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Abstract. Let A be a closed symmetric operator of defect one in a Krein space
K and assume that A possesses a self-adjoint extension in K which locally has
the same spectral properties as a definitizable operator. We show that the
Krein-Naimark formula establishes a bijective correspondence between the

compressed resolvents of locally definitizable self-adjoint extensions eA of A

acting in Krein spaces K×H and a special subclass of meromorphic functions.
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1. Introduction

Let A be a densely defined closed symmetric operator with defect one in a Hilbert
space K and let {C, Γ0, Γ1} be a boundary value space for the adjoint operator A∗.
Let A0 be the self-adjoint extension A∗ ↾ ker Γ0 of A in K and denote the γ-field
and Weyl function corresponding to the boundary value space {C, Γ0, Γ1} by γ
and M , respectively. Here M is a scalar Nevanlinna function, that is, it maps the
upper half plane C+ holomorphically into C+ ∪ R and is symmetric with respect
to the real axis. It is well known that in this case the Krein-Naimark formula

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ)∗ (1.1)

establishes a bijective correspondence between the class of Nevanlinna functions
τ (including the constant ∞) and the compressed resolvents of K-minimal self-

adjoint extensions Ã of A in K ×H, where H is a Hilbert space, cf. [22, 32]. The
compressed resolvent on the left hand side of (1.1) is said to be a generalized
resolvent of A. We note that if A has equal deficiency indices > 1 the generalized
resolvents of A can still be described with formula (1.1), where the parameters τ
belong to the class of Nevanlinna families, cf. [11, 23, 30, 31].
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Various generalizations of the Krein-Naimark formula in an indefinite setting
have been proved in the last decades. The case that A is a symmetric operator in a
Pontryagin space K and H is a Hilbert space was investigated by M.G. Krein and
H. Langer in [24]. Later V. Derkach considered both K and H to be Pontryagin or
even Krein spaces, cf. [10]. In the general situation of Krein spaces K and H one
obtains a correspondence between locally holomorphic relation-valued functions τ

and self-adjoint extensions Ã of A with a non-empty resolvent set. Under additional
assumptions other variants of (1.1) were proved in [6, 7, 8, 9, 10, 14, 27]. If e.g. H is
a Pontryagin space, then the parameters τ belong to the class of Nκ-families, a class
of relation-valued functions which includes the generalized Nevanlinna functions.

If H is a Krein space and the hermitian forms [A·, ·] and [Ã·, ·] both have finitely
many negative squares, then τ belongs to a special subclass of the definitizable
functions, cf. [7, 19].

It is the aim of this paper to prove a new variant of formula (1.1). Here we
allow both K and H to be Krein spaces and we assume that A is of defect one
and possesses a self-adjoint extension A0 in K which locally has the same spectral
properties as a definitizable operator or relation, cf. [20, 28]. Under the assumption

that Ã is also locally definitizable and that its sign types coincide ”in essence” (i.e.
with the exception of a discrete set, see Definition 2.6) with the sign types of A0

we prove in Theorem 3.2 that there exists a so-called locally definitizable function
τ such that (1.1) holds. The proof is based on a coupling method developed in [11,
§5] and a recent perturbation result from [4]. One of the main difficulties here is

to show that the symmetric relation Ã ∩ H2 possesses a self-adjoint extension in
the Krein space H with a non-empty resolvent set and to choose a boundary value

space for the adjoint of Ã∩H2 in H such that (1.1) holds with the corresponding
Weyl function τ . In connection with a class of abstract λ-dependent boundary
value problems the converse direction was already proved in [3], i.e., for a given

locally definitizable function τ a self-adjoint extension Ã of A in K×H such that
(1.1) holds was constructed.

The paper is organized as follows. In Section 2 we recall the definitions and
basic properties of locally definitizable self-adjoint operators and relations and the
class of locally definitizable functions introduced and studied by P. Jonas, see e.g.
[20, 21]. The notion of d-compatibility of sign types of locally definitizable relations
and functions is defined in the end of Section 2.3. In the beginning of Section 3
we recall some basics on boundary value spaces and associated Weyl functions.
Section 3.2 contains our main result. We prove in Theorem 3.2 that formula (1.1)
establishes a bijective correspondence between an appropriate subclass of the lo-
cally definitizable functions and the compressed resolvents of locally definitizable

K-minimal self-adjoint exit space extensions Ã of A in a Krein space K ×H with
spectral sign types d-compatible to those of A0. Finally, in the end of Section 3.2,
we formulate a variant of the Krein-Naimark formula for self-adjoint extensions

A0 and Ã of A in K and K×H, respectively, which locally have the same spectral
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properties as self-adjoint operators or relations in Pontryagin spaces and functions
τ from the local generalized Nevanlinna class.

2. Locally definitizable self-adjoint relations and locally
definitizable functions

2.1. Notations and definitions

Let (K, [·, ·]) be a separable Krein space with a corresponding fundamental sym-
metry J . The linear space of bounded linear operators defined on a Krein space
K1 with values in a Krein space K2 is denoted by L(K1,K2). If K := K1 = K2 we
simply write L(K). We study linear relations in K, that is, linear subspaces of K2.

The set of all closed linear relations in K is denoted by C̃(K). Linear operators in
K are viewed as linear relations via their graphs. For the usual definitions of the
linear operations with relations, the inverse etc., we refer to [15] and [16].

The sum and the direct sum of subspaces in K2 are denoted by and
.

.
We define an indefinite inner product on K2 by

[[
f̂ , ĝ
]]

:= i
(
[f, g′] − [f ′, g]

)
, f̂ =

(
f
f ′

)
, ĝ =

(
g
g′

)
∈ K2.

Then (K2, [[·, ·]]) is a Krein space and J =
(

0 −iJ
iJ 0

)
∈ L(K2) is a correspond-

ing fundamental symmetry. If necessary we will indicate the underlying space by
subscripts, e.g. [[·, ·]]K2 .

Let A be a linear relation in K. The adjoint relation A+ ∈ C̃(K) is defined as

A+ := A[[⊥]] =
{
ĥ ∈ K2 |

[[
ĥ, f̂

]]
= 0 for all f̂ ∈ A

}
,

where A[[⊥]] denotes the orthogonal companion of A with respect to [[·, ·]]. A is said
to be symmetric (self-adjoint) if A ⊂ A+ (resp. A = A+).

Let S be a closed linear relation in K. The resolvent set ρ(S) of S ∈ C̃(K)
is the set of all λ ∈ C such that (S − λ)−1 ∈ L(K), the spectrum σ(S) of S is
the complement of ρ(S) in C. The extended spectrum σ̃(S) of S is defined by
σ̃(S) = σ(S) if S ∈ L(K) and σ̃(S) = σ(S) ∪ {∞} otherwise. A point λ ∈ C is
called a point of regular type of S, λ ∈ r(S), if (S − λ)−1 is a bounded operator.
We say that λ ∈ C belongs to the approximate point spectrum of S, denoted by
σap(S), if there exists a sequence

(
xn

yn

)
∈ S, n = 1, 2, . . . , such that ‖xn‖ = 1 and

limn→∞ ‖yn − λxn‖ = 0. The extended approximate point spectrum σ̃ap(S) of S is
defined by

σ̃ap(S) :=

{
σap(S) ∪ {∞} if 0 ∈ σap(S

−1)

σap(S) if 0 6∈ σap(S
−1)

.

We remark, that the boundary points of σ̃(S) in C belong to σ̃ap(S).
Next we recall the definitions of the spectra of positive and negative type

of self-adjoint relations, cf. [20] (for bounded self-adjoint operators see [29]). For
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equivalent descriptions of the spectra of positive and negative type we refer to [20,
Theorem 3.18].

Definition 2.1. Let A0 be a self-adjoint relation in K. A point λ ∈ σap(A0) is said
to be of positive type (negative type) with respect to A0, if for every sequence(

xn

yn

)
∈ A0, n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖yn − λxn‖ = 0 we have

lim inf
n→∞

[xn, xn] > 0
(
resp. lim sup

n→∞
[xn, xn] < 0

)
.

If ∞ ∈ σ̃ap(A0), then ∞ is said to be of positive type (negative type) with respect

to A0 if 0 is of positive type (resp. negative type) with respect to A−1
0 . We denote

the set of all points of σ̃ap(A0) of positive type (negative type) by σ++(A0) (resp.
σ−−(A0)).

We remark that the self-adjointness of the relation A0 yields that the points
of positive and negative type introduced in Definition 2.1 belong to R.

An open subset ∆ of R is said to be of positive type (negative type) with
respect to A0 if each point λ ∈ ∆ ∩ σ̃(A0) is of positive type (resp. negative type)
with respect to A0. An open set ∆ is called of definite type with respect to A0 if
it is either of positive or of negative type with respect to A0.

For each λ ∈ σ++(A0) (σ−−(A0)) there exists an open neighbourhood Uλ in
C such that (Uλ ∩ σ̃(A0) ∩ R) ⊂ σ++(A0) (resp. (Uλ ∩ σ̃(A0) ∩ R) ⊂ σ−−(A0)),
Uλ\R ⊂ ρ(A0) and

‖(A0 − λ)−1‖ ≤ M |Im λ|−1

holds for some M > 0 and all λ ∈ Uλ\R, cf. [1], [20] (and [29] for bounded
operators).

2.2. Locally definitizable self-adjoint relations

In this section we briefly recall the notion of locally definitizable self-adjoint rela-
tions and intervals of type π+ and type π− from [20].

Let Ω be some domain in C symmetric with respect to the real axis such that
Ω ∩ R 6= ∅ and the intersections of Ω with the upper and lower open half-planes
are simply connected.

Definition 2.2. Let A0 be a self-adjoint relation in the Krein space K such that
σ(A0) ∩ (Ω\R) consists of isolated points which are poles of the resolvent of A0,
and no point of Ω ∩ R is an accumulation point of the non-real spectrum of A0 in
Ω. The relation A0 is said to be definitizable over Ω, if the following holds.

(i) Every point µ ∈ Ω ∩ R has an open connected neighbourhood Iµ in R such
that both components of Iµ\{µ} are of definite type with respect to A0.

(ii) For every finite union ∆ of open connected subsets of R, ∆ ⊂ Ω ∩ R, there
exists m ≥ 1, M > 0 and an open neighbourhood U of ∆ in C such that

‖(A0 − λ)−1‖ ≤ M(1 + |λ|)2m−2 |Im λ|−m

holds for all λ ∈ U\R.
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By [20, Theorem 4.7] a self-adjoint relation A0 in K is definitizable over C if
and only if A0 is definitizable, that is, the resolvent set of A0 is non-empty and there
exists a rational function r 6= 0 with poles only in ρ(A0) such that r(A0) ∈ L(K)
is a nonnegative operator in K, that is

[r(A0)x, x] ≥ 0

holds for all x ∈ K (see [28] and [16, §4 and §5]).

Let A0 = A+
0 be definitizable over Ω and let δ 7→ E(δ) be the local spectral

function of A0 on Ω ∩ R. Recall that E(δ) is defined for all finite unions δ of
connected subsets of Ω ∩ R, δ ⊂ Ω ∩ R, the endpoints of which belong to Ω ∩ R

and are of definite type with respect to A0 (see [20, Section 3.4 and Remark 4.9]).
With the help of the local spectral function E(·) the open subsets of definite type
in Ω∩R can be characterized in the following way. An open subset ∆, ∆ ⊂ Ω∩R,
is of positive type (negative type) with respect to A0 if and only if for every finite
union δ of open connected subsets of ∆, δ ⊂ ∆, such that the boundary points of
δ in R are of definite type with respect to A0, the spectral subspace (E(δ)K, [·, ·])
(resp. (E(δ)K,−[·, ·])) is a Hilbert space (cf. [20, Theorem 3.18]).

We say that an open subset ∆, ∆ ⊂ Ω ∩ R, is of type π+ (type π−) with
respect to A0 if for every finite union δ of open connected subsets of ∆, δ ⊂ ∆,
such that the boundary points of δ in R are of definite type with respect to A0 the
spectral subspace (E(δ)K, [·, ·]) is a Pontryagin space with finite rank of negativity
(resp. positivity). We shall say that A0 is of type π+ over Ω (type π− over Ω) if
Ω ∩ R is of type π+ (resp. type π−) with respect to A0 and σ(A0) ∩ Ω\R consists
of eigenvalues with finite algebraic multiplicity.

We remark, that spectral points in sets of type π+ and type π− can also be
characterized with the help of approximative eigensequences (see [1, 2]).

2.3. Matrix-valued locally definitizable functions

In this section we recall the definition of matrix-valued locally definitizable func-
tions from [21]. Although in the formulation of the main theorem in Section 3.2
below only scalar locally definitizable functions appear, matrix-valued functions
will be used within the proof.

Let Ω be a domain as in the beginning of Section 2.2 and let τ be an L(Cn)-
valued piecewise meromorphic function in Ω\R which is symmetric with respect
to the real axis, that is τ (λ) = τ (λ)∗ for all points λ of holomorphy of τ . If, in
addition, no point of Ω∩R is an accumulation point of nonreal poles of τ we write
τ ∈ Mn×n(Ω). The set of the points of holomorphy of τ in Ω\R and all points
µ ∈ Ω ∩ R such that τ can be analytically continued to µ and the continuations
from Ω ∩ C+ and Ω ∩ C− coincide, is denoted by h(τ ).

The following definition of sets of positive and negative type with respect to
matrix functions and Definition 2.4 below of locally definitizable matrix functions
can be found in [21].
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Definition 2.3. Let τ ∈ Mn×n(Ω). An open subset ∆ ⊂ Ω ∩ R is said to be of
positive type with respect to τ if for every x ∈ Cn and every sequence (µk) of
points in Ω ∩ C+ ∩ h(τ ) which converges in C to a point of ∆ we have

lim inf
k→∞

Im
(
τ (µk)x, x

)
≥ 0.

An open subset ∆ ⊂ Ω ∩ R is said to be of negative type with respect to τ if ∆ is
of positive type with respect to −τ . ∆ is said to be of definite type with respect
to τ if ∆ is of positive or of negative type with respect to τ .

Definition 2.4. A function τ ∈ Mn×n(Ω) is called definitizable in Ω if the following
holds.

(i) Every point µ ∈ Ω ∩ R has an open connected neighbourhood Iµ in R such
that both components of Iµ\{µ} are of definite type with respect to τ .

(ii) For every finite union ∆ of open connected subsets in R, ∆ ⊂ Ω ∩ R, there
exist m ≥ 1, M > 0 and an open neighbourhood U of ∆ in C such that

‖τ (λ)‖ ≤ M(1 + |λ|)2m |Im λ|−m

holds for all λ ∈ U\R.

The class of L(Cn)-valued definitizable functions in Ω will be denoted by Dn×n(Ω).
In the case n = 1 we write D(Ω) instead of D1×1(Ω) and we set

D̃(Ω) := D(Ω) ∪ {d∞},

where d∞ denotes the relation
{(

0
c

)
| c ∈ C

}
∈ C̃(C).

A function τ ∈ Mn×n(C) which is definitizable in C is called definitizable,
see [20]. We note that τ ∈ Mn×n(C) is definitizable if and only if there exists a
rational function g symmetric with respect to the real axis such that the poles
of g belong to h(τ ) ∪ {∞} and gτ is the sum of a Nevanlinna function and a
meromorphic function in C (cf. [20]). For a comprehensive study of definitizable
functions we refer to the papers [18, 19] of P. Jonas. We mention only that the
generalized Nevanlinna class is a subclass of the definitizable functions. Recall that
a function τ ∈ Mn×n(C) is called a generalized Nevanlinna function if the kernel
Kτ ,

Kτ (λ, µ) =
τ (λ) − τ (µ)

λ − µ
,

has finitely many negative squares (see [25] and [26]).
In [21] it is shown that a function τ ∈ Mn×n(Ω) is definitizable in Ω if and

only if for every finite union ∆ of open connected subsets of R such that ∆ ⊂ Ω∩R,
τ can be written as the sum

τ = τ0 + τ(0) (2.1)

of an L(Cn)-valued definitizable function τ0 and an L(Cn)-valued function τ(0)

which is locally holomorphic on ∆. We say that a locally definitizable function
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τ ∈ Dn×n(Ω) is a generalized Nevanlinna function in Ω if the function τ0 in (2.1)
can be choosen as a generalized Nevanlinna function.

The class of L(Cn)-valued generalized Nevanlinna functions in Ω will be de-
noted by Nn×n(Ω). In the case n = 1 we write N (Ω) instead of N 1×1(Ω) and we
set

Ñ (Ω) := N (Ω) ∪ {d∞},

where d∞ denotes the relation
{(

0
c

)
| c ∈ C

}
∈ C̃(C).

The following theorem is a consequence of [21, Propositions 2.8 and 3.4]. It
establishes a connection between self-adjoint relations which are locally definiti-
zable (locally of type π+) and L(Cn)-valued locally definitizable functions (resp.
local generalized Nevanlinna functions).

Theorem 2.5. Let Ω be a domain as above and let A0 be a self-adjoint relation in
the Krein space K which is definitizable over Ω. Let γ ∈ L(Cn,K) and S = S∗ ∈
L(Cn), fix some point λ0 ∈ ρ(A0) ∩ Ω and define

τ (λ) := S + γ+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(A0 − λ)−1

)
γ

for all λ ∈ ρ(A0) ∩ Ω. Then the following holds.

(i) The function τ is definitizable in Ω, τ ∈ Dn×n(Ω).

(ii) If A0 is of type π+ over Ω, then τ belongs to Nn×n(Ω).

(iii) An open subset ∆ of Ω ∩ R which is of positive type (negative type) with
respect to A0 is of positive type (resp. negative type) with respect to τ .

In the sequel we shall often assume that the sign types of self-adjoint relations
which are definitizable over Ω, and definitizable functions in Ω coincide outside
of a discrete set in Ω ∩ R. A notion for this concept is introduced in the next
definition, cf. [3, Definition 2.8].

Definition 2.6. Let A0 and A1 be self-adjoint relations which are definitizable over
Ω and let τ and τ̃ be L(Cn)-valued definitizable functions in Ω. We shall say that
the sign types of A0 and A1 (A0 and τ , τ and τ̃ ) are d-compatible in Ω if for every
µ ∈ Ω ∩ R there exists an open connected neighbourhood Iµ ⊂ Ω ∩ R of µ such
that each component of Iµ\{µ} is either of positive type with respect to A0 and
A1 (resp. A0 and τ , τ and τ̃) or of negative type with respect to A0 and A1 (resp.
A0 and τ , τ and τ̃).

If A0 is definitizable over Ω and the function τ ∈ Dn×n(Ω) is defined as
in Theorem 2.5, then obviously the sign types of A0 and τ are d-compatible in
Ω. A typical nontrivial situation where d-compatibility of sign types of locally
definitizable self-adjoint relations appears is shown in Theorem 2.7 below. For a
proof we refer to [4, Theorem 3.2].

Theorem 2.7. Let A0 and A1 be self-adjoint relations in K, assume that the set
ρ(A0) ∩ ρ(A1) ∩ Ω is non-empty and that A0 is definitizable over Ω. If

(A1 − µ)−1 − (A0 − µ)−1
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is a finite rank operator for some (and hence for all) µ ∈ ρ(A0) ∩ ρ(A1) ∩Ω, then
A1 is definitizable over Ω and the sign types of A0 and A1 are d-compatible in Ω.

3. Generalized resolvents of a class of symmetric operators

3.1. Boundary value spaces and Weyl functions associated with symmetric rela-
tions in Krein spaces

Let (K, [·, ·]) be a separable Krein space, let J be a corresponding fundamental
symmetry and let A be a closed symmetric relation in K. We say that A has defect
m ∈ N ∪ {∞}, if both deficiency indices

n±(JA) = dimker((JA)∗ − λ), λ ∈ C
±,

of the symmetric relation JA in the Hilbert space (K, [J ·, ·]) are equal to m.
Here ∗ denotes the Hilbert space adjoint. We remark, that this is equivalent to
the fact that there exists a self-adjoint extension of A in K and that each self-
adjoint extension Â of A in K satisfies dim

(
Â/A

)
= m.

We shall use the so-called boundary value spaces for the description of the
self-adjoint extensions of closed symmetric relations in Krein spaces. The following
definition is taken from [10].

Definition 3.1. Let A be a closed symmetric relation in the Krein space K. We
say that {G, Γ0, Γ1} is a boundary value space for A+ if G is a Hilbert space and

Γ0, Γ1 : A+ → G are mappings such that Γ :=
(

Γ0

Γ1

)
: A+ → G2 is surjective, and

the relation
[[
Γf̂ , Γĝ

]]
G2 =

[[
f̂ , ĝ
]]
K2

holds for all f̂ , ĝ ∈ A+.

In the following we recall some basic facts on boundary value spaces which
can be found in e.g. [8] and [10]. For the Hilbert space case we refer to [17], [12]
and [13]. Let A be a closed symmetric relation in K. Then

Nλ,A+ := ker(A+ − λ) = ran (A − λ)[⊥]

denotes the defect subspace of A at the point λ ∈ r(A) and we set

N̂λ,A+ :=
{(

fλ

λfλ

)∣∣fλ ∈ Nλ,A+

}
.

When no confusion can arise we write Nλ and N̂λ instead of Nλ,A+ and N̂λ,A+ .
If there exists a self-adjoint extension A′ of A such that ρ(A′) 6= ∅ then we

have

A+ = A′
.
N̂λ for all λ ∈ ρ(A′).

In this case there exists a boundary value space {G, Γ0, Γ1} for A+ such that
ker Γ0 = A′ (cf. [10]).
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Let in the following A, {G, Γ0, Γ1} and Γ be as in Definition 3.1. It follows
that the mappings Γ0 and Γ1 are continuous. The self-adjoint extensions

A0 := ker Γ0 and A1 := ker Γ1

of A are transversal, i.e. A0∩A1 = A and A0 A1 = A+. The mapping Γ induces,
via

AΘ := Γ−1Θ =
{
f̂ ∈ A+ |Γf̂ ∈ Θ

}
, Θ ∈ C̃(G), (3.1)

a bijective correspondence Θ 7→ AΘ between the set of all closed linear relations

C̃(G) in G and the set of closed extensions AΘ ⊂ A+ of A. In particular (3.1) gives a
one-to-one correspondence between the closed symmetric (self-adjoint) extensions
of A and the closed symmetric (resp. self-adjoint) relations in G. If Θ is a closed
operator in G, then the corresponding extension AΘ of A is determined by

AΘ = ker
(
Γ1 − ΘΓ0

)
. (3.2)

Assume that ρ(A0) 6= ∅ and denote by π1 the orthogonal projection onto the
first component of K ×K. For every λ ∈ ρ(A0) we define the operators

γ(λ) := π1(Γ0|N̂λ)−1 ∈ L(G,K) and M(λ) := Γ1(Γ0|N̂λ)−1 ∈ L(G).

The functions λ 7→ γ(λ) and λ 7→ M(λ) are called the γ-field and Weyl function
corresponding to {G, Γ0, Γ1}. They are holomorphic on ρ(A0) and the relations

γ(ζ) = (1 + (ζ − λ)(A0 − ζ)−1)γ(λ) (3.3)

and

M(λ) − M(ζ)∗ = (λ − ζ)γ(ζ)+γ(λ) (3.4)

hold for all λ, ζ ∈ ρ(A0) (cf. [10]). It follows that

M(λ) = Re M(λ0)+γ(λ0)
+
(
(λ − Re λ0)

+ (λ − λ0)(λ − λ0)(A0 − λ)−1
)
γ(λ0)

(3.5)

holds for a fixed λ0 ∈ ρ(A0) and all λ ∈ ρ(A0). If, in addition, the condition
K = clsp {Nλ |λ ∈ ρ(A0)} is fulfilled, then it follows from (3.3) and (3.4) that the
function M is strict, that is

⋂

λ∈h(M)

ker

(
M(λ) − M(µ)∗

λ − µ

)
= {0} (3.6)

holds for some (and hence for all) µ ∈ h(τ ).

If Θ ∈ C̃(G) and AΘ is the corresponding extension of A (see (3.1)), then for
every point λ ∈ ρ(A0) we have

λ ∈ ρ(AΘ) if and only if 0 ∈ ρ(Θ − M(λ)). (3.7)

For λ ∈ ρ(AΘ) ∩ ρ(A0) the well-known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)+ (3.8)

holds (for a proof see e.g. [10]).
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3.2. A variant of the Krein-Naimark formula

We choose a domain Ω as in the beginning of Section 2.2. Let A be a (not necessar-
ily densely defined) closed symmetric operator in the Krein space K, let {G, Γ0, Γ1}
be a boundary value space for A+ and let H be a further Krein space. A self-adjoint

extension Ã of A in K × H is said to be an exit space extension of A and H is

called the exit space. The exit space extension Ã of A is said to be K-minimal if

ρ(Ã) ∩ Ω is non-empty and

K ×H = clsp
{
K, (Ã − λ)−1K |λ ∈ ρ(Ã) ∩ Ω

}

holds. Note, that the defintion of K-minimality depends on the domain Ω. The
elements of K × H will be written in the form {k, h}, k ∈ K, h ∈ H. Let PK :
K × H → H, {k, h} 7→ k, be the projection onto the first component of K × H.
Then the compression

PK(Ã − λ)−1|K, λ ∈ ρ(Ã),

of the resolvent of Ã to K is called a generalized resolvent of A.

Theorem 3.2. Let A be a closed symmetric operator of defect one in the Krein
space K and let {C, Γ0, Γ1}, A0 = kerΓ0, be a boundary value space for A+ with
corresponding γ-field γ and Weyl function M . Assume that A0 is definitizable
over Ω and that the condition K = clsp {Nλ,A+ |λ ∈ ρ(A0) ∩ Ω} is fulfilled. Then
the following assertions hold.

(i) Let Ã be a K-minimal self-adjoint exit space extension of A in K ×H which

is definitizable over Ω and assume that the sign types of Ã and A0 are d-

compatible in Ω. Then there exists a locally definitizable function τ ∈ D̃(Ω)

such that the sign types of τ , Ã and A0 are d-compatible in Ω,

ρ(Ã) ∩ ρ(A0) ∩ h(τ ) ∩ Ω

is a subset of h((M + τ )−1) and the formula

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ)+ (3.9)

holds for all λ ∈ ρ(Ã) ∩ ρ(A0) ∩ h(τ ) ∩ Ω.

(ii) Let τ ∈ D̃(Ω) be a locally definitizable function such that M(µ) + τ (µ) 6= 0
for some µ ∈ Ω, assume that the sign types of τ and A0 are d-compatible in
Ω and let Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω. Then there

exists a Krein space H and a K-minimal self-adjoint exit space extension Ã

of A in K×H which is definitizable over Ω′, such that the sign types of Ã, τ
and A0 are d-compatible in Ω′,

ρ(A0) ∩ h(τ ) ∩ h
(
(M + τ )−1

)
∩ Ω′

is a subset of ρ(Ã) and formula (3.9) holds for all points λ belonging to
ρ(A0) ∩ h(τ ) ∩ h((M + τ )−1) ∩ Ω′.



Generalized Resolvents of Symmetric Operators in Krein Spaces 11

Proof. The proof of assertion (i) consists of four steps. Let Ã be a K-minimal self-
adjoint exit space extension of A in K×H which is definitizable over Ω such that

the sign types of Ã and A0 are d-compatible in Ω.

1. In this first step we prove assertion (i) for the case H = {0}. Here Ã is a
canonical extension of A and therefore, by (3.1), there exists a self-adjoint constant
τ ∈ R ∪ {d∞} such that

(Ã − λ)−1 = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ

)−1
γ(λ)+

holds (cf. (3.8)), that is, Ã coincides with the canonical self-adjoint extension A−τ

of A and by (3.7) we have ρ(A−τ ) ∩ ρ(A0) ⊂ h((M + τ )−1). Here each point in
Ω∩R is of positive as well as of negative type with respect to τ and hence assertion
(i) follows.

2. In the following we assume H 6= {0}. Following the lines of [11, §5] we
define in this step a symmetric relation T in H and a special boundary value space
for the adjoint T+.

Below we will deal with direct products of linear relations. The following
notation will be used. If U is a relation in K and V is a relation in H we shall
write U × V for the direct product of U and V which is a relation in K ×H,

U × V =

{(
{f1, f2}
{f ′

1, f
′
2}

) ∣∣∣
(

f1

f ′
1

)
∈ U,

(
f2

f ′
2

)
∈ V

}
.

For the pair
(
{f1,f2}

{f ′

1,f ′

2}

)
we shall also write {f̂1, f̂2}, where f̂1 =

( f1

f ′

1

)
and f̂2 =

( f2

f ′

2

)
.

The linear relations

S := Ã ∩ K2 =

{(
k
k′

) ∣∣∣
(
{k, 0}
{k′, 0}

)
∈ Ã

}

and

T := Ã ∩H2 =

{(
h
h′

) ∣∣∣
(
{0, h}
{0, h′}

)
∈ Ã

}

are closed and symmetric in K and H, respectively, and we have A ⊂ S. Let JK

and JH be fundamental symmetries in the Krein spaces K and H, respectively,
and choose

J :=

(
JK 0
0 JH

)
∈ L(K×H)

as a fundamental symmetry in the Krein space K×H. Then JKS = JÃ∩K2 and

JHT = JÃ ∩ H2 are symmetric relations in the Hilbert spaces (K, [JK·, ·]) and
(H, [JH·, ·]), respectively. It follows from [11, §5] that the deficiency indices of JKS
and −JHT coincide. As JKS is a symmetric extension of the symmetric operator
JKA in the Hilbert space (K, [JK·, ·]) the deficiency indices n±(JKS) of JKS are
(1, 1) or (0, 0).

The case n±(JKS) = 0 is impossible here as otherwise also the relation

JHT would be self-adjoint in (H, [JH·, ·]) and therefore JÃ would coincide with
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JKS ×JHT . But as Ã = S ×T is by assumption a K-minimal exit space extension
of A we would obtain H = {0}, a contradiction.

Therefore, it remains to consider the case n±(JKS) = 1. Then the operators
A and S coincide. Let us show that A+ coincides with

R =

{(
PK{k, h}
PK{k′, h′}

) ∣∣∣
(

{k, h}
{k′, h′}

)
∈ Ã

}
=

{(
k
k′

) ∣∣∣
(

{k, h}
{k′, h′}

)
∈ Ã

}
.

In fact, as Ã is self-adjoint we have
[
g, PK{k

′, h′}
]
−
[
g′, PK{k, h}

]
=
[
{g, 0}, {k′, h′}

]
−
[
{g′, 0}, {k, h}

]
= 0

for all
( g

g′

)
∈ A and {k̂, ĥ} ∈ Ã, k̂ =

(
k
k′

)
, ĥ =

(
h
h′

)
. Hence A ⊂ R+. Similarly it

follows that R+ ⊂ A holds. Therefore A+ coincides with the closure of R and as
A has finite defect and R is an extension of A we conclude A+ = R. Replacing PK

by the projection PH onto the second component of K × H the same arguments
show

T+ =

{(
PH{k, h}
PH{k′, h′}

) ∣∣∣
(

{k, h}
{k′, h′}

)
∈ Ã

}
=

{(
h
h′

) ∣∣∣
(

{k, h}
{k′, h′}

)
∈ Ã

}
.

We define the mappings P̂K and P̂H by

P̂K : Ã → A+,

(
{k, h}
{k′, h′}

)
7→

(
k
k′

)

and

P̂H : Ã → T+,

(
{k, h}
{k′, h′}

)
7→

(
h
h′

)
.

In the sequel we denote the elements in A+ and T+ by f̂1 and f̂2, respectively.

As the multivalued part of P̂−1
H coincides with A it follows that Γ0P̂KP̂−1

H and

Γ1P̂KP̂−1
H are operators. We define Γ′

0, Γ
′
1 : T+ → C by

Γ′
0f̂2 := −Γ0P̂KP̂−1

H f̂2, Γ′
1f̂2 := Γ1P̂KP̂−1

H f̂2, f̂2 ∈ T+,

cf. [11]. Taking into account that Ã is self-adjoint, one verifies that {C, Γ′
0, Γ

′
1} is

a boundary value space for T+. We set

T0 := ker Γ′
0. (3.10)

An element {f̂1, f̂2} ∈ A+×T+ belongs to Ã if and only if the set f̂1− P̂KP̂−1
H f̂2 is

contained in A. Therefore Ã is the canonical self-adjoint extension of the symmetric
relation A × T in K ×H given by

Ã =
{
{f̂1, f̂2} ∈ A+ × T+ |Γ0f̂1 + Γ′

0f̂2 = Γ1f̂1 − Γ′
1f̂2 = 0

}
. (3.11)

3. In order to show that T0 has a non-empty resolvent set we construct in
this step an auxiliary self-adjoint extension Tα of T in H such that ρ(Tα) ∩ Ω is
non-empty and with the help of Theorem 2.7 we will show that Tα is definitizable
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over Ω and that the sign types of Tα are d-compatible with the sign types of Ã
and A0 in Ω.

It is easy to see that {C2, Γ′′
0 , Γ′′

1}, where

Γ′′
0{f̂1, f̂2} :=

(
Γ0f̂1

Γ′
0f̂2

)
and Γ′′

1{f̂1, f̂2} :=

(
Γ1f̂1

Γ′
1f̂2

)
, f̂1 ∈ A+, f̂2 ∈ T+, (3.12)

is a boundary value space for A+ × T+. Setting

W :=




0 0 −1 1
1 1 0 0
1 0 0 0
0 0 0 1


 ∈ L(C4)

and (
Γ̃0

Γ̃1

)
:= W

(
Γ′′

0

Γ′′
1

)
(3.13)

we obtain a boundary value space {C2, Γ̃0, Γ̃1} for A+×T+. This follows e.g. from
the fact that W is unitary in the Krein space (C4, [[·, ·]]

C4), where

[[·, ·]]
C4 :=

(
J ·, ·

)
, J =

(
0 −iIC2

iIC2 0

)
, (3.14)

(see Section 2.1). Here we have

Ã = ker Γ̃0. (3.15)

As Ã is by assumption definitizable over Ω it follows from Theorem 2.5 and (3.5)

that the Weyl function M̃ corresponding to {C2, Γ̃0, Γ̃1} is a definitizable function

in Ω, M̃ ∈ D2×2(Ω), and the sign types of M̃ and Ã are d-compatible in Ω.
It is not difficult to verify that

ran
(
PH(Ã − λ)−1|K

)
= ker(T+ − λ) = Nλ,T+ , λ ∈ ρ(Ã),

holds. Since Ã is an K-minimal exit space extension of A we have

H = clsp
{
ran

(
PH(Ã − λ)−1|K

)
|λ ∈ ρ(Ã) ∩ Ω

}

= clsp
{
Nλ,T+ |λ ∈ ρ(Ã) ∩ Ω

} (3.16)

and from the assumption K = clsp {Nλ,A+ |λ ∈ ρ(A0) ∩ Ω} we obtain

K ×H = clsp
{
Nλ,A+×T+ |λ ∈ ρ(A0) ∩ ρ(Ã) ∩ Ω

}
.

This implies that the function M̃ ∈ D2×2(Ω) is strict (see (3.6)). We claim that
there exists α ∈ R such that the function

λ 7→ M̃(λ) −

(
0 0
0 α

)
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is invertible for some λ′ ∈ ρ(Ã)∩Ω. Indeed, let M̃(λ) = (mij(λ))2i,j=1 and suppose

that for all λ ∈ ρ(Ã) ∩ Ω and every α ∈ R we have

det

(
M̃(λ) −

(
0 0
0 α

))
= m11(λ)(m22(λ) − α) − m21(λ)m12(λ) = 0.

This implies m11(λ) = m12(λ)m21(λ) = 0 and since m12 and m21 are piecewise

meromorphic functions in Ω\R and M̃ is symmetric with respect to the real axis

we conclude m12(λ) = m21(λ) = 0, λ ∈ ρ(Ã) ∩ Ω, which contradicts the strictness

of M̃ .

It is straightforward to check that the matrix

V :=




0 0 1 0
0 −α α 1
−1 0 0 1
0 −1 1 0


 ∈ L(C4) (3.17)

is unitary in (C4, [[·, ·]]
C4), cf. (3.14). Let {C2, Γ̂0, Γ̂1} be the boundary value space

for A+ × T+ defined by
(

Γ̂0

Γ̂1

)
:= V

(
Γ̃0

Γ̃1

)
= V W

(
Γ′′

0

Γ′′
1

)
, (3.18)

(see (3.13)). From

V W =




1 0 0 0
0 −α 0 1
0 0 1 0
0 −1 0 0




we obtain

Γ̂0{f̂1, f̂2} =

(
Γ0f̂1

Γ′
1f̂2 − αΓ′

0f̂2

)
, f̂1 ∈ A+, f̂2 ∈ T+,

and

Γ̂1{f̂1, f̂2} =

(
Γ1f̂1

−Γ′
0f̂2

)
, f̂1 ∈ A+, f̂2 ∈ T+.

We denote the self-adjoint extension ker(Γ′
1 −αΓ′

0) ∈ C̃(H) of T in H by Tα. Then

the self-adjoint extension ker Γ̂0 of A × T in K ×H coincides with A0 × Tα.

Since (3.18) and (3.17) imply

A0 × Tα = ker Γ̂0 = ker

((
0 0
0 −α

)
Γ̃0 +

(
1 0
α 1

)
Γ̃1

)

= ker

(
Γ̃1 −

(
0 0
0 α

)
Γ̃0

)
,
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we find from (3.15), (3.2) and (3.7) that a point λ ∈ ρ(Ã) belongs to the set
ρ(A0 × Tα) if and only if 0 belongs to the resolvent set of

M̃(λ) −

(
0 0
0 α

)
.

But we have chosen α such that this function is invertible for some λ′ ∈ ρ(Ã)∩Ω,
therefore λ′ belongs to ρ(A0 × Tα). In particular λ′ ∈ ρ(A0) ∩ ρ(Tα) and

ρ(Tα) ∩ ρ(A0) ∩ ρ(Ã) ∩ Ω 6= ∅.

As A × T is a symmetric relation of defect two and Ã and A0 × Tα are
self-adjoint extensions of A × T in K ×H we have

dim
(
ran

(
(Ã − λ)−1 − ((A0 × Tα) − λ)−1

))
≤ 2

for all λ ∈ ρ(Ã)∩ρ(A0)∩ρ(Tα)∩Ω. Since Ã is definitizable over Ω we obtain from
Theorem 2.7 that also the self-adjoint relation A0 × Tα is definitizable over Ω and

that the sign types of Ã and the sign types of A0 × Tα are d-compatible in Ω.
It is a simple consequence from Definition 2.1 that

(
σ++(A0 × Tα) ∩ σap(Tα)

)
⊂ σ++(Tα)

and
(
σ−−(A0 × Tα) ∩ σap(Tα)

)
⊂ σ−−(Tα)

holds. Hence, real points from σ++(A0×Tα) (σ−−(A0×Tα)) belong to ρ(Tα) or to
σ++(Tα) (resp. σ−−(Tα)). Therefore Tα is definitizable over Ω and the sign types
of Tα in Ω are d-compatible with the sign types of A0 × Tα and, hence, with the

sign types of Ã and A0 in Ω.

4. In this step we show that also T0 in (3.10) has a non-empty resolvent
set and that formula (3.9) holds with the Weyl function τ corresponding to the
boundary value space {C, Γ′

0, Γ
′
1}. Moreover, we show that τ is locally definitizable

and that its sign types are d-compatible with the sign types of A0 and Ã in Ω.
It is straightforward to verify that {C, Γ′

1 − αΓ′
0,−Γ′

0} is a boundary value
space for T+ and we have Tα = ker(Γ′

1−αΓ′
0) and T0 = ker(−Γ′

0). The correspond-
ing Weyl function τα is defined for all λ ∈ ρ(Tα). As Tα is definitizable over Ω the
function τα belongs to the class D(Ω) and the sign types of τ are d-compatible

with the sign types of Tα, Ã and A0 in Ω (cf. Theorem 2.5 and (3.5) or [3, Propo-
sition 3.2]). Relation (3.16) implies that τα is strict and in particular τα is not
identically equal to zero.

Then, by (3.8), for λ ∈ ρ(Tα) ∩ h(τ−1
α ) we have

(T0 − λ)−1 = (Tα − λ)−1 − γ′
α(λ)

1

τα(λ)
γ′

α(λ)+,

where γ′
α is the γ-field of the boundary value space {C, Γ′

1 −αΓ′
0,−Γ′

0}. Therefore
the set ρ(Tα)∩ρ(T0)∩Ω is non-empty and by Theorem 2.7 the self-adjoint relation
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T0 is definitizable over Ω and the sign types of T0 and Tα are d-compatible in Ω. The
Weyl function τ corresponding to the boundary value space {C, Γ′

0, Γ
′
1} satisfies

τ (λ) = −τα(λ)−1 + α, λ ∈ h(τ−1
α ) ∩ ρ(Tα).

and is holomorphic on ρ(T0).
It follows from Theorem 2.5 and (3.5) that τ belongs to the class D(Ω) and

that its sign types are d-compatible with the sign types of T0 and Tα and hence

also with the sign types of Ã and A0. The γ-field corresponding to {C, Γ′
0, Γ

′
1} will

be denoted by γ′.
Since A0 and T0 are both definitizable over Ω the set ρ(A0)∩ρ(T0)∩Ω is non-

empty. The γ-field γ′′ and the Weyl function M ′′ corresponding to the boundary
value space {C2, Γ′′

0 , Γ′′
1} defined in (3.12) are given by

λ 7→ γ′′(λ) =

(
γ(λ) 0

0 γ′(λ)

)
, λ ∈ ρ(A0) ∩ ρ(T0) ∩ Ω (3.19)

and

λ 7→ M ′′(λ) =

(
M(λ) 0

0 τ (λ)

)
, λ ∈ ρ(A0) ∩ ρ(T0) ∩ Ω, (3.20)

respectively. The relation

Θ :=

{(
{u,−u}
{v, v}

) ∣∣∣u, v ∈ C

}
∈ C̃(C2) (3.21)

is self-adjoint and the corresponding self-adjoint extension of A × T is given by
(

Γ′′
0

Γ′′
1

)−1

Θ =
{
{f̂1, f̂2} ∈ A+ × T+ |Γ0f̂1 + Γ′

0f̂2 = Γ1f̂1 − Γ′
1f̂2 = 0

}
(3.22)

and coincides with Ã (see (3.11)).

By (3.7) a point λ ∈ ρ(A0 × T0) belongs to ρ(Ã) if and only if

0 ∈ ρ(Θ − M ′′(λ)).

Hence, for λ ∈ ρ(A0 × T0) ∩ ρ(Ã) ∩ Ω = ρ(A0) ∩ h(τ ) ∩ ρ(Ã) ∩ Ω

(
Θ − M ′′(λ)

)−1
=

{(
{v − M(λ)u, v + τ (λ)u}

{u,−u}

) ∣∣∣u, v ∈ C

}

is an operator. Therefore (M(λ) + τ (λ))u = 0 implies u = 0 and we conclude that

the set ρ(Ã)∩ρ(A0)∩h(τ )∩Ω is a subset of h((M + τ )−1). Setting x = v−M(λ)u
and y = v + τ (λ)u we obtain

u = −
(
M(λ) + τ (λ)

)−1
x +

(
M(λ) + τ (λ)

)−1
y

for λ ∈ ρ(A0 × T0) ∩ ρ(Ã) ∩ Ω. This implies

(
Θ − M ′′(λ)

)−1
=

(
−(M(λ) + τ (λ))−1 (M(λ) + τ (λ))−1

(M(λ) + τ (λ))−1 −(M(λ) + τ (λ))−1

)
. (3.23)
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For all λ ∈ ρ(A0 × T0) ∩ ρ(Ã) ∩ Ω the relation

(Ã − λ)−1 =
(
(A0 × T0) − λ

)−1
+ γ′′(λ)

(
Θ − M ′′(λ)

)−1
γ′′(λ)+ (3.24)

holds (cf. (3.8)) and it follows from (3.24), (3.19) and (3.23) that the formula

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ)+

holds. This completes the proof of assertion (i).

5. Assertion (ii) was already proved in [3] in a slightly different form. For the
convenience of the reader we sketch the proof.

If τ is identically equal to a real constant, then A−τ := ker(Γ1 + τΓ0) is a
canonical self-adjoint extension of A. As the Weyl function M corresponding to
A+ and {C, Γ0, Γ1} is strict we obtain ρ(A−τ ) ∩ Ω 6= ∅ and Theorem 2.7 implies
that A−τ is definitizable over Ω and that the sign types of A0, A−τ and τ ∈ R are
d-compatible. By (3.8)

(A−τ − λ)−1 = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ

)−1
γ(λ)+

holds for all λ ∈ ρ(A0)∩ ((M + τ )−1). In the case τ = d∞ =
{(

0
c

)
| c ∈ C

}
we have

A−τ = A0.
Assume now that τ ∈ D(Ω) is not equal to a constant and let Ω′ be a domain

with the same properties as Ω, Ω′ ⊂ Ω. With the help of [21, Theorem 3.8] it was
shown in [3, Theorem 3.3] that there exists a Krein space H, a closed symmetric
operator T of defect one in H and a boundary value space {C, Γ′

0, Γ
′
1} for T+

such that T0 := ker Γ′
0 is definitizable over Ω′, the sign types of τ and T0 are

d-compatible and τ coincides with the Weyl function corresponding to {C, Γ′
0, Γ

′
1}

on Ω′ ∩ ρ(T0). Moreover the condition

H = clsp
{
γ′(λ) |λ ∈ ρ(T0) ∩ Ω′

}
(3.25)

is fulfilled. We choose the boundary value space {C2, Γ′′
0 , Γ′′

1} for A+ × T+ as in
(3.12) with γ-field and Weyl function given by (3.19) and (3.20), respectively. The

self-adjoint extension corresponding to Θ in (3.21) via (3.1) is denoted by Ã. Then

Ã has the form (3.22) and the relation (3.24) holds for all λ ∈ Ω′ which belong to
ρ(A0 × T0) and fulfil 0 ∈ ρ(Θ − M ′′(λ)). From (3.23) we conclude

ρ(A0) ∩ h(τ ) ∩ h
(
(M + τ )−1

)
∩ Ω′ ⊂ ρ(Ã)

and (3.24) implies that the formula (3.9) holds. Since the minimality condition

(3.25) is fulfilled it follows from (3.24) that Ã is a K-minimal exit space extension
of A. As A0 × T0 is definitizable over Ω′ the relation (3.24) and Theorem 2.7

imply that Ã is also definitizable over Ω′ and the sign types of Ã, A0 and τ are
d-compatible. �

The next theorem is a variant of the Krein-Naimark formula for the case that
A0 and Ã are locally of type π+ and τ is a local generalized Nevanlinna function.
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The proof of Theorem 3.3 below is essentially the same as the proof of Theo-
rem 3.2. Instead of the result on finite rank perturbations of locally definitizable
self-adjoint relations from [4], cf. Theorem 2.7, one has to use [5, Theorem 2.4]
on the stability of self-adjoint operators and relations locally of type π+ under
compact perturbations in resolvent sense. We leave the details to the reader.

Theorem 3.3. Let A be a closed symmetric operator of defect one in the Krein
space K and let {C, Γ0, Γ1} be a boundary value space for A+ with corresponding
γ-field γ and Weyl function M . Assume that A0 = kerΓ0 is of type π+ over Ω and
that the condition K = clsp {Nλ,A+ |λ ∈ ρ(A0) ∩ Ω} is fulfilled. Then the following
assertions hold.

(i) For every K-minimal self-adjoint exit space extension Ã of A in K×H which

is of type π+ over Ω there exists a function τ ∈ Ñ (Ω) such that

ρ(Ã) ∩ ρ(A0) ∩ h(τ ) ∩ Ω

is a subset of h((M + τ )−1) and the formula

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ)+ (3.26)

holds for all λ ∈ ρ(Ã) ∩ ρ(A0) ∩ h(τ ) ∩ Ω.

(ii) Let τ ∈ Ñ (Ω) be a local generalized Nevanlinna function such that M(µ) +
τ (µ) 6= 0 for some µ ∈ Ω and let Ω′ be a domain with the same properties as
Ω, Ω′ ⊂ Ω. Then there exists a Krein space H and a K-minimal self-adjoint

exit space extension Ã of A in K×H which is of type π+ over Ω′, such that

ρ(A0) ∩ h(τ ) ∩ h
(
(M + τ )−1

)
∩ Ω

is a subset of ρ(Ã) and formula (3.26) holds for all points λ belonging to
ρ(A0) ∩ h(τ ) ∩ h((M + τ )−1) ∩ Ω.
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