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A description of all exit space extensions with finitely many negative squares of a symmetric operator
of defect one is given via Krein’s formula. As one of the main results an exact characterization of the
number of negative squares in terms of a fixed canonical extension and the behaviour of a function τ
(that determines the exit space extension in Krein’s formula) at zero and at infinity is obtained. To
this end the class of matrix valued Dn×n

κ -functions is introduced and, in particular, the properties
of the inverse of a certain D2×2

κ -function which is closely connected with the spectral properties
of the exit space extensions with finitely many negative squares is investigated in detail. Among
the main tools here are the analytic characterization of the degree of non-positivity of generalized
poles of matrix valued generalized Nevanlinna functions and some extensions of recent factorization
results.
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2 J. Behrndt, A. Luger, and C. Trunk: Negative squares of self-adjoint extensions

1 Introduction

It is a common feature in the theory of symmetric and self-adjoint operators that many spectral prop-
erties of the given operators are described in terms of locally analytic functions and their behavior

close to singularities. For example, if Ã is a fixed self-adjoint extension of a closed simple symmetric A
operator with defect one in a Hilbert space K, then the corresponding Weyl function (or Q-function)

m : C\R → C can be used to describe the spectrum of Ã. Furthermore, the spectral properties of the
self-adjoint extensions Aτ of A, labeled by a real parameter τ in Krein’s formula for canonical extensions,

(Aτ − λ)−1 = (Ã− λ)−1 − 1

m(λ) + τ
(·, ϕλ)ϕλ, λ ∈ ρ(Aτ ) ∩ ρ(Ã),

where ϕλ ∈ ker (A∗ − λ), are encoded in the functions

λ 7→ − 1

m(λ) + τ
.

When considering self-adjoint extensions Ã of A that act in larger Hilbert, Pontryagin or Krein spaces
K×H the parameter τ in Krein’s formula itself is a function. However, for the spectral analysis of these
self-adjoint extensions it is not sufficient to consider the function λ 7→ −(m(λ) + τ(λ))−1, as Krein’s
formula might suggest. Instead, it is necessary to investigate the structure of the singularities of the
2× 2-matrix function

M̃(λ) := −
(
m(λ) −1
−1 −τ(λ)−1

)−1

=
τ(λ)

m(λ) + τ(λ)

(
−τ(λ)−1 1

1 m(λ)

)
(1.1)

which, roughly speaking, can be viewed as a Weyl function (or Q-function) corresponding to the fixed

self-adjoint extension Ã in K×H.
The structure of the exit space H determines the properties of the function τ in Krein’s formula

and vice versa, e.g., a Hilbert or Pontryagin space will lead to a Nevanlinna or generalized Nevanlinna
function, whereas a Krein space will lead to more general classes of locally meromorphic functions. The
self-adjoint extensions in K ×H in Krein’s formula can also be regarded as linearizations or solution
operators of certain boundary value problems in K with the function τ appearing in an eigenparameter
dependent boundary condition. In this connection, functions of the form (1.1) have frequently appeared
in the literature, see, e.g., [28, 30, 32, 33] for problems involving Sturm-Liouville operators and Hamil-
tonian systems, and [3, 6, 22, 24] for more abstract situations. As a concrete example one might think
of a Sturm-Liouville problem of the form

−f ′′ + qf = rλf and τ(λ)f(0) = f ′(0) (1.2)

in K = L2(R+), where q and r > 0 are real valued bounded functions, and τ : C\R → C is locally
meromorphic and symmetric with respect to R. Then m can be identified with the usual Titchmarsh-
Weyl coefficient, which under the above assumptions belongs to the class of Nevanlinna functions. The
solvability properties of (1.2) are then encoded in the spectral structure of a self-adjoint operator in
L2(R+)×H determined via Krein’s formula as well as in the singularities of the function (1.1).

The main objective of the present paper is the investigation of a certain class of functions of the form
(1.1) and the spectral structure of the corresponding self-adjoint exit space extension in Krein’s formula
in an indefinite setting. More precisely, our main interest is on functions m and τ belonging to the
classes Dκ, κ ∈ N0, introduced and studied in the scalar case in [9, 10, 11] in connection with indefinite
Sturm-Liouville problems. Recall that a scalar function M belongs to the class Dκ if for some point λ0

of holomorphy of M there exists a generalized Nevanlinna function Q ∈ Nκ holomorphic in λ0 and a
rational function G symmetric with respect to the real axis and holomorphic in C\{λ0, λ0} such that

λ

(λ− λ0)(λ− λ0)
M(λ) = Q(λ) +G(λ);
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cf. Definition 4.1. The classes Dκ are subclasses of the so-called definitizable functions which were
comprehensively studied in [36, 37]. In particular, the general results in [37] imply that the functions
from the class Dκ are connected with self-adjoint operators and relations with κ negative squares in
Krein spaces in the same way as, e.g., Nevanlinna and generalized Nevanlinna functions are connected
with self-adjoint operators and relations in Hilbert and Pontryagin spaces, respectively, see, e.g., [35, 41].
In other words, every function from the class Dκ admits a minimal representation

M(λ) = ReM(λ0) +
[(

(λ− Reλ0) + (λ− λ0)(λ− λ0)(A0 − λ)−1
)
γλ0

, γλ0

]
via the resolvent of a self-adjoint operator (or relation) A0 in a Krein space (K, [·, ·]) such that the
Hermitian form [A0·, ·] has κ negative squares. Here λ0 is a fixed point in the domain of holomorphy
of M and γλ0

∈ K. We mention that the class of self-adjoint operators with non-empty resolvent set
and κ negative squares consists of operators which allow a rich spectral theory: There exists a spectral
function with singularities and the non-real spectrum consists of at most κ pairs, symmetric with respect
to the real line, see [43, 45] and, e.g., [11, Theorem 3.1].

The present paper is divided into two separate parts which are both of interest on their own: Part I
deals with matrix valued Dκ-functions and Part II is devoted to extensions of symmetric operators in
Krein spaces and the number of their negative squares. In Part I the matrix valued analogue Dn×n

κ of
the classes Dκ are introduced and the answer for the following problem is found: Given scalar functions

m ∈ Dκm and τ ∈ Dκτ describe κ̃ ∈ N0 such that the 2 × 2-matrix function M̃ in (1.1) belongs
to the class D2×2

κ̃ . It turns out in Theorem 4.5 that the index κ̃ differs at most by one of the sum
κm + κτ and the exact value of κ̃ is determined in terms of the limiting behavior of the functions
m and τ at the point 0 and ∞. For the special case that τ is a real constant this description can
already be found in [11]. We point out that the solution of this seemingly simple problem does not
only involve a sophisticated machinery of technical tools and nontrivial recent results from the theory of
matrix valued generalized Nevanlinna functions, e.g., the purely analytic characterization of the degree
of non-positivity for matrix valued generalized Nevanlinna functions from [48]; cf. Definition 2.13 and
Theorem 2.15, but also requires an extension of certain factorization results for matrix valued generalized
Nevanlinna functions from [48] and recent results on functions of the form (1.1) from [6].

Part II of this paper contains a variant of Krein’s formula for the self-adjoint extensions Ã in K×H

of a symmetric operator with finitely many negative squares and defect one in a Krein space K. Here

H is also allowed to be a Krein space and we give a parametrization of all extension Ã that also have
finitely many negative squares. We remark that various other variants of the Krein-Naimark formula
in an indefinite setting can be found in the literature. The case that A is a symmetric operator in a
Pontryagin space K and H is a Hilbert space was investigated by M.G. Krein and H. Langer in [38].
Later V.A. Derkach considered both K and H to be Pontryagin or even Krein spaces; cf. [17, 18, 19, 20],
other variants of (1.3) were proved in, e.g., [5, 7, 25, 27, 44].

For the purpose of the second part of the paper the abstract concept of boundary triplets and
associated Weyl functions is a convenient tool. A boundary triplet {C,Γ0,Γ1} for a symmetric operator
A of defect one consists of two linear mappings Γ0,Γ1 defined on the adjoint A+ that satisfy an abstract
Lagrange identity and a maximality condition, see Section 5 for details. Associated to {C,Γ0,Γ1} is
the so-called Weyl function which is the abstract analog of the Titchmarsh-Weyl function from singular
Sturm-Liouville theory. Denote by A0 the self-adjoint restriction of A+ onto ker Γ0 and let γ and m be
the γ-field and Weyl function associated to {C,Γ0,Γ1}. In Section 7 it will be shown that the formula

PK(Ã− λ)−1|K = (A0 − λ)−1 − γ(λ)
(
m(λ) + τ(λ)

)−1
γ(λ)∗ (1.3)

establishes a bijective correspondence between the compressed resolvents of minimal self-adjoint exit

space extensions Ã of A that have finitely many negative squares and the functions τ belonging to the
class

⋃
κ∈N0

Dκ ∪ {∞}; see also [9]. Based on the coupling method from [22] and some technical tools

from extension theory of symmetric operators in Krein spaces provided in Section 6 we show that Ã in

(1.3) is the minimal representing operator or relation of the function M̃ in (1.1), where now m is the
Weyl function of the fixed boundary triplet {C,Γ0,Γ1} and τ is the parameter function in (1.3). The
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4 J. Behrndt, A. Luger, and C. Trunk: Negative squares of self-adjoint extensions

main result of the second part of the paper is now a consequence of this observation, Krein’s formula
and Theorem 4.5 from the first part of the paper: we obtain an exact characterization of the number of

negative squares of Ã in (1.3) in terms of the negative index of the functions m and τ and the limiting
behavior of the functions m and τ at the points 0 and ∞. This result can be regarded as generalization
and improvement of [19] and earlier results by two of the authors in [9]. Moreover, this result can be
applied to eigenparameter dependent boundary value problems. E.g., for Sturm-Liouville problems of
the form (1.2) involving also a (possibly) indefinite weight function r and a function τ ∈ Dκτ in the
boundary condition, sharp estimates for the number of non-real solutions can be easily obtained.

Part I. Generalized Nevanlinna and Dκ-functions

In the first part of this paper we recall the notion of matrix valued generalized Nevanlinna functions. We
present results from [48] which allow to retrieve the index κ of a given generalized Nevanlinna function
in a purely analytic manner. Thereafter, we introduce the main class of functions under consideration:
The class of matrix valued Dκ-functions. These functions, multiplied with a simple rational function,
allow a representation as the sum of a generalized Nevanlinna function and a simple rational term. The
main result of the first part is Theorem 4.5; it provides an exact description of the index κ of the inverses
of a special class of Dκ-functions with 2× 2 matrices as values.

2 Matrix valued generalized Nevanlinna functions

By C+ and C− we denote the open upper and lower half plane, respectively. For the extended real line
and the extended complex plane we write R and C, respectively. We use the notation N = {1, 2, 3, . . .}
and N0 = {0, 1, 2, 3, . . .}. Let n ∈ N and let Q be a matrix function with values in Cn×n which is
piecewise meromorphic in C\R. The union of all points of holomorphy of Q in C\R and all points λ ∈ R
such that Q can be analytically continued to λ such that the continuations from C+ and C− coincide is
denoted by h(Q). The n× n-matrix function Q is said to be symmetric with respect to the real axis if
Q(λ)∗ = Q(λ) holds for all λ ∈ h(Q).

We recall the notion of generalized Nevanlinna functions which were introduced in [41, 42].

Definition 2.1 A matrix function Q with values in Cn×n belongs to the generalized Nevanlinna
class Nn×n

κ , if it is piecewise meromorphic in C\R, symmetric with respect to the real axis and the
kernel

NQ(λ,w) :=
Q(λ)−Q(w)∗

λ− w
, λ,w ∈ h(Q) ∩ C+,

has κ ∈ N0 negative squares, that is, for any N ∈ N, λ1, . . . , λN ∈ h(Q) ∩ C+ and ~x1, . . . , ~xN ∈ Cn the
Hermitian matrix(

NQ(λi, λj)~xi, ~xj
)N
i,j=1

has at most κ negative eigenvalues, and κ is minimal with this property. The number κ of the generalized
Nevanlinna class Nn×n

κ is called negative index. The functions in the class Nn×n
0 are called Nevanlinna

functions. For scalar functions we write Nκ instead of N 1×1
κ .

It is a simple consequence of Definition 2.1 that Nn×n
κ is closed under the following transformations.

Lemma 2.2 Let Q ∈ Nn×n
κ . Then the function λ 7→ Q(− 1

λ ) belongs to the same class Nn×n
κ .

Furthermore, if detQ(λ0) 6= 0 for some λ0 ∈ h(Q) \ {∞}, then also λ 7→ −Q(λ)−1 belongs to Nn×n
κ .

It is well known that every rational function which is symmetric with respect to the real axis belongs
to some generalized Nevanlinna class and that the sum Q1 +Q2 of the generalized Nevanlinna functions
Q1 ∈ Nn×n

κ1
and Q2 ∈ Nn×n

κ2
belongs to some generalized Nevanlinna class Nn×n

κ′ , where κ′ ≤ κ1 + κ2,
see, e.g. [41]. In the next lemma we recall that the multiplication of a generalized Nevanlinna function
with a rational function is again a generalized Nevanlinna function, only the negative index may change.
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Lemma 2.3 Let Q ∈ Nn×n
κ and assume that r is a rational function with values in Cn×n. Then the

function
λ 7→ Q1(λ) := r(λ)∗Q(λ)r(λ)

belongs to Nn×n
κ1

for some κ1 ∈ N0.

P r o o f. It is clear that Q1 is piecewise meromorphic in C\R and that Q1(λ)∗ = Q1(λ) holds for all
λ ∈ h(Q1). Furthermore, the kernel NQ1 can be rewritten as

NQ1
(λ,w) =

Q1(λ)−Q1(w)∗

λ− w
=
r(λ)∗Q(λ)r(λ)− r(w)∗Q(w)r(w)

λ− w
=

r(w)∗
Q(λ)−Q(w)

λ− w
r(λ) + (I, r(w)∗Q(w))

(
0 r(λ)∗−r(w)∗

λ−w
r(λ)−r(w)
λ−w 0

)(
I

Q(λ)r(λ)

)
.

Since r is a rational function it follows that the 2n× 2n matrix(
0 r(λ)∗−r(w)∗

λ−w
r(λ)−r(w)
λ−w 0

)
is the kernel of a rational function which is symmetric with respect to the real axis, hence it has finitely
many negative squares. As Q ∈ Nn×n

κ also the first summand has finitely many negative squares and
therefore the kernel NQ1

has a finitely many negative squares.

In the study of generalized Nevanlinna functions the so-called generalized poles and generalized zeros
play a central role. Originally they have been defined with the help of a realization of the function,
that is, a certain operator representation in a Pontryagin space, and have later also been characterized
in terms of the asymptotic behavior of the function close to such a point, [13, 46, 48]. However in this
section emphasis is put on the analytic point of view, and hence we are using these characterizations as
definitions, cf. [48, Theorem 3.7]. In the following we denote by λ→̂α the usual limit λ→ α if α ∈ C+,
and the non-tangential limit in C+ if α ∈ R.

Definition 2.4 A point α ∈ C+ ∪ R is called a generalized pole of Q ∈ Nn×n
κ if there exist an open

neighbourhood Uα of α and a holomorphic vector function ~η : Uα ∩ C+ → Cn such that

(i) lim
λ→̂α

~η(λ) = 0 and lim
λ→̂α

Q(λ)~η(λ) 6= 0;

(ii) there exists an n×n-matrix function H which is holomorphic at α such that λ 7→ (Q(λ)−H(λ))~η(λ)
can be continued holomorphically into α;

(iii) lim
λ,w→̂α

(
Q(λ)−Q(w)

λ− w
~η(λ), ~η(w)

)
exists.

In this case ~η is called pole cancellation function of Q at α, the non-zero vector

~η0 := lim
λ→̂α

Q(λ)~η(λ)

is called pole vector, and ~η0 is said to be of positive (negative, neutral) type if the real number in (iii) is
positive (negative and zero, respectively).

The point ∞ is called a generalized pole of Q if and only if the point 0 is a generalized pole of the
function λ 7→ Q(− 1

λ ). In this case, pole cancellation functions and pole vectors of positive (negative,

neutral) type at the point 0 of the function λ 7→ Q(− 1
λ ) are called pole cancellation functions and pole

vectors of positive (negative, neutral, respectively) type at ∞ of the function Q.

For completeness we mention that a point α ∈ C− will be called a generalized pole of Q if α ∈ C+ is a
generalized pole of Q and that pole cancellation functions, pole vectors and their sign types are defined
analogously.
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6 J. Behrndt, A. Luger, and C. Trunk: Negative squares of self-adjoint extensions

Remark 2.5 We note that different pole cancellation functions may lead to the same pole vector,
but according to [48, Theorem 3.3] the type of the pole vector does not depend on the choice of the
pole cancellation function. Furthermore, usual poles in C+ ∪ R are also generalized poles in the sense
of Definition 2.4. In this case there exists a pole cancellation function which is holomorphic even in a
whole neighbourhood of the pole. In particular, it is easy to see, that for non-real poles all pole vectors
are neutral.

The following well known fact on the sum of two generalized Nevanlinna functions can be found, for
instance, in [16].

Lemma 2.6 Let Q1 ∈ Nn×n
κ1

and Q2 ∈ Nn×n
κ2

be given such that there is no point α ∈ C+ ∪R which

is a generalized pole of both Q1 and Q2. Then Q1 +Q2 ∈ Nn×n
κ1+κ2

.

Besides generalized poles also the notion of generalized zeros of generalized Nevanlinna functions will
play an important role in the sequel.

Definition 2.7 A point β ∈ C+ ∪ R is called a generalized zero of Q ∈ Nn×n
κ if there exist an open

neighbourhood Uβ of β and a holomorphic vector function ~ξ : Uβ ∩ C+ → Cn such that

(i) lim
λ→̂β

~ξ(λ) 6= 0 and lim
λ→̂β

Q(λ)~ξ(λ) = 0;

(ii) there exists an n × n-matrix function H which is holomorphic at the point β such that λ 7→
~ξ(λ) +H(λ)Q(λ)~ξ(λ) can be continued holomorphically into β;

(iii) lim
λ,w→̂β

(
Q(λ)−Q(w)

λ− w
~ξ(λ), ~ξ(w)

)
exists.

In this case ~ξ is called root function of Q at β, the non-zero vector

~ξ0 := lim
λ→̂β

~ξ(λ)

is called root vector, and ~ξ0 is said to be of positive (negative, neutral) type if the real number in (iii) is
positive (negative and zero, respectively).

The point ∞ is a generalized zero of Q if and only if the point 0 is a generalized zero of the function
λ 7→ Q(− 1

λ ). In this case, root functions and root vectors of positive (negative, neutral) type at the

point 0 of the function λ 7→ Q(− 1
λ ) are called root functions and root vectors of positive (negative,

neutral, respectively) type at ∞ of the function Q.

Moreover, we note that β ∈ C− is called a generalized zero of Q if β ∈ C+ is a generalized zero of Q
and root functions, pole vectors and their sign types are defined analogously.

Remark 2.8 If Q is holomorphic at β, then this point is a generalized zero in accordance with the

above definition if and only if detQ(β) = 0. In this case for every vector ~ξ0 ∈ ker Q(β) the constant

function ~ξ(λ) := ~ξ0 is a root function with root vector ~ξ0. Note also that if β ∈ C\R is a generalized

zero of Q, then every root vector ~ξ0 is neutral.

Remark 2.9 Suppose that Q ∈ Nn×n
κ is invertible for some µ ∈ h(Q). Then the generalized zeros

and generalized poles of Q are connected as follows: A point α ∈ C is a generalized pole of Q with
pole cancellation function ~η and pole vector ~η0 if and only if α is a generalized zero of the function

λ 7→ −Q(λ)−1 with root function ~ξ(λ) := Q(λ)~η(λ) and root vector ~ξ0 = ~η0. Furthermore, it holds(
−Q(λ)−1 +Q(w)−1

λ− w
~ξ(λ), ~ξ(w)

)
=

(
Q(λ)−Q(w)

λ− w
~η(λ), ~η(w)

)
and hence also the types coincide.

Note that in the scalar case, given a generalized pole there is essential only one pole vector. Therefore,
for a scalar function q ∈ Nκ a generalized pole of q with a pole vector of positive (negative, neutral)
type is usually briefly called a generalized pole of positive (resp. negative, neutral) type. In a similar
way the notion generalized zero of positive (resp. negative, neutral) type is used. In the case of scalar
functions the above definitions simplify, cf., with a slightly different notation, [46].
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Lemma 2.10 For a scalar function q ∈ Nκ the following holds. A point β ∈ R is a generalized zero
of q of positive (negative, neutral) type if and only if

lim
λ→̂β

q(λ)

(λ− β)

is positive (negative and zero, respectively). A point α ∈ R is a generalized pole of q of positive (negative,
neutral) type if and only if

lim
λ→̂α
− 1

(λ− α)q(λ)

is positive (negative and zero, respectively).

P r o o f. It suffices to verify the first assertion. The second statement follows from the first one and
Remark 2.9. Assume first that limλ→̂β(λ − β)−1q(λ) exists and is real. Then limλ→̂β q(λ) = 0 and,

by setting ~ξ(λ) = 1 and H(λ) = 0 it follows that (i) and (ii) in Definition 2.7 are satisfied. The fact
that the limit in (iii) exists and that it coincides with limλ→̂β(λ− β)−1q(λ) can be shown by standard
arguments, see, e.g., the proof of [6, Theorem 3.13].

Conversely, suppose now that β ∈ R is a generalized zero of q. Then (i) in Definition 2.7 implies
limλ→̂β q(λ) = 0 and by (iii) we have

lim
λ,w→̂β

(
q(λ)− q(w)

λ− w
~ξ(λ), ~ξ(w)

)
= lim
λ→̂β

q(λ)

(λ− β)
|~ξ(β)|2,

in particular, limλ→̂β(λ− β)−1q(λ) exists and the sign of the limit of the right hand side is the type of
the generalized zero at β.

Roughly speaking the behaviour of a generalized Nevanlinna function close to a real point that is not
a generalized pole of negative or neutral type is the same as that of a Nevanlinna function.

For later purposes we state the following lemma which is known for Nevanlinna functions.

Lemma 2.11 Assume that q1 ∈ Nκ1
and q2 ∈ Nκ2

are scalar generalized Nevanlinna functions and
that for some β ∈ R

lim
λ→̂β

q1(λ) = 0 = lim
λ→̂β

q2(λ) and lim
λ→̂β

q1(λ) + q2(λ)

λ− β
= ν ∈ R

holds. Then β is a generalized zero of q1 and q2; in particular, the limits

lim
λ→̂β

q1(λ)

λ− β
and lim

λ→̂β

q2(λ)

λ− β

exist and are real.

P r o o f. As β is not a generalized pole of q1 and of q2, it is well known from [41] that there exist
functions h1, h2 holomorphic in a neighbourhood of β with q1(λ) = m1(λ) +h1(λ) and q2(λ) = m2(λ) +
h2(λ), and limλ→̂βm1(λ) = limλ→̂βm2(λ) = 0, where m1 and m2 are Nevanlinna functions, that can
be written in the form

m1(λ) = η1 +

∫
∆

dσ1(t)

t− λ
and m2(λ) = η2 +

∫
∆

dσ2(t)

t− λ
, η1, η2 ∈ R,

where ∆ is a bounded interval which contains β and σ1, σ2 are finite measures with support in ∆. Then

lim
λ→̂β

q1(λ) + q2(λ)

λ− β
= ν ∈ R

implies

lim
λ→̂β

m1(λ) +m2(λ)

λ− β
= ν − (h′1(β) + h′2(β))
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8 J. Behrndt, A. Luger, and C. Trunk: Negative squares of self-adjoint extensions

and, as

m1(λ) +m2(λ) = η1 + η2 +

∫
∆

d(σ1 + σ2)(t)

t− λ
,

it follows from [6, Theorem 3.13 (iii)] that
∫

∆
d(σ1+σ2)(t)

(t−β)2 <∞. Hence,∫
∆

dσ1(t)

(t− β)2
<∞ and

∫
∆

dσ2(t)

(t− β)2
<∞,

and the assertion follows from [6, Theorem 3.13 (iii)], see also [21, 39].

As in the scalar case a special role in the investigation of generalized Nevanlinna functions is played
by those generalized poles which are not of positive type. To such a pole there is associated the so-
called degree of non-positivity, see [48, Section 3]. The precise definition of this quantity is given in
Definition 2.13 below.

Definition 2.12 Let Q ∈ Nn×n
κ and let α ∈ C be a generalized pole of Q and ~η a pole cancellation

function of Q at α. The order of the pole cancellation function ~η is defined as the maximal number
l0 ∈ N ∪ {∞} such that for 0 ≤ j < l0 the limits

lim
λ→̂α

~η(j)(λ) = ~0 and lim
λ,w→̂α

d2j

dλjdwj

(
Q(λ)−Q(w)

λ− w
~η(λ), ~η(w)

)
exist. The order of the pole cancellation function ~η is denoted by ord ~η.

Definition 2.13 Let Y = {~η1, . . . , ~ηm} be a system of pole cancellation functions of Q ∈ Nn×n
κ at

the point α ∈ C such that the corresponding pole vectors are linearly independent. Let di be integers
with 1 ≤ di ≤ord ~ηi for 1 ≤ i ≤ m, respectively. We define Hd1,...,dm via

Hd1,...,dm := (Gi,j)1≤i,j≤m with Gi,j :=
(
gi,jki,lj

)
0≤ki≤di−1, 0≤lj≤dj−1

where

gi,jki,lj := lim
λ→̂α

lim
w→̂α

1

ki!lj !

dki+lj

dλkidwlj

(
Q(λ)−Q(w)

λ− w
~ηi(λ), ~ηj(w)

)
.

If H1,...,1 = (gi,j0,0)1≤i,j≤m is negative semi-definite, we denote by ϑ(Y ) the maximal integer for which

there exists a choice d1, . . . , dm with
∑m
i=1 di = ϑ(Y ) such that Hd1,...,dm is negative semi-definite,

otherwise we set ϑ(Y ) := 0. We say that ϑ(Y ) is the degree of non-positivity of the system Y .

We remark that the existence of the above iterated limits is assured by [48, Theorem 3.3].

Definition 2.14 A system Y of pole cancellation functions of Q ∈ Nn×n
κ at the point α such that

the corresponding pole vectors are linearly independent is said to have maximal degree of non-positivity
if there does not exist a system of pole cancellation functions at the point α such that the corresponding
pole vectors are linearly independent whose degree of non-positivity is larger. In this case we set

κα(Q) := ϑ(Y )

and we set κα(Q) := 0 if α is not a generalized pole of Q.
If the point∞ is a generalized pole of Q we define κ∞(Q) to be the maximal degree of non-positivity

at the point 0 of the function defined by λ 7→ Q(− 1
λ ).

Generalized poles of Q ∈ Nn×n
κ are eigenvalues of the self-adjoint relation in a minimal realization of

Q in some Pontryagin space Πκ, see, e.g., [48]. In particular, it is shown in [48, Theorem 3.7] that κα(Q)
coincides with the dimension of a maximal non-positive invariant subspace of the algebraic eigenspace
at the eigenvalue α. However, the well known weaker statement in Theorem 2.15 below is sufficient for
our purpose.
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Theorem 2.15 Let Q ∈ Nn×n
κ be given. Then it holds∑

α∈C+∪R∪{∞}

κα(Q) = κ.

The following special case will be useful.

Lemma 2.16 Let Q ∈ Nn×n
κ be given and assume that α ∈ C\R is a generalized pole of Q. If for

every pole cancellation function ~η of Q at α

lim
λ→α

d

dλ
~η(λ) 6= 0 (2.1)

holds, then the degree of non-positivity κα(Q) of the generalized pole α is equal to the maximal number
of linearly independent pole vectors of Q at α.

P r o o f. It is easily computed that the matrix H1,...,1 from Definition 2.13 for every system Y of pole
cancellation functions is the zero matrix. Because of (2.1) all the pole cancellation functions of Q at
α have order 1, hence the degree of non-positivity ϑ(Y ) of the system Y coincides with the number of
linearly independent pole vectors of the system Y of pole cancellation functions.

Remark 2.17 We mention that the maximal degree of non-positivity coincides in the case of scalar
generalized Nevanlinna functions with the notion of multiplicity of a generalized pole of non-positive
type, as used in [46]. See also [48, Section 2] for a detailed motivation for the introduction of the above
notion.

3 Factorization of matrix valued generalized Nevanlinna functions

In this section we collect and slightly extend some results on factorizations of generalized Nevanlinna
functions from [21, 29, 47]. Proposition 3.1 below will play an important role in the proof of one of
our main results. Although we are in particularly interested in factorization results for matrix valued
generalized Nevanlinna functions we briefly review the scalar case for the convenience of the reader.

Let G ∈ Nκ, κ ∈ N0 be a scalar generalized Nevanlinna function. Denote by αj (βi), j = 1, . . . , r
(i = 1, . . . , s) the generalized poles (generalized zeros) of non-positive type in R∪C+ with multiplicities
νj (τi) of G. By [29] (see also [21]) there exists a scalar Nevanlinna function G0 ∈ N0 such that

G(λ) =

s∏
i=1

(λ− βi)τi(λ− βi)τi

r∏
j=1

(λ− αj)νj (λ− αj)νj
G0(λ) and max

{
s∑
i=1

τi,

r∑
j=1

νj

}
= κ. (3.1)

Equation (3.1) shows the following simple fact: Multiplying a scalar Nevanlinna function with an

expression of the form (λ−δ)(λ−δ)
(λ−γ)(λ−γ) , where γ, δ ∈ C, γ 6∈ {δ, δ}, increases the index κ = 0 by one. If we

multiply a scalar generalized Nevanlinna function G ∈ Nκ, κ ≥ 1, with the same expression, then the
negative index κ+ ∆ of the resulting function

G̃(λ) =
(λ− δ)(λ− δ)
(λ− γ)(λ− γ)

G(λ) ∈ Nκ+∆ (3.2)
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depends on the fact whether generalized poles and zeros cancel (and whether the function has a gener-
alized pole at infinity) or not. More precisely, for the number ∆ the following holds:

(1)
δ generalized pole of non-positive type of G
γ generalized zero of non-positive type of G

}
⇒ ∆ = −1,

(2)
δ generalized pole of non-positive type of G
γ no generalized zero of non-positive type of G

}
⇒ ∆ = 0,

(3)
δ no generalized pole of non-positive type of G
γ generalized zero of non-positive type of G

}
⇒ ∆ = 0,

(4)
δ no generalized pole of non-positive type of G
γ no generalized zero of non-positive type of G

}
⇒ ∆ = 1.

Let us now consider matrix valued generalized Nevanlinna functions. In contrast to the scalar case
here also the pole and root vectors and their sign types have to be taken into account. In what follows
we will write κ(Q), if we want to emphasize that this number is the negative index of the generalized
Nevanlinna function Q. The next proposition extends [47, Theorems 3.1 and 4.1].

Proposition 3.1 Let Q ∈ Nn×n
κ(Q) and γ, δ ∈ C with γ 6∈ {δ, δ}. Let ~ψ, ~ϕ ∈ Cn such that (~ψ, ~ϕ) 6= 0

and define the projection P := ( · ,~ϕ)

(~ψ,~ϕ)
~ψ in Cn. Then

Q̃(λ) :=
(
I − P ∗ +

λ− δ
λ− γ

P ∗
)
Q(λ)

(
I − P +

λ− δ
λ− γ

P
)
∈ Nn×n

κ(Q̃)
(3.3)

is a generalized Nevanlinna function with negative index κ(Q̃) = κ(Q) + ∆, where

(1a)
δ gen. pole of Q and ~ϕ a corr. non-positive pole vector

γ gen. zero of Q and ~ψ a corr. non-positive root vector

}
⇒ ∆ = −1,

(1b)
δ gen. pole of Q and ~ϕ a corr. non-positive pole vector

γ gen. zero of Q and ~ψ a corr. positive root vector

}
⇒ ∆ = 0,

(1c)
δ gen. pole of Q and ~ϕ a corr. positive pole vector

γ gen. zero of Q and ~ψ a corr. non-positive root vector

}
⇒ ∆ = 0,

(2)
δ gen. pole of Q and ~ϕ a corr. non-positive pole vector

γ ∈ C\R neither zero nor pole of Q, ~ψ arbitrary

}
⇒ ∆ = 0,

(3a)
δ ∈ C\R neither zero nor pole of Q, ~ϕ arbitrary

γ gen. zero of Q and ~ψ a corr. non-positive root vector

}
⇒ ∆ = 0,

(3b)
δ ∈ C\R neither zero nor pole of Q, ~ϕ arbitrary

γ gen. zero of Q and ~ψ a corr. positive root vector

}
⇒ ∆ = 1.

Roughly speaking in case (1a) a generalized pole and a generalized zero not of positive type cancel
(since the directions fit) and hence the negative index is reduced by 1. In (1b), (2), and (3a) a generalized
pole or zero not of positive type cancels but at the same time a new one appears, hence the negative
index is preserved. Although the number ∆ in the above proposition could be calculated also in other
cases than (1a)-(1c), (2), and (3a)-(3b), we have restricted ourselves to those which are relevant for us.

Sketch of Proof. Case (1a) is Theorem 3.1 in [47], whereas (1c) can be obtained by a slight modifi-
cation of the rather technical proof of (1a), which uses the operator representation of the function Q.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 11

More precisely, let A be a minimal representing self-adjoint relation for the function Q in a Pontryagin

space K and define the self-adjoint relation Ã in the Pontryagin space K̃ := K[+]C via its resolvent by

(Ã− λ)−1 :=

(
(A− λ)−1 0

0 1
γ−λ

)
.

Minimality of the realization for Q̃ is obtained by factoring out the eigenvector corresponding to the
generalized pole δ of Q, which is positive (for the detailed arguments see page 336 in [47]). This

yields a minimal representation of Q̃ in a Pontryagin space with again κ negative squares, which proves

Q̃ ∈ Nn×n
κ . Case (1b) follows from (1c) by taking inverses. Case (2) is precisely [47, Theorem 4.1]

and (3a) is obtained from (2) by taking inverses. Case (3b) follows from applying [47, Remark below
Theorem 4.1] to the reciprocal function.

One expects that in the situation of Proposition 3.1 new generalized poles and zeros for Q̃ are created
in case that they do not cancel with generalized zeros and poles of Q. The following lemma makes this
more precise.

Lemma 3.2 Let the functions Q, Q̃, the points γ, δ the vectors ~ψ, ~ϕ ∈ Cn and the projection P be

as in Proposition 3.1. If γ ∈ R is not a generalized zero of Q, then γ is a generalized pole of Q̃ with
non-positive pole vector ~ϕ.

P r o o f. We show that the function

~η(λ) :=
λ− γ
λ− δ

(
I − P +

λ− γ
λ− δ

P
)
Q(λ)−1~ϕ

is a pole cancellation function of Q̃ at γ. Note that since γ is not a generalized zero of Q the function
−Q(λ)−1 has no generalized pole at γ. It is well-known that for a Nevanlinna function R with no
generalized pole at γ we have limλ→̂γ(λ − γ)(R(λ)~x, ~x) = 0 for all vectors ~x ∈ Cn; cf. [39]. Hence
limλ→̂γ(λ− γ)R(λ) = 0 ∈ Cn×n. Now, with [47, Section 5], the function −Q(λ)−1 can be written as a

product of a Nevanlinna function R0 and a rational function B, −Q(λ)−1 = B(λ)∗R0(λ)B(λ), such that

B has no pole in γ. Hence it holds limλ→̂γ(λ− γ)Q(λ)−1 = 0 and thus limλ→̂γ ~η(λ) = ~0. Furthermore,

with P ∗ = (·, ~ψ)

(~ϕ,~ψ)
~ϕ we have

Q̃(λ)~η(λ) =
λ− γ
λ− δ

(
I − P ∗ +

λ− δ
λ− γ

P ∗
)
Q(λ)

(
I − P +

λ− δ
λ− γ

P

)(
I − P +

λ− γ
λ− δ

P

)
Q(λ)−1~ϕ

=
λ− γ
λ− δ

(
I − P ∗ +

λ− δ
λ− γ

P ∗
)
~ϕ = ~ϕ,

which implies

−
(
Q̃(λ)~η(λ), ~η(w)

)
=
w − γ
w − δ

· w − γ
w − δ

(
−Q(w)−1~ϕ, ~ϕ

)
.

We define the function N via

N(z) :=
z − γ
z − δ

· z − γ
z − δ

(
−Q(z)−1~ϕ, ~ϕ

)
= −

(
Q̃(λ)~η(λ), ~η(z)

)
. (3.4)

By assumption, the function z 7→ (−Q(z)−1~ϕ, ~ϕ) is a scalar generalized Nevanlinna function which
has no generalized pole at γ. Hence the function N in (3.4) is a generalized Nevanlinna function with
generalized zero γ of non-positive type (see (3.2)) and this implies,

lim
λ,w→̂γ

(
Q̃(λ)− Q̃(w)

λ− w
~η(λ), ~η(w)

)
= lim
λ,w→̂γ

N(λ)−N(w)

λ− w
≤ 0.

Moreover, as Q̃(λ)~η(λ) = ~ϕ, (ii) of Definition 2.4 is satisfied with H ≡ 0. This finally gives that ~η is a

pole cancellation function of Q̃ at γ with non-positive pole vector ~ϕ.
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In the proof of Theorem 4.5 below special matrix functions appear. Functions of this type have been
studied in [6]. We recall those results which are of interest for us here.

Proposition 3.3 Let qm and qτ , qτ 6≡ 0 be scalar generalized Nevanlinna functions with qm+ qτ 6≡ 0
and define

Ω(λ) :=

(
qm(λ) −1
−1 − 1

qτ (λ)

)
.

Then the point w0 ∈ C is a generalized zero of the generalized Nevanlinna function Ω if and only if it is
either a generalized zero of qm+qτ or it is a generalized pole of both qm and qτ . Moreover, the following
hold:

1. If w0 is a generalized zero of Ω and if qτ has a generalized pole at w0 then there exists (up to scalar

multiples) only one root vector ~ξ0 = (0, 1)> of Ω at w0 and its type coincides with the the sign of

lim
λ→̂w0

− 1
qm(λ) −

1
qτ (λ)

λ− w0
.

2. If w0 is a generalized zero of Ω and if qτ has no generalized pole at the point w0 then the limits
limλ→̂w0

qτ (λ) = − limλ→̂w0
qm(λ) =: qτ (w0) exist and there exists (up to scalar multiples) only one

root vector ~ξ0 = (1,−qτ (w0))> of Ω at w0 and its type coincides with the the sign of

lim
λ→̂w0

qm(λ) + qτ (λ)

λ− w0
.

The proof can be found in [6, Propositions 4.7 (ii) and 4.9 (iii)]. However, the particular form of the
root vectors and the existence of the limit limλ→̂w0 qτ (λ) appear only within the proof of [6, Proposition
4.9 (iii)].

4 Matrix valued Dκ-functions

In this section we introduce a class of matrix valued functions that play an important role throughout
this paper. In the scalar case this class of functions was defined and investigated in [10] and [11] in
connection with indefinite Sturm-Liouville operators.

Definition 4.1 A matrix function M with values in Cn×n belongs to the class Dn×nκ if it is piecewise
meromorphic in C\R, symmetric with respect to the real axis and there exists a point λ0 ∈ h(M)\{∞},
a function Q ∈ Nn×n

κ holomorphic in λ0 and a rational function G holomorphic in C\{λ0, λ0} such that

λ

(λ− λ0)(λ− λ0)
M(λ) = Q(λ) +G(λ) (4.1)

holds for all points λ where M , Q and G are holomorphic. The class D1×1
κ will be denoted by Dκ.

We note that the classes Dn×nκ , κ ∈ N0, are subclasses of the class of definitizable functions, see
[36, 37]. The next lemma ensures that the definition of the classes Dn×nκ does not depend on the choice
of the point λ0. Moreover, it implies Dn×n

κ ∩Dn×n
κ′ = ∅, if κ 6= κ′.

Lemma 4.2 Let M be a Cn×n-valued function meromorphic in C\R, let λ0 ∈ h(M)\{∞}, Q ∈ Nn×n
κ

and G be as in Definition 4.1 such that (4.1) holds. Then for every z ∈ h(M)\{∞} there exists
Qz ∈ Nn×n

κ holomorphic in z and a rational function Gz holomorphic in C\{z, z} such that

λ

(λ− z)(λ− z)
M(λ) = Qz(λ) +Gz(λ) (4.2)

holds for all points λ where M , Qz and Gz are holomorphic.
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P r o o f. Let us show that (4.1) implies (4.2). For this let z ∈ h(M)\{∞} such that z 6∈ {λ0, λ0}.
From (4.1) we conclude z ∈ h(Q) and

λ

(λ− z)(λ− z)
M(λ) = h(λ)h(λ)

(
Q(λ) +G(λ)

)
, (4.3)

where h(λ) := λ−λ0

λ−z . The function λ 7→ h(λ)h(λ)Q(λ) is either holomorphic in z and z or it has an

isolated singularity at z and at z. Moreover, by Lemma 2.3, this function belongs to Nn×n
κ̃ for some

κ̃ ∈ N0. Obviously, there exists a rational function rz holomorphic in C\{z, z} which is symmetric with
respect to the real line such that

Qz(λ) := h(λ)h(λ)Q(λ)− rz(λ) (4.4)

is holomorphic in z. Then the function Qz belongs to Nn×n
κz for some κz ∈ N0; cf. [41] or the text below

Lemma 2.2. We set Gz(λ) := rz(λ) + h(λ)h(λ)G(λ). Then the rational function Gz is holomorphic in
C\{z, z} and from (4.3) we see that (4.2) holds. Observe that by (4.1) and (4.4) we have

h(Q) = h(Qz) and {λ0, λ0, z, z} ⊂ h(Q). (4.5)

It remains to show Qz ∈ Nn×n
κ , i.e., we have to verify κz = κ. To this end, it is sufficient to show

κα(Qz) = κα(Q) for all α ∈ C ∪ {∞};

cf. Theorem 2.15. Note that only points α ∈ C which do not belong to h(Q) are of interest since
κα(Q) = κα(Qz) = 0 holds for α ∈ h(Q) = h(Qz); cf. (4.5).

Let α ∈ C\h(Q) and let us show that a function ~η is a pole cancellation function of Q at α of positive
(negative, neutral) type if and only if it is a pole cancellation function of Qz at α of positive (negative,

neutral) type. Indeed, assume that ~η is a pole cancellation function of Q at α. We have h(α)h(α) 6= 0
by (4.5) and with (4.4) we obtain

lim
λ→̂α

Qz(λ)~η(λ) = lim
λ→̂α

(
h(λ)h(λ)Q(λ)~η(λ)− rz(λ)~η(λ)

)
6= 0. (4.6)

Furthermore, if H denotes the function from (ii) of Definition 2.4 which is holomorphic at α such
that λ 7→ (Q(λ) − H(λ))~η(λ) can be continued holomorphically into α, then the function Hz(λ) :=

h(λ)h(λ)H(λ)− rz(λ) is holomorphic at α and

λ 7→ (Qz(λ)−Hz(λ))~η(λ) = h(λ)h(λ)(Q(λ)−H(λ))~η(λ)

can be continued holomorphically into α. Moreover, we have(
Qz(λ)−Qz(w)

λ− w
~η(λ), ~η(w)

)
=

h(λ)
h(λ)− h(w)

λ− w
(Q(λ)~η(λ), ~η(w)) + h(λ)h(w)

(
Q(λ)−Q(w)

λ− w
~η(λ), ~η(w)

)
+ h(w)

h(λ)− h(w)

λ− w
(~η(λ), Q(w)~η(w))−

(
rz(λ)− rz(w)

λ− w
~η(λ), ~η(w)

) (4.7)

and, using the properties of the pole cancellation function ~η, we conclude

lim
λ,w→̂α

(
Qz(λ)−Qz(w)

λ− w
~η(λ), ~η(w)

)
= |h(α)|2 lim

λ,w→̂α

(
Q(λ)−Q(w)

λ− w
~η(λ), ~η(w)

)
,

i.e., ~η is a pole cancellation function of Qz at α and its type coincides with the type of the pole
cancellation function ~η of Q at α. Moreover, a similar reasoning applies when changing the roles of Q
and Qz.
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14 J. Behrndt, A. Luger, and C. Trunk: Negative squares of self-adjoint extensions

It remains to investigate the degree of non-positivity. Let Y = {~η1, . . . , ~ηm} be a system of pole
cancellation functions of Q ∈ Nn×n

κ at the point α ∈ C such that the corresponding pole vectors are
linearly independent. We define for 0 ≤ ki <ord ~ηi, 0 ≤ lj <ord ~ηj for 1 ≤ i, j ≤ m the numbers

gi,jki,lj := lim
λ→̂α

lim
w→̂α

1

ki!lj !

dki+lj

dλkidwlj

(
Q(λ)−Q(w)

λ− w
~ηi(λ), ~ηj(w)

)
;

cf. Definition 2.13. As the function h and rz are holomorphic at α (and, hence, their derivatives) and
as Q~ηi, i = 1, . . . ,m, can be decomposed (see Definition 2.4) in a neighbourhood of α into the sum of
two functions, Q~ηi = (Q −Hi)~ηi + Hi~ηi (and, hence, their derivatives), holomorphic in α, we see that
by (4.7) and by the properties of the pole cancellation functions ~ηi,

lim
λ→̂α

lim
w→̂α

1

ki!lj !

dki+lj

dλkidwlj

(
Qz(λ)−Qz(w)

λ− w
~ηi(λ), ~ηj(w)

)

= lim
λ→̂α

lim
w→̂α

1

ki!lj !

dki+lj

dλkidwlj
h(λ)h(w)

(
Q(λ)−Q(w)

λ− w
~ηi(λ), ~ηj(w)

)

= lim
λ→̂α

lim
w→̂α

ki∑
r=0

lj∑
s=0

1

ki!lj !

(
ki
r

)(
lj
s

)
dr+s

dλrdws

(
Q(λ)−Q(w)

λ− w
~ηi(λ), ~ηj(w)

)
dki−r

dλki−r
h(λ)

dlj−s

dwlj−s
h(w)

=

ki∑
r=0

lj∑
s=0

gi,jr,s
1

(ki − r)!
h(ki−r)(α)

1

(lj − s)!
h(lj−s)(α).

Hence, the order of every pole cancellation function from the system Y = {~η1, . . . , ~ηm} considered as a
pole cancellation function of Q at α is equal to its order considered as a pole cancellation function of
Qz at α. Let Hd1,...,dm be the matrix in Definition 2.13 and denote by Hz

d1,...,dm
the analogous matrix

with entries defined via Qz instead of Q. For p ∈ N we define the matrix

Cp :=



h(α) 0 · · · · · · · · · · · · 0
h′(α) h(α) 0 · · · · · · · · · 0

1
2!h
′′(α) h′(α) h(α) 0 · · · 0
...

...
... 0

1
(p−1)!h

(p−1)(α) · · · · · · · · · · · · h′(α) h(α)


and we obtain

Hz
d1,...,dm =


Cd1 0 · · · 0

0 Cd2 0
...

... 0
0 · · · 0 Cdm

Hd1,...,dm


C∗d1 0 · · · 0

0 C∗d2 0
...

... 0
0 · · · 0 C∗dm

 .

The first and the third matrix on the right hand side of the above equation are invertible, hence Hd1,...,dm

is negative semi-definite if and only if Hz
d1,...,dm

is negative semi-definite. Therefore κα(Q) = κα(Qz)

for α ∈ C\h(Q).
If α =∞, we apply the above reasoning to the functions λ 7→ Q(− 1

λ ) and λ 7→ Qz(− 1
λ ).

Recall (see Lemma 2.2) that for generalized Nevanlinna functions Q with detQ(µ0) 6= 0 for some
µ0 ∈ h(Q)\{∞} we have Q ∈ Nn×n

κ if and only if −Q−1 ∈ Nn×n
κ , in particular, the index κ does not

change. The next remark, and Theorem 4.4 and 4.5 below show that, in general, for functions M from
the class Dn×nκ the index κ changes when considering −M−1.
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Remark 4.3 Let M ∈ Dn×nκ and assume that detM(µ0) 6= 0 holds for some µ0 ∈ h(M)\{∞}.
Choose Q ∈ Nn×n

κ and G as in Definition 4.1. Then

λ

(λ− λ0)(λ− λ0)

(
−M(λ)−1

)
=

λ2

(λ− λ0)2(λ− λ0)2

(
−(Q(λ) +G(λ))−1

)
together with Lemma 2.3 and Lemma 2.6 show −M−1 ∈ Dn×nκ̂ for some κ̂ ∈ N0. We note for com-
pleteness that with the help of minimal operator representations of the functions M and −M−1 and a
perturbation argument it can be shown that |κ−κ̂| ≤ n holds; cf. [10, Theorem 9] and [37, Theorem 3.9].

For scalar functions m ∈ Dκ a full description of the index κ̂ for −m−1 ∈ Dκ̂ was given in [11,
Theorem 3.3], which we present here in a slightly different form.

Theorem 4.4 Let m ∈ Dκ, κ ≥ 1, and assume m 6≡ 0. Then −m−1 ∈ Dκ̂ with κ̂ = κ + ∆0 + ∆∞,
where

∆0 =

{
−1 if lim

λ→̂0
m(λ) ≤ 0,

0 otherwise
and ∆∞ =

{
0 if lim

λ→̂∞
m(λ) ≥ 0,

1 otherwise.

The main result of this section is the following theorem where the index of a certain function M̃ ∈
D2×2
κ , that will play an essential role in part II of the present paper, is given in terms of the local

behavior of m and τ at the points 0 and ∞.

Theorem 4.5 Let the functions m ∈ Dκm and τ ∈ Dκτ be given, τ 6≡ 0, and assume m + τ 6≡ 0.
Then

M̃ = −
(
m −1
−1 − 1

τ

)−1

∈ D2×2
κ

with κ = κm + κτ + ∆0 + ∆∞, where

∆0 =

{
−1 if lim

λ→̂0
m(λ) and lim

λ→̂0
τ(λ) exist and lim

λ→̂0
(m(λ) + τ(λ)) ≤ 0,

0 otherwise,

and

∆∞ =

{
0 if lim

λ→̂∞
m(λ) and lim

λ→̂∞
τ(λ) exist and lim

λ→̂∞
(m(λ) + τ(λ)) ≥ 0,

1 otherwise.

P r o o f. In the special case m ≡ 0 we have

M̃ =

(
− 1
τ 1

1 0

)
and therefore M̃ ∈ D2×2

κ if and only if − 1
τ ∈ Dκ. Hence the claim follows directly from the result for

scalar functions, see Theorem 4.4, and in what follows we assume m 6≡ 0.
Since m ∈ Dκm and τ ∈ Dκτ are meromorphic in C+, and it was assumed that m + τ 6≡ 0, one can

choose a λ0 with

λ0 ∈ C+ ∩ h(m) ∩ h(m−1) ∩ h(τ) ∩ h(τ−1) ∩ h
(
(m+ τ)−1

)
. (4.8)

Recall that by Lemma 4.2 and by definition M̃ ∈ D2×2
κ if and only if

λ

(λ− λ0)(λ− λ0)
M̃(λ) = Q̃(λ) + G̃(λ) with Q̃ ∈ N 2×2

κ , (4.9)

where the rational function G̃ is holomorphic in C\{λ0, λ0} and Q̃ is holomorphic in λ0. By assumption

(4.8), the function M̃ is holomorphic at λ0. We claim that here G̃ belongs to N 2×2
2 . In fact, G̃ has

only one generalized pole λ0 in C+ ∪R∪ {∞} which is an usual pole. Hence it suffices to show that its
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16 J. Behrndt, A. Luger, and C. Trunk: Negative squares of self-adjoint extensions

degree of non-positivity is 2. Since M̃ is holomorphic and invertible in λ0, we see with (4.8) and (4.9)

that λ 7→ (λ− λ0)(x0, y0)> is a pole cancellation function of G̃ at λ0 for every x0, y0 ∈ C\{0}. Assume
now that there exists a pole cancellation function ~η such that

lim
λ→λ0

d

dλ
~η(λ) = 0.

As ~η is holomorphic in λ0, there exists a function ~η0, holomorphic in λ0, with ~η(λ) = (λ − λ0)2~η0(λ).

But this, together with (4.9), gives limλ→λ0 G̃(λ)~η(λ) = 0, a contradiction to the fact that ~η a pole
cancellation function. Hence, according to Lemma 2.16, the degree of non-positivity of the generalized

pole λ0 of G̃ is indeed 2, that is, G̃ ∈ N2×2
2 .

Next we show that instead of considering Q̃ directly one can also count the negative squares of a
different generalized Nevanlinna function Q, which turns out to be more convenient. For this, consider
the functions

qm(λ) :=
λ

(λ− λ0)(λ− λ0)
m(λ) ∈ Nκm+1 (4.10)

and

qτ (λ) :=
λ

(λ− λ0)(λ− λ0)
τ(λ) ∈ Nκτ+1. (4.11)

That qm ∈ Nκm+1 and qτ ∈ Nκτ+1 can be seen as follows: Since m ∈ Dκm there exists a function
q̃m ∈ Nκm holomorphic in λ0 and a rational function gm holomorphic in C\{λ0, λ0} such that

λ

(λ− λ0)(λ− λ0)
m(λ) = q̃m(λ) + gm(λ).

Since λ0 ∈ h(m−1) the rational function gm has a simple pole at the non-real point λ0. Hence it belongs
to N1 and according to Lemma 2.6 it holds q̃m + gm = qm ∈ Nκm+1. The same reasoning applies to
qτ ∈ Dκτ .

Define Q via the functions qm and qτ from (4.10) and (4.11) by

Q(λ) :=

(
λ− λ0 0

0 1

)(
λ−λ0

λ 0
0 1

)(
qm(λ) −1
−1 − 1

qτ (λ)

)(
λ−λ0

λ 0
0 1

)(
λ− λ0 0

0 1

)
. (4.12)

Multiplying the factors on the right side of (4.12) gives

Q(λ) =

 (λ−λ0)2(λ−λ0)2

λ2 qm(λ) − (λ−λ0)(λ−λ0)
λ

− (λ−λ0)(λ−λ0)
λ − 1

qτ (λ)

 =
(λ− λ0)(λ− λ0)

λ

(
m(λ) −1
−1 − 1

τ(λ)

)

and hence (4.9) implies −Q−1 = Q̃ + G̃. Since Q̃ ∈ N2×2
κ is holomorphic in λ0 and G̃ ∈ N2×2

2 is

holomorphic in C\{λ0, λ0} it follows from Lemma 2.6 that −Q−1 = Q̃ + G̃ belongs to the class N2×2
κ+2

and by Lemma 2.2 this is equivalent to Q ∈ N2×2
κ+2, i.e.

Q̃ ∈ N 2×2
κ if and only if Q ∈ N 2×2

κ+2 .

The idea for obtaining the negative index of Q is now the following: From (4.10) and (4.11) we see
directly that the function

Ω(λ) :=

(
qm(λ) −1
−1 − 1

qτ (λ)

)
(4.13)
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belongs to the class N 2×2
κm+κτ+2. With the help of Proposition 3.1 we are going to calculate the numbers

∆0 and ∆∞, which describe the change of the negative index induced by the multiplication with the
factors (

λ−λ0

λ 0
0 1

)
,

(
λ−λ0

λ 0
0 1

)
and

(
λ− λ0 0

0 1

)
,

(
λ− λ0 0

0 1

)
,

respectively. Then

κ = κ(Q̃) = κ(Q)− 2 = κm + κτ + 2 + ∆0 + ∆∞ − 2 = κm + κτ + ∆0 + ∆∞.

It remains to show the formulas for ∆0 and ∆∞ given as in the formulation of Theorem 4.5. This is
done in Lemma 4.6 below for ∆0 and for ∆∞ in Lemma 4.7 below.

Lemma 4.6 Let m ∈ Dκm and τ ∈ Dκτ be as in the assumptions of Theorem 4.5, let Ω ∈ N2×2
κm+κτ+2

be the generalized Nevanlinna function in (4.13) and let λ0 ∈ C+ be as in (4.8) . Then

Ω̃(λ) :=

(
λ−λ0

λ 0
0 1

)
Ω(λ)

(
λ−λ0

λ 0
0 1

)
∈ N 2×2

κ(Ω)+∆0
, (4.14)

where

∆0 =

{
−1 if lim

λ→̂0
m(λ) and lim

λ→̂0
τ(λ) exist and lim

λ→̂0
(m(λ) + τ(λ)) ≤ 0,

0 otherwise.

P r o o f. In view of Proposition 3.1 we first calculate the index shift ∆0 in different cases depending
on the behavior of Ω at the point zero. Then these results will be summarized in terms of the behavior
of m and τ .

Note first that the product in (4.14) is of the form (3.3) with ~ϕ = ~ψ = (1, 0)> and the points δ = λ0

and γ = 0. Since

Ω(λ) =

(
λ

(λ−λ0)(λ−λ0)
m(λ) −1

−1 − (λ−λ0)(λ−λ0)
λ

1
τ(λ)

)
we see that assumption (4.8) on the choice of the point λ0 implies that δ = λ0 is a pole of Ω with pole
vector ~ϕ = (1, 0)>, which is neutral since λ0 ∈ C \ R. For γ = 0 we are going to discuss the different
cases separately.

(a) If 0 is a generalized zero of Ω with non-positive root vector (1, 0)>, then Proposition 3.1 (1a)
gives directly ∆0 = −1.

(b) If 0 is a generalized zero of Ω with positive root vector (1, 0)>, then Proposition 3.1 (1b) yields
∆0 = 0.

In the remaining cases, where 0 is either a generalized zero of Ω but (1, 0)> is not a corresponding
root vector or 0 is no generalized zero of Ω, Proposition 3.1 cannot be applied directly. Due to this fact
we rewrite (4.14) as the product

Ω(λ) =

(
λ

λ−λ0
0

0 1

)
Ω̃(λ)

( λ
λ−λ0

0

0 1

)
(4.15)

and note

Ω̃(λ) =

(
m(λ)
λ −λ−λ0

λ

−λ−λ0

λ − (λ−λ0)(λ−λ0)
λ

1
τ(λ)

)
. (4.16)

Obviously, also (4.15) is of the form (3.3), now with the points γ = λ0, δ = 0 and again the vectors

~ϕ = ~ψ = (1, 0)>. In order to avoid dealing with the fact that γ = λ0 is a generalized zero of Ω̃ (as

det Ω̃(λ0) = 0, cf. Remark 2.8) we introduce the function

Ω̃(1)(λ) := Ω̃(λ) +

(
0 0
0 1

)
, (4.17)
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18 J. Behrndt, A. Luger, and C. Trunk: Negative squares of self-adjoint extensions

which leads to

Ω(1)(λ) :=

(
λ

λ−λ0
0

0 1

)
Ω̃(1)(λ)

( λ
λ−λ0

0

0 1

)
= Ω(λ) +

(
0 0
0 1

)
. (4.18)

Now γ = λ0 ∈ C\R is neither a pole nor a zero of Ω̃(1) since it belongs to the domain of holomorphy

and Ω̃(1)(λ0) is invertible. After this preparation we are ready to deal with the remaining cases.

(c) If 0 is not a generalized zero of Ω, then Lemma 3.2 and (4.14) imply that 0 is a generalized

pole of Ω̃ with non-positive pole vector (1, 0)> and hence also of Ω̃(1). Then Proposition 3.1 (2) applied

to (4.18) gives κ(Ω̃(1)) = κ(Ω(1)) and together with (4.17) and (4.18) we obtain κ(Ω̃) = κ(Ω), that is,
∆0 = 0.

(d) Finally, assume that 0 is a generalized zero of Ω, but (1, 0)> is not a root vector. We claim that
then the function Ω(1) in (4.18) has no generalized zero at 0. In fact, write Ω(1) as

Ω(1)(λ) =

(
qm(λ) −1
−1 − 1

q
(1)
τ (λ)

)
with q(1)

τ (λ) := − 1

− 1
qτ (λ) + 1

, (4.19)

where qm and qτ are as in (4.10) and (4.11), respectively. In what follows we are making frequent use
of Proposition 3.3. The assumption that 0 is a generalized zero of Ω splits into two further subcases in

Proposition 3.3. In the first case 0 is a generalized pole of both qm and qτ , but then q
(1)
τ obviously has no

generalized pole at 0 and Proposition 3.3 applied to Ω(1) implies that 0 cannot be a generalized zero of
Ω(1). In the second case 0 is a generalized zero of qm+qτ and the limits limλ→̂0 qτ (λ) = − limλ→̂0 qm(λ)
exist and are not equal to zero since by assumption (1, 0)> is not a corresponding root vector of Ω at

0. Hence, from (4.19) we have that if limλ→̂0 q
(1)
τ (λ) exists, then limλ→̂0 qm(λ) + limλ→̂0 q

(1)
τ (λ) 6= 0.

Therefore, Proposition 3.3 yields that also in this case 0 is not a generalized zero of Ω(1). As 0 is not a
generalized zero of Ω(1), Lemma 3.2 and

Ω̃(1)(λ) =

(
λ−λ0

λ 0
0 1

)
Ω(1)(λ)

(
λ−λ0

λ 0
0 1

)
.

imply that 0 is a generalized pole of Ω̃(1) with non-positive pole vector (1, 0)>. As in the preceding case
(c) we obtain from Proposition 3.1 (2) that ∆0 = 0.

Summing up, we have shown ∆0 = 0 in all cases except when 0 is a generalized zero of Ω and (1, 0)>

is a corresponding non-positive root vector, in which case ∆0 = −1. In the latter case, taking into
account the particular root vector and Proposition 3.3 (ii), it follows that

lim
λ→̂0

qm(λ) = 0 = lim
λ→̂0

qτ (λ) and lim
λ→̂0

qm(λ) + qτ (λ)

λ
≤ 0 (4.20)

holds. From (4.10), (4.11), and Lemma 2.11 we conclude that also the limits

lim
λ→̂0

m(λ) = lim
λ→̂0

(λ− λ0)(λ− λ0)
qm(λ)

λ
and lim

λ→̂0
τ(λ) = lim

λ→̂0
(λ− λ0)(λ− λ0)

qτ (λ)

λ

exist. Furthermore, the inequality in (4.20) implies

lim
λ→̂0

m(λ) + τ(λ) = lim
λ→̂0

(
(λ− λ0)(λ− λ0)

)qm(λ) + qτ (λ)

λ
≤ 0,

which completes the proof of Lemma 4.6.

Finally we prove the statement on ∆∞.
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Lemma 4.7 Let m ∈ Dκm and τ ∈ Dκτ be as in the assumptions of Theorem 4.5, let Ω̃ be the
generalized Nevanlinna function in (4.14) and let λ0 ∈ C+ be as in (4.8). Then(

λ− λ0 0
0 1

)
Ω̃(λ)

(
λ− λ0 0

0 1

)
∈ N 2×2

κ(Ω̃)+∆∞
, (4.21)

where

∆∞ =

{
0 if lim

λ→̂∞
m(λ) and lim

λ→̂∞
τ(λ) exist and lim

λ→̂∞
(m(λ) + τ(λ)) ≥ 0,

1 otherwise.

P r o o f. In order to use Proposition 3.1 we rewrite (4.21) by setting w = − 1
λ and w0 = − 1

λ0
. Then

λ− λ0 =
w − w0

ww0
and λ− λ0 =

w − w0

ww0

and, due to Lemma 2.2, the statement of Lemma 4.7 is equivalent to(
1
w0

0

0 1

)(
w−w0

w 0
0 1

)
Ω̃

(
− 1

w

) (
w−w0

w 0
0 1

)(
1
w0

0

0 1

)
∈ N 2×2

κ(Ω̃)+∆∞
.

It follows from (4.16) that

Λ(w) := Ω̃

(
− 1

w

)
=

(−wm (− 1
w

)
w−w0

w0

w−w0

w0

(w−w0)(w−w0)
ww0w0

· 1

τ(− 1
w )

)
, (4.22)

and since these constant factors do not change the negative index the above statement is equivalent to

Λ̃(w) :=

(
w−w0

w 0
0 1

)
Λ(w)

(
w−w0

w 0
0 1

)
∈ Nn×n

κ(Λ)+∆∞
. (4.23)

With (4.22) and (4.8) the function Λ is analytic in δ = w0 = − 1
λ0

and det Λ(w0) = 0, hence w0 is a

generalized zero of Λ; cf. Remark 2.8. In order to apply Proposition 3.1, we introduce the functions

Λ(1)(w) := Λ(w) +

(
0 0
0 1

)
, (4.24)

and

Λ̃(1)(w) :=

(
w−w0

w 0
0 1

)
Λ(1)(w)

(
w−w0

w 0
0 1

)
= Λ̃(w) +

(
0 0
0 1

)
. (4.25)

Observe that

κ(Λ) = κ(Λ(1)) and κ(Λ̃) = κ(Λ̃(1)). (4.26)

In the notation of Proposition 3.1 we again have ~ϕ = ~ψ = (1, 0)>, γ = 0 and δ = w0 for both (4.23)
and (4.25). The point δ = w0 is neither a pole nor a zero of the function Λ(1). Again we are going to
discuss the different cases for γ = 0.

(a) If 0 is a generalized zero of Λ with non-positive root vector (1, 0)>, then 0 is also a generalized
zero of Λ(1) with non-positive root vector (1, 0)> and hence (4.26) and Proposition 3.1 (3a) applied to
(4.25) yield ∆∞ = 0.

(b) If 0 is a generalized zero of Λ with positive root vector (1, 0)>, then Proposition 3.1 (3b) yields
∆∞ = 1.

(c) If 0 is not a generalized zero of Λ, then Lemma 3.2 and (4.23) imply that 0 is a generalized pole

of Λ̃ with non-positive pole vector (1, 0)> and hence also of Λ̃(1). Furthermore, since Λ̃(w0) = 0 we have

Λ̃(1)(w0) =

(
0 0
0 1

)
,
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that is w0 is a generalized zero of Λ̃(1) with (neutral) root vector (1, 0)>; cf. Remark 2.8. Therefore,
Proposition 3.1 (1a) applied to

Λ(1)(w) =

(
w

w−w0
0

0 1

)
Λ̃(1)(w)

(
w

w−w0
0

0 1

)
,

where ~ϕ = ~ψ = (1, 0)>, γ = w0 and δ = 0, yields together with (4.26)

κ(Λ) = κ(Λ(1)) = κ(Λ̃(1))− 1 = κ(Λ̃)− 1,

and hence in this case ∆∞ = 1.
(d) Finally, assume that 0 is a generalized zero of Λ, but (1, 0)> is not a root vector. We claim that

then the function Λ(1) in (4.24) has no generalized zero at 0. To this end we rewrite Λ and Λ(1) in such
a way that Proposition 3.3 can be applied. We set

hm(w) := −wm
(
− 1

w

)
and hτ (w) :=

−ww0w0

(w − w0)(w − w0)
τ

(
− 1

w

)
. (4.27)

Then the functions hm and hτ are scalar generalized Nevanlinna functions, which follows directly from
applying the Möbius transform w = − 1

λ , Lemma 2.2 and Lemma 2.3, and the fact that m ∈ Dκm and
τ ∈ Dκτ . We have

Λ(w) = Λ0(w) + w

(
0 1

w0
1
w0

0

)
and Λ(1)(w) = Λ

(1)
0 (w) + w

(
0 1

w0
1
w0

0

)
, (4.28)

where

Λ0(w) :=

(
hm(w) −1
−1 − 1

hτ (w)

)
, Λ

(1)
0 (w) :=

(
hm(w) −1
−1 − 1

h
(1)
τ (w)

)
, h(1)

τ (w) :=
−1

− 1
hτ (w) + 1

.

Observe that ~ξ is a root function of Λ (Λ(1)) at w = 0 if and only if it is a root function of Λ0

(Λ
(1)
0 , respectively) at w = 0, where the type of the root vector may have changed. Hence it suffices to

show that if 0 is a generalized zero of Λ0 but (1, 0)> is not a root vector, then 0 is not a generalized

zero of Λ
(1)
0 . As in part (d) of the proof of Lemma 4.6, due to Proposition 3.3, the assumption splits

into two subcases. If 0 is a generalized pole of hm and hτ , then h
(1)
τ has no generalized pole at 0 and

Proposition 3.3 applied to Λ
(1)
0 implies that 0 cannot be a generalized zero of Λ

(1)
0 . In the second case 0

is a generalized zero of hm+hτ and the limits limw→̂0 hm(w) = − limw→̂0 hτ (w) exist and are not equal
to zero since by assumption (1, 0)> is not a corresponding root vector of Λ0 at 0. Hence, from (4.28)

we have that if limw→̂0 h
(1)
τ (w) exists, then limw→̂0 hm(w) + limw→̂0 h

(1)
τ (λ) 6= 0. Therefore, Proposition

3.3 yields that also in this case 0 is not a generalized zero of Λ
(1)
0 . Thus, 0 is not a generalized zero of

Λ(1) and the above claim is proved.
Lemma 3.2 and (4.25) imply that the point 0 is a generalized pole of

Λ̃(1)(w) =

(
w−w0

w 0
0 1

)
Λ(1)(w)

(
w−w0

w 0
0 1

)
,

with non-positive pole vector (1, 0)>. As in case (c) it follows ∆∞ = 1.
Summing up, we have shown ∆∞ = 1 in all cases except when 0 is a generalized zero of Λ and (1, 0)>

is a corresponding non-positive root vector, in which case ∆∞ = 0. As((
0 1

w0
1
w0

0

)(
1
0

)
,

(
1
0

))
= 0,
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one concludes with (4.28) that in the latter case 0 is a generalized zero of Λ0 with non-positive root
vector (1, 0)>. Hence, taking into account the particular root vector and Proposition 3.3 (ii), it follows
that

lim
w→̂0

hm(w) = 0 = lim
w→̂0

hτ (w) and lim
w→̂0

hm(w) + hτ (w)

w
≤ 0 (4.29)

holds. From (4.27) and Lemma 2.11 we conclude that also the limits

lim
λ→̂∞

m(λ) = lim
w→̂0

m

(
− 1

w

)
= − lim

w→̂0

hm(w)

w
(4.30)

and

lim
λ→̂∞

τ(λ) = lim
w→̂0

τ

(
− 1

w

)
= − lim

w→̂0

(w − w0)(w − w0)

w0w0

hτ (w)

w
(4.31)

exist. Furthermore, the inequality in (4.29) together with (4.30) and (4.31) implies

lim
λ→̂∞

m(λ) + τ(λ) = lim
w→̂0

m

(
− 1

w

)
+ τ

(
− 1

w

)
= − lim

w→̂0

hm(w) + hτ (w)

w
≥ 0,

which completes the proof of Lemma 4.7.

Remark 4.8 For the sake of completeness we mention that κm = κτ = 0 in Theorem 4.5 implies
∆0 + ∆∞ ≥ 0. That is, we have always κ ≥ 0 in Theorem 4.5. Indeed, choose λ0 as in (4.8), then, with
(4.10) and (4.11),

qm + qτ ∈ N0 ∪N1.

Hence, at least one point in {0,∞} is not a generalized zero of non-positive type of qm + qτ and
∆0 + ∆∞ ≥ 0 follows.

Remark 4.9 Note that only in the special case of m ≡ 0 we made use of the corresponding statement
for scalar Dκ-functions in Theorem 4.4 from [11]. However, alternatively this result would also follow
from investigating the case m = τ .

Part II. Self-adjoint exit space extensions of symmetric operators
in Krein spaces

In this second part of the paper we first briefly recall the concept of boundary triplets and associated
Weyl functions of symmetric operators and relations in Krein spaces; cf. [18, 20], and then we investigate
direct products of symmetric relations in different Krein spaces in a similar manner as in [22]. These
considerations will be useful in the proofs of our main results on the negative squares of self-adjoint exit
space extensions of symmetric operators of defect one with finitely many negative squares in Section 7.
First a Krein-type formula in the indefinite setting will be proved and then the negative squares of the
extensions will be described with the help of the main result Theorem 4.5 in Part I.

5 Boundary triplets and Weyl functions

Let (K, [·, ·]) be a separable Krein space with fundamental symmetry J . For the basic theory of Krein
spaces and operators acting therein we refer to [2] and [12]. We study linear relations in K, that is,

linear subspaces of K × K. The set of all closed linear relations in K will be denoted by C̃(K). For a
linear relation A we write domA, ranA, ker A and mulA for the domain, range, kernel and multivalued
part of A, respectively. The elements in a linear relation A will usually be written in the form {x, x′},
where x ∈ domA and x′ ∈ ranA. For the usual definitions of the linear operations with relations, the
inverse etc., we refer to [1, 14]. Linear operators are identified with linear relations via their graphs.

Copyright line will be provided by the publisher



22 J. Behrndt, A. Luger, and C. Trunk: Negative squares of self-adjoint extensions

Let A be a linear relation in the Krein space K. Then the adjoint relation A+ ∈ C̃(K) is defined by

A+ :=
{
{y, y′} : [x′, y] = [x, y′] for all {x, x′} ∈ A

}
.

Note that this definition extends the usual definition of the adjoint of a densely defined operator in a
Krein space, see, e.g. [2]. If L is an arbitrary subset of the Krein space K we set L[⊥] := {x ∈ K :
[x, y] = 0 for all y ∈ L}. As mulA = (domA+)[⊥] and mulA+ = (domA)[⊥] it is clear that A (A+) is
an operator if and only if domA+ (domA, respectively) is dense. If A is a linear relation in the Krein
space (K, [·, ·]), then A is said to be symmetric (self-adjoint) if A ⊂ A+ (A = A+, respectively).

Let A ∈ C̃(K) be a closed symmetric relation in K. We say that A is of defect m ∈ N0 ∪{∞}, if both
deficiency indices

n±(JA) = dim ker ((JA)∗ − λ), λ ∈ C±,

of the symmetric relation JA in the Hilbert space (K, [J ·, ·]) are equal to m; here ∗ stands for the Hilbert
space adjoint. This is equivalent to the fact that there exist self-adjoint extensions of A in K and that
each self-adjoint extension Â of A in K satisfies dim (Â/A) = m.

We shall use the so-called boundary triplets for the description of the self-adjoint extensions of closed
symmetric relations in Krein spaces. The following definition is taken from [20].

Definition 5.1 Let A be a closed symmetric relation in the Krein space K. We say that {G,Γ0,Γ1}
is a boundary triplet for A+ if (G, (·, ·)) is a Hilbert space and there exist mappings Γ0,Γ1 : A+ → G

such that Γ :=
(

Γ0

Γ1

)
: A+ → G× G is surjective and the identity

[f ′, g]− [f, g′] = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ) (5.1)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A+.

In the following we recall some basic facts on boundary triplets which can be found in, e.g., [18] and
[20]. For the Hilbert space case we refer to [25, 26, 34]. Let A be a closed symmetric relation in K.
Note first that each boundary triplet {G,Γ0,Γ1} for A+ is also a boundary triplet for the adjoint (JA)∗

of the closed symmetric relation in the Hilbert space (K, [J ·, ·]) and vice versa. This allows to translate
many facts from the Hilbert to the Krein space case. E.g., it follows that a boundary triplet for A+

exists if and only if A admits self-adjoint extensions in the Krein space (K, [·, ·]). Let in the following
{G,Γ0,Γ1} and Γ = (Γ0,Γ1)> be as in Definition 5.1. Then A = ker Γ, the mappings Γ0 and Γ1 are
continuous and the self-adjoint extensions A0 := ker Γ0 and A1 := ker Γ1 of A are transversal, that is,
A0 ∩A1 = A and A0 +̂A1 = A+, where +̂ denotes the sum of subspaces. The mapping Γ induces, via

AΘ := Γ(−1)Θ =
{
f̂ ∈ A+ |Γf̂ ∈ Θ

}
= ker (Γ1 −ΘΓ0), Θ ∈ C̃(G), (5.2)

a bijective correspondence Θ 7→ AΘ between the set of closed linear relations C̃(G) in G and the set of
closed extensions AΘ ⊂ A+ of A. Note that the product and sum in the expression ker (Γ1 − ΘΓ0) in
(5.2) are understood in the sense of linear relations. Moreover, AΘ∗ = (AΘ)+ holds and, hence, (5.2)
gives a one-to-one correspondence between the closed symmetric (self-adjoint) extensions of A in the
Krein space (K, [·, ·]) and the closed symmetric (self-adjoint, respectively) relations in G in the Hilbert
space (G, (·, ·)).

For a closed symmetric relation A the defect subspace at the point λ is defined as

Nλ,A+ := ker (A+ − λ) = ran (A− λ)[⊥]

and we set

N̂λ,A+ =
{
{fλ, λfλ} : fλ ∈ Nλ,A+

}
.

When no confusion can arise we will simply write Nλ and N̂λ instead of Nλ,A+ and N̂λ,A+ , respectively.
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Let again {G,Γ0,Γ1} be a boundary triplet for A+ and assume, in addition, that the resolvent set
of the self-adjoint relation A0 = ker Γ0 is nonempty, i.e., there exist λ ∈ C such that (A0 − λ)−1 is an
everywhere defined bounded operator in K. Then we have

A+ = A0 +̂ N̂λ, direct sum,

for all λ ∈ ρ(A0). If π1 denotes the projection onto the first component of K × K, then for every
λ ∈ ρ(A0) the operators

γ(λ) = π1

(
Γ0 �N̂λ

)−1
and m(λ) = Γ1

(
Γ0 �N̂λ

)−1

are well defined and belong to L(G,K) and L(G), respectively. Here L(G,K) stands for the space of
bounded everywhere defined linear operators mapping from G into K and L(G) is used instead of L(G,G).
The functions λ 7→ γ(λ) and λ 7→ m(λ) are called the γ-field and the Weyl function corresponding to A
and {G,Γ0,Γ1}. The functions γ and m are holomorphic on ρ(A0) and the relations

γ(ζ) =
(
1 + (ζ − λ)(A0 − ζ)−1

)
γ(λ) (5.3)

and

m(λ)−m(ζ)∗ = (λ− ζ)γ(ζ)+γ(λ) (5.4)

hold for λ, ζ ∈ ρ(A0); cf. [20]. It is important to note that in general the set ρ(A0) can be a proper
subset of h(m)\{∞}; note that∞ may belong to h(m) whereas by definition ρ(A0) ⊂ C. Let λ0 ∈ ρ(A0).
Then (5.4), (5.3) and Imm(λ0) = (Imλ0) γ(λ0)+γ(λ0) imply

m(λ) = Re m(λ0) + γ(λ0)+
(
(λ− Reλ0) + (λ− λ0)(λ− λ0)(A0 − λ)−1

)
γ(λ0) (5.5)

for all λ ∈ ρ(A0). If, in addition, the symmetric relation A has the property

K = clsp
{
Nλ |λ ∈ ρ(A0)

}
, (5.6)

then A is automatically an operator and A0 fulfils the minimality condition

K = clsp
{(

1 + (λ− λ0)(A0 − λ)−1
)
γ(λ0)x |λ ∈ ρ(A0), x ∈ G

}
. (5.7)

In this case we have

h(m)\{∞} = ρ(A0) and h(m−1)\{∞} = ρ(A1). (5.8)

The following well-known variant of Krein’s formula for canonical extensions shows how the resolvents
of closed extensions AΘ of A can be described with the help of the resolvent of the fixed extension A0,
the parameter Θ and the Weyl function. For a proof see, e.g., [20].

Theorem 5.2 Let A be a closed symmetric relation in the Krein space K, let {G,Γ0,Γ1} be a bound-
ary triplet for A+ and assume that A0 = ker Γ0 has a nonempty resolvent set. Denote by γ and m the

corresponding γ-field and Weyl function, let Θ ∈ C̃(G) and let AΘ be the corresponding extension via
(5.2). Then λ ∈ ρ(A0) belongs to ρ(AΘ) if and only if 0 ∈ ρ(Θ−m(λ)) and

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−m(λ)

)−1
γ(λ)+

holds for all λ ∈ ρ(AΘ) ∩ ρ(A0). In particular, for A1 = ker Γ1 the inclusion ρ(A1) ∩ ρ(A0) ⊂ h(m−1)
holds and

(A1 − λ)−1 = (A0 − λ)−1 − γ(λ)m(λ)−1γ(λ)+

is valid for all λ ∈ ρ(A1) ∩ ρ(A0).
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6 Direct products of symmetric relations

In this section we collect some results on boundary triplets and Weyl functions for direct products of
symmetric linear relations in Krein spaces. The following notation will be useful: If (K, [·, ·]K) and
(H, [·, ·]H) are Krein spaces the elements of K ×H will be written in the form {k, h}, k ∈ K, h ∈ H.
The space K×H equipped with the inner product [·, ·] defined by

[{k, h}, {k′, h′}] := [k, k′]K + [h, h′]H, k, k′ ∈ K, h, h′ ∈ H,

is a Krein space. If A is a relation in K and T is a relation in H we shall write A × T for the direct
product of A and T which is a relation in K×H,

A× T =

{(
{f, g}
{f ′, g′}

) ∣∣∣ {f, f ′} ∈ A, {g, g′} ∈ T} . (6.1)

For the pair
(
{f,g}
{f ′,g′}

)
on the right hand side of (6.1) we shall also write {f̂ , ĝ}, where f̂ = {f, f ′} and

ĝ = {g, g′}.
Let A and T be closed symmetric relations of equal defect n ≤ ∞ in the Krein spaces K and H and

let {G,Γ0,Γ1} and {G,Γ′0,Γ′1} be boundary triplets for A+ and T+, respectively. The corresponding
γ-fields and Weyl functions are denoted by γ, γ′, m and τ , respectively. The elements in G × G will
be written as column vectors. It is easy to see that A × T is a closed symmetric relation in K × H,
(A×T )+ = A+×T+, and {G×G,Γ′′0 ,Γ

′′
1}, where Γ′′0 and Γ′′1 are the mappings from A+×T+ into G×G

defined by

Γ′′0{f̂ , ĝ} :=

(
Γ0f̂
Γ′0ĝ

)
and Γ′′1{f̂ , ĝ} :=

(
Γ1f̂
Γ′1ĝ

)
, (6.2)

{f̂ , ĝ} ∈ A+ × T+, is a boundary triplet for A+ × T+. Assume that for the self-adjoint relations
A0 := ker Γ0 and T0 := ker Γ′0 the condition ρ(A0)∩ρ(T0) 6= ∅ is fulfilled. Then, for λ ∈ ρ(A0)∩ρ(T0) =
ρ(A0 × T0) the corresponding γ-field γ′′ is given by

λ 7→ γ′′(λ) =

(
γ(λ) 0

0 γ′(λ)

)
∈ L(G× G,K×H)

and the Weyl function M ′′ corresponding to A×T and the boundary triplet {G×G,Γ′′0 ,Γ
′′
1} is given by

λ 7→M ′′(λ) =

(
m(λ) 0

0 τ(λ)

)
∈ L(G× G), λ ∈ ρ(A0 × T0).

In Proposition 6.1 below we introduce another boundary triplet {G×G, Γ̃0, Γ̃1} for A+×T+; cf. [22,

§3.3]. The self-adjoint relation ker Γ̃0 will play an important role in Section 7. The simple proof of
Proposition 6.1 is left to the reader.

Proposition 6.1 Let A and T be closed symmetric relations of equal defect n ≤ ∞ in the Krein
spaces K and H, let {G,Γ0,Γ1} and {G,Γ′0,Γ′1} be boundary triplets for A+ and T+, respectively, and
assume ρ(A0) ∩ ρ(T0) 6= ∅. Denote the corresponding γ-fields and Weyl functions by γ, γ′, m and τ ,
respectively. Then the following holds:

(i) {G× G, Γ̃0, Γ̃1}, where Γ̃0 and Γ̃1 are mappings from A+ × T+ into G× G defined by

Γ̃0{f̂ , ĝ} :=

(
−Γ1f̂ + Γ′1ĝ

Γ0f̂ + Γ′0ĝ

)
and Γ̃1{f̂ , ĝ} :=

(
Γ0f̂
Γ′1ĝ

)
,

{f̂ , ĝ} ∈ A+ × T+, is a boundary triplet for A+ × T+.
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(ii) If ρ(ker Γ̃0) ∩ ρ(ker Γ̃1) ∩ ρ(T0) is nonempty, then the Weyl function M̃ and the γ-field γ̃ corre-

sponding to {G× G, Γ̃0, Γ̃1} are given for λ ∈ ρ(ker Γ̃0) ∩ ρ(ker Γ̃1) ∩ ρ(T0) by

M̃(λ) = −
(
m(λ) −1
−1 −τ(λ)−1

)−1

and γ̃(λ) =

(
γ(λ) 0

0 γ′(λ)τ(λ)−1

)
M̃(λ).

In the next proposition we define a symmetric extension H of A× T such that

H ⊂ ker Γ̃0 ⊂ H+ and H ⊂ A0 × T0 ⊂ H+

holds, and by restricting the boundary triplet {G×G, Γ̃0, Γ̃1} from Proposition 6.1 we obtain a boundary

triplet {G, Γ̂0, Γ̂1} for H+ where the corresponding Weyl function M̂ has the form

λ 7→ M̂(λ) = −
(
m(λ) + τ(λ)

)−1
.

The proof of Proposition 6.2 is straightforward and therefore left to the reader. The assertions can be
deduced from Proposition 6.1 and [22, Proposition 4.1].

Proposition 6.2 Let A and T be closed symmetric relations of equal defect n ≤ ∞ in the Krein
spaces K and H, let {G,Γ0,Γ1} and {G,Γ′0,Γ′1} be boundary triplets for A+ and T+, respectively, and
assume ρ(A0) ∩ ρ(T0) 6= ∅. Denote the corresponding γ-fields and Weyl functions by γ, γ′, m and τ ,
respectively. Then the following holds:

(i) The closed linear relation

H :=
{
{f̂ , ĝ} ∈ A+ × T+ : Γ0f̂ = Γ′0ĝ = Γ1f̂ − Γ′1ĝ = 0

}
is symmetric in K×H with A× T ⊂ H. Its adjoint H+ ⊂ A+ × T+ is given by

H+ =
{
{f̂ , ĝ} ∈ A+ × T+ : Γ0f̂ + Γ′0ĝ = 0

}
.

(ii) {G, Γ̂0, Γ̂1}, where Γ̂0 and Γ̂1 are linear mappings from H+ into G defined by

Γ̂0{f̂ , ĝ} := −Γ1f̂ + Γ′1ĝ and Γ̂1{f̂ , ĝ} := Γ0f̂ ,

{f̂ , ĝ} ∈ H+, is a boundary triplet for H+.

(iii) For all λ ∈ ρ(ker Γ̂0)∩ρ(ker Γ̂1) the Weyl function M̂ and the γ-field γ̂ corresponding to {G, Γ̂0, Γ̂1}
are given by

M̂(λ) = −
(
m(λ) + τ(λ)

)−1
and γ̂(λ) =

(
γ(λ)M̂(λ)

−γ′(λ)M̂(λ)

)
.

7 Negative squares of self-adjoint extensions in exit spaces

A closed symmetric relation A in the Krein space (K, [·, ·]) is said to have κ negative squares, κ ∈ N0, if
the Hermitian form 〈·, ·〉 on A, defined by〈

{f, f ′}, {g, g′}
〉

:= [f, g′] = [f ′, g], {f, f ′}, {g, g′} ∈ A,

has κ negative squares, that is, there exists a κ-dimensional subspace M in A, such that 〈f̂ , f̂〉 < 0 if

f̂ = {f, f ′} ∈ M, f̂ 6= 0, but no κ + 1-dimensional subspace with this property. Suppose, in addition,
that the symmetric relation A is of finite defect n and let {Cn,Γ0,Γ1} be a boundary triplet for A+.
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Then the self-adjoint relation A0 = ker Γ0 has κ′, κ ≤ κ′ ≤ κ + n negative squares and if ρ(A0) is
nonempty this is equivalent to the fact that the form[(

1 + λ(A0 − λ)−1
)
·, (A0 − λ)−1·

]
, λ ∈ ρ(A0),

defined on K has κ′ negative squares. Then the corresponding Weyl function belongs to the classes of
matrix valued functions introduced in Section 4. The following lemma can be proved in the same way
as [10, Lemma 7].

Lemma 7.1 Let A be a closed symmetric relation of finite defect n in K, let {Cn,Γ0,Γ1} be a
boundary triplet for A+ and assume that the self-adjoint relation A0 = ker Γ0 has κ′ negative squares
and ρ(A0) 6= ∅. Then the corresponding Weyl function m belongs to some class Dn×n

κ′′ , κ′′ ≤ κ′. If, in
addition, the condition

K = clsp
{
Nλ : λ ∈ ρ(A0)

}
= clsp

{
ran γ(λ) : λ ∈ ρ(A0)

}
(7.1)

is fulfilled, then κ′′ = κ′, i.e., m ∈ Dn×n
κ′

Remark 7.2 We note that it can be shown that also the converse in Lemma 7.1 holds, that is, every
function m ∈ Dn×n

κ , κ ∈ N0, can be realized as the Weyl function of a certain boundary triplet; cf. [3, 4]
and [10, Theorem 8].

From now on it will be assumed that the closed symmetric operator or relation A is of defect one.
Clearly, in this case the Weyl function m is a scalar function. The statements from the next lemma will
be used in the following.

Lemma 7.3 Let A be a closed symmetric operator of defect one with finitely many negative squares
in the Krein space K and assume that ran (A−λ) is closed for all λ ∈ O∪O∗, where O is an open subset
in C+ and O∗ = {λ ∈ C : λ ∈ O}. Then the following holds:

(i) If domA is dense, then all self-adjoint extensions of A in K are operators and have a nonempty
resolvent set.

(ii) If K = clsp{ker (A+ − λ) : λ ∈ O ∪ O∗} holds, then all self-adjoint extensions of A in K have a
nonempty resolvent set.

Furthermore, if A has κ ∈ N0 negative squares and A′ is a self-adjoint extension of A in K with
ρ(A′) 6= ∅, then A′ has κ or κ+ 1 negative squares and σ(A′)∩ (C\R) consists of at most κ+ 1 pairs of
eigenvalues {µj , µj}, j = 1, . . . , n+ 1.

P r o o f. Assertions (i) and the last statement on the number of non-real eigenvalues are known
from [15, 45], see also [11]. Assertion (ii) is essentially a consequence of the fact that the condition
K = clsp{Nλ : λ ∈ O ∪ O∗} together with (5.6)-(5.7) implies that the Weyl function of any boundary
triplet {C,Γ0,Γ1} of A+ is not equal to a constant. Thus, by Theorem 5.2 each self-adjoint extension
of A in K has a nonempty resolvent set.

Remark 7.4 There exist closed symmetric non-densely defined operators which satisfy the assump-
tions of Lemma 7.3 and possess self-adjoint extensions with an empty resolvent set.

Let A be a closed symmetric operator or relation of defect one in the Krein space K, let {G,Γ0,Γ1}
be a boundary triplet for A+ and let H be a further Krein space. A self-adjoint extension Ã of A in
K×H is said to be an exit space extension of A and H is called the exit space. The exit space extension

Ã of A is said to be minimal if ρ(Ã) is nonempty and

K×H = clsp
{
K, ran

(
(Ã− λ)−1 �K

)
: λ ∈ ρ(Ã)

}
(7.2)

holds. Clearly (7.2) is equivalent to

H = clsp
{

ran
(
PH(Ã− λ)−1 �K

)
: λ ∈ ρ(Ã)

}
.
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Assume that B̃ is another minimal self-adjoint exit space extension of A in a Krein space K ×H′ and

that the set C\R up to at most finitely many points is contained in ρ(Ã) ∩ ρ(B̃). Then Ã and B̃ are
said to be weakly isomorphic if there exists an operator

V : sp
{
K, ran

(
(Ã− λ)−1 �K

)
: λ ∈ ρ(Ã)

}
→ sp

{
K, ran

(
(B̃ − λ)−1 �K

)
: λ ∈ ρ(B̃)

}
which preserves the inner product, [V x, V y] = [x, y], x, y ∈ domV , such that

V (Ã− λ)−1x = (B̃ − λ)−1V x, x ∈ domV, λ ∈ ρ(Ã) ∩ ρ(B̃),

holds; cf. [31].
In the next theorem we verify Krein’s formula for the generalized resolvents of a symmetric operator

of defect one with finitely many negative squares; cf. [9]. The proof is based on the coupling method
from [22, 24] and the observations in Section 6. We refer the reader to the classical papers [40, 49, 50]
and [5, 7, 8, 17, 18, 19, 20, 38, 44] for Krein’s formula in Hilbert, Pontryagin and Krein space cases.
In the special case where K and H are Hilbert spaces and the symmetric operator A is nonnegative
a bijective correspondence between the self-adjoint extensions with finitely many negative eigenvalues
(that is, negative squares) and a corresponding generalized class of Stieltjes functions was obtained in
[25, 27]. In the following we use the notation

D̃ :=

∞⋃
κ=0

Dκ ∪
{(

0
c

)
| c ∈ C

}
.

Theorem 7.5 Let A be a closed symmetric operator of defect one in the Krein space K and let
{C,Γ0,Γ1} be a boundary triplet for A+ with corresponding γ-field γ and Weyl function m. Assume
that A0 = ker Γ0 has finitely many negative squares and ρ(A0) 6= ∅. Then

PK(Ã− λ)−1 �K= (A0 − λ)−1 − γ(λ)
(
m(λ) + τ(λ)

)−1
γ(λ)+ (7.3)

establishes (up to weak isomorphy) a one-to-one correspondence between minimal self-adjoint extensions

Ã of A with finitely many negative squares in Krein spaces K ×H and functions τ from the class D̃

with τ 6= −m. The formula (7.3) holds for all points λ belonging to the set

ρ(Ã) ∩ ρ(A0) ∩ h(τ) = h
(
(m+ τ)−1

)
∩ ρ(A0) ∩ h(τ). (7.4)

P r o o f. Let H be a Krein space and let Ã be a minimal self-adjoint extension of A in K×H which

has a finite number of negative squares. Observe that by definition this in particular means ρ(Ã) 6= ∅.
Obviously the symmetric relation Ã ∩K2 in K is an extension of the operator A, and as A is of defect

one Ã ∩K2 is either self-adjoint in K or coincides with A.

In the case Ã ∩K2 = (Ã ∩K2)+ it follows that Ã ∩H2 = (Ã ∩H2)+ and Ã = Ã ∩K2 × Ã ∩H2; cf.

[22, Remark 5.3]. Therefore (Ã− λ)−1 maps elements from K into K and, by the minimality of Ã,

H = clsp
{
PH(Ã− λ)−1 �K: λ ∈ ρ(Ã)

}
= {0}

and therefore Ã is a self-adjoint extension of A in K = K × {0}. Hence by Theorem 5.2 there exists a
constant τ ∈ R such that

(Ã− λ)−1 = (A0 − λ)−1 − γ(λ)
(
m(λ) + τ

)−1
γ(λ)+

and (7.4) hold.

Suppose now A = Ã∩K2 and let T := Ã∩H2. Then the same arguments as in [22, Lemma 5.1 and
Theorem 5.4] show that T is of defect one and the adjoints of A and T are given by

A+ = P̂KÃ :=

{
{k, k′} :

(
{k, h}
{k′, h′}

)
∈ Ã

}
⊂ K×K
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and

T+ = P̂HÃ :=

{
{h, h′} :

(
{k, h}
{k′, h′}

)
∈ Ã

}
⊂ H ×H,

respectively. Here P̂K : Ã→ A+ and P̂H : Ã→ T+ denote the mappings given by(
{k, h}
{k′, h′}

)
7→ {k, k′} and

(
{k, h}
{k′, h′}

)
7→ {h, h′},

respectively. Furthermore, it was proved in [22, Theorem 5.4] that {C,Γ′0,Γ′1}, where

Γ′0ĝ := −Γ0P̂KP̂
−1
H ĝ and Γ′1ĝ := Γ1P̂KP̂

−1
H ĝ, (7.5)

is a boundary triplet for T+. Observe that Γ′0 and Γ′1 are well defined since mul P̂KP̂
−1
H = A =

ker Γ0 ∩ ker Γ1. From

ran
(
PH(Ã− λ)−1 �K

)
= ker (T+ − λ), λ ∈ ρ(Ã),

(see, e.g., [23, Lemma 2.14]) it follows together with the minimality of Ã, see (7.2), that

H = clsp
{
Nλ,T+ : λ ∈ ρ(Ã)

}
(7.6)

holds. In particular this implies that T is an operator. Since Ã has finitely many negative squares also

T = Ã ∩H2 has finitely many negative squares and ran (T − λ) is closed for all λ ∈ ρ(Ã). Hence by
Lemma 7.3 the self-adjoint extension T0 = ker Γ′0 of T has a nonempty resolvent set and the γ-field
γ′ and the Weyl function τ corresponding to the boundary triplet {C,Γ′0,Γ′1} are defined on ρ(T0).
Furthermore, T0 also has finitely many negative squares and therefore τ belongs to the some class Dκ,
κ ∈ N0, see Lemma 7.1. Since (7.6) holds we have ρ(T0) = h(τ)\{∞}.

Define the closed symmetric relation H in K×H by

H :=
{
{f̂ , ĝ} ∈ A+ × T+ : Γ0f̂ = Γ′0ĝ = Γ1f̂ − Γ′1ĝ = 0

}
(7.7)

as in Proposition 6.2 (i) and let {C, Γ̂0, Γ̂1} be the boundary triplet from Proposition 6.2 (ii),

Γ̂0{f̂ , ĝ} = −Γ1f̂ + Γ′1ĝ, Γ̂1{f̂ , ĝ} = Γ0f̂ , {f̂ , ĝ} ∈ H+, (7.8)

where H+ = {{f̂ , ĝ} ∈ A+ × T+ : Γ0f̂ + Γ′0ĝ = 0}. Observe that A0 × T0 = ker Γ̂1 holds. We claim

that ker Γ̂0 coincides with the self-adjoint relation Ã. In fact, an element {f̂ , ĝ} ∈ ker Γ̂0 satisfies

Γ0f̂ = −Γ′0ĝ = Γ0P̂KP̂
−1
H ĝ and Γ1f̂ = Γ′1ĝ = Γ1P̂KP̂

−1
H ĝ. (7.9)

Observe that (7.9) implies f̂ − P̂KP̂
−1
H ĝ ∈ ker Γ0 ∩ ker Γ1 = A. Therefore {f̂ − P̂KP̂

−1
H ĝ, 0} ∈ Ã and

as {P̂KP̂
−1
H ĝ, ĝ} ∈ Ã we conclude {f̂ , ĝ} ∈ Ã. Conversely, {f̂ , ĝ} ∈ Ã yields {f̂ − P̂KP̂

−1
H ĝ, 0} ∈ Ã, i.e.,

f̂ − P̂KP̂
−1
H ĝ ∈ A, and hence

Γ0f̂ + Γ′0ĝ = Γ0

(
f̂ − P̂KP̂

−1
H ĝ

)
= 0, Γ1f̂ − Γ′1ĝ = Γ1

(
f̂ − P̂KP̂

−1
H ĝ

)
= 0.

Therefore {f̂ , ĝ} ∈ H+ and Γ̂0{f̂ , ĝ} = 0, that is, Ã = ker Γ̂0, i.e.,

Ã =
{
{f̂ , ĝ} ∈ A+ × T+ : Γ0f̂ + Γ′0ĝ = Γ1f̂ − Γ′1ĝ = 0

}
. (7.10)

Each of the relations Ã, A0 and T0 has finitely many negative squares and a nonempty resolvent set.
Hence, there are at most finitely many points in C\R which do not belong to

ρ(Ã) ∩ ρ(A0 × T0) = ρ(ker Γ̂0) ∩ ρ(ker Γ̂1).
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Let γ̂ and M̂ be the γ-field and Weyl function corresponding to the boundary triplet {C, Γ̂0, Γ̂1}, i.e.,

γ̂(λ) =

(
−γ(λ)(m(λ) + τ(λ))−1

γ′(λ)(m(λ) + τ(λ))−1

)
, λ ∈ ρ(Ã) ∩ ρ(A0 × T0), (7.11)

and

M̂(λ) = −
(
m(λ) + τ(λ)

)−1
, λ ∈ ρ(Ã) ∩ ρ(A0 × T0); (7.12)

cf. Proposition 6.2. Then it follows from Theorem 5.2 that

(Ã− λ)−1 =
(
(A0 × T0)− λ

)−1
+ γ̂(λ)M̂(λ)−1γ̂(λ)+ (7.13)

holds and that λ ∈ ρ(Ã) belongs to ρ(A0 × T0) = ρ(A0) ∩ h(τ) if and only if 0 ∈ ρ(M̂(λ)), i.e.,
m(λ) + τ(λ) 6= 0. Therefore

ρ(Ã) ∩ ρ(A0) ∩ h(τ) = h
(
(m+ τ)−1

)
∩ ρ(A0) ∩ h(τ)

and as

γ̂(λ)M̂(λ)−1γ̂(λ)+ =

(
−γ(λ)(m(λ) + τ(λ))−1γ(λ)+ γ(λ)(m(λ) + τ(λ))−1γ′(λ)+

γ′(λ)(m(λ) + τ(λ))−1γ(λ)+ −γ′(λ)(m(λ) + τ(λ))−1γ′(λ)+

)
(7.14)

for λ ∈ ρ(Ã) ∩ ρ(A0) ∩ h(τ) the compression of (7.13) onto K is given by (7.3).

Now we verify the converse direction, that is, for a given function τ ∈ D̃ we construct a minimal

self-adjoint extension Ã such that the compressed resolvent of Ã onto K is given by (7.3). In the special

case τ ∈ R one chooses the canonical extension Ã = A−τ = ker (Γ1 + τΓ0), so that by Theorem 5.2

formulas (7.3) and (7.4) hold. Let now τ ∈ D̃ be a function which is not equal to a constant. With the
help of the operator representation [37, Theorem 3.9] of τ it was proved in [10, Theorem 8] that there
exists a Krein space H, a closed symmetric operator T of defect one with finitely many negative squares
in H and a boundary triplet {C,Γ′0,Γ′1} for T+ such that T0 = ker Γ′0 has a nonempty resolvent set and
τ coincides with the corresponding Weyl function on ρ(T0). Moreover, the condition

H = clsp
{
Nλ,T+ : λ ∈ ρ(T0)

}
(7.15)

holds. Now we make again use of Proposition 6.2 and the construction above. Define the closed

symmetric relation H in K ×H by (7.7) and let {C, Γ̂0, Γ̂1} be the boundary triplet for H+ in (7.8).

We set Ã := ker Γ̂0. As A and T have finitely many negative squares the same holds for Ã. One verifies

that all points in ρ(A0 × T0) ∩ h((m+ τ)−1) belong to ρ(Ã) and hence the γ-field γ̂ and Weyl function

M̂ corresponding to {C, Γ̂0, Γ̂1} are defined on ρ(Ã). Therefore (7.11), (7.12), (7.13) and (7.14) hold

and hence the compressed resolvent of Ã onto K satisfies (7.3). Furthermore, it follows from (7.13) and
(7.14) that

ran
(
PH(Ã− λ)−1 �K

)
= ran

(
γ′(λ)(m(λ) + τ(λ))−1γ(λ)+

)
= Nλ,T+

holds and therefore (7.15) implies that Ã is a minimal self-adjoint exit space extension of A.

It remains to show that Ã is determined uniquely up to a weak isomorphism by (7.3). Suppose that

besides the minimal self-adjoint extension Ã of A with finitely many negative squares in K×H also the

minimal self-adjoint extension B̃ of A with finitely many negative squares in the Krein space K ×H′

satisfies (7.3). Then it follows that the linear relation

V :=

{{(
k0

0

)
+

n∑
i=1

(Ã− λi)−1

(
ki
0

)
,

(
k0

0

)
+

n∑
i=1

(B̃ − λi)−1

(
ki
0

)}
:
k0, . . . , kn ∈ K

λi ∈ ρ(Ã) ∩ ρ(B̃)

}
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is isometric with dense domain in K ×H and dense range in K ×H′. Therefore V is the graph of an
isometric operator and it is not difficult to verify that

V (Ã− λ)−1x = (B̃ − λ)−1V x

is fulfilled for all x ∈ domV and all λ ∈ ρ(Ã) ∩ ρ(B̃). Observe also that[
(1 + λ(B̃ − λ)−1)V x, (B̃ − λ)−1V x

]
K×H′ =

[
(1 + λ(Ã− λ)−1)x, (Ã− λ)−1x

]
K×H

holds for all x ∈ domV and hence the number of negative squares of Ã and B̃ coincide.

In the next theorem the number of negative squares of the self-adjoint relation Ã in Theorem 7.5 is
expressed in terms of the behavior of the Dκ-functions m and τ at the points 0 and ∞. We leave it to

the reader to formulate the corollary for nonnegative selfadjoint extensions Ã. The case that Ã in (7.3)

is a canonical self-adjoint extension (i.e., there is no exit space and, hence, Ã is a self-adjoint extension
in K) of the symmetry A was already treated in [11, 18].

Theorem 7.6 Let A be a closed symmetric operator of defect one in the Krein space K and let
{C,Γ0,Γ1} be a boundary triplet for A+ with corresponding γ-field γ and Weyl function m. Assume

that A0 = ker Γ0 has κm negative squares, ρ(A0) 6= ∅, and that K = clsp{Nλ : λ ∈ ρ(A0)} holds. If Ã
is a minimal self-adjoint extension of A in a Krein space K ×H, H 6= {0}, and τ ∈ Dκτ is such that

(7.3) holds, then Ã has

κ = κm + κτ + ∆0 + ∆∞

negative squares, where

∆0 =

{
−1 if lim

λ→̂0
m(λ) and lim

λ→̂0
τ(λ) exist and lim

λ→̂0
(m(λ) + τ(λ)) ≤ 0,

0 otherwise,

and

∆∞ =

{
0 if lim

λ→̂∞
m(λ) and lim

λ→̂∞
τ(λ) exist and lim

λ→̂∞
(m(λ) + τ(λ)) ≥ 0,

1 otherwise.

P r o o f. Assume that Ã and τ ∈ D̃ are such that the correspondence (7.3) holds. According to the

proof of Theorem 7.5 τ is the Weyl function of the operator T = Ã ∩ H2 and the boundary triplet
{C,Γ′0,Γ′1} defined in (7.5); cf. [22]. In particular, τ is not equal to a constant. Furthermore, the

minimality of Ã implies that T has finitely many negative squares and that

H = clsp
{
Nλ,T+ : λ ∈ ρ(Ã)

}
(7.16)

holds. Hence it follows from Lemma 7.3 that the self-adjoint extensions T0 = ker Γ′0 and T1 = ker Γ′1
in H have nonempty resolvent sets.

Let {C2, Γ̃0, Γ̃1},

Γ̃0{f̂ , ĝ} =

(
−Γ1f̂ + Γ′1ĝ

Γ0f̂ + Γ′0ĝ

)
, Γ̃1{f̂ , ĝ} =

(
Γ0f̂
Γ′1ĝ

)
, f̂ ∈ A+, ĝ ∈ T+,

be the boundary triplet for A+×T+ from Proposition 6.1. Then by (7.10) the self-adjoint relation Ã in

K×H coincides with ker Γ̃0. Moreover it follows ρ(ker Γ̃1) = ρ(A0) ∩ h(τ−1); cf. (5.8). By assumption

m 6= −τ and (7.4) and Proposition 6.1 (ii) show that the Weyl function M̃ of {C2, Γ̃0, Γ̃1} has the form

M̃(λ) = −
(
m(λ) −1
−1 −τ(λ)−1

)−1
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for all λ belonging to

ρ(Ã) ∩ ρ(A0) ∩ ρ(T1) ∩ ρ(T0) = h
(
(m+ τ)−1

)
∩ ρ(A0) ∩ h(τ−1) ∩ h(τ).

Now the relations K = clsp{Nλ : λ ∈ ρ(A0)} and (7.16) imply that the γ-field γ̃ of {C2, Γ̃0, Γ̃1}
satisfies K×H = {γ̃(λ)x : λ ∈ ρ(Ã), x ∈ C2}. The assertion on the number of negative squares of Ã is
now an immediate consequence of Theorem 4.5 and Lemma 7.1.

Remark 7.7 We note that the number of negative squares κ = κm+κτ +∆0 +∆∞ of the self-adjoint

extension Ã in K ×H in Theorem 7.6 is larger or equal to the number κA of negative squares of the
underlying closed symmetric operator A in K and that κm = κA or κm = κA + 1 by Lemma 7.3. In the
special case κτ = 0 it is not difficult to construct examples with κ = κA.
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