect

some properties of the γ-field and the Weyl function of a quasi boundary

triple, which are extensions of well-known properties of the γ-field and

Weyl function of an ordinary boundary triple; cf. Propositions 1.5 and

1.6. For the convenience of the reader we repeat the proofs from [Behrndt

and Langer, 2007, Proposition 2.6] which are similar to the ones for γ-

fields and Weyl functions of ordinary boundary triples; cf. [Derkach and

Malamud, 1991, 1995].

Proposition 1.13 Let {G,Γ0,Γ1} be a quasi boundary triple with A0 =

T � ker Γ0 and γ-field γ. Then the following assertions hold for all λ, µ ∈
ρ(A0):
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(i) γ(λ) is a bounded operator from G to H with dense domain dom γ(λ)

= G0 and range ran γ(λ) = Nλ(T ), and hence γ(λ) ∈ B(G,H);

(ii) the function λ 7→ γ(λ)g is holomorphic on ρ(A0) for every g ∈ G0,

and the relation

γ(λ) =
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ) (1.18)

holds;

(iii) γ(λ̄)∗ ∈ B(H,G), ran γ(λ̄)∗ ⊂ G1 and for all h ∈ H we have

γ(λ̄)∗h = Γ1(A0 − λ)−1h. (1.19)

Proof Let λ ∈ ρ(A0). Since Γ is closable from domT (with the graph

norm) to G × G, it follows that Γ(A0 − λ)−1 is closable and hence

bounded from H to G × G by the closed graph theorem, which implies

that the mapping Γ1(A0 − λ)−1 : H → G is bounded. For h ∈ H and

x ∈ dom γ(λ̄) = G0 we have (where we use (1.15), (1.17), the relation

Tγ(λ̄)x = λ̄γ(λ̄)x and the fact that Γ0 vanishes on domA0)

(h, γ(λ̄)x) =
(
(T − λ)(A0 − λ)−1h, γ(λ̄)x

)
=
(
T (A0 − λ)−1h, γ(λ̄)x

)
− λ
(
(A0 − λ)−1h, γ(λ̄)x

)
=
(
T (A0 − λ)−1h, γ(λ̄)x

)
−
(
(A0 − λ)−1h, Tγ(λ̄)x

)
=
(
Γ1(A0 − λ)−1h,Γ0γ(λ̄)x

)
−
(
Γ0(A0 − λ)−1h,Γ1γ(λ̄)x

)
=
(
Γ1(A0 − λ)−1h, x

)
,

which shows relation (1.19). The latter relation also yields ran γ(λ̄)∗ ⊂
G1, and the boundedness of Γ1(A0 − λ)−1 implies (i). The resolvent

identity and (1.19) show that the following equality is true for λ, µ ∈
ρ(A0):

γ(λ)∗ − γ(µ)∗ = (λ̄− µ̄)γ(µ)∗(A0 − λ̄)−1.

Taking the adjoint and rearranging we obtain (1.18), which also implies

the analyticity of γ(·)g, g ∈ G0.

The first five items of the next proposition are taken from [Behrndt

and Langer, 2007, Proposition 2.6]; for the last item see [Behrndt, Langer

and Lotoreichik, 2011].

Proposition 1.14 Let {G,Γ0,Γ1} be a quasi boundary triple with A0 =

T � ker Γ0 and Weyl function M . Then the following assertions hold for

all λ, µ ∈ ρ(A0):
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(i) M(λ) maps G0 into G1. If also A1 := T � ker Γ1 is a self-adjoint

operator in H and λ ∈ ρ(A1), then M(λ) maps G0 onto G1.

(ii) M(λ)Γ0fλ = Γ1fλ for all fλ ∈ Nλ(T ).

(iii) M(λ) ⊂M(λ̄)∗ and

M(λ)−M(µ)∗ = (λ− µ̄)γ(µ)∗γ(λ). (1.20)

(iv) The function λ 7→M(λ) is holomorphic in the sense that it can be

written as the sum of the possibly unbounded symmetric operator

ReM(µ), where µ is fixed, and a bounded holomorphic operator

function:

M(λ) = ReM(µ)

+ γ(µ)∗
(

(λ− Reµ) + (λ− µ)(λ− µ̄)(A0 − λ)−1
)
γ(µ). (1.21)

(v) ImM(λ) is a densely defined bounded operator in G. For λ ∈ C+(C−)

the operator ImM(λ) is positive (negative, respectively).

(vi) If M(λ0) is bounded for some λ0 ∈ ρ(A0), then M(λ) is bounded

for all λ ∈ ρ(A0). In this case,

1

Imλ
ImM(λ) > 0, λ ∈ C\R, (1.22)

and, in particular, kerM(λ) = {0} for λ ∈ C\R.

Proof The first assertion in (i) and the statement in (ii) follow imme-

diately from the definition of M(λ). The second assertion in (i) follows

from the relation domT = domA1 +̇Nλ(T ) for λ ∈ ρ(A1).

(iii) Let x, y ∈ G0 and λ, µ ∈ ρ(A0). Then(
M(λ)x, y

)
−
(
x,M(µ)y

)
=
(
Γ1γ(λ)x,Γ0γ(µ)y

)
−
(
Γ0γ(λ)x,Γ1γ(µ)y

)
=
(
Tγ(λ)x, γ(µ)y

)
−
(
γ(λ)x, Tγ(µ)y

)
=
(
λγ(λ)x, γ(µ)y

)
−
(
γ(λ)x, µγ(µ)y

)
= (λ− µ̄)

(
γ(λ)x, γ(µ)y

)
. (1.23)

For µ = λ̄ one obtains
(
M(λ)x, y

)
=
(
x,M(λ̄)y

)
, which shows that

G0 ⊂ domM(λ̄)∗ and that M(λ) is a restriction of M(λ̄)∗. Now it follows

from (1.23) that(
M(λ)x, y

)
−
(
M(µ)∗x, y

)
= (λ− µ̄)

(
γ(µ)∗γ(λ)x, y

)
,
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for all x, y ∈ G0, which yields (1.20) since G0 is dense in G and the

operators on both sides of (1.20) are defined on G0.

(iv) Using (1.20) and (1.18) we obtain the following relations, which

are valid on G0:

M(λ)− ReM(µ) = M(λ)− 1
2

(
M(µ) +M(µ)∗

)
= M(λ)−M(µ)∗ − 1

2

(
M(µ)−M(µ)∗

)
= (λ− µ̄)γ(µ)∗γ(λ)− 1

2 (µ− µ̄)γ(µ)∗γ(µ)

= γ(µ)∗
[
(λ− µ̄)

(
I + (λ− µ)(A0 − λ)−1

)
γ(µ)− 1

2 (µ− µ̄)γ(µ)
]

= γ(µ)∗
[
λ− µ̄+ (λ− µ̄)(λ− µ)(A0 − λ)−1 − 1

2 (µ− µ̄)
]
γ(µ)

= γ(µ)∗
[
λ− Reµ+ (λ− µ̄)(λ− µ)(A0 − λ)−1

]
γ(µ).

This shows (1.21) and the analyticity as claimed.

(v) Let λ ∈ C+; the case λ ∈ C− is analogous. From (1.20) we obtain

ImM(λ) = 1
2i

(
M(λ)−M(λ)∗

)
= 1

2i(λ− λ̄)γ(λ)∗γ(λ)

= (Imλ)γ(λ)∗γ(λ),
(1.24)

which is a bounded, positive operator since γ(λ) is bounded and injec-

tive; it is defined on the dense subspace G0.

(vi) The first assertion follows immediately from (1.21). For the in-

equality (1.22), assume without loss of generality that Imλ > 0. Observe

that ImM(λ) = ImM(λ) sinceM(λ) is bounded. It follows from (v) that

ImM(λ) > 0. Hence it is sufficient to show that

ker
(
ImM(λ)

)
= {0}.

Let x ∈ ker(ImM(λ)) = ker(ImM(λ)). Then there exist xn ∈ domM(λ)

so that xn → x and (ImM(λ))xn → 0 when n→∞. By (1.24) we have(
(ImM(λ))xn, xn

)
=
(
(Imλ)γ(λ)∗γ(λ)xn, xn

)
= (Imλ)‖γ(λ)xn‖2,

and since Imλ 6= 0, this implies that γ(λ)xn → 0. The relation Γ0γ(λ)xn =

xn → x and the boundedness of M(λ) imply that

Γ1γ(λ)xn = M(λ)Γ0γ(λ)xn = M(λ)xn →M(λ)x,

i.e.

Γγ(λ)xn →

(
x

M(λ)x

)
.
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Since γ(λ)xn converges to 0 in the graph norm of T , the closability of Γ

implies that x = 0, which shows (1.22).

If x 6= 0, then

Im
(
M(λ)x, x

)
=
(
(ImM(λ))x, x

)
6= 0,

which implies that x /∈ kerM(λ). Hence kerM(λ) = {0}.

The next theorem gives a characterization of the class of Weyl func-

tions corresponding to quasi boundary triples. It is a reformulation of

[Alpay and Behrndt, 2009, Theorem 2.6] and can be regarded as a gener-

alization of [Langer and Textorius, 1977, Theorem 2.2 and Theorem 2.4],

[Derkach and Malamud, 1991, Corollary 2] and [Derkach and Malamud,

1995, Theorem 6.1]; see also [Derkach et al., 2006, Section 5].

Theorem 1.15 Let G0 be a dense subspace of G, λ0 ∈ C\R, and let

M be a function defined on C\R whose values M(λ) are linear operators

in G with domM(λ) = G0, λ ∈ C\R. Then the following two statements

are equivalent.

(i) There exists a separable Hilbert space H, a densely defined closed

symmetric operator S and a quasi boundary triple {G,Γ0,Γ1} for

T = S∗ such that M is the corresponding Weyl function.

(ii) There exists a unique B(G)-valued Nevanlinna function N with the

properties (α), (β) and (γ):

(α) the relations

M(λ)h− ReM(λ0)h = N(λ)h,

M(λ)∗h− ReM(λ0)h = N(λ)∗h

hold for all h ∈ G0 and λ ∈ C\R;

(β) ImN(λ)h = 0 for some h ∈ G0 and λ ∈ C\R implies h = 0;

(γ) the conditions

lim
η→+∞

1

η

(
N(iη)k, k

)
= 0 and lim

η→+∞
η Im

(
N(iη)k, k

)
=∞

are valid for all k ∈ G, k 6= 0.

The following theorem and corollary contain a variant of Krein’s for-

mula for the resolvents of canonical extensions parameterized by quasi

boundary triples via (1.16). The theorem generalizes [Derkach and Mala-

mud, 1991, Proposition 2] and can be found in a similar form in [Behrndt

and Langer, 2007] and [Behrndt, Langer and Lotoreichik, 2011]. For com-

pleteness, the full proof is given after the corollaries below.
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Theorem 1.16 Let S be a densely defined closed symmetric operator

in H and let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ with

A0 = T � ker Γ0, γ-field γ and Weyl function M . Further, let Θ be a

relation in G and assume that λ ∈ ρ(A0) is not an eigenvalue of AΘ, or,

equivalently, that ker(Θ −M(λ)) = {0}. Then the following assertions

are true.

(i) g ∈ ran (AΘ − λ) if and only if γ(λ̄)∗g ∈ dom (Θ−M(λ))−1.

(ii) For all g ∈ ran (AΘ − λ) we have

(AΘ − λ)−1g = (A0 − λ)−1g + γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗g. (1.25)

If ρ(AΘ)∩ρ(A0) 6= ∅ or ρ(AΘ)∩ρ(A0) 6= ∅, e.g. if AΘ is self-adjoint or

essentially self-adjoint, respectively, then for λ ∈ ρ(AΘ)∩ρ(A0), relation

(1.25) is valid on H or a dense subset of H, respectively. This, together

with the fact that γ(λ̄)∗ is an everywhere defined bounded operator and

γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗ ⊂ γ(λ)

(
Θ−M(λ)

)−1
γ(λ̄)∗

implies the following corollary.

Corollary Let the assumptions be as in Theorem 1.16. Then the fol-

lowing assertions hold.

(i) If λ ∈ ρ(AΘ) ∩ ρ(A0), then

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗. (1.26)

(ii) If λ ∈ ρ(AΘ) ∩ ρ(A0), then

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗.

In particular, if AΘ is self-adjoint, then Krein’s formula (1.26) holds at

least for all non-real λ.

If the relation Θ in Theorem 1.16 is self-adjoint, then Krein’s formula

can be rewritten as follows: let {Φ,Ψ} be a pair of bounded operators

in G such that

Θ =
{

(Φk; Ψk)> : k ∈ G
}

(1.27)

holds; cf. (1.6) and note that (1.5) has to be satisfied. It follows that

ker(Θ−M(λ)) = {0} if and only if ker(Ψ−M(λ)Φ) = {0}; then(
Θ−M(λ)

)−1
=
{

(Ψk −M(λ)Φk; Φk)> : k ∈ G, Φk ∈ domM(λ)
}

together with Theorem 1.16 yield the following corollary.
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Corollary Let S be a densely defined closed symmetric operator in H
and let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ with A0 =

T � ker Γ0, γ-field γ and Weyl function M . Further, let Θ be a self-

adjoint relation in G represented with a pair {Φ,Ψ} in the form (1.27)

and assume that λ ∈ ρ(A0) is not an eigenvalue of AΘ, or, equivalently,

that ker(Ψ−M(λ)Φ) = {0}. Then the following assertions are true.

(i) g ∈ ran (AΘ − λ) if and only if γ(λ̄)∗g ∈ dom (Ψ−M(λ)Φ)−1.

(ii) For all g ∈ ran (AΘ − λ) we have

(AΘ − λ)−1g = (A0 − λ)−1g + γ(λ)Φ
(
Ψ−M(λ)Φ

)−1
γ(λ̄)∗g.

Let us now turn to the proof of Theorem 1.16.

Proof of Theorem 1.16 Let us first show that λ ∈ ρ(A0) is not an eigen-

value of AΘ if and only if ker(Θ − M(λ)) = {0}. Assume, e.g. that

f ∈ ker(AΘ − λ) and f 6= 0. Then f ∈ Nλ(T ) and as Γf ∈ Θ, we obtain(
Γ0f

0

)
=

(
Γ0f

Γ1f −M(λ)Γ0f

)
∈ Θ−M(λ).

Moreover, Γ0f 6= 0 because otherwise f ∈ domA0∩Nλ(T ), which would

imply f = 0. Conversely, if y ∈ ker(Θ−M(λ)) and y 6= 0, then(
y

M(λ)y

)
∈ Θ,

and for f := γ(λ)y ∈ Nλ(T ) we obtain(
Γ0f

Γ1f

)
=

(
y

M(λ)y

)
∈ Θ.

Therefore f ∈ domAΘ, i.e. γ(λ)y ∈ ker(AΘ − λ). Thus λ ∈ ρ(A0) is not

an eigenvalue of AΘ if and only if ker(Θ−M(λ)) = {0}.
Now let us fix some point λ ∈ ρ(A0) which is not an eigenvalue of AΘ.

Then (AΘ−λ)−1 and (Θ−M(λ))−1 are operators in H and G, resp. Let

g ∈ ran (AΘ − λ). We show that γ(λ̄)∗g ∈ dom (Θ −M(λ))−1 and that

formula (1.25) holds. Set

f := (AΘ − λ)−1g − (A0 − λ)−1g and h := (AΘ − λ)−1g.

Then we have f ∈ Nλ(T ) and h ∈ domAΘ. Moreover,

Γ0f = Γ0h− Γ0(A0 − λ)−1g = Γ0h
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since (A0 − λ)−1g ∈ domA0 = ker Γ0, and

Γ1f = Γ1h− Γ1(A0 − λ)−1g = Γ1h− γ(λ̄)∗g

by Proposition 1.13 (iii). These equalities together with Proposition 1.14

(ii) yield

γ(λ̄)∗g = Γ1h− Γ1f = Γ1h−M(λ)Γ0f = Γ1h−M(λ)Γ0h.

Since h ∈ domAΘ, we have (Γ0h; Γ1h)> ∈ Θ by (1.16) and hence(
Γ0h

γ(λ̄)∗g

)
=

(
Γ0h

Γ1h−M(λ)Γ0h

)
∈ Θ−M(λ), (1.28)

which implies γ(λ̄)∗g ∈ dom (Θ−M(λ))−1, i.e. ⇒ in (i) is proved. Fur-

thermore, it follows from (1.28) that Γ0h = (Θ −M(λ))−1γ(λ̄)∗g since

(Θ−M(λ))−1 is an operator. Therefore

γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗g = γ(λ)Γ0h = γ(λ)Γ0f

= f = (AΘ − λ)−1g − (A0 − λ)−1g,

which shows relation (1.25).

For ⇐ in (i) assume that Θ − M(λ) is injective and let γ(λ̄)∗g ∈
ran (Θ−M(λ)) for some g ∈ H. Then (Θ−M(λ))−1γ(λ̄)∗g belongs to

dom (Θ−M(λ)) ⊂ G0, and we claim that

f := γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗g + (A0 − λ)−1g ∈ domAΘ.

Clearly, f ∈ domT . Moreover, the relations

Γ0f =
(
Θ−M(λ)

)−1
γ(λ̄)∗g,

Γ1f = M(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗g + γ(λ̄)∗g

and ((
Θ−M(λ)

)−1
γ(λ̄)∗g

γ(λ̄)∗g

)
∈ Θ−M(λ),

imply that(
Γ0f

Γ1f

)
=

( (
Θ−M(λ)

)−1
γ(λ̄)∗g

M(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗g + γ(λ̄)∗g

)

∈M(λ) +
(
Θ−M(λ)

)
⊂ Θ,

that is, f ∈ domAΘ. Since γ(λ) maps into ker(T − λ), we have

(AΘ−λ)f = (T −λ)γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗g+(T −λ)(A0−λ)−1g = g,
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which shows that g ∈ ran (AΘ − λ).

If Θ is a self-adjoint (maximal dissipative, maximal accumulative)

relation in G, then we can decompose Θ as follows. Let G∞ := mul Θ,

Gop := G⊥∞ and denote by Pop, P∞ the orthogonal projections onto Gop

and G∞, respectively. Then the relation Θ can be written as

Θ = Θop ⊕Θ∞,

where Θop is a self-adjoint (maximal dissipative, maximal accumulative,

resp.) operator in Gop and Θ∞ = {(0; y)> : y ∈ G∞}. In the next corol-

lary Krein’s formula is rewritten in terms of this decomposition. The

canonical embedding of Gop in G is denoted by ιop.

Corollary Let S, T , {G,Γ0,Γ1}, γ and M be as in Theorem 1.16.

Further, let Θ be a self-adjoint, maximal dissipative or maximal accu-

mulative relation in G and assume that λ ∈ ρ(A0) is not an eigenvalue

of AΘ. Then

Θop − PopM(λ)|Gop

defined on dom Θop ∩ domM(λ) is an injective operator in Gop and

(AΘ − λ)−1g

= (A0 − λ)−1g + γ(λ) ιop

(
Θop − PopM(λ)|Gop

)−1
Popγ(λ̄)∗g (1.29)

holds for all g ∈ ran (AΘ − λ).

Proof First we show that Θop−PopM(λ)|Gop is an injective operator in

Gop. Let x ∈ dom Θop ∩ domM(λ) be such that (Θop −PopM(λ))x = 0.

Then we have(
x; (Θop −PopM(λ))x⊕ (y− (I −Pop)M(λ)x)

)
∈ Θ−M(λ), y ∈ G∞,

and according to Theorem 1.16, Θ −M(λ) is injective; thus x = 0. It

remains to show the equality(
Θ−M(λ)

)−1
= ιop

(
Θop − PopM(λ)|Gop

)−1
Pop, (1.30)

which was proved in [Langer and Textorius, 1977, (1.3)] for the case

when M(λ) ∈ B(G). We have the following chain of equivalences (note
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that dom Θ = dom Θop ⊂ G):

(x; y)> ∈
(
Θ−M(λ)

)−1

⇐⇒ y ∈ dom Θ ∩ domM(λ), ∃u ∈ G : (y;u)> ∈ Θ, x = u−M(λ)y

⇐⇒ y ∈ dom Θ ∩ domM(λ), ∃u ∈ G : Popu = Θopy, x = u−M(λ)y

⇐⇒ y ∈ dom Θ ∩ domM(λ), Popx =
(
Θop − PopM(λ)

)
y

⇐⇒ (Popx; y)> ∈
(
Θop − PopM(λ)|Gop

)−1
,

which shows (1.30). Now formula (1.29) follows from Theorem 1.16.

With the help of Krein’s formula one can show the following theorem,

which provides a sufficient condition for self-adjointness of the extension

AΘ and which was proved in [Behrndt, Langer and Lotoreichik, 2011].

We make use of the notation

Θ−1(X) :=

{
x ∈ G : ∃ y ∈ X so that

(
x

y

)
∈ Θ

}
for a linear relation Θ in G and a subspace X ⊂ G.

Theorem 1.17 Let S be a densely defined closed symmetric operator

in H and let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ with

Ai = T � ker Γi, i = 0, 1, and Weyl function M . Assume that A1 is self-

adjoint and that M(λ0) is a compact operator in G for some λ0 ∈ C\R.

If Θ is a self-adjoint relation in G such that

0 /∈ σess(Θ) and Θ−1
(
ranM(λ±)

)
⊂ G0 (1.31)

hold for some λ+ ∈ C+ and some λ− ∈ C−, then AΘ as defined in

(1.16) is a self-adjoint operator in H. In particular, the second condition

in (1.31) is satisfied if dom Θ ⊂ G0.

Remark We also mention that if in the above theorem Θ is assumed to

be maximal dissipative (maximal accumulative) and the second condi-

tion in (1.31) is replaced by the condition

Θ−1
(
ranM(λ)

)
⊂ G0

for some λ ∈ C− (λ ∈ C+, respectively), then the operator AΘ in (1.16)

is maximal dissipative (maximal accumulative) in H.

We formulate another variant of Theorem 1.17 below, which will be

used later on. Observe that if {G,Γ0,Γ1} is a quasi boundary triple

for T = S∗ with corresponding Weyl function M and if, in addition,
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A1 = T � ker Γ1 is self-adjoint, then {G, Γ̃0, Γ̃1}, where Γ̃0 := −Γ1 and

Γ̃1 := Γ0 is also a quasi boundary triple for T = S∗ with corresponding

Weyl function M̃ = −M−1 and self-adjoint operator Ã1 = T � ker Γ̃1 =

A0. Moreover,

AΘ = T �
{
f ∈ domT : Γf ∈ Θ

}
= T �

{
f ∈ domT : Γ̃f ∈ Θ̃

}
= ÃΘ̃

holds with Θ̃ = −Θ−1. This transformation of quasi boundary triples

leads to the following theorem.

Theorem 1.18 Let S be a densely defined closed symmetric operator

in H and let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ with

Ai = T � ker Γi, i = 0, 1, and Weyl function M . Assume that A1 is self-

adjoint and that M(λ0)−1 is a compact operator in G for some λ0 ∈ C\R.

If Θ is a bounded self-adjoint operator in G such that

Θ
(
domM(λ±)

)
⊂ G1 (1.32)

holds for some λ+ ∈ C+ and some λ− ∈ C−, then

AΘ = T � ker(Γ1 −ΘΓ0) (1.33)

is a self-adjoint operator in H. In particular, the condition (1.32) is

satisfied if ran Θ ⊂ G1.

Remark For completeness we also remark that for a dissipative (accu-

mulative) bounded operator Θ with the property

Θ
(
domM(λ)

)
⊂ G1

for some λ ∈ C− (λ ∈ C+, respectively) it follows that the operator AΘ

in (1.33) is maximal dissipative (maximal accumulative) in H.

1.4 Quasi boundary triples for elliptic operators and
Dirichlet-to-Neumann maps

In this section we consider the same type of elliptic operators as in

Section 1.2 and we define and study a family of quasi boundary triples

for the maximal operator. As boundary mappings we choose the Dirichlet

and (oblique) Neumann trace so that the associated Weyl function turns

out to be the Dirichlet-to-Neumann map. Only the case of a bounded

domain Ω is treated here, although the considerations for unbounded

domains with compact boundaries (so-called exterior domains) are very

similar; cf. [Behrndt, Langer and Lotoreichik, 2011].



Elliptic operators and quasi boundary triples 29

Let again Ω be a bounded domain in Rn, n > 1, with C∞-boundary

∂Ω and consider the expression

L = −
n∑

j,k=1

∂j ajk ∂k + a

on Ω with real-valued coefficients ajk ∈ C∞(Ω), a ∈ L∞(Ω) such that

ajk = akj for all j, k = 1, . . . , n. In addition, L is assumed to be elliptic,

that is,

n∑
j,k=1

ajk(x)ξjξk ≥ C
n∑
k=1

ξ2
k, ξ = (ξ1, . . . , ξn)> ∈ Rn, x ∈ Ω,

holds for some constant C > 0. In the following, the spaces

Hs
L(Ω) :=

{
f ∈ Hs(Ω): L(f) ∈ L2(Ω)

}
, s ∈

[
3
2 , 2
]
,

are used as domains for the boundary mappings; the cases s = 2 and

s = 3
2 were already studied in [Behrndt and Langer, 2007]. The spaces

Hs
L(Ω) are frequently used in the theory of elliptic operators; see, e.g.

[Grubb, 1968, 1971; Lions and Magenes, 1972] and are usually defined

for all s ∈ [0,∞). Then, in particular, H0
L(Ω) coincides with the maximal

domain Dmax and Hs
L(Ω) = Hs(Ω) for s ≥ 2. In the following we deal

with the family of differential operators Ts, s ∈ [ 3
2 , 2], defined by

Tsf = L(f), domTs = Hs
L(Ω).

Recall that the minimal operator associated with L in L2(Ω) is the

densely defined closed symmetric operator Sf = L(f), domS = H2
0 (Ω),

that S has equal and infinite deficiency indices, and that the adjoint

S∗ of S coincides with the maximal realization of L in L2(Ω) defined

on Dmax; see (1.11). The self-adjoint realizations of L in L2(Ω) with

Dirichlet or Neumann boundary conditions are denoted by AD and AN ,

respectively, i.e.

ADf = L(f), domAD =
{
f ∈ H2(Ω): f |∂Ω = 0

}
,

ANf = L(f), domAN =

{
f ∈ H2(Ω):

∂f

∂νL

∣∣∣
∂Ω

= 0

}
,

where ∂f
∂νL

∣∣
∂Ω

is defined as in (1.12).

The proof of the next proposition consists in principle of applying

Theorem 1.11. However, we provide a short proof here for the conve-

nience of the reader; cf. [Behrndt and Langer, 2007, Proposition 4.6] for

a similar consideration.
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Proposition 1.19 For each s ∈ [ 3
2 , 2] the triple {L2(∂Ω),Γ0,Γ1},

where

Γ0f := f |∂Ω and Γ1f := − ∂f

∂νL

∣∣∣
∂Ω
, f ∈ Hs

L(Ω), (1.34)

is a quasi boundary triple for the maximal operator T s = S∗ such that

AD = Ts � ker Γ0 and AN = Ts � ker Γ1.

Proof We apply Theorem 1.11. Since H2(Ω) ⊂ Hs
L(Ω) for all s ∈ [ 3

2 , 2],

the restriction of Ts to

ker Γ0 =
{
f ∈ Hs

L(Ω): f |∂Ω = 0
}

is an extension of the self-adjoint Dirichlet operator AD, i.e. condition

(i) of Theorem 1.11 is satisfied. In order to verify condition (ii), note first

that for s ∈ [ 3
2 , 2] and f ∈ Hs

L(Ω) we have f |∂Ω ∈ L2(∂Ω), and for s ∈
( 3

2 , 2] and f ∈ Hs
L(Ω) we have ∂f

∂νL
|∂Ω ∈ L2(∂Ω). According to [Grubb,

1968, Theorem I.3.3] and [Lions and Magenes, 1972], ∂f
∂νL
|∂Ω ∈ L2(∂Ω)

holds also for s = 3
2 and f ∈ Hs

L(Ω). Hence Γ0,Γ1 are well defined. Since

the map

H2(Ω) 3 f 7→
{
f |∂Ω,

∂f

∂νL

∣∣∣
∂Ω

}
∈ H3/2(∂Ω)×H1/2(∂Ω)

is surjective onto the dense subset H3/2(∂Ω) × H1/2(∂Ω) of the space

L2(∂Ω) × L2(∂Ω), see e.g. [Lions and Magenes, 1972, Theorem 1.8.3],

and H2(Ω) ⊂ Hs
L(Ω), s ∈ [ 3

2 , 2], it follows that ran (Γ0,Γ1)> is dense

in L2(∂Ω) × L2(∂Ω), i.e. the first condition in (ii) of Theorem 1.11 is

satisfied; the second condition follows from C∞0 (Ω) ⊂ ker Γ0 ∩ ker Γ1.

With Γ0 and Γ1 from (1.34), Green’s identity reads as

(Tsf, g)− (f, Tsg) =

(
f |∂Ω,

∂g

∂νL

∣∣∣
∂Ω

)
−
(
∂f

∂νL

∣∣∣
∂Ω
, g|∂Ω

)
= (Γ1f,Γ0g)− (Γ0f,Γ1g)

with the inner product (·,−) in L2(∂Ω) on the right-hand side. Hence

also condition (iii) in Theorem 1.11 is fulfilled. Therefore the operator

T � ker Γ0 ∩ ker Γ1 (1.35)

is a densely defined closed symmetric operator in L2(Ω), {L2(∂Ω),Γ0,Γ1}
is a quasi boundary triple for its adjoint and T � ker Γ0 is equal to the
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Dirichlet operator AD. Since ker Γ0 = domAD ⊂ H2(Ω), we have

ker Γ0 ∩ ker Γ1 =
{
f ∈ Hs

L(Ω): Γ0f = 0, Γ1f = 0
}

=
{
f ∈ H2(Ω): Γ0f = 0, Γ1f = 0

}
= H2

0 (Ω),

which shows that the operator in (1.35) is the minimal operator S asso-

ciated with L.

Remark We point out that for the statements in the above proposition

the scale [3
2 , 2] cannot be enlarged. The upper bound 2 is necessary in

order to ensure that the self-adjoint Dirichlet operator is contained in

(and hence equal to) T � ker Γ0, whereas the lower bound 3
2 is necessary

to ensure Green’s identity with boundary terms in L2(∂Ω). However,

Green’s identity could also be considered, e.g. for functions f, g ∈ H1
L(Ω)

so that on the right-hand side the extension of the L2(∂Ω) inner product

to H1/2(∂Ω)×H−1/2(∂Ω) appears, which makes it necessary to modify

the boundary mappings by isomorphisms ι± as in Section ??. In this case

the corresponding Weyl function is not the Dirichlet-to-Neumann map

in L2(∂Ω). For completeness we also mention that for s = 3
2 the quasi

boundary triple {L2(∂Ω),−Γ1,Γ0} is a generalized boundary triple in

the sense of [Derkach and Malamud, 1995]; see also [Behrndt and Langer,

2007, Section 4.2].

In the next proposition the γ-field and Weyl function corresponding

to the quasi boundary triples {L2(∂Ω),Γ0,Γ1} from Proposition 1.19 are

specified.

Proposition 1.20 Let s ∈ [ 3
2 , 2] and let {L2(∂Ω),Γ0,Γ1} be the quasi

boundary triple for the maximal operator T s = S∗ from Proposition 1.19

with AD = Ts � ker Γ0. Then the following statements are true for all

λ ∈ ρ(AD):

(i) For y ∈ Hs−1/2(∂Ω) there exists a unique function fλ(y) in Hs
L(Ω)

that solves the boundary value problem

L(u) = λu, u|∂Ω = y. (1.36)

(ii) The γ-field of {L2(∂Ω),Γ0,Γ1} is given by

γs(λ) : L2(∂Ω)→ L2(Ω), y 7→ fλ(y),

with dom γs(λ) = Hs−1/2(∂Ω).

(iii) The Weyl function of {L2(∂Ω),Γ0,Γ1} is given by

Ms(λ) : L2(∂Ω)→ L2(∂Ω), y 7→ −∂fλ(y)

∂νL

∣∣∣
∂Ω
,
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with domMs(λ) = Hs−1/2(∂Ω) and ranMs(λ) ⊂ Hs−3/2(∂Ω).

If, in addition, λ ∈ ρ(AN ), then ranMs(λ) = Hs−3/2(∂Ω) and

Ms(λ)−1 is a compact operator in L2(∂Ω) with values in H1(∂Ω).

Proof (i) Problem (1.36) is equivalent to

u ∈ ker(Ts − λ), Γ0u = y.

Proposition 1.13 (i) shows that this boundary value problem has a unique

solution, namely u = γs(λ)y.

(ii) is a consequence of (i). Observe that the domain of γs(λ) is equal

to ran Γ0 = Hs−1/2(∂Ω).

(iii) The asserted form of the Weyl function Ms follows immediately

from the definition. That ranMs(λ) = Hs−3/2(∂Ω) for λ ∈ ρ(AN ) is

clear from Proposition 1.14 (i). Using duality and interpolation argu-

ments one can show that Ms(λ)−1 can be extended to a bounded opera-

tor from Hr(∂Ω) to Hr+1(∂Ω) for r ∈ [− 3
2 ,

1
2 ] and λ ∈ ρ(AD); for details

see, e.g. [Behrndt, Langer and Lotoreichik, 2011; Lions and Magenes,

1972; Seeley, 1969]. In particular, Ms(λ)−1 is a bounded mapping from

L2(∂Ω) to H1(∂Ω). Since H1(∂Ω) is compactly embedded in L2(∂Ω)

(see, e.g. [Wloka, 1987, Theorem 7.10]), this shows the compactness of

Ms(λ)−1.

The operator γs(λ) in the previous proposition is often called Poisson

operator. The Weyl function Ms is (up to a minus sign) the Dirichlet-to-

Neumann operator connected with L. It has been used, e.g. to solve in-

verse problems, see [Astala and Päivärinta, 2006; Nachman, 1988, 1996;

Nachman, Sylvester and Uhlmann, 1988; Sylvester and Uhlmann, 1987],

to detect spurious eigenvalues in numerical calculations, see [Brown

and Marletta, 2004; Marletta, 2004, 2010] and to prove inequalities be-

tween Dirichlet and Neumann eigenvalues, see [Filonov, 2004; Friedlan-

der, 1991; Safarov, 2008]. See also [Amrein and Pearson, 2004] where a

Weyl function for elliptic operators was constructed. Moreover, Dirichlet-

to-Neumann maps on rough domains were defined and studied in [Arendt

and ter Elst, 2011].

As a consequence of Theorem 1.18, the remark below that theorem

and Proposition 1.20 (iii), we obtain the following sufficient condition for

a self-adjoint, maximal dissipative or maximal accumulative parameter

Θ in L2(∂Ω) to determine a self-adjoint, maximal dissipative or maximal

accumulative realization AΘ of L in L2(Ω).

Theorem 1.21 Let s ∈ [ 3
2 , 2] and let {L2(∂Ω),Γ0,Γ1} be the quasi
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boundary triple for T s = S∗ from Proposition 1.19. For every bounded

self-adjoint (dissipative, accumulative) operator Θ in L2(∂Ω) such that

Θ
(
H1(∂Ω)

)
⊂ Hs−3/2(∂Ω) (1.37)

is satisfied, the differential operator

AΘf = L(f), domAΘ =

{
f ∈ Hs

L(Ω): Θ f |∂Ω = − ∂f

∂νL

∣∣∣
∂Ω

}
(1.38)

is a self-adjoint (maximal dissipative, maximal accumulative, respec-

tively) realization of L in L2(Ω).

Since for s = 3
2 the condition (1.37) in the above theorem reduces to

Θ(H1(∂Ω)) ⊂ L2(∂Ω), which is trivially satisfied, we obtain the follow-

ing corollary; cf. [Behrndt and Langer, 2007, Theorem 4.8].

Corollary Let s = 3
2 and let {L2(∂Ω),Γ0,Γ1} be the quasi boundary

triple for T 3/2 = S∗ from Proposition 1.19. For every bounded self-

adjoint (dissipative, accumulative) operator Θ in L2(∂Ω), the differential

operator AΘ in (1.38) is a self-adjoint (maximal dissipative, maximal

accumulative, respectively) realization of L in L2(Ω).

As a consequence of Theorem 1.16 and its corollaries, we obtain a vari-

ant of Krein’s formula for the self-adjoint (maximal dissipative, maximal

accumulative) realizations of L in Theorem 1.21 and the above corollary.

Theorem 1.22 Let s ∈ [ 3
2 , 2] and let {L2(∂Ω),Γ0,Γ1} be the quasi

boundary triple for T s = S∗ from Proposition 1.19 with γ-field γs and

Weyl function Ms from Proposition 1.20. Let Θ be a self-adjoint (dis-

sipative, accumulative) operator in L2(∂Ω) such that (1.37) is satisfied.

Then

(AΘ − λ)−1 = (AD − λ)−1 + γs(λ)
(
Θ−Ms(λ)

)−1
γs(λ̄)∗ (1.39)

holds for all λ ∈ ρ(AΘ) ∩ ρ(AD).

Krein’s formula (1.39) in the above theorem allows the following in-

terpretation: since AΘ and AD act formally in the same way (as both

operators are realizations of the same differential expression L), only

their domains are different, and since domAΘ and domAD are specified

by boundary conditions on functions from Hs
L(Ω), the resolvent differ-

ence (AΘ − λ)−1 − (AD − λ)−1 can be “localized” on the boundary ∂Ω,

that is, as the perturbation term (Θ−Ms(λ))−1 on the right-hand side

of (1.39).

If the Dirichlet and Neumann boundary mappings are swapped and
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the quasi boundary triple {L2(∂Ω),−Γ1,Γ0} is considered, one obtains a

variant of Krein’s formula where the operators AΘ as above and AN , the

self-adjoint Neumann realization, are compared. The next result on spec-

tral estimates for singular values of resolvent differences from [Behrndt

et al., 2010, Theorem 3.5 and Remark 3.7] is essentially based on this

idea.

Theorem 1.23 Let s = 3
2 and let {L2(∂Ω),Γ0,Γ1} be the quasi bound-

ary triple for T 3/2 = S∗ from Proposition 1.19. Let Θ be a bounded self-

adjoint (dissipative, accumulative) operator in L2(∂Ω) and let AΘ be the

corresponding self-adjoint (maximal dissipative, maximal accumulative,

respectively) realization of L in L2(Ω). Then for all λ ∈ ρ(AΘ) ∩ ρ(AN )

the singular values sk of the resolvent difference

(AΘ − λ)−1 − (AN − λ)−1 (1.40)

satisfy sk = O(k−
3

n−1 ), k → ∞, and hence the expression in (1.40)

belongs to the Schatten–von Neumann ideal Sp(L
2(Ω)) for all p > n−1

3 .

Proof First we express the resolvent difference (1.40) in a similar form

as in Theorem 1.22. Observe that the γ-field and Weyl function corre-

sponding to the quasi boundary triple {L2(∂Ω),−Γ1,Γ0} are given by

−γ3/2(λ)M3/2(λ)−1 and −M3/2(λ)−1, λ ∈ ρ(AD)∩ρ(AN ), (1.41)

and that the operator AΘ is self-adjoint (maximal dissipative, maxi-

mal accumulative, respectively) by the corollary below Theorem 1.22.

Observe that the boundary parameter Θ with respect to the triple

{L2(∂Ω),Γ0,Γ1} has to be replaced by the self-adjoint (maximal dis-

sipative, maximal accumulative) relation Θ̃ := −Θ−1 when one ex-

presses the boundary condition in terms of the quasi boundary triple

{L2(∂Ω),−Γ1,Γ0}. Now it follows from Theorem 1.16 and its corollar-

ies applied to the quasi boundary triple {L2(∂Ω),−Γ1,Γ0} and (1.41)

that for λ ∈ ρ(AΘ) ∩ ρ(AN ) ∩ ρ(AD) the resolvent difference in (1.40)

coincides with

γ3/2(λ)M3/2(λ)−1
(
Θ̃op + PopM3/2(λ)−1|Gop

)−1
PopM3/2(λ)−1γ3/2(λ̄)∗,

(1.42)

where Θ̃ is decomposed into Θ̃op ⊕ Θ̃∞ with Pop being the projection

onto Gop. Note that M3/2(λ)−1 is defined on the whole space G and that

in fact in (1.42) γ3/2(λ) can be replaced by γ3/2(λ) (as an operator from

L2(∂Ω) to L2(Ω)). Since M3/2(λ)−1 is a compact operator in L2(∂Ω)
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(see Proposition 1.20 (iii)), a Fredholm argument for Θ̃op shows that(
Θ̃op + PopM3/2(λ)−1|Gop

)−1

is a bounded and everywhere defined operator in Gop; cf. the proof

of [Behrndt and Langer, 2007, Theorem 4.8]. Moreover, by Proposi-

tion 1.13 (iii) the operator γ3/2(λ̄)∗ is bounded from L2(Ω) into L2(∂Ω)

with range in H1/2(∂Ω). Hence it is closed from L2(Ω) to H1/2(∂Ω)

and therefore bounded by the closed graph theorem. It follows from

[Behrndt et al., 2010, Lemma 3.4] (and its proof) that the singular val-

ues of γ3/2(λ)∗ satisfy O(k−
1

2(n−1) ), k → ∞. A similar argument using

[Behrndt et al., 2010, Lemma 3.4] shows that the singular values of

M3/2(λ)−1 satisfy O(k−
1

n−1 ), k → ∞, and hence the singular values of

the operators

M3/2(λ)−1γ3/2(λ̄)∗ and γ3/2(λ)M3/2(λ)−1

in (1.42) both satisfy O(k−
3

2(n−1) ), k → ∞. This implies the spectral

estimates in Theorem 1.23.

The asymptotics of singular values of resolvent differences of the Dirich-

let, Neumann and Robin realizations of L have been studied already in

[Birman, 1962] and later among others in [Grubb, 1974; Birman and

Solomjak, 1980; Grubb, 1984a,b; Grubb; Malamud, 2010; Grubb, 2011].

For usual Robin boundary conditions, Theorem 1.23 reads as follows.

Corollary Assume that the values of β ∈ L∞(∂Ω) are real (or have

positive, negative imaginary parts) and let Aβ be the self-adjoint (maxi-

mal dissipative, maximal accumulative, respectively) realization of L de-

fined on

domAβ =

{
f ∈ H3/2

L (Ω): βf |∂Ω = − ∂f

∂νL

∣∣∣
∂Ω

}
.

Then for all λ ∈ ρ(Aβ) ∩ ρ(AN ) the singular values sk of the resolvent

difference

(Aβ − λ)−1 − (AN − λ)−1 (1.43)

satisfy sk = O(k−
3

n−1 ), k → ∞, and hence the expression in (1.43)

belongs to the Schatten–von Neumann ideal Sp(L
2(Ω)) for all p > n−1

3 .

Finally, we want to relate the quasi boundary triple from this section

to the boundary triple from Section 1.2. Denote the boundary mappings



36 J. Behrndt and M. Langer

and the Weyl function for the boundary triple for the maximal operator

S∗ from Section 1.2 by {L2(∂Ω), Γ̃0, Γ̃1}, where

Γ̃0f = ι−f |∂Ω and Γ̃1f = −ι+
∂fD
∂νL

∣∣∣
∂Ω
, (1.44)

with f = fD + fη, fD ∈ domAD, fη ∈ ker(S∗ − η), and η is some fixed

point in R∩ ρ(AD). The corresponding Weyl function is denoted by M̃ .

Proposition 1.24 Let s ∈ [ 3
2 , 2] and let {L2(∂Ω),Γ0,Γ1} be the quasi

boundary triple for T s = S∗ from Proposition 1.19 with Weyl function

Ms. The following relations hold for all f = fD + fη ∈ domTs with

fD ∈ domAD and fη ∈ ker(Ts − η):

(i) Γ̃0f = ι−Γ0f and Γ̃1f = ι+
(
Γ1f −Ms(η)Γ0f

)
;

(ii) Γ̃1f = ΘΓ̃0f if and only if Γ1f =
(
ι−1
+ Θι− +Ms(η)

)
Γ0f ;

(iii) M̃(λ)ι−Γ0f = ι+
(
Ms(λ)−Ms(η)

)
Γ0f .

In particular, the Weyl functions M̃ and Ms are connected via

ι−1
+ M̃(λ)ι− = Ms(λ)−Ms(η), λ ∈ ρ(AD). (1.45)

Proof (i) The first relation is immediate from (1.44) and (1.34) in

Proposition 1.19. The second statement follows with f = fD + fη from

Γ̃1f = −ι+
∂fD
∂νL

∣∣∣
∂Ω

= ι+Γ1fD = ι+(Γ1f −Γ1fη) = ι+
(
Γ1f −Ms(η)Γ0f

)
.

(ii) is a simple consequence of (i).

(iii) Let f ∈ ker(Ts − λ) and λ ∈ ρ(AD). Then

M̃(λ)ι−Γ0f = M̃(λ)Γ̃0f = Γ̃1f = ι+
(
Γ1f −Ms(η)Γ0f

)
= ι+

(
Ms(λ)Γ0f −Ms(η)Γ0f

)
= ι+

(
Ms(λ)−Ms(η)

)
Γ0f

implies the third assertion.

Relation (1.45) is an immediate consequence of (iii).

Note that the operators on both sides of (1.45) are bounded operators

in L2(∂Ω). For the right-hand side this follows from Proposition 1.14 (iv).

We remark that relation (1.45) also shows that the operator on the right-

hand side can be extended to a bounded operator from H−1/2(∂Ω) to

H1/2(∂Ω). Let us also mention that relation (1.45) implies that the Weyl

function of the boundary triple from Section 1.2 is a regularization of the
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Dirichlet-to-Neumann map. Such regularizations were also considered in,

e.g. [Grubb, 1968; Malamud, 2010; Ryzhov, 2007; Vǐsik, 1952].
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Kopachevskĭı, N. D., and Krĕın, S. G. 2004. Abstract Green formula for a
triple of Hilbert spaces, abstract boundary-value and spectral problems
(Russian). Ukr. Mat. Visn., 1, 69–97 (translation in Ukr. Math. Bull., 1
(2004), 77–105).
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